EP0388412B1 - System for regulating the air/fuel ratio of an internal combustion engine - Google Patents

System for regulating the air/fuel ratio of an internal combustion engine Download PDF

Info

Publication number
EP0388412B1
EP0388412B1 EP88909199A EP88909199A EP0388412B1 EP 0388412 B1 EP0388412 B1 EP 0388412B1 EP 88909199 A EP88909199 A EP 88909199A EP 88909199 A EP88909199 A EP 88909199A EP 0388412 B1 EP0388412 B1 EP 0388412B1
Authority
EP
European Patent Office
Prior art keywords
probe
lambda
control
air ratio
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88909199A
Other languages
German (de)
French (fr)
Other versions
EP0388412A1 (en
Inventor
Cornelius Peter
Günther PLAPP
Lothar Raff
Eberhard Schnaibel
Michael Westerdorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0388412A1 publication Critical patent/EP0388412A1/en
Application granted granted Critical
Publication of EP0388412B1 publication Critical patent/EP0388412B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors

Definitions

  • Fat range ( ⁇ ⁇ 1) for mixture control i.e.
  • the amplitude and frequency of this control oscillation have a significant influence on the exhaust gas emission.
  • An increase in the amplitude of the control oscillation leads to the air number lambda temporarily moving outside the lambda window and a drastic increase in the harmful components of the exhaust gases.
  • US Pat. No. 4,200,064 describes a mixture metering system with a probe arranged in the exhaust tract of an internal combustion engine.
  • the output signal which changes essentially abruptly there, is used in so-called calibration phases for continuous control.
  • it is checked whether the use of certain pilot control values for the fuel metering results in the probe voltage of 0.5 volt associated with the lambda value 1. This is the case, for example, when the injection time is extended by 1 ms. If other lambda values are to be set in control mode after the calibration phase has ended, the control values provided for this are also extended by 1 ms.
  • the invention has for its object to improve a control system for controlling the air / fuel ratio in an internal combustion engine by means of an oxygen probe arranged in the exhaust system, which is constantly exposed to the exhaust gas during operation of the internal combustion engine with regard to reducing the total emission of the main pollutant components.
  • the solution according to claim 1 is characterized in that the control system according to the invention has a control device for continuous control, the jump behavior of the output signal of the lambda probe (two-point control) for mixture control not being evaluated as in the prior art, but the actual deviation the air ratio lambda is used as the control deviation from the air ratio lambda to be maintained.
  • the respective actual value of the air ratio lambda is determined via the respectively measured probe output voltage in connection with an at least approximately predetermined characteristic relationship between the size of the probe output voltage and the size of the air ratio lambda coupled therewith.
  • the target value of the air ratio lambda corresponding to the air ratio lambda to be observed is subtracted from the actual value of the air ratio lambda and the difference is used to regulate the air / fuel ratio.
  • the strong cylinder scatter has the result that the two-point control jumps from rich to lean or lean to rich with increased frequency between the extreme values lean and rich when passing through the control threshold, which has an unfavorable effect on the exhaust gas and driving behavior of the internal combustion engine.
  • the control system according to the independent claim 2 is characterized by a control device for continuous control, a probe voltage being used as the target value, which is assigned to the air ratio lambda to be maintained according to the respective probe characteristic, and via the difference between the respectively measured actual values the probe voltage with the target value of the probe voltage in conjunction with an at least approximately predefined probe characteristic relationship between the size of the probe voltage difference and the associated size of the air ratio difference, the air ratio difference is determined and the air / fuel ratio is regulated with the air ratio difference.
  • This control system achieves the same advantages over the prior art in controlling the air / fuel ratio as in the control system according to claim 1.
  • the characteristic relationship between the probes is advantageous between sensor voltage and air ratio lambda or sensor voltage difference and air ratio difference stored in a map.
  • the probe voltage or probe voltage difference and, to take into account the temperature-dependent relationship between probe voltage or probe voltage difference and temperature, a temperature-dependent internal probe resistance or the probe temperature itself are used as input parameters of this characteristic diagram.
  • the setpoint value of the probe voltage U S becomes dependent on the measured maximum and minimum probe voltage according to the formula.
  • U S (U S (max) - U S (min) ) x K + U S (min) adapted, where K is a constant factor that is determined based on the probe characteristics.
  • the control setpoint is also corrected using a low-pass filter.
  • the measured probe voltage extreme values are stored and slowly reduced in the event that no new extreme values of the probe voltage are measured. With this adaptation it is possible to take into account the shifting of the control setpoint of the probe voltage due to aging of the probe or temperature change of the probe.
  • Fig. 1 shows a simplified block diagram of a control arrangement with a control system for controlling the air / fuel ratio in an internal combustion engine according to claim 1.
  • Fig. 2 shows a control arrangement with a control system according to the invention for controlling the air / fuel ratio in an internal combustion engine according to the independent claim 2, but not the entire control arrangement is shown, but only components are shown in which the control arrangement according to claim 2 differs from that according to claim 1.
  • the 1 has an internal combustion engine (BKM) 10 as a controlled system with injection valves (EV) 11 as actuators, a control device 12, (dashed border) a lambda probe 13 arranged in the exhaust gas of the internal combustion engine and a basic map 14.
  • the basic map 14 is preferably designed as a read-only memory (ROM), which is addressed by supplied operating variables (here: speed n and throttle valve position ⁇ ). Depending on these addresses, a corresponding injection time t L for the injection valves 11 of the internal combustion engine 10 is read from the basic field 14.
  • the lambda probe 13 emits an output signal (output voltage U S ) which is fed to the control device 12.
  • the control unit 12 has a conversion device 16, by means of which the probe output signals U S of the lambda probe 13 are converted into lambda values in accordance with the characteristic relationship between the lambda value and the probe voltage. Either a mathematical function, a table or a map is used to map the probe characteristic relationship.
  • the conversion device 16 is followed by a timing element 17 and this a correction device 18 for calculating a correction factor KF.
  • This correction factor KF is fed to a multiplication unit 19, which multiplies the correction factor KF by the injection time t L output from the basic characteristic diagram 14.
  • the output of the correction factor KF can be interrupted by a switch 20, which is switched via a control release device 21.
  • the control release device 21 interrupts the output of the correction factor KF via the switch 20.
  • the output signal of the lambda probe arranged in the exhaust gas of the internal combustion engine 10 is fed to the conversion device 16. Since the correction factor KF is preferably calculated using a computer, the analog probe output signal is converted into a digital signal after amplification via an A / D converter (not shown in FIG. 1).
  • the conversion unit 16 calculates the respectively measured actual value of the air ratio lambda from the output signal of the lambda sensor 13 via a predetermined probe-characteristic relationship between the output voltage of the probe and the air ratio lambda.
  • the subsequent comparison of the actual value and the target value 15 of the air ratio lambda leads to a control deviation .DELTA.-lambda, which is fed to a timing element 17.
  • the timing element then emits a signal to a correction device 18, which carries out the calculation of the correction factor KF.
  • the correction factor KF is then multiplied by the injection time t L output from the basic characteristic map 14, which results in the corrected injection time t LK .
  • the injection time t LK and an injection time t S which takes into account the dead time influence of the injection valves 11, finally leads to the actual injection time t I.
  • the digitally calculated injection time t I is given to an output stage, not shown in FIG. 1, and is output to the injection valves 11 as an analog opening time signal.
  • the control arrangement shown in FIG. 2 essentially has a similar structure to the control arrangement of FIG. 1.
  • the same components have the same reference numerals as in Fig. 1 and are not explained again here.
  • the difference from the control arrangement shown in FIG. 1 is that the control deviation .DELTA.-lambda is determined in another way.
  • a target voltage 22 is used as the control target value, which in turn can depend on the throttle valve position ⁇ or the speed n.
  • control arrangement according to FIG. 2 has a conversion unit 23 which stores the characteristic curve between the probe voltage difference and the air ratio difference coupled therewith. After the comparison of the actual probe voltage with the target probe voltage 22, this conversion unit 23 is supplied with a control deviation ⁇ -U S , from which the control deviation ⁇ -Lambda is calculated.
  • the further control sequence corresponds to the control sequence of the control arrangement according to FIG. 1, which is why, in order to avoid repetitions, it is not described again.
  • a continuous controller with PID behavior of the timing element 17 is particularly advantageously used to increase the control speed, the control deviation being multiplied by suitable factors for the respective P, I and D components, which are stored in characteristic diagrams as a function of the speed and load.
  • a correction device therefore eliminates this mass offset by measuring the minimum probe voltage that occurs in longer overrun phases (e.g. after 800 msec) and saves the difference to the expected minimum value using a filter as a correction variable for the probe voltages to be measured.
  • the probe voltage upstream of the analog / digital converter is increased in hardware by a fixed voltage value. This elimination of the mass offset leads to a higher accuracy in the detection of the probe output voltage and thus to a higher control accuracy of the continuous control device.
  • this correction device serves to compensate for a drift of the lean characteristic branch (increase) z. B due to aging.
  • the mass offset alone can also be compensated for if necessary by using a differential amplifier.

