EP0390667B1 - Electronically controlled internal-combustion engine fuel injection supply device - Google Patents

Electronically controlled internal-combustion engine fuel injection supply device Download PDF

Info

Publication number
EP0390667B1
EP0390667B1 EP90400828A EP90400828A EP0390667B1 EP 0390667 B1 EP0390667 B1 EP 0390667B1 EP 90400828 A EP90400828 A EP 90400828A EP 90400828 A EP90400828 A EP 90400828A EP 0390667 B1 EP0390667 B1 EP 0390667B1
Authority
EP
European Patent Office
Prior art keywords
engine
phase
injection
synchronous
cooling liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90400828A
Other languages
German (de)
French (fr)
Other versions
EP0390667A1 (en
Inventor
Daniel Eygret
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solex SA
Original Assignee
Solex SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solex SA filed Critical Solex SA
Publication of EP0390667A1 publication Critical patent/EP0390667A1/en
Application granted granted Critical
Publication of EP0390667B1 publication Critical patent/EP0390667B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting

Definitions

  • the invention relates to fuel supply devices for an internal combustion engine, of the type which include electrically controlled injectors delivering fuel under pressure into the engine intake manifold and an electronic control circuit connected to sensors for operating parameters of the engine, in particular of the speed of the latter, supplying the injector with periodic signals of variable duty cycle as a function of said parameters.
  • the invention applies to all so-called indirect injection devices, that is to say delivering fuel into the intake manifold to the engine (and not directly into the combustion chambers).
  • the injection is multipoint, that is to say by several injectors controlled either all simultaneously, or in groups, or even individually, which each open into a branch of the pipe upstream of a corresponding intake valve.
  • indirect injection devices function as synchronous during periods when the engine is running at steady speed.
  • a given injector is actuated when the motor shaft passes in a determined orientation.
  • the various injectors are generally controlled with a relative phase shift, to limit variations in the fuel supply pressure.
  • the electronic circuits controlling the injection devices must be provided to ensure satisfactory operation during transient phases of operation. For example, it has already been proposed to replace synchronous injection with asynchronous injection to supply the engine with the additional fuel it needs to accelerate (US-A-4,573,443). It has also been proposed to switch from synchronous operation to asynchronous operation when the engine operating parameters lead to injector control pulses deemed too low in the case of a synchronous injection (US-A-4,200,063) .
  • USB-A-3,628,510 is an injection system having an analog control circuit, without digital memory. During engine start-up, the circuit adds control pulses to normal pulses, to increase the flow rate supplied to the engine.
  • the invention aims to solve a different problem, that of starting the engine and, possibly, of the initially cold engine warming up, which requires increasing the quantity of fuel supplied to the engine.
  • Various solutions have already been proposed.
  • an additional cold starting injector was used which sprays fuel under pressure very finely into the manifold: this solution requires an additional injector and a large fraction of the atomized fuel wets the walls of the intake manifold, which is unfavorable. , especially when the temperature is very low and the fuel remains in the state of adherent droplets.
  • a more advantageous solution consists, during the launch phase, of injecting fuel at low pressure continuously into the manifold (FR-A-2 332 431). But even when the fuel jet is sent directly to the tail of the intake valves to cause it to burst, the spraying may remain insufficient.
  • the invention aims to provide a device of the above defined type which better meets the requirements of practice than those known to date, in particular in that it facilitates starting the engine, while the engine is running at low speed driven by the starter, which would result in synchronous operation at a low and irregular frequency.
  • the invention starts from the observation that, when an electromagnetic control injector is closed, a particularly intense spraying of the fuel jet passing through the injector occurs.
  • This observation has already been made in the document BOSCH, "Technische doublung” Motronic, 1. edition, 1983, p. 20-24, which describes a device according to the preamble of claim 1, as well as in EP-A-0 231 887, in which synchronous injection pulse trains are used, the pulse train duration of which is a decreasing function of the engine temperature, while the duration of each pulse is an increasing function of that same temperature. Consequently, the invention proposes a device according to the characterizing part of claim 1.
  • the spraying is improved and a satisfactory engine launch can be obtained with a lesser amount of fuel, which, among other consequences, significantly reduces pollution.
  • the maximum duration of the asynchronous operation described above is advantageously a function decreasing engine temperature.
  • the cycle time and the opening duty cycle of the injectors are controlled as a function of the initial temperature of the coolant.
  • the values to be given to the duty cycle, to the duration of the injection cycle, and to the maximum duration of the asynchronous injection are stored in the form of tables stored in read only memory.
  • the multipoint injection device shown in Figure 1 has a known general constitution. It comprises an air supply circuit on which is interposed a throttle member 10 controlled by the conductor and provided with an opening sensor 12 providing an electrical output signal representative of the opening angle of the throttling organ.
  • a throttle member 10 controlled by the conductor and provided with an opening sensor 12 providing an electrical output signal representative of the opening angle of the throttling organ.
  • the throttle is mounted in a block called “throttle body” 14 which can contain two organs controlled simultaneously.
  • the air path comprises, downstream of the body 14, a tube 15 with several branches each opening upstream of the intake valve 16 of a combustion chamber of the engine.
  • an additional air duct 18 provided with an electrically controlled valve 20 makes it possible, during certain phases of operation, and in particular at start-up, while the member 10 is closed, to bring into the air tubing which bypasses the throttle body 14.
  • the sensors 12 and 24 can be replaced by a direct flow measurement element.
  • a fuel supply circuit includes an electric pump 26 controlled by a relay 28 actuated when the ignition contact 50 is closed.
  • the pump 26 feeds, via a filter 30 and a ramp 32, the injectors 34 of which only one is shown and which are arranged immediately upstream of the corresponding intake valves 16.
  • the fuel pressure sent to the injectors is maintained, by a pressure regulator 36 provided with a return pipe to the tank 38, to a value which can be fixed or a function of the pressure prevailing in the tubing, measured by the sensor 24.
  • the electronic circuit 46 provides each injector 34 with a opening pulse synchronized with the control of the corresponding intake valve 16 and of duration as a function of the operating parameters, and in particular of the air flow rate controlled by the throttle member 10.
  • the law of variation of the duration of each control pulse is fixed by a program stored in circuit 46, in a read only memory.
  • the device 46 contains a cold start program, also stored in a read only memory which causes operation in three successive phases, the last two of which can be omitted in the event of engine launching. still at its normal operating temperature.
  • circuit 46 The program memorized in circuit 46, shown diagrammatically in FIG. 4, must prohibit returning to phase I when one has left it to pass to phase II or III, unless complete re-initialization, implying an engine stop.
  • the opening duty cycle will be chosen all the greater as ⁇ l is lower and we will be led to adopt a longer recurrence period for the lower values of ⁇ l.
  • the values in the table below can be adopted (the injection duration, the recurrence period and the maximum duration chosen being those corresponding, in the table, to the value of ⁇ l closest to the measured temperature).
  • ⁇ l (° C) Duration of injection Recurrence period Maximum duration t0 of phase I -30 (and below) 32 ms 48 ms 4.0 s -20 32 ms 48 ms 2.6s -10 24 ms 48 ms 2.0s 0 16 ms 48 ms 1.5 s 10 8 ms 32 ms 1.1 s 20 6 ms 32 ms 0.7 s 30 5.75 ms 32 ms 0.6 s 40 5.75 ms 32 ms 0.6 s 50 5.0 ms 32 ms 0.5 60 4 ms 32 ms 0.5 s 70 3 ms 32 ms 0.5 s 80 (and above) 2 ms 32 ms 0.5 s
  • the circuit 46 can be provided to substitute, for the asynchronous injection, a synchronous injection of normal operation if the throttling member 10 is brought to its full opening position, detected by sensor 12.
  • FIG. 3 shows, by way of example, a possible distribution over time of the injections, at a constant recurrence frequency (second line), with respect to the signals (first line) supplied by the sensor 42 and whose frequency is variable from makes the engine rotate irregularly during launch.
  • the instants of ignition (third line from the top) remain synchronized with the rotation of the motor shaft.
  • Start-up phase II begins when the engine reaches a speed indicating that it is operating autonomously or after a fixed period of time. It lasts for a determined number of engine operating cycles or, which comes to the same thing, until the engine has passed through its top dead center M successive times.
  • the injection is synchronous but the duration of each injection is equal to the duration of injection resulting from the calculation carried out by the circuit 46 for the steady state at engine temperature (generally lower than the temperature normal regime), with a multiplicative or additive correction.
  • the number M of cycles can be chosen in particular as a function of the characteristics of each type of engine: a duration of between 0 cycles (some motors suitable for operation without phase II) and 255 cycles will generally give good results. During this phase II, the multiplicative or additive correction will be maintained at a constant value.
  • the multiplier coefficient will generally be between 1 and 3.
  • Phase III begins when phase II expires.
  • the circuit 46 decreases according to a linear law or approaching a linear law, the multiplicative or additive correction, depending on the number of engine cycles.
  • One solution which often gives good results consists in decrementing the correction by 1 / 256th of its original value at each cycle, until canceled.
  • Phase III ends when the multiplicative correction becomes equal to 1 or the additive correction becomes equal to 0.
  • the circuit 46 resumes operation of the conventional type, implying an enrichment with respect to the stoichiometric fuel / air ratio which is a decreasing function of the temperature.
  • the engine must still receive, in order to function properly at idle, a flow rate of air-fuel mixture greater than the flow rate required for idling at normal operating temperature.
  • this mixture must be enriched in relation to the stoichiometric content. Numerous laws for selecting the flow rate and the enrichment corresponding to particular engines are already known.
  • the increase in the quantity of mixture supplied to the engine will be obtained by opening the valve 20 placed in bypass on the butterfly block, the electronic control circuit automatically adapting the flow of fuel injected to the flow of air, with a enrichment fixed for example by a table map giving, for each engine temperature, a specific fuel / air ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