Abstract

A system for regulating the air/fuel ratio in an internal combustion engine (10), an oxygen probe (Lambda probe) (13) being arranged in the exhaust fumes of said motor, comprises a regulating device (12) permitting continuous regulation. The actual value of the air index Lambda is determined by means of the measured output voltage of the probe in connection with a correlation (16), characteristic of the probe and predefined at least approximately, between the value of the output voltage of the probe and the value of the air index Lambda coupled with the latter. The difference between the theoretical value and the actual value of the air index Lambda is calculated and the air/fuel ratio is regulated on the basis of this difference. This type of regulating system is used essentially to reduce the overall emission of the major hazardous constituents of the exhaust fumes of an engine. In particular in an engine (10) fitted with a catalyser arranged in the exhaust fumes, this system ensures that the value of the air index Lambda (Lambda = 1) required for optimal performance of the catalyser is strictly maintained.

Description

Die Erfindung betrifft ein Regelsystem zum Regeln des Luft/Kraftstoff-Verhältnisses bei einer Brennkraftmaschine auf eine einzuhaltende Luftzahl Lambda, wobei das Regelsystem eine dem Abgas der Brennkraftmaschine ausgesetzte Sauerstoffsonde (Lambda-Sonde) aufweist, deren Ausgangsspannung, die ein Maß für die Luftzahl Lambda darstellt, sich im Bereich von Lambda = 1 im wesentlichen sprunghaft ändert.The invention relates to a control system for regulating the air / fuel ratio in an internal combustion engine to an air ratio lambda to be maintained, the control system having an oxygen probe (lambda probe) exposed to the exhaust gas of the internal combustion engine, the output voltage of which represents a measure of the air ratio lambda , changes essentially abruptly in the range of lambda = 1.

Wird zum Reduzieren der hauptsächlichen Schadstoffkomponenten (NOx, HC, CO) einer Brennkraftmaschine ein Drei-Wege-Katalysator eingesetzt, ist es für dessen optimale Wirksamkeit, d. h. zum Erreichen einer maximalen Konvertierungsrate erforderlich, daß ein stöchiometrisches Luft/Kraftstoff-Gemisch (Lambda = 1) zumindest jedoch eine Luftzahl Lambda, die sich in einem bestimmten Bereich um Lambda = 1 (Lambda-Fenster) bewegt, eingehalten wird. Bei den bekannten Regelsystemen wird hierzu das sprungartige Verhalten der Ausgangsspannung der Lambda-Sonde beim übergang vom Fett- (λ <1) zum Magerbereich (λ>1) bzw. beim Übergang vom Mager- (λ>1) zum. Fettbereich (λ<1) zur Gemischregelung, also nicht der Wert von Lambda selbst, ausgewertet. Hierbei werden mittels einer Zweipunkt-Regelung die in einem Kennfeld in Abhängigkeit der Drehzahl und Last (Drosselklappenstellung) der Brennkraftmaschine gespeicherten Werte für die Einspritzzeit multiplikativ über einen Korrekturfaktor korrigiert. Üblicherweise wird zur laufenden Korrektur des Korrekturfaktors ein Zweipunkt-Regler mit PI-Verhalten eingesetzt. Aufgrund der Sprungcharakteristik der Ausgangsspannung im Bereich von Lambda = 1 und aufgrund vorhandener Totzeiten (Transportzeit des Gemisches von den Einspritzventilen durch die Brennkraftmaschine bis zur Lambda-Sonde, Reaktionszeit der Sonde) stellt sich eine Regelschwingung für den Korrekturfaktor ein. Die geforderte Luftzahl Lambda kann somit nur im Mittel einsehalten werden. Die Amplitude und Frequenz dieser Regelschwingung beeinflußt die Abgasemission wesentlich. Eine Zunahme der Amplitude der Regelschwingung führt dazu, daß sich die Luftzahl Lambda zeitweilig außerhalb des Lambda-Fensters bewegt und es dadurch zu einem drastischen Anstieg der schädlichen Komponenten der Abgase kommt.If a three-way catalytic converter is used to reduce the main pollutant components (NOx, HC, CO) of an internal combustion engine, it is necessary for its optimal effectiveness, ie to achieve a maximum conversion rate, that a stoichiometric air / fuel mixture (lambda = 1 ) at least an air ratio lambda, which moves in a certain range around lambda = 1 (lambda window), is observed. In the known control systems, the abrupt behavior of the output voltage of the lambda probe during the transition from the rich (λ <1) to the lean range (λ> 1) or during the transition from the lean (λ> 1) to. Fat range (λ <1) for mixture control, i.e. not the value of lambda itself, is evaluated. Using a two-point control, the values for the injection time, which are stored in a characteristic diagram as a function of the speed and load (throttle valve position) of the internal combustion engine, are corrected multiplicatively by means of a correction factor. A two-point controller with PI behavior is usually used for the ongoing correction of the correction factor. Due to the jump characteristic of the output voltage in the range of lambda = 1 and due to the presence of dead times (transport time of the mixture from the injection valves through the internal combustion engine to the lambda probe, reaction time of the probe), a control oscillation for the correction factor occurs. The required lambda air ratio can therefore only be met on average. The amplitude and frequency of this control oscillation have a significant influence on the exhaust gas emission. An increase in the amplitude of the control oscillation leads to the air number lambda temporarily moving outside the lambda window and a drastic increase in the harmful components of the exhaust gases.

Aus der DE-OS 32 31 122 ist ein Regelspstem bekannt, bei dem zur Regelung im mageren Bereich (vorzuasweise um Lambda = 1, 2) eine Regeleinrichtung mit stetigem Regelverhalten angeordnet ist. Da in diesem Bereich das Sonden-Ausgangssignal eine relativ kleine Steigung aufweist, wird mit der stetigen Regeleinrichtung eine größere Regelgenauigkeit erreicht als mit einer üblichen Zweipunkt-Regelung. In der genannten Offenlegungsschrift ist weiter ausgeführt, daß sich diese stetige Regeleinrichtung nicht für eine Lambda = 1-Regelung verwenden läßt, da bei Lambda = 1 die Lambda-Sonde einen steilen Spannungssprung aufweist und dadurch die Regeleinrichtung immer am Mager- oder Fettanschlag wäre.From DE-OS 32 31 122 a control system is known in which a control device with a constant control behavior is arranged for control in the lean range (preferably around lambda = 1, 2). Since the probe output signal has a relatively small slope in this area, greater control accuracy is achieved with the continuous control device than with a conventional two-point control. In the aforementioned publication, it is further stated that this continuous control device cannot be used for lambda = 1 control, since with lambda = 1 the lambda probe has a steep voltage jump and the control device would therefore always be at a lean or fat stop.