L'invention concerne les dispositifs d'alimentation en combustible, pour moteur à combustion interne, du genre de ceux qui comprennent des injecteurs à commande électrique débitant du combustible sous pression dans la tubulure d'admission du moteur et un circuit électronique de commande relié à des capteurs de paramètres de fonctionnement du moteur, notamment de la vitesse de ce dernier, fournissant à l'injecteur des signaux périodiques de rapport cyclique variable en fonction desdits paramètres.The invention relates to fuel supply devices for an internal combustion engine, of the type which include electrically controlled injectors delivering fuel under pressure into the engine intake manifold and an electronic control circuit connected to sensors for operating parameters of the engine, in particular of the speed of the latter, supplying the injector with periodic signals of variable duty cycle as a function of said parameters.

L'invention s'applique à tous les dispositifs à injection dite indirecte, c'est-à-dire débitant du combustible dans la tubulure d'admission au moteur (et non pas directement dans les chambres de combustion). L'injection est multipoint, c'est à dire par plusieurs injecteurs commandés soit tous simultanément, soit par groupes, soit encore individuellement, qui débouchent chacun dans une branche de la tubulure en amont d'une soupape d'admission correspondante.The invention applies to all so-called indirect injection devices, that is to say delivering fuel into the intake manifold to the engine (and not directly into the combustion chambers). The injection is multipoint, that is to say by several injectors controlled either all simultaneously, or in groups, or even individually, which each open into a branch of the pipe upstream of a corresponding intake valve.

En règle générale, les dispositifs d'injection indirecte ont un fonctionnement qualifié de synchrone pendant les périodes où le moteur fonctionne en régime établi. Un injecteur donné est actionné lors du passage de l'arbre du moteur dans une orientation déterminée. En cas d'injection multipoint, par des injecteurs commandés individuellement ou par groupes, les divers injecteurs (ou les divers groupes) sont généralement commandés avec un déphasage relatif, pour limiter les variations de la pression d'alimentation en combustible.As a general rule, indirect injection devices function as synchronous during periods when the engine is running at steady speed. A given injector is actuated when the motor shaft passes in a determined orientation. In the case of multi-point injection, by injectors controlled individually or in groups, the various injectors (or the various groups) are generally controlled with a relative phase shift, to limit variations in the fuel supply pressure.

Les circuits électroniques de commande des dispositifs d'injection doivent être prévus pour assurer un fonctionnement satisfaisant au cours de phases transitoires du fonctionnement. Par exemple, on a déjà proposé de remplacer l'injection synchrone par une injection asynchrone pour fournir au moteur le combustible supplémentaire dont il a besoin en accélération (US-A-4 573 443). On a également proposé de passer d'un fonctionnement synchrone à un fonctionnement asynchrone lorsque les paramètres de fonctionnement du moteur conduisent à des impulsions de commande des injecteurs jugées trop faibles dans le cas d'une injection synchrone (US-A-4 200 063).The electronic circuits controlling the injection devices must be provided to ensure satisfactory operation during transient phases of operation. For example, it has already been proposed to replace synchronous injection with asynchronous injection to supply the engine with the additional fuel it needs to accelerate (US-A-4,573,443). It has also been proposed to switch from synchronous operation to asynchronous operation when the engine operating parameters lead to injector control pulses deemed too low in the case of a synchronous injection (US-A-4,200,063) .

On connaît également (US-A-3 628 510) un système d'injection ayant un circuit de commande analogique, sans mémoire numérique. Au cours du démarrage du moteur, le circuit ajoute des impulsions de commande aux impulsions normales, pour augmenter le débit fourni au moteur.Also known (US-A-3,628,510) is an injection system having an analog control circuit, without digital memory. During engine start-up, the circuit adds control pulses to normal pulses, to increase the flow rate supplied to the engine.

L'invention vise à résoudre un problème différent, celui du lancement du moteur et, éventuellement, du réchauffement du moteur initialement froid, qui exige d'augmenter la quantité de combustible fournie au moteur. Diverses solutions ont déjà été proposées. On a notamment utilisé un injecteur supplémentaire de départ à froid qui pulvérise très finement du combustible sous pression dans la tubulure : cette solution nécessite un injecteur supplémentaire et une fraction importante du combustible pulvérisé mouille les parois de la tubulure d'admission, ce qui est défavorable, surtout lorsque la température est très basse et que le combustible reste à l'état de gouttelettes adhérentes. Une solution plus avantageuse consiste, pendant la phase de lancement, à injecter de façon continue du combustible à basse pression dans la tubulure (FR-A-2 332 431). Mais, même lorsque le jet de combustible est envoyé directement sur la queue des soupapes d'admission pour provoquer son éclatement, la pulvérisation peut rester insuffisante.The invention aims to solve a different problem, that of starting the engine and, possibly, of the initially cold engine warming up, which requires increasing the quantity of fuel supplied to the engine. Various solutions have already been proposed. In particular, an additional cold starting injector was used which sprays fuel under pressure very finely into the manifold: this solution requires an additional injector and a large fraction of the atomized fuel wets the walls of the intake manifold, which is unfavorable. , especially when the temperature is very low and the fuel remains in the state of adherent droplets. A more advantageous solution consists, during the launch phase, of injecting fuel at low pressure continuously into the manifold (FR-A-2 332 431). But even when the fuel jet is sent directly to the tail of the intake valves to cause it to burst, the spraying may remain insufficient.

L'invention vise à fournir un dispositif du genre ci-dessus défini répondant mieux aux exigences de la pratique que ceux connus à ce jour, notamment en ce qu'il facilite le démarrage du moteur, alors que le moteur tourne à vitesse lente entraîné par le démarreur, ce qui se traduirait par un fonctionnement synchrone à fréquence faible et irrégulière.The invention aims to provide a device of the above defined type which better meets the requirements of practice than those known to date, in particular in that it facilitates starting the engine, while the engine is running at low speed driven by the starter, which would result in synchronous operation at a low and irregular frequency.

L'invention part pour cela de la constatation que, lors de la fermeture d'un injecteur à commande électromagnétique, se produit une pulvérisation particulièrement intense du jet de combustible traversant l'injecteur. Cette constatation a déjà èté faite dans le document BOSCH, "Technische Unterrichtung" Motronic, 1. édition, 1983, p. 20-24, qui décrit un dispositif selon le préambule de la revendication 1, ainsi que dans EP-A-0 231 887, dans lequel on utilise des trains d'impulsions d'injections synchrones, dont la durèe des trains d'impulsions est une fonction dècroissante de la température du moteur, tandis que la durèe de chaque impulsion est une fonction croissante de cette même température. En conséquence, l'invention propose un dispositif suivant la partie caractérisante de la revendication 1.For this, the invention starts from the observation that, when an electromagnetic control injector is closed, a particularly intense spraying of the fuel jet passing through the injector occurs. This observation has already been made in the document BOSCH, "Technische Unterrichtung" Motronic, 1. edition, 1983, p. 20-24, which describes a device according to the preamble of claim 1, as well as in EP-A-0 231 887, in which synchronous injection pulse trains are used, the pulse train duration of which is a decreasing function of the engine temperature, while the duration of each pulse is an increasing function of that same temperature. Consequently, the invention proposes a device according to the characterizing part of claim 1.

Grâce à cette disposition, le nombre de fermetures de l'injecteur par unité de temps est très augmenté. Pratiquement, on cherchera à arriver à un nombre de cycles d'ouverture et de fermeture aussi élevé que possible dans la mesure où ce nombre reste compatible avec un débit suffisant de l'injecteur et avec la durée minimum du cycle. Dans la pratique, on sera en général conduit à adopter une durée de cycle (temps d'ouverture plus temps de fermeture) ne dépassant pas 60 ms.Thanks to this arrangement, the number of injector closings per unit of time is greatly increased. In practice, it will be sought to arrive at a number of opening and closing cycles as high as possible insofar as this number remains compatible with a sufficient flow rate of the injector and with the minimum duration of the cycle. In practice, we will generally be led to adopt a cycle time (opening time plus closing time) not exceeding 60 ms.

Grâce à la fréquence accrue des cycles, la pulvérisation est améliorée et un lancement satisfaisant du moteur peut être obtenu avec une quantité moindre de combustible, ce qui, entre autres conséquences, réduit notablement la pollution.Thanks to the increased frequency of the cycles, the spraying is improved and a satisfactory engine launch can be obtained with a lesser amount of fuel, which, among other consequences, significantly reduces pollution.

En règle générale, il sera nécessaire de limiter la durée du fonctionnement en injection asynchrone défini ci-dessus, en particulier pour éviter de "noyer" le moteur. La durée maximale du fonctionnement asynchrone décrit plus haut est avantageusement une fonction décroissante de la température du moteur. La durée de cycle et le rapport cyclique d'ouverture des injecteurs sont commandés en fonction de la température initiate du liquide de refroidissement. Les valeurs à donner au rapport cyclique, à la durée du cycle d'injection, et à la durée maximale de l'injection asynchrone sont mémorisées sous forme de tables stockées en mémoire morte.As a general rule, it will be necessary to limit the duration of the asynchronous injection operation defined above, in particular to avoid "drowning" the engine. The maximum duration of the asynchronous operation described above is advantageously a function decreasing engine temperature. The cycle time and the opening duty cycle of the injectors are controlled as a function of the initial temperature of the coolant. The values to be given to the duty cycle, to the duration of the injection cycle, and to the maximum duration of the asynchronous injection are stored in the form of tables stored in read only memory.