Aus der US-A-4 641 276 sind ein Verfahren und eine Vorrichtung bekannt, die das Luft/Kraftstoffgemisch einer Brennkraftmaschine mittels Sauerstoffsonden regeln, die jeweils in den Brennkammern angeordnet sind. Das hat den Vorteil, daß die unmittelbare Messung des Verbrennungsergebnisses auch eine sehr schnelle Reaktion der übergreifenden Regelung ermöglicht. Die Erkennungsdauer der Anteile des der Brennkraftmaschine zugeführten Kraftstoff/Luftgemisches läßt sich so erheblich reduzieren. Ferner lassen sich Extremzustände wie zu fett oder zu mager nach wenigen Zyklen des jeweils betrachteten Zylinders erkennen und es kann entsprechend reagiert werden. Neben der Überwachung des Gesamtmotor, wobei die Meßergebnisse von Zylinder zu Zylinder seriell in der Zündfolge ausgewertet werden, erlaubt die Erfindung der US-A-4 601 276 auch die gleichzeitige Überwachung jedes einzelnen Zylinders. Das hat den Vorteil, daß Streuungen von Zylinder zu Zylinder in der Gemischzusammensetzung ausgeschaltet werden können. Da für das Verfahren und die Vorrichtung der US-A-4 601 276 Signale von Sauerstoffsonden ausgewertet werden, die direkt in Brennkammern einer Brennkraftmaschine angeordnet sind, erfolgt die Auswertung der Sondensignale auf andere Weise als bei einer Sauerstoffsonde, die im Abgas der Brennkraftmaschine angeordnet ist, d. h. bei Betrieb der Brennkraftmaschine ständig den begasen derselben ausgesetzt ist.From US-A-4 641 276 a method and a device are known which regulate the air / fuel mixture of an internal combustion engine by means of oxygen probes, which are each arranged in the combustion chambers. This has the advantage that the direct measurement of the combustion result also enables the overarching control to react very quickly. The detection duration of the proportions of the fuel / air mixture supplied to the internal combustion engine can thus be reduced considerably. Furthermore, extreme conditions such as too rich or too lean can be recognized after a few cycles of the cylinder in question and a reaction can be made accordingly. In addition to monitoring the entire engine, the measurement results being evaluated serially from cylinder to cylinder in the firing order, the invention in US Pat. No. 4,601,276 also allows the simultaneous monitoring of each individual cylinder. This has the advantage that scattering from cylinder to cylinder in the mixture composition can be eliminated. Since signals from oxygen probes, which are arranged directly in combustion chambers of an internal combustion engine, are evaluated for the method and the device of US Pat. No. 4,601,276, the probe signals are evaluated in a different way than with an oxygen probe, which is arranged in the exhaust gas of the internal combustion engine , d. H. the operation of the internal combustion engine is constantly exposed to the same.

Weiterhin wird bei dem Verfahren und der Vorrichtung der US-A-4 641 276 vorausgesetzt, daß bei einer Brennkraftmaschine mit mehren Zylindern auch mehrere Sauerstoffsonden Verwendung finden, was einen nicht unerheblichen Kostenaufwand darstellt.Furthermore, the method and the device of US Pat. No. 4,641,276 assume that an internal combustion engine with multiple cylinders also uses a plurality of oxygen probes, which is a not inconsiderable cost.

In der US 4 200 064 wird ein Gemischzumeßsystem mit einer im Auslaßtrakt einer Brennkraftmaschine angeordneten Sonde beschrieben. In einem Lambda = 1 umfassenden Bereich wird das sich dort im wesentlichen sprunghaft ändernde Ausgangssignal in sogenannten Kalibrierphasen zur stetigen Regelung benutzt. Dazu wird geprüft, ob sich bei der Verwendung bestimmter Vorsteuerwerte für die Kraftstoffzumessung die zu dem Lambdawert 1 zugehörige Sondenspannunng von 0,5 Volt einstellt. Dies sei bspw bei einer Verlängerung der Einspritzzeit um 1ms der Fall. Wenn nun nach Beendigung der Kalibrierphase im Steuerbetrieb andere Lambdawerte einzustellen sind, werden die dafür vorgesehenen Steuerwerte ebenfalls um 1 ms verlängert.US Pat. No. 4,200,064 describes a mixture metering system with a probe arranged in the exhaust tract of an internal combustion engine. In an area comprising lambda = 1, the output signal, which changes essentially abruptly there, is used in so-called calibration phases for continuous control. For this purpose, it is checked whether the use of certain pilot control values for the fuel metering results in the probe voltage of 0.5 volt associated with the lambda value 1. This is the case, for example, when the injection time is extended by 1 ms. If other lambda values are to be set in control mode after the calibration phase has ended, the control values provided for this are also extended by 1 ms.

Der Erfindung liegt die Aufgabe zugrunde, ein Regelsystem zum Regeln des Luft/Kraftstoff-Verhältnisses bei einer Brennkraftmaschine mittels einer im Abgassystem angeordneten Sauerstoffsonde, die bei Betrieb der Brennkraftmaschine ständig dem Abgas ausgesetzt ist hinsichtlich des Verringerns der Gesamtemission der hauptsächlichen Schadstoffkomponenten zu verbessern.The invention has for its object to improve a control system for controlling the air / fuel ratio in an internal combustion engine by means of an oxygen probe arranged in the exhaust system, which is constantly exposed to the exhaust gas during operation of the internal combustion engine with regard to reducing the total emission of the main pollutant components.

Vorteile der ErfindungAdvantages of the invention

Die Erfindung ist durch die Merkmale des Anspruch 1 bzw. die Merkmale des nebengeordneten Anspruchs 2 gegeben.The invention is given by the features of claim 1 and the features of the independent claim 2.

Die Lösung gemäß Anspruch 1 zeichnet sich dadurch aus, daß das erfindungsgemäße Regelsystem eine Regeleinrichtung zum stetigen Regeln aufweist, wobei nicht wie im Stand der Technik das Sprungverhalten des Ausgangssignals der Lambda-Sonde (Zweipunkt-Regelung) zur Gemischregelung ausgewertet wird, sondern die tatsächliche Abweichung der Luftzahl Lambda von der einzuhaltenden Luftzahl Lambda als Regelabweichung verwendet wird. Hierbei wird der jeweilige Ist-Wert der Luftzahl Lambda über die jeweils gemessene Sondenausgangsspannung in Verbindung mit einem zumindest näherungsweise vorgegebenen sondencharakteristischen Zusammenhang zwischen der Größe der Sondenausgangsspannung und der damit gekoppelten Größe der Luftzahl Lambda bestimmt. Der der einzuhaltenden Luftzahl Lambda entsprechende Soll-Wert der Luftzahl Lambda wird vom Ist-Wert der Luftzahl Lambda abgezogen und mit der Differenz wird das Luft/Kraftstoff-Verhältnis geregelt.The solution according to claim 1 is characterized in that the control system according to the invention has a control device for continuous control, the jump behavior of the output signal of the lambda probe (two-point control) for mixture control not being evaluated as in the prior art, but the actual deviation the air ratio lambda is used as the control deviation from the air ratio lambda to be maintained. In this case, the respective actual value of the air ratio lambda is determined via the respectively measured probe output voltage in connection with an at least approximately predetermined characteristic relationship between the size of the probe output voltage and the size of the air ratio lambda coupled therewith. The target value of the air ratio lambda corresponding to the air ratio lambda to be observed is subtracted from the actual value of the air ratio lambda and the difference is used to regulate the air / fuel ratio.