L'invention sera mieux comprise à la lecture de la description qui suit d'un mode particulier de réalisation, donné à titre d'exemple non limitatif. La description se réfère aux dessins qui l'accompagnent, dans lesquels :

  • la Figure 1 est un schéma de principe montrant un dispositif d'injection multipoint auquel est applicable l'invention ;
  • la Figure 2 est un diagramme montrant les phases successives d'une séquence de démarrage représentative, lors de la mise en oeuvre d'un dispositif selon l'invention ;
  • la Figure 3 est un diagramme faisant apparaître les instants successifs d'injection, au cours de la phase pendant laquelle l'injection est asynchrone ; et
  • la Figure 4 est un organigramme de principe du procédé.
The invention will be better understood on reading the following description of a particular embodiment, given by way of non-limiting example. The description refers to the accompanying drawings, in which:
  • Figure 1 is a block diagram showing a multipoint injection device to which the invention is applicable;
  • Figure 2 is a diagram showing the successive phases of a representative start-up sequence, when implementing a device according to the invention;
  • Figure 3 is a diagram showing the successive instants of injection, during the phase during which the injection is asynchronous; and
  • Figure 4 is a flow diagram of the process.

Le dispositif d'injection multipoint montré en Figure 1 a une constitution générale connue. Il comprend un circuit d'alimentation en air sur lequel est interposé un organe d'étranglement 10 commandé par le conducteur et muni d'un capteur d'ouverture 12 fournissant un signal de sortie électrique représentatif de l'angle d'ouverture de l'organe d'étranglement. Habituellement, l'organe d'étranglement est monté dans un bloc dénommé "corps de papillon" 14 qui peut contenir deux organes commandés simultanément. Le trajet d'air comporte, en aval du corps 14, une tubulure 15 à plusieurs branches débouchant chacune en amont de la soupape d'admission 16 d'une chambre de combustion du moteur.The multipoint injection device shown in Figure 1 has a known general constitution. It comprises an air supply circuit on which is interposed a throttle member 10 controlled by the conductor and provided with an opening sensor 12 providing an electrical output signal representative of the opening angle of the throttling organ. Usually the throttle is mounted in a block called "throttle body" 14 which can contain two organs controlled simultaneously. The air path comprises, downstream of the body 14, a tube 15 with several branches each opening upstream of the intake valve 16 of a combustion chamber of the engine.

Dans le mode de réalisation illustré, un conduit d'air additionnel 18 muni d'une vanne à commande électrique 20 permet, lors de certaines phases du fonctionnement, et notamment au démarrage, alors que l'organe 10 est fermé, d'amener dans la tubulure de l'air qui contourne le corps de papillon 14.In the illustrated embodiment, an additional air duct 18 provided with an electrically controlled valve 20 makes it possible, during certain phases of operation, and in particular at start-up, while the member 10 is closed, to bring into the air tubing which bypasses the throttle body 14.

Le dispositif représenté comporte de plus :

  • une sonde de température d'air 22 fournissant un signal électrique représentatif de la température de l'air arrivant au corps de papillon ;
  • un capteur 24 de pression d'air dans la tubulure 15, fournissant un signal qui, combiné à celui du capteur d'ouverture 12 ou à celui donnant la vitesse du moteur, permet de calculer le débit d'air admis au moteur.
The device shown also comprises:
  • an air temperature sensor 22 providing an electrical signal representative of the temperature of the air arriving at the throttle body;
  • an air pressure sensor 24 in the pipe 15, providing a signal which, combined with that of the opening sensor 12 or that giving the engine speed, makes it possible to calculate the air flow admitted to the engine.

Les capteurs 12 et 24 peuvent être remplacés par un élément de mesure directe de débit.The sensors 12 and 24 can be replaced by a direct flow measurement element.

Un circuit d'alimentation en combustible comporte une pompe électrique 26 commandée par un relais 28 actionné lors de la fermeture du contact d'allumage 50. La pompe 26 alimente, par l'intermédiaire d'un filtre 30 et d'une rampe 32, les injecteurs 34 dont un seul est représenté et qui sont disposés immédiatement en amont des soupapes d'admission correspondantes 16. La pression de combustible envoyé aux injecteurs est maintenue, par un régulateur de pression 36 muni d'un conduit de retour au réservoir 38, à une valeur qui peut être fixe ou fonction de la pression qui règne dans la tubulure, mesurée par le capteur 24.A fuel supply circuit includes an electric pump 26 controlled by a relay 28 actuated when the ignition contact 50 is closed. The pump 26 feeds, via a filter 30 and a ramp 32, the injectors 34 of which only one is shown and which are arranged immediately upstream of the corresponding intake valves 16. The fuel pressure sent to the injectors is maintained, by a pressure regulator 36 provided with a return pipe to the tank 38, to a value which can be fixed or a function of the pressure prevailing in the tubing, measured by the sensor 24.

Le dispositif montré en Figure 1 comporte encore des capteurs de paramètres de fonctionnement supplémentaires, constitués par :

  • une sonde de température de liquide de refroidissement 40,
  • un capteur de position et de vitesse du moteur, constitué par un capteur 42 fournissant une impulsion électrique à chaque passage d'une dent de la couronne 44, présentant une brêche permettant de repérer une position angulaire déterminée de la couronne,
  • éventuellement, une sonde (non représentée) de mesure de la teneur en oxygène dans le collecteur d'échappement, lorsque le dispositif est prévu pour assurer une régulation bouclée.
The device shown in Figure 1 also includes additional operating parameter sensors, consisting of:
  • a coolant temperature sensor 40,
  • a position and speed sensor of the motor, constituted by a sensor 42 supplying an electrical impulse with each passage of a tooth of the crown 44, having a gap making it possible to locate a determined angular position of the crown,
  • optionally, a probe (not shown) for measuring the oxygen content in the exhaust manifold, when the device is designed to ensure looped regulation.

Les injecteurs sont commandés par un circuit électronique 46 alimenté par la batterie d'accumulateur 48 dès fermeture du contact d'allumage 50. Ce circuit électronique fournit aux injecteurs 34 des signaux électriques de commande sous forme d'impulsions rectangulaires, de rapport cyclique variable. Dans le mode de réalisation représenté, il reçoit des signaux d'entrée représentatifs de :

  • la température ϑl du liquide de refroidissement du moteur, fournie par la sonde 40,
  • la température d'air ϑa, fournie par la sonde 22,
  • l'angle α d'ouverture du papillon, fourni par le capteur 12,
  • la vitesse du moteur, sous forme d'une série d'impulsions à fréquence variable, fournies par le capteur 42,
  • la pression absolue dans la tubulure, fournie par le capteur 24.
The injectors are controlled by an electronic circuit 46 supplied by the storage battery 48 as soon as the ignition contact 50 is closed. This electronic circuit supplies the injectors 34 with electrical control signals in the form of rectangular pulses, of variable duty cycle. In the embodiment shown, it receives input signals representative of:
  • the temperature ϑl of the engine coolant, supplied by the probe 40,
  • the air temperature ϑa, supplied by the probe 22,
  • the opening angle α of the butterfly, supplied by the sensor 12,
  • the speed of the motor, in the form of a series of variable frequency pulses, supplied by the sensor 42,
  • the absolute pressure in the tubing, supplied by the sensor 24.

On ne décrira pas ici le fonctionnement du moteur en régime permanent, car il peut être classique. Au cours de cette phase de fonctionnement, le circuit électronique 46 fournit à chaque injecteur 34 une impulsion d'ouverture synchronisée avec la commande de la soupape d'admission correspondante 16 et de durée fonction des paramètres de fonctionnement, et notamment du débit d'air commandé par l'organe d'étranglement 10. La loi de variation de la durée de chaque impulsion de commande est fixée par un programme mémorisé dans le circuit 46, dans une mémoire morte.We will not describe here the operation of the engine in steady state, because it can be conventional. During this operating phase, the electronic circuit 46 provides each injector 34 with a opening pulse synchronized with the control of the corresponding intake valve 16 and of duration as a function of the operating parameters, and in particular of the air flow rate controlled by the throttle member 10. The law of variation of the duration of each control pulse is fixed by a program stored in circuit 46, in a read only memory.

Conformément à un mode de réalisation de l'invention, le dispositif 46 contient un programme de démarrage à froid, lui aussi stocké dans une mémoire morte qui provoque un fonctionnement en trois phases successives, les deux dernières pouvant être omises en cas de lancement du moteur encore à sa température normale de fonctionnement.According to one embodiment of the invention, the device 46 contains a cold start program, also stored in a read only memory which causes operation in three successive phases, the last two of which can be omitted in the event of engine launching. still at its normal operating temperature.

La phase I débute dès que le moteur est entraîné par le démarreur (l'instant de début étant indiqué par les signaux du capteur 42 ou l'alimentation du démarreur) et cesse :

  • lorsque la vitesse de rotation N du moteur atteint une valeur prédéterminée N₀ indiquant que le moteur est autonome (généralement entre 200 et 400 t/mn), ou
  • au bout d'un intervalle de temps déterminé, choisi de façon à éviter de noyer le moteur en cas de lancement avorté, cette durée est fonction de la température du liquide de refroidissement,
    la durée la plus courte étant prise en considération.
Phase I begins as soon as the engine is driven by the starter (the start time being indicated by the signals from sensor 42 or the starter supply) and stops:
  • when the speed of rotation N of the motor reaches a predetermined value N₀ indicating that the motor is autonomous (generally between 200 and 400 rpm), or
  • at the end of a determined time interval, chosen so as to avoid flooding the engine in the event of an aborted launch, this duration is a function of the temperature of the coolant,
    the shortest duration being taken into account.

Le programme mémorisé dans le circuit 46, schématisé en Figure 4, doit interdire de revenir en phase I lorsqu'on en est sorti pour passer en phase II ou III, sauf ré-initialisation complète, impliquant un arrêt du moteur.The program memorized in circuit 46, shown diagrammatically in FIG. 4, must prohibit returning to phase I when one has left it to pass to phase II or III, unless complete re-initialization, implying an engine stop.

Une solution permettant à la fois de bien adapter les durées d'injection à l'état initial du moteur et de conserver une constitution simple du circuit 46, consiste à prévoir le circuit 46 pour qu'il fournisse, en phase I, des signaux rectangulaires

  • ayant une durée sélectionnée parmi quelques valeurs seulement, et choisie uniquement en fonction de la température initiale ϑl, et
  • dont la période de récurrence est égale à n fois une période de base d'environ 8 ms, n ne pouvant également prendre que quelques valeurs.
A solution allowing both to adapt the injection times to the initial state of the engine and to keep a simple constitution of the circuit 46, consists in providing the circuit 46 so that it provides, in phase I, rectangular signals
  • having a duration selected from only a few values, and chosen only as a function of the initial temperature ϑl, and
  • whose recurrence period is equal to n times a base period of approximately 8 ms, n also being able to take only a few values.

Le rapport cyclique d'ouverture sera choisi d'autant plus grand que ϑl est plus bas et on sera conduit à adopter une période de récurrence plus longue pour les valeurs les plus faibles de ϑl.The opening duty cycle will be chosen all the greater as ϑl is lower and we will be led to adopt a longer recurrence period for the lower values of ϑl.

A titre d'exemple, on pourra adopter les valeurs du tableau ci-dessous (la durée d'injection, la période de récurrence et la durée maximale choisies étant celles correspondant, dans le tableau, à la valeur de ϑl la plus proche de la température mesurée). ϑl (°C) Durée d'injection Période de récurrence Durée maximale t₀ de la phase I -30 (et au-dessous) 32 ms 48 ms 4,0 s -20 32 ms 48 ms 2,6 s -10 24 ms 48 ms 2,0 s 0 16 ms 48 ms 1,5 s 10 8 ms 32 ms 1,1 s 20 6 ms 32 ms 0,7 s 30 5,75 ms 32 ms 0,6 s 40 5,75 ms 32 ms 0,6 s 50 5,0 ms 32 ms 0,5 60 4 ms 32 ms 0,5 s 70 3 ms 32 ms 0,5 s 80 (et au-dessus) 2 ms 32 ms 0,5 s For example, the values in the table below can be adopted (the injection duration, the recurrence period and the maximum duration chosen being those corresponding, in the table, to the value of ϑl closest to the measured temperature). ϑl (° C) Duration of injection Recurrence period Maximum duration t₀ of phase I -30 (and below) 32 ms 48 ms 4.0 s -20 32 ms 48 ms 2.6s -10 24 ms 48 ms 2.0s 0 16 ms 48 ms 1.5 s 10 8 ms 32 ms 1.1 s 20 6 ms 32 ms 0.7 s 30 5.75 ms 32 ms 0.6 s 40 5.75 ms 32 ms 0.6 s 50 5.0 ms 32 ms 0.5 60 4 ms 32 ms 0.5 s 70 3 ms 32 ms 0.5 s 80 (and above) 2 ms 32 ms 0.5 s