Bei dem erfindungsgemäßen Regelsystem werden Abweichungen von der vorgegebenen Luftzahl Lambda = 1 schneller als bei einem üblichen Zweipunkt-Regelsystem ausgeregelt, wodurch sich der Ausstoß schädlicher Abgaskomponenten verringert. Gemäß bisheriger Versuche ergab sich eine Erhöhung der Regelfrequenz um einen Faktor 1,5 bis 3 gegenüber der üblichen Zweipunkt-Regelung, was sowohl zu einer Verringerung der Schadstoffemission beiträgt als auch insbesondere bei tiefen Drehzahlen und großer Last die Laufruhe der Brennkraftmaschine verbessert. Ein weiterer Vorteil des erfindungsgemäßen Regelsystems gegenüber der seit langem üblichen Zweipunkt-Regelung für Lambda = 1 besteht darin, daß das erfindungsgemäße Regelungssystem wesentlich unempfindlicher auf Störungen des Sondensignals bei starker Zylinderstreuung (chemical. noise) reagiert als die übliche Zweipunkt-Regelung. Die starke Zylinderstreuung hat zur Folge, daß die Zweipunkt-Regelung jeweils beim Durchgang durch die Regelschwelle von fett auf mager oder mager auf fett mit erhöhter Frequenz zwischen den Extremwerten mager und fett springt, was sich ungünstig auf das Abgas- und Fahrverhalten der Brennkraftmaschine auswirkt. Durch Verwenden einer erfindungsgemäßen Regeleinrichtung mit stetigem Regelverhalten wird dieses mit erhöhter Frequenz betriebene Umschalten zwischen zwei Extremwerten vermieden.In the control system according to the invention, deviations from the predetermined air ratio lambda = 1 are corrected faster than in a conventional two-point control system, as a result of which the emission of harmful exhaust gas components is reduced. According to previous attempts, there was an increase in the control frequency by a factor of 1.5 to 3 compared to the conventional two-point control, which both contributes to a reduction in pollutant emissions and improves the smooth running of the internal combustion engine, particularly at low speeds and high loads. Another advantage of the control system according to the invention over the long-standing two-point control for lambda = 1 is that the control system according to the invention is significantly less sensitive to interference with the probe signal in the event of strong cylinder scattering (chemical. noise) reacts as the usual two-point control. The strong cylinder scatter has the result that the two-point control jumps from rich to lean or lean to rich with increased frequency between the extreme values lean and rich when passing through the control threshold, which has an unfavorable effect on the exhaust gas and driving behavior of the internal combustion engine. By using a control device according to the invention with a constant control behavior, this switching between two extreme values, which is operated at an increased frequency, is avoided.

Das erfindungsgemäße Regelsystem gemäß dem nebengeordneten Anspruch 2 zeichnet sich durch eine Regeleinrichtung zum stetigen Regeln aus, wobei als Soll-Wert eine Sondenspannung verwendet wird, die der einzuhaltenden Luftzahl Lambda entsprechend der jeweiligen Sondencharakteristik zugeordnet ist, und über die Differenz der jeweils gemessenen Ist-Werte der Sondenspannung mit dem Soll-Wert der Sondenspannung in Verbindung mit einem zumindest näherungsweise vorgegebenen sondencharakteristischen Zusammenhang zwischen der Größe der Sondenspannungsdifferenz und der damit gekoppelten Größe der Luftzahldifferenz die Luftzahldifferenz bestimmt wird und mit der Luftzahldifferenz das Luft/Kraftstoff-Verhältnis geregelt wird. Mit diesem Regelsystem werden dieselben Vorteile gegenüber dem Stand der Technik beim Regeln des Luft/Kraftstoff-Verhältnisses erzielt wie bei dem Regelsystem gemäß Anspruch 1.The control system according to the independent claim 2 is characterized by a control device for continuous control, a probe voltage being used as the target value, which is assigned to the air ratio lambda to be maintained according to the respective probe characteristic, and via the difference between the respectively measured actual values the probe voltage with the target value of the probe voltage in conjunction with an at least approximately predefined probe characteristic relationship between the size of the probe voltage difference and the associated size of the air ratio difference, the air ratio difference is determined and the air / fuel ratio is regulated with the air ratio difference. This control system achieves the same advantages over the prior art in controlling the air / fuel ratio as in the control system according to claim 1.

Die genannten Vorteile des erfindungsgemäßen Regelsystems gemäß den nebengeordneten Ansprüchen 1 und 2 lassen sich jedoch für eine Regelung auf Lambda = 1 nur dann erzielen, wenn sich die Ausgangsspannung der Lambda-Sonde im Bereich von Lambda = 1 nur im wesentlichen also nicht mathematisch ideal sprunghaft ändert, d. h. eine die Luftzahl Lambda und die Sondenausgangsspannung verknüpfende Funktion im Bereich von Lambda = 1 eine endliche Steigung aufweist.The mentioned advantages of the control system according to the invention according to the independent claims 1 and 2 can, however, only be achieved for a control to lambda = 1 if the output voltage of the lambda probe changes in the range of lambda = 1 only essentially, ie not mathematically ideally leaps and bounds , d. H. a function linking the air ratio lambda and the probe output voltage has a finite slope in the range from lambda = 1.

In vorteilhafter Weise ist der sondencharakteristische Zusammenhang zwischen Sondenspannung und Luftzahl Lambda oder Sondenspannungsdifferenz und Luftzahldifferenz in einem Kennfeld abgelegt. Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung werden als Eingangsparameter dieses Kennfeldes einerseits die Sondenspannung oder Sondenspannungsdifferenz und zur Berücksichtigung des temperaturabhängigen Zusammenhangs zwischen Sondenspannung oder Sondenspannungsdifferenz und Temperatur ein temperaturabhängiger Sondeninnenwiderstand oder die Sondentemperatur selbst verwendet.The characteristic relationship between the probes is advantageous between sensor voltage and air ratio lambda or sensor voltage difference and air ratio difference stored in a map. According to a further advantageous embodiment of the invention, on the one hand the probe voltage or probe voltage difference and, to take into account the temperature-dependent relationship between probe voltage or probe voltage difference and temperature, a temperature-dependent internal probe resistance or the probe temperature itself are used as input parameters of this characteristic diagram.

Zum Einsparen von Speicherplatz und Rechenzeit hat es sich als vorteilhaft erwiesen, dieses Kennfeld auf eine Kennlinie zu reduzieren, die auf eine mittlere bzw. besonders häufig vorkommende Sondentemperatur ausgelegt ist.To save storage space and computing time, it has proven to be advantageous to reduce this characteristic map to a characteristic curve which is designed for a medium or particularly frequently occurring probe temperature.

Zum Einsparen von Speicherplatz erweist es sich als vorteilhaft, den sondenspezifischen Zusammenhang durch Verwenden mathematischer Funktionen abzubilden, wobei es sich unter Zugrundelegung der üblichen Sondencharakteristik der Lambda-Sonde als besonders vorteilhaft herausgestellt hat, als mathematische Funktion eine Parabel dritter Ordnung zu verwenden.To save storage space, it proves to be advantageous to map the probe-specific relationship by using mathematical functions, whereby it has been found to be particularly advantageous, based on the usual probe characteristics of the lambda probe, to use a third-order parabola as the mathematical function.

Entsprechend einer weiteren vorteilhaften Ausgestaltung der Erfindung wird bei einer Regelung auf Lambda = 1 bis zu einer Regelabweichung von vorzugsweise 3 % (d. h. Lambda = 0,97 bis Lambda = 1,03) eine Regeleinrichtung verwendet, die stetiges Verhalten aufweist und bei einer Regelabweichung größer als 3 % von stetiger Regelung auf Zweipunkt-Regelung umschaltet. Die Beschränkung auf ein schmales zur Auswertung benutztes Lambda-Band um den Wert Lambda = 1 bringt den Vorteil mit sich, daß der Einfluß von Fehlern in der angenommenen Sondencharakteristik infolge Temperaturänderungen der Sonde relativ klein ist, da die Sondencharakteristik im Bereich von Lambda = 1 ziemlich temperaturstabil ist. Deshalb kann die Genauigkeit einer durchzuführenden Nullpunktsoffset-Korrektur der Sondenspannung verringert werden, da im temperaturempfindlichen Bereich außerhalb des Lambda-Bandes eine Zweipunkt-Regelung angewandt wird.According to a further advantageous embodiment of the invention, when regulating to lambda = 1 up to a control deviation of preferably 3% (ie lambda = 0.97 to lambda = 1.03), a control device is used which has constant behavior and is larger in the case of a control deviation as a 3% switch from continuous control to two-point control. The limitation to a narrow lambda band used for evaluation by the value lambda = 1 has the advantage that the influence of errors in the assumed probe characteristic due to temperature changes of the probe is relatively small, since the probe characteristic in the range of lambda = 1 is quite is temperature stable. Therefore, the accuracy of a zero point offset correction to be carried out for the probe voltage can be reduced, since in the temperature-sensitive range outside the lambda band Two-point regulation is applied.