Pour dénoyer le moteur en cas de défaut de démarrage dû à un excès de combustible, le circuit 46 peut être prévu pour substituer, à l'injection asynchrone, une injection synchrone de fonctionnement normal si l'organe d'étranglement 10 est amené à sa position de pleine ouverture, détectée par le capteur 12.To dewater the engine in the event of a starting fault due to an excess of fuel, the circuit 46 can be provided to substitute, for the asynchronous injection, a synchronous injection of normal operation if the throttling member 10 is brought to its full opening position, detected by sensor 12.

La Figure 3 montre, à titre d'exemple, une répartition possible dans le temps des injections, à fréquence de récurrence constante (deuxième ligne), par rapport aux signaux (première ligne) fournis par le capteur 42 et dont la fréquence est variable du fait de l'irrégularité de rotation du moteur pendant le lancement. Les instants d'allumage (troisième ligne à partir du haut) restent synchronisés avec la rotation de l'arbre du moteur.FIG. 3 shows, by way of example, a possible distribution over time of the injections, at a constant recurrence frequency (second line), with respect to the signals (first line) supplied by the sensor 42 and whose frequency is variable from makes the engine rotate irregularly during launch. The instants of ignition (third line from the top) remain synchronized with the rotation of the motor shaft.

La phase II des démarrage commence lorsque le moteur atteint une vitesse indiquant qu'il fonctionne de façon autonome ou au bout d'une durée déterminée. Elle dure pendant un nombre déterminé de cycles de fonctionnement du moteur ou, ce qui revient au même, jusqu'à ce que le moteur soit passé par son point mort haut M fois successives.Start-up phase II begins when the engine reaches a speed indicating that it is operating autonomously or after a fixed period of time. It lasts for a determined number of engine operating cycles or, which comes to the same thing, until the engine has passed through its top dead center M successive times.

Au cours de cette phase II, l'injection est synchrone mais la durée de chaque injection est égale à la durée d'injection résultant du calcul effectué par le circuit 46 pour le régime permanent à la température du moteur (en général inférieure à la température de régime normal), avec une correction multiplicative ou additive.During this phase II, the injection is synchronous but the duration of each injection is equal to the duration of injection resulting from the calculation carried out by the circuit 46 for the steady state at engine temperature (generally lower than the temperature normal regime), with a multiplicative or additive correction.

On décrira plus loin le mode de détermination du "temps de base", c'est-à-dire de la durée de chaque injection synchronisée en fonction de ϑl lors de l'échauffement.The method of determining the "base time", that is to say the duration of each synchronized injection as a function of ϑl during heating, will be described below.

Le nombre M de cycles peut être choisi notamment en fonction des caractéristiques de chaque type de moteur : une durée comprise entre 0 cycle (certains moteurs se prêtant à un fonctionnement sans phase II) et 255 cycles donnera en général de bons résultats. Au cours de cette phase II, la correction multiplicative ou additive sera maintenue à une valeur constante. Le coefficient multiplicateur sera généralement compris entre 1 et 3.The number M of cycles can be chosen in particular as a function of the characteristics of each type of engine: a duration of between 0 cycles (some motors suitable for operation without phase II) and 255 cycles will generally give good results. During this phase II, the multiplicative or additive correction will be maintained at a constant value. The multiplier coefficient will generally be between 1 and 3.

La phase III débute à l'expiration de la phase II. Au cours de cette phase, le circuit 46 diminue suivant une loi linéaire ou se rapprochant d'une loi linéaire, la correction multiplicative ou additive, en fonction du nombre de cycles du moteur. Une solution qui donne souvent de bons résultats consiste à décrémenter la correction de 1/256ème de sa valeur d'origine à chaque cycle, jusqu'à annulation.Phase III begins when phase II expires. During this phase, the circuit 46 decreases according to a linear law or approaching a linear law, the multiplicative or additive correction, depending on the number of engine cycles. One solution which often gives good results consists in decrementing the correction by 1 / 256th of its original value at each cycle, until canceled.

La phase III se termine lorsque la correction multiplicative devient égale à 1 ou la correction additive devient égale à 0.Phase III ends when the multiplicative correction becomes equal to 1 or the additive correction becomes equal to 0.

A partir de cet instant, le circuit 46 reprend un fonctionnement de type classique, impliquant un enrichissement par rapport au rapport stoechiométrique combustible/air qui est fonction décroissante de la température.From this instant, the circuit 46 resumes operation of the conventional type, implying an enrichment with respect to the stoichiometric fuel / air ratio which is a decreasing function of the temperature.

Au-delà de la phase III, le moteur doit encore recevoir, pour fonctionner correctement au ralenti, un débit de mélange air-combustible supérieur au débit nécessaire au ralenti à température normale de fonctionnement. Au surplus, ce mélange doit être enrichi par rapport à la teneur stoechiométrique. On connaît déjà de nombreuses lois de sélection du débit et de l'enrichissement correspondant à des moteurs particuliers.Beyond phase III, the engine must still receive, in order to function properly at idle, a flow rate of air-fuel mixture greater than the flow rate required for idling at normal operating temperature. In addition, this mixture must be enriched in relation to the stoichiometric content. Numerous laws for selecting the flow rate and the enrichment corresponding to particular engines are already known.

Dans la pratique, l'augmentation de la quantité de mélange fourni au moteur sera obtenue en ouvrant la vanne 20 placée en dérivation sur le bloc papillon, le circuit électronique de commande adaptant automatiquement le débit de combustible injecté au débit d'air, avec un enrichissement fixé par exemple par une table cartographique donnant, pour chaque température de moteur, un rapport combustible/air particulier.In practice, the increase in the quantity of mixture supplied to the engine will be obtained by opening the valve 20 placed in bypass on the butterfly block, the electronic control circuit automatically adapting the flow of fuel injected to the flow of air, with a enrichment fixed for example by a table map giving, for each engine temperature, a specific fuel / air ratio.