In einer weiteren vorteilhaften Weiterbildung wird der Regel Sollwert der Sondenspannung US in Abhängigkeit der gemessenen maximalen und minimalen Sondenspannung gemäß der Formel. U S = (U S(max) - U S(min) ) x K + U S(min)

Figure imgb0001
adaptiert, wobei K ein konstanter Faktor ist, der anhand der Sondencharakteristik bestimmt wird. Die Korrektur des Regel-Sollwertes erfolgt zusätzlich über einen Tiefpaß. Weiterhin werden die gemessenen Sondenspannungsextremwerte gespeichert und für den Fall, daß keine neuen Extremwerte der Sondenspannung gemessen werden, langsam abgeregelt. Mit dieser Adaption ist es möglich, das Verschieben des Regel-Sollwerts der Sondenspannung infolge Alterung der Sonde oder Temperaturänderung der Sonde zu berücksichtigen.In a further advantageous development, the setpoint value of the probe voltage U S becomes dependent on the measured maximum and minimum probe voltage according to the formula. U S = (U S (max) - U S (min) ) x K + U S (min)
Figure imgb0001
adapted, where K is a constant factor that is determined based on the probe characteristics. The control setpoint is also corrected using a low-pass filter. Furthermore, the measured probe voltage extreme values are stored and slowly reduced in the event that no new extreme values of the probe voltage are measured. With this adaptation it is possible to take into account the shifting of the control setpoint of the probe voltage due to aging of the probe or temperature change of the probe.

Zeichnungdrawing

Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Fig. 1 zeigt ein vereinfachtes Blockschaltbild einer Regelanordnung mit einem Regelsystem zum Regeln des Luft/ Kraftstoff-Verhältnisses bei einer Brennkraftmaschine gemäß Anspruch 1. Fig. 2 zeigt eine Regelungsanordnung mit einem erfindungsgemäßen Regelsystem zum Regeln des Luft/Kraftstoff-Verhältnisses bei einer Brennkraftmaschine gemäß dem nebengeordneten Anspruch 2, wobei jedoch nicht die gesamte Regelungsanordnung dargestellt ist, sondern nur Bauelemente dargestellt sind, in denen sich die Regelungsanordnung gemäß Anspruch 2 von derjenigen gemäß Anspruch 1 unterscheidet.Embodiments of the invention are shown in the drawing and explained in more detail in the following description. Fig. 1 shows a simplified block diagram of a control arrangement with a control system for controlling the air / fuel ratio in an internal combustion engine according to claim 1. Fig. 2 shows a control arrangement with a control system according to the invention for controlling the air / fuel ratio in an internal combustion engine according to the independent claim 2, but not the entire control arrangement is shown, but only components are shown in which the control arrangement according to claim 2 differs from that according to claim 1.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Die in Fig. 1 dargestellte Regelungsanordnung weist eine Brennkraftmaschine (BKM) 10 als Regelstrecke mit Einspritzventilen (EV) 11 als Stellglieder, eine Regeleinrichtung 12, (gestrichelt umrandet) eine im Abgas der Brennkraftmaschine angeordnete Lambda-Sonde 13 und ein Grundkennfeld 14 auf. Das Grundkennfeld 14 ist bevorzugt als Nur-Lesespeicher (ROM) ausgebildet, der durch zugeführte Betriebsgrößen (hier: Drehzahl n und Drosselklappenstellung α ) adressiert wird. Abhängig von diesen Adressen wird jeweils eine entsprechende Einspritzzeit tL für die Einspritzventile 11 der Brennkraftmaschine 10 aus dem Grundfeld 14 ausgelesen. Die Lambda-Sonde 13 gibt ein Ausgangssignal (Ausgangsspannung US) ab, das der Regeleinrichtung 12 zugeführt wird. Die Regeleinrichtung 12 gibt als Stellgröße einen Korrekturfakor KF ab, der multiplikativ die aus dem Grundkennfeld 14 ausgegebene Einspritzzeit tL korrigiert, wodurch sich die korrigierte Einspritzzeit tLK ergibt. Weiterhin wird der Regeleinrichtung 12 ein Regel-Sollwert 15 der Luftzahl Lambda zugeführt, der wiederum von der Drosselklappenstellung α und der Drehzahl n der Brennkraftmaschine 10 abhängen kann. Bei Verwendung eines Drei-Wege-Katalysators wird dieser Soll-Wert = 1 gesetzt, da das Vorliegen eines stöchiometrischen Gemisches (Lambda = 1) ein optimales Konvertierungsverhalten des Katalysators gewährleistet.1 has an internal combustion engine (BKM) 10 as a controlled system with injection valves (EV) 11 as actuators, a control device 12, (dashed border) a lambda probe 13 arranged in the exhaust gas of the internal combustion engine and a basic map 14. The basic map 14 is preferably designed as a read-only memory (ROM), which is addressed by supplied operating variables (here: speed n and throttle valve position α). Depending on these addresses, a corresponding injection time t L for the injection valves 11 of the internal combustion engine 10 is read from the basic field 14. The lambda probe 13 emits an output signal (output voltage U S ) which is fed to the control device 12. The control device 12 outputs a correction factor KF as a manipulated variable, which multiplicatively corrects the injection time t L output from the basic characteristic map 14, which results in the corrected injection time t LK . Furthermore, the control device 12 is supplied with a control target value 15 of the air ratio lambda, which in turn can depend on the throttle valve position α and the speed n of the internal combustion engine 10. When using a three-way catalytic converter, this target value = 1 is set, since the presence of a stoichiometric mixture (lambda = 1) ensures optimal conversion behavior of the catalytic converter.

Die Regeleinheit 12 weist eine Umwandlungseinrichtung 16 auf, mit deren Hilfe die Sondenausgangssignale US der Lambda-Sonde 13 in Lambda-Werte entsprechend dem sondencharakteristischen Zusammenhang von Lambda-Wert und Sondenspannung umgewandelt werden. Zur Abbildung des sondencharakteristischen Zusammenhangs wird entweder eine mathematische Funktion, eine Tabelle oder ein Kennfeld verwendet. Die Sondencharakteristik wird durch die Sondentemperatur im Bereïch größer und kleiner Lambda = 1 stark beeinflußt. Um die Regelgenauigkeit zu steigern, ist es deshalb von Vorteil, bei der Bestimmung des Lambda-Wertes beispielsweise aus einem Kennfeld zusätzlich zur Sondenspannung US die Temperatur der Sonde oder den temperaturanhängigen Innenwiderstand der Sonde als Eingangsparameter zu verwenden.The control unit 12 has a conversion device 16, by means of which the probe output signals U S of the lambda probe 13 are converted into lambda values in accordance with the characteristic relationship between the lambda value and the probe voltage. Either a mathematical function, a table or a map is used to map the probe characteristic relationship. The probe characteristic is strongly influenced by the probe temperature in the area of larger and smaller lambda = 1. In order to increase the control accuracy, it is therefore advantageous to use the temperature of the probe or the temperature-dependent internal resistance of the probe as an input parameter when determining the lambda value, for example from a map, in addition to the probe voltage U S.

Innerhalb der Regeleinrichtung 12 ist der Umwandlungseinrichtung 16 ein Zeitglied 17 nachgeschaltet und diesem eine Korrektureinrichtung 18 zur Berechnung eines Korrekturfaktors KF. Dieser Korrekturfaktor KF wird einer Multiplikationseinheit 19 zugeführt, die den der Korrekturfaktor KF mit der aus dem Grundkennfeld 14 ausgegebenen Einspritzzeit tL multipliziert. Die Ausgabe des Korrekturfaktors KF kann durch einen Schalter 20 unterbrochen werden, der über eine Regelungsfreigabe-Einrichtung 21 geschaltet wird. In bestimmten Betriebsphasen der Brennkraftmaschine (beispielsweise Startphase, Warmlaufphase, instationäre phasen) ist eine Regelung auf eine fest vorgegebene Luftzahl Lambda nicht erwünscht. In diesen Fällen wird durch die Regelungsfreigabe-Einrichtung 21 über den Schalter 20 die Ausgabe des Korrekturfaktors KF unterbrochen.Inside the control device 12 is the conversion device 16 is followed by a timing element 17 and this a correction device 18 for calculating a correction factor KF. This correction factor KF is fed to a multiplication unit 19, which multiplies the correction factor KF by the injection time t L output from the basic characteristic diagram 14. The output of the correction factor KF can be interrupted by a switch 20, which is switched via a control release device 21. In certain operating phases of the internal combustion engine (for example starting phase, warm-up phase, unsteady phases), regulation to a predefined lambda air ratio is not desired. In these cases, the control release device 21 interrupts the output of the correction factor KF via the switch 20.

Hat die Regelungsfreigabe-Einrichtung 21 die Regelung freigegeben, wird das Ausgangssignal der im Abgas der Brennkraftmaschine 10 angeordneten Lambda-Sonde der Umwandlungseinrichtung 16 zugeführt. Da die Berechnung des Korrekturfaktors KF vorzugsweise mit einem Rechner erfolgt, wird das analoge Sondenausgangssignal nach Verstärkung über einen in Fig. 1 nicht dargestellten A/D-Wandler in ein digitales Signal umgewandelt. Die Umwandlungseinheit 16 berechnet aus dem Ausgangssignal der Lambda-Sonde 13 über einen vorgegebenen sondencharakteristischen Zusammenhang zwischen Ausgangsspannung der Sonde und Luftzahl Lambda den jeweils gemessenen Ist-Wert der Luftzahl Lambda. Der im Anschluß daran durchgeführte Vergleich von Ist-Wert und Soll-Wert 15 der Luftzahl Lambda führt zu einer Regelabweichung Δ -Lambda, die einem Zeitglied 17 zugeführt wird. Das Zeitglied gibt anschließend ein Signal an eine Korrektureinrichtung 18 ab, die die Berechnung des Korrekturfaktors KF durchführt.If the control release device 21 has released the control, the output signal of the lambda probe arranged in the exhaust gas of the internal combustion engine 10 is fed to the conversion device 16. Since the correction factor KF is preferably calculated using a computer, the analog probe output signal is converted into a digital signal after amplification via an A / D converter (not shown in FIG. 1). The conversion unit 16 calculates the respectively measured actual value of the air ratio lambda from the output signal of the lambda sensor 13 via a predetermined probe-characteristic relationship between the output voltage of the probe and the air ratio lambda. The subsequent comparison of the actual value and the target value 15 of the air ratio lambda leads to a control deviation .DELTA.-lambda, which is fed to a timing element 17. The timing element then emits a signal to a correction device 18, which carries out the calculation of the correction factor KF.

Der Korrekturfaktor KF wird dann multiplikativ der aus dem Grundkennfeld 14 ausgegebenen Einspritzzeit tL überlagert, wodurch sich die korrigierte Einspritzzeit tLK ergibt. Durch Addition der Einspritzzeit tLK und einer Einspritzzeit tS, die den Totzeiteinfluß der Einspritzventile 11 berücksichtigt, führt schließlich zur tatsächlichen Einspritzzeit tI. Die digital berechnete Einspritzzeit tI wird auf eine in Fig. 1 nicht dargestellte Endstufe gegeben und als analoges Öffnungszeit-Signal an die Einspritzventile 11 abgegeben.The correction factor KF is then multiplied by the injection time t L output from the basic characteristic map 14, which results in the corrected injection time t LK . By adding the injection time t LK and an injection time t S , which takes into account the dead time influence of the injection valves 11, finally leads to the actual injection time t I. The digitally calculated injection time t I is given to an output stage, not shown in FIG. 1, and is output to the injection valves 11 as an analog opening time signal.

Die in Fig. 2 dargestellte Regelungsanordnung weist im wesentlichen einen ähnlichen Aufbau wie die Regelungsordnung der Fig. 1 auf. Gleiche Bauelemente tragen dasselbe Bezugszeichen wie in Fig. 1 und werden hier nicht nochmals erläutert. Der Unterschied zu der in Fig. 1 dargestellten Regelanordnung besteht darin, daß die Regelabweichung Δ-Lambda auf anderem Wege ermittelt wird. Als Regel-Sollwert wird eine Sollspannung 22 verwendet, die wiederum von der Drosselklappenstellung α oder der Drehzahl n abhängen kann.The control arrangement shown in FIG. 2 essentially has a similar structure to the control arrangement of FIG. 1. The same components have the same reference numerals as in Fig. 1 and are not explained again here. The difference from the control arrangement shown in FIG. 1 is that the control deviation .DELTA.-lambda is determined in another way. A target voltage 22 is used as the control target value, which in turn can depend on the throttle valve position α or the speed n.

Weiterhin weist die Regelanordnung gemäß Fig. 2 eine Umrechnungseinheit 23 auf, die den sondencharakteristischen Verlauf zwischen der Sondenspannungsdifferenz und der damit gekoppelten Luftzahldifferenz speichert. Dieser Umrechnungseinheit 23 wird nach Vergleich der Ist-Sondenspannung mit der Soll-Sondenspannung 22 eine Regelabweichung Δ-US zugeführt, aus der die Regelabweichung Δ-Lambda berechnet wird. Der weitere Regelungsablauf entspricht dem Regelungsablauf der Regelungsanordnung gemäß Fig. 1, weshalb, um Wiederholungen zu vermeiden, dieser nicht nochmals beschrieben wird.Furthermore, the control arrangement according to FIG. 2 has a conversion unit 23 which stores the characteristic curve between the probe voltage difference and the air ratio difference coupled therewith. After the comparison of the actual probe voltage with the target probe voltage 22, this conversion unit 23 is supplied with a control deviation Δ-U S , from which the control deviation Δ-Lambda is calculated. The further control sequence corresponds to the control sequence of the control arrangement according to FIG. 1, which is why, in order to avoid repetitions, it is not described again.

Besonders vorteilhaft wird zum Erhöhen der Regelgeschwindigkeit ein stetiger Regler mit PID-Verhalten des Zeitgliedes 17 eingesetzt, wobei für die jeweiligen P-,I-,D-Anteile die Regelabweichung mit geeigneten Faktoren multipliziert wird, die drehzahl- und lastabhängig in Kennfeldern abgelegt sind.A continuous controller with PID behavior of the timing element 17 is particularly advantageously used to increase the control speed, the control deviation being multiplied by suitable factors for the respective P, I and D components, which are stored in characteristic diagrams as a function of the speed and load.

Ein Masseversatz zwischen Sondenmasse und Masse des in den Figuren nicht dargestellten Analog/Digitalwandlers würde das Ergebnis der Messung der Sondenspannung verfälschen. Deshalb elimimiert eine Korrektureinrichtung diesen Masseversatz, indem sie in längerdauernden Schubphasen (z. B. nach 800 msec) die sich einstellende minimale Sondenspannung mißt und die Differenz zum erwarteten Minimalwert über einen Filter als Korrekturgröße für die zu messenden Sondenspannungen speichert. Zur Erfassung eines negativen Masseversatzes wird dazu die Sondenspannung vor dem Analog/Digitalwandler hardwaremäßig um einen festen Spannungswert erhöht. Dieses Eliminieren des Masseversatzes führt zu einer höheren Genauigkeit bei der Erfassung der Sondenausgangsspannung und damit zu einer höheren Regelgenauigkeit der stetigen Regeleinrichtung.A mass offset between the probe mass and the mass of the analog / digital converter, not shown in the figures, would falsify the result of the measurement of the probe voltage. A correction device therefore eliminates this mass offset by measuring the minimum probe voltage that occurs in longer overrun phases (e.g. after 800 msec) and saves the difference to the expected minimum value using a filter as a correction variable for the probe voltages to be measured. To detect a negative ground offset, the probe voltage upstream of the analog / digital converter is increased in hardware by a fixed voltage value. This elimination of the mass offset leads to a higher accuracy in the detection of the probe output voltage and thus to a higher control accuracy of the continuous control device.

Diese Korrektureinrichtung dient andererseits der Kompensation einer Drift des mageren Kennlinienasts (Anhebung) z. B durch Alterung. Die Kompensation des Masseversatzes allein kann gegebenenfalls auch durch die Verwendung eines Differenzverstärkers erfolgen.On the other hand, this correction device serves to compensate for a drift of the lean characteristic branch (increase) z. B due to aging. The mass offset alone can also be compensated for if necessary by using a differential amplifier.