Claims (10)

  1. A fuel supply device operating by indirect multipoint injection for an internal combustion engine, comprising one injector (34) per engine cylinder and an electronic control circuit (46) connected to sensors (12, 22, 24, 40, 42) responsive to operating parameters of the engine, particularly the engine speed (42) and temperature (40), and so devised as to apply to each injector (34) electrical control signals which, during normal engine operation, are periodic signals delivered in accordance with a normal synchronous law in synchronism with the engine rotation, and of which the duty ratio defined by the ratio of the injection time of the injector (34) to the signal repetition period is a function of said parameters and which, during a starting phase of the engine, beginning as soon as the engine is driven by the starter and ceasing when the speed of rotation (N) of the engine reaches a predetermined value (No), without being able to exceed a given time interval (to), are signals which are repeated a number of times per engine revolution, and of which the injection time depends on the temperature of the engine cooling liquid, so as to inject an increased quantity of fuel required for starting, characterised in that during the starting phase the signals are applied continuously and are only non-synchronous with a frequency very much greater than that that the normal synchronous control law would give, the repetition period and the said duty ratio of said non-synchronous signals and the said given time interval (to) of the starting phase being stored in a table, the repetition period being longer for the lowest values of the initial temperature of the engine cooling liquid and the said duty ratio and the said given time interval (to) of the starting phase each being limited to a value which decreases with increasing initial temperature of the engine cooling liquid.
  2. A device according to claim 1, characterised in that the said predetermined speed of rotation value (No) is between 200 and 400 rpm and the said given time interval (to) assumes one of a number of values each of which remain constant over an initial temperature interval of the engine cooling liquid, the said values decreasing from one temperature interval to the next with increasing initial temperature of the engine cooling liquid.
  3. A device according to claim 1 or 2, characterised in that the said repetition period of the non-synchronous signals is not more than 60 ms and assumes one of a number of values each of which remain constant over an initial temperature interval of the engine cooling liquid, the said values decreasing from one temperature interval to the next with increasing initial temperature of the engine cooling liquid.
  4. A device according to any one of claims 1 to 3, characterised in that the said duty ratio is selected to be increasingly greater with increasingly reduced initial temperature of the engine cooling liquid.
  5. A device according to any one of claims 1 to 4, characterised in that in order to avoid flooding the engine in the event of a start-up failure due to an excess of fuel, the electronic circuit (46) is adapted to replace the non-synchronous injection by a synchronous normal operation injection if a throttle member (10) of an air supply circuit of the device is brought to its fully open position detected by a sensor (12) connected to the circuit (46).
  6. A device according to any one of claims 1 to 5, characterised in that the electronic circuit (46) is so devised that the starting phase (phase 1) is followed by a second phase (phase 2) of synchronous injection with an injection time equal to the injection time resulting from the calculation effected by the circuit (46) for permanent operation at the engine temperature, with a multiplicative or additive correction, for a predetermined number (M) of engine operating cycles.
  7. A device according to claim 6, characterised in that the electronic circuit (46) is so devised that during the said second phase the multiplicative or additive correction is kept at a constant value.
  8. A device according to claim 6 or 7, characterised in that the electronic circuit (46) is so devised that the second phase (phase 2) is followed by a third phase (phase 3) during which it reduces the multiplicative or additive correction in dependence on the number (M) of engine cycles.
  9. A device according to claim 8, characterised in that the electronic circuit (46) is so devised as to control the reduction of the multiplicative or additive correction in accordance with a linear law or one which approaches a linear law, until the multiplicative correction becomes equal to 1 or the additive correction becomes equal to 0, this corresponding to the end of the third phase.
  10. A device according to claim 9, characterised in that the electronic circuit (46) is so devised as to reduce the correction by a fraction of its original value on each engine cycle until the correction is cancelled out.
EP90400828A 1989-03-31 1990-03-27 Electronically controlled internal-combustion engine fuel injection supply device Expired - Lifetime EP0390667B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8904287 1989-03-31
FR8904287A FR2645210B1 (en) 1989-03-31 1989-03-31 INJECTION SUPPLY DEVICE FOR INTERNAL COMBUSTION ENGINE, ELECTRONICALLY CONTROLLED

Publications (2)

Publication Number Publication Date
EP0390667A1 EP0390667A1 (en) 1990-10-03
EP0390667B1 true EP0390667B1 (en) 1995-06-14

Family

ID=9380282

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90400828A Expired - Lifetime EP0390667B1 (en) 1989-03-31 1990-03-27 Electronically controlled internal-combustion engine fuel injection supply device

Country Status (6)

Country Link
US (1) US5033439A (en)
EP (1) EP0390667B1 (en)
JP (1) JP2997704B2 (en)
DE (1) DE69020029T2 (en)
ES (1) ES2073548T3 (en)
FR (1) FR2645210B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2024236A6 (en) * 1990-05-04 1992-02-16 Gali Mallofre Salvador Low temperature starting system for internal combustion engines.
JPH06173746A (en) * 1992-12-09 1994-06-21 Nippondenso Co Ltd Fuel injection control device for internal combustion engine
JPH06185389A (en) * 1992-12-18 1994-07-05 Nippondenso Co Ltd Air-fuel ratio controller for internal combustion engine
US5671716A (en) * 1996-10-03 1997-09-30 Ford Global Technologies, Inc. Fuel injection system and strategy
JP3620228B2 (en) * 1997-07-31 2005-02-16 トヨタ自動車株式会社 Control device for internal combustion engine
DE10051551B4 (en) * 2000-10-18 2012-02-02 Robert Bosch Gmbh Method, computer program and control and / or regulating device for operating an internal combustion engine
US8353270B2 (en) * 2010-01-21 2013-01-15 Ford Global Technologies, Llc Fluid injection pressurization system
CN107218143B (en) * 2017-07-21 2019-07-12 中国第一汽车股份有限公司 It solves gas nozzle and opens difficult method at low ambient temperatures