Zum Überwachen der Konvertierungsfähigkeit eines Katalysators wird vorzugsweise stromab von diesem eine zweite LambdaSonde angeordnet, die ein Signal abgibt, welches bei optimaler Konvertierung der Abgasschadstoffe in Signalverhalten eine geringe Welligkeit um den temperaturstabilen Wert Lambda = 1 aufweist. Eine Abweichung von diesem temperaturstabilen Punkt wird vorteilhaft zur Offsetkorrektur/-Adaption der Sondenausgangsspannung verwendet.To monitor the conversion capability of a catalytic converter, a second lambda probe is preferably arranged downstream of the latter, which emits a signal which, with optimal conversion of the exhaust gas pollutants into signal behavior, has a slight ripple around the temperature-stable value lambda = 1. A deviation from this temperature-stable point is advantageously used for offset correction / adaptation of the probe output voltage.

Claims (10)

1. Control system for controlling the air/fuel ratio in an internal-combustion engine (10) to an air ratio lambda to be maintained, the control system having an oxygen probe (lambda probe) (13), which is arranged in the exhaust system of the internal-combustion engine, is exposed continuously to the exhaust of the internal-combustion engine during operation thereof and the output voltage of which, which represents a measure of the air ratio lambda, changes essentially abruptly in the region of lambda equals one, characterised by a control device (12) for continuous-action control in a control region comprising lambda = 1, which determines the respective actual value of the air ratio lambda via the probe output voltage measured in each case in conjunction with an at least approximately predetermined probe-characteristic relationship between the size of the probe output voltage and the associated size of the air ratio lambda, and subtracts the set value of the air ratio lambda corresponding to the air ratio lambda to be maintained from the actual value of the air ratio lambda and controls the air/fuel ratio on the basis of the difference.
2. Control system with the features of the preamble of Claim 1, characterised by a control device (12) for continuous-action control in a control region comprising lambda = 1, which uses as set value a voltage which is assigned to the respective probe characteristic corresponding to the air ratio lambda to be maintained, and determines the air ratio difference via the difference of the actual values of the probe voltage measured in each case with the set value of the probe voltage in conjunction with an at least approximately predetermined relationship between the size of the voltage difference and the associated size of the air ratio difference, and controls the air/fuel ratio on the basis of the air ratio difference.
3. Control system according to Claim 1 or 2, characterised in that the probe-characteristic relationship is stored in a map (16; 23).
4. Control system according to Claim 3, characterised in that the probe voltage or the voltage difference and a variable dependent on the temperature of the probe are used as input parameters of the map (16; 23).
5. Control system according to Claim 1 or 2, characterised in that the probe-specific relationship is mapped by using mathematical functions.
6. Control system according to Claim 5, characterised in that a third order parabola is used.
7. Control system according to one of the preceding claims, characterised in that, when controlling to lambda equals one, the control device (12) has a continuous control action up to a predetermined small system deviation, of for example 3%, and the control device has a control action corresponding to a two-position control with a greater system deviation, of for example 6%, in the case of a greater system deviation.
8. Control system according to Claims 2 to 7, characterised in that the control set value of the voltage US(set) is adapted as a function of the measured maximum and minimum probe voltage (US(max), US(min)) according. to the formula U S(set) = (U S(max) - U S(min) x K + U S(min) ,
Figure imgb0003
where K is a constant factor which is determined on the basis of the probe characteristic.
9. Control system according to Claims 1 to 8, characterised in that the probe voltage measured in each case is superimposed by an offset correction.
10. Control system according to Claims 1 to 9, characterised in that the control device (12) is designed as a device with continuous PID action.
EP88909199A 1987-11-10 1988-10-26 System for regulating the air/fuel ratio of an internal combustion engine Expired - Lifetime EP0388412B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3738132 1987-11-10
DE3738132 1987-11-10

Publications (2)

Publication Number Publication Date
EP0388412A1 EP0388412A1 (en) 1990-09-26
EP0388412B1 true EP0388412B1 (en) 1992-06-17

Family

ID=6340185

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88909199A Expired - Lifetime EP0388412B1 (en) 1987-11-10 1988-10-26 System for regulating the air/fuel ratio of an internal combustion engine

Country Status (6)

Country Link
US (1) US5036819A (en)
EP (1) EP0388412B1 (en)
JP (1) JP2930596B2 (en)
KR (1) KR0135277B1 (en)
DE (3) DE3827978A1 (en)
WO (1) WO1989004424A1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2765136B2 (en) * 1989-12-14 1998-06-11 株式会社デンソー Air-fuel ratio control device for engine
DE4001616C2 (en) * 1990-01-20 1998-12-10 Bosch Gmbh Robert Method and device for regulating the amount of fuel for an internal combustion engine with a catalyst
DE4024212C2 (en) * 1990-07-31 1999-09-02 Bosch Gmbh Robert Process for the constant lambda control of an internal combustion engine with a catalyst
JP2989929B2 (en) * 1991-05-13 1999-12-13 株式会社デンソー Air-fuel ratio control device for internal combustion engine
JP3138498B2 (en) * 1991-06-14 2001-02-26 本田技研工業株式会社 Air-fuel ratio control device for internal combustion engine
JPH0568762A (en) * 1991-09-11 1993-03-23 Yamato Sewing Mach Seizo Kk Method and device for controlling cloth end position of sewing material cloth
DE4136911A1 (en) * 1991-11-09 1993-05-13 Till Keesmann METHOD FOR CATALYTICALLY COMBUSTION OF THE EXHAUST GASES OF AN INTERNAL COMBUSTION ENGINE EQUIPPED WITH SEVERAL CYLINDERS, AND DEVICE FOR CARRYING OUT THIS METHOD
JP3321477B2 (en) 1993-04-09 2002-09-03 株式会社日立製作所 Diagnostic device for exhaust gas purification device
DE4311890C2 (en) * 1993-04-10 1995-05-18 Comuna Metall Vorrichtungs Und Stationary internal combustion engine with exhaust gas purification
US5778866A (en) * 1996-01-25 1998-07-14 Unisia Jecs Corporation Air-fuel ratio detecting system of internal combustion engine
DE19606652B4 (en) * 1996-02-23 2004-02-12 Robert Bosch Gmbh Method of setting the air-fuel ratio for an internal combustion engine with a downstream catalytic converter
JPH09236569A (en) * 1996-03-01 1997-09-09 Hitachi Ltd Function diagnosing device of exhaust gas purifying apparatus of internal combustion engine
DE19833450C2 (en) * 1998-07-24 2003-10-09 Siemens Ag Method for determining the initialization value of a temperature model for an exhaust gas catalytic converter of an internal combustion engine
DE19842425C2 (en) 1998-09-16 2003-10-02 Siemens Ag Method for correcting the characteristic of a linear lambda probe
DE19856367C1 (en) 1998-12-07 2000-06-21 Siemens Ag Process for cleaning the exhaust gas with lambda control
DE19911664A1 (en) * 1999-03-16 2000-09-21 Volkswagen Ag Calibration of a NOx sensor
DE10025034A1 (en) * 2000-05-20 2001-11-22 Dmc2 Degussa Metals Catalysts Operation of petrol engine with new three-way catalyst having leading and trailing lambda sensors, avoids monitoring with second sensor until its rich-running output voltage reduces
JP4503222B2 (en) * 2002-08-08 2010-07-14 本田技研工業株式会社 Air-fuel ratio control device for internal combustion engine
DE10316994A1 (en) * 2003-04-11 2004-10-28 E.On Ruhrgas Ag Method of monitoring combustion in an incinerator
JP4170167B2 (en) * 2003-07-04 2008-10-22 株式会社日立製作所 Air-fuel ratio control device for internal combustion engine
DE102005029950B4 (en) * 2005-06-28 2017-02-23 Volkswagen Ag Lambda control in an internal combustion engine
DE102005038492B4 (en) * 2005-08-13 2016-07-21 Volkswagen Ag Method and device for determining the offset of a calculated or measured lambda value
DE102005056152A1 (en) 2005-11-23 2007-05-24 Robert Bosch Gmbh Method for calibrating the signal provided by a broadband lambda sensor and apparatus for carrying out the method
DE102006013293B4 (en) * 2006-03-23 2016-08-18 Robert Bosch Gmbh Method for diagnosing an exhaust aftertreatment device and device for carrying out the method
DE102007015362A1 (en) 2007-03-30 2008-10-02 Volkswagen Ag Method for lambda control in combustion engine of motor vehicle, involves using measuring signal on two points of range of lambda-values, and correcting measuring signal on one of two points
DE102007016276A1 (en) 2007-04-04 2008-10-09 Volkswagen Ag Lambda control with a characteristic adaptation
EP1990525B1 (en) * 2007-05-07 2013-07-10 Volvo Car Corporation An engine system and method for adjustment in air/fuel ratio control in an engine system
DE102009007572B4 (en) * 2009-02-05 2013-10-02 Continental Automotive Gmbh Method and device for operating an internal combustion engine
JP5857662B2 (en) * 2011-11-18 2016-02-10 いすゞ自動車株式会社 Abnormality determination method for internal combustion engine fuel injection and internal combustion engine
DE102012211683B4 (en) 2012-07-05 2024-03-21 Robert Bosch Gmbh Method and device for correcting a characteristic curve of a two-point lambda sensor
DE102012211687B4 (en) * 2012-07-05 2024-03-21 Robert Bosch Gmbh Method and control unit for detecting a voltage offset of a voltage lambda characteristic curve
US10990386B2 (en) 2018-10-08 2021-04-27 Honeywell International Inc. Localized executable functions platform for execution of diagnostic, operational, and other computational algorithms
DE102021104061B3 (en) 2021-02-22 2022-07-07 Bayerische Motoren Werke Aktiengesellschaft Detection of a burn in an intake system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200064A (en) * 1977-04-27 1980-04-29 Fabbrica Italiana Magneti Marelli S.P.A. Electronic apparatus for feed control of air-gasoline mixture in internal combustion engines
DE3231122A1 (en) * 1982-08-21 1984-02-23 Robert Bosch Gmbh, 7000 Stuttgart CONTROL DEVICE FOR THE MIXTURE COMPOSITION OF AN INTERNAL COMBUSTION ENGINE