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3628510A (en) * 1970-06-10 1971-12-21 Gen Motors Corp Fuel supply system for an internal combustion engine providing timed cranking enrichment
US3616784A (en) * 1970-07-17 1971-11-02 Gen Motors Corp Fuel supply system for an internal combustion engine providing time and voltage compensated cranking enrichment
FR2332431A1 (en) * 1975-11-20 1977-06-17 Sibe IMPROVEMENTS TO FUEL SUPPLY DEVICES FOR INTERNAL COMBUSTION ENGINES
US4114570A (en) * 1976-12-20 1978-09-19 The Bendix Corporation Start enrichment circuit for internal combustion engine fuel control system
US4200063A (en) * 1978-03-20 1980-04-29 General Motors Corporation Engine fuel injection control apparatus with simultaneous pulse width and frequency adjustment
JPS58135332A (en) * 1982-02-05 1983-08-11 Toyota Motor Corp Method for controlling air-fuel ratio for internal-combustion engine
JPS58150048A (en) * 1982-03-02 1983-09-06 Toyota Motor Corp Electronically controlled fuel injection method of internal-combustion engine
JPS5951137A (en) * 1982-09-16 1984-03-24 Toyota Motor Corp Fuel injection controller of multi-cylinder internal combustion engine
JPS6128729A (en) * 1984-07-19 1986-02-08 Nippon Denso Co Ltd Fuel injection control device for engine
DE3539732C2 (en) * 1984-11-09 1994-11-17 Nippon Denso Co Electronically controlled fuel injection system for an internal combustion engine
JPH06103005B2 (en) * 1986-01-31 1994-12-14 株式会社日立製作所 Electronically controlled fuel injection control method
JPH0823325B2 (en) * 1986-04-29 1996-03-06 三菱電機株式会社 Fuel control device for internal combustion engine
FR2612256B1 (en) * 1987-03-10 1991-08-23 Renault METHOD FOR CONTROLLING AN ELECTRONIC IGNITION-INJECTION COMPUTER OF AN INTERNAL COMBUSTION ENGINE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Bosch, "Technische Unterrichtung", Motronic, 1 éd,, 1983, p. 20-24 *

Also Published As

Publication number Publication date
JP2997704B2 (en) 2000-01-11
ES2073548T3 (en) 1995-08-16
JPH0323338A (en) 1991-01-31
DE69020029T2 (en) 1995-09-21
US5033439A (en) 1991-07-23
DE69020029D1 (en) 1995-07-20
FR2645210A1 (en) 1990-10-05
FR2645210B1 (en) 1995-03-24
EP0390667A1 (en) 1990-10-03

Similar Documents

Publication Publication Date Title
FR2648516A1 (en) METHOD AND CONTROL DEVICE FOR SENDING FUEL TO THE CYLINDERS OF A MULTI-CYLINDER INTERNAL COMBUSTION ENGINE
US4116169A (en) Electronic control system
FR2658244A1 (en) DEVICE FOR DIGITAL FUEL CONTROL FOR A SMALL HEAT ENGINE AND FUEL CONTROL METHOD FOR A THERMAL ENGINE.
EP1228302B1 (en) Control method for starting a direct injection internal combustion engine
FR2728625A1 (en) INTERNAL COMBUSTION ENGINE FUEL SUPPLY SYSTEM
FR2551799A1 (en) INTERNAL COMBUSTION ENGINE WITH TURBOCHARGER WITH WATER INJECTION
EP0390667B1 (en) Electronically controlled internal-combustion engine fuel injection supply device
FR2551798A1 (en) METHOD FOR CONTROLLING THE FUEL SUPPLY OF AN INTERNAL COMBUSTION ENGINE IMMEDIATELY AFTER STARTING
EP1769153A1 (en) System for controlling the function of a diesel engine in a motor vehicle connected to an oxidation catalyst
FR2762647A1 (en) METHOD FOR DETERMINING THE DURATION OF INJECTION IN A DIRECT INJECTION INTERNAL COMBUSTION ENGINE
FR2764942A1 (en) SYSTEM FOR IMPLEMENTING AN INTERNAL COMBUSTION ENGINE IN PARTICULAR OF AN ENGINE EQUIPPED WITH A MOTOR VEHICLE
FR2532362A1 (en) METHOD FOR CONTROLLING FUEL SUPPLY OF AN INTERNAL COMBUSTION ENGINE IMMEDIATELY AFTER STARTING
FR2516982A1 (en) ELECTRONIC FUEL INJECTION CONTROL DEVICE FOR MULTI-CYLINDER INTERNAL COMBUSTION ENGINES
FR2528909A1 (en) METHOD FOR CONTROLLING THE OPERATION OF AN INTERNAL COMBUSTION ENGINE AT STARTING
FR2793846A1 (en) METHOD OF OPERATING AN INTERNAL COMBUSTION ENGINE
JP2888101B2 (en) Operation stop control device for internal combustion engine
FR2763100A1 (en) RELIEF BYPASS FOR HIGH PRESSURE DIRECT INJECTION PUMP
WO1998055760A1 (en) Purging a direct injection engine injector ramp
FR2808051A1 (en) METHOD FOR IMPLEMENTING A HEAT ENGINE, HEAT ENGINE APPLYING THE METHOD AND MEANS FOR CARRYING OUT THE METHOD
WO2005024198A1 (en) Method for determining a temperature downstream the entry of a catalytic converter for a turbocharged engine
FR2619598A1 (en) METHOD FOR CONTROLLING THE INJECTION PHASE OF AN ELECTRONIC FUEL INJECTION
FR2776020A1 (en) METHOD FOR CONTROLLING THE INJECTION IN AN INTERNAL COMBUSTION ENGINE AND CONTROLLED IGNITION, SUPPLIED BY LIQUEFIED GAS FUEL OR BY GAS FUEL UNDER SOUND CONDITIONS
EP1013914B1 (en) Fuel injection system for an internal combustion engine
FR2762675A1 (en) METHOD FOR DETERMINING THE COMPRESSION PRESSURE IN THE CYLINDER OF AN INTERNAL COMBUSTION ENGINE WITH DIRECT FUEL INJECTION
FR2519086A1 (en) Air-fuel mixture regulator for IC engine - uses microprocessor controlled fuel injector responsive to engine parameters, in addition to vacuum aspirated carburettor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT

17P Request for examination filed

Effective date: 19901221

17Q First examination report despatched

Effective date: 19910405

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT

REF Corresponds to:

Ref document number: 69020029

Country of ref document: DE

Date of ref document: 19950720

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950628

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2073548

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070312

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070313

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070316

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070607

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081001

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080327