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3738341A (en) * 1969-03-22 1973-06-12 Philips Corp Device for controlling the air-fuel ratio {80 {11 in a combustion engine
JPS5495833A (en) * 1978-01-11 1979-07-28 Hitachi Ltd Air fuel ratio controller
JPS5923038A (en) * 1982-07-30 1984-02-06 Hitachi Ltd Control method of air-fuel ratio of internal combustion engine
DE3238753A1 (en) * 1982-10-20 1984-04-26 Robert Bosch Gmbh, 7000 Stuttgart METHOD AND DEVICE FOR REGULATING THE FUEL-AIR MIXTURE TO BE ADDED TO AN INTERNAL COMBUSTION ENGINE
DE3341015A1 (en) * 1983-11-12 1985-05-30 Robert Bosch Gmbh, 7000 Stuttgart DEVICE FOR MIXTURE TREATMENT IN AN INTERNAL COMBUSTION ENGINE
JPS60178941A (en) * 1984-02-27 1985-09-12 Nissan Motor Co Ltd Air-fuel ratio control device in internal-combustion engine
JPH0737776B2 (en) * 1986-03-04 1995-04-26 本田技研工業株式会社 Air-fuel ratio control method for internal combustion engine
JP2601455B2 (en) * 1986-04-24 1997-04-16 本田技研工業株式会社 Air-fuel ratio control method for internal combustion engine
DE3713790A1 (en) * 1986-04-24 1987-11-05 Honda Motor Co Ltd METHOD FOR REGULATING THE AIR / FUEL RATIO OF A FUEL MIXTURE DELIVERED TO AN INTERNAL COMBUSTION ENGINE
US4770147A (en) * 1986-04-25 1988-09-13 Fuji Jukogyo Kabushiki Kaisha Air-fuel ratio control system for an engine
JPH0718359B2 (en) * 1987-03-14 1995-03-01 株式会社日立製作所 Engine air-fuel ratio control method
US4926826A (en) * 1987-08-31 1990-05-22 Japan Electronic Control Systems Co., Ltd. Electric air-fuel ratio control apparatus for use in internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200064A (en) * 1977-04-27 1980-04-29 Fabbrica Italiana Magneti Marelli S.P.A. Electronic apparatus for feed control of air-gasoline mixture in internal combustion engines
DE3231122A1 (en) * 1982-08-21 1984-02-23 Robert Bosch Gmbh, 7000 Stuttgart CONTROL DEVICE FOR THE MIXTURE COMPOSITION OF AN INTERNAL COMBUSTION ENGINE

Also Published As

Publication number Publication date
US5036819A (en) 1991-08-06
DE3827978A1 (en) 1989-05-18
DE3837984A1 (en) 1989-05-18
KR890701884A (en) 1989-12-22
WO1989004424A1 (en) 1989-05-18
KR0135277B1 (en) 1998-04-23
EP0388412A1 (en) 1990-09-26
JP2930596B2 (en) 1999-08-03
JPH03500565A (en) 1991-02-07
DE3872249D1 (en) 1992-07-23

Similar Documents

Publication Publication Date Title
EP0388412B1 (en) System for regulating the air/fuel ratio of an internal combustion engine
DE2829958C2 (en)
DE102008042549B4 (en) Method and device for diagnosing an exhaust gas probe
EP0154710B1 (en) Control apparatus for controlling the operating parameters of an internal-combustion engine
DE3500594A1 (en) Metering system for an internal combustion engine for influencing the operating mixture
EP1131549B1 (en) METHOD FOR ADAPTING THE NOx CONCENTRATION OF AN INTERNAL COMBUSTION ENGINE OPERATED WITH AN EXCESS OF AIR
EP0152604A1 (en) Control and regulation method for the operating parameters of an internal-combustion engine
DE19606652A1 (en) Air/fuel ratio setting method for IC engine with exhaust catalyser
DE19612212B4 (en) Diagnostic device for an air / fuel ratio sensor
DE102012211683A1 (en) Method and device for correcting a characteristic curve of a two-point lambda probe
DE102018208683A1 (en) Method and control unit for regulating a fill level of a storage tank of a catalytic converter for an exhaust gas component
DE3831289A1 (en) SYSTEM FOR CONTROLLING THE AIR FUEL RATIO OF A COMBUSTIBLE MIXTURE ADDED TO AN INTERNAL COMBUSTION ENGINE
DE4024212C2 (en) Process for the constant lambda control of an internal combustion engine with a catalyst
DE10309422B4 (en) Method and device for calibrating a NOx sensor
DE19545694C2 (en) Method for regulating the fuel-air ratio of an internal combustion engine
DE19545706C2 (en) Method for calibrating a lambda probe in an internal combustion engine
DE102019201293A1 (en) Method for differentiating between model inaccuracies and lambda offsets for model-based control of the fill level of a catalytic converter
DE19547646A1 (en) Method of controlling an IC engine
EP0187649A2 (en) Mixture regulation apparatus for a combustion engine
DE102018251725A1 (en) Method for regulating a filling of an exhaust gas component store of a catalytic converter
DE19545693C2 (en) Method for checking the efficiency of a catalytic converter in an internal combustion engine
DE10202869A1 (en) Correction of output signals for nitrogen oxide concentration measurement from sensors located within exhaust system of IC engine comprises applying correction to oscillating output signal for predetermined interval following start-up
DE2621013C2 (en) Mixture control system for internal combustion engines with a closed control loop
EP0925433B1 (en) Air/fuel mixture control in an internal combustion engine
EP2188511B1 (en) Method for lambda regulation in operating areas with low fuel or excess fuel with a nernst sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900329

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19910114

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3872249

Country of ref document: DE

Date of ref document: 19920723

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030930

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20041019

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041026

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20041222

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060630