EP0385538A1 - Process for the conversion of a hydrocarbonaceous feedstock - Google Patents
Process for the conversion of a hydrocarbonaceous feedstock Download PDFInfo
- Publication number
- EP0385538A1 EP0385538A1 EP90200415A EP90200415A EP0385538A1 EP 0385538 A1 EP0385538 A1 EP 0385538A1 EP 90200415 A EP90200415 A EP 90200415A EP 90200415 A EP90200415 A EP 90200415A EP 0385538 A1 EP0385538 A1 EP 0385538A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- feedstock
- process according
- catalyst
- zeolite
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 12
- 239000003054 catalyst Substances 0.000 claims abstract description 32
- 239000010457 zeolite Substances 0.000 claims abstract description 24
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 16
- 239000011148 porous material Substances 0.000 claims abstract description 10
- 239000007789 gas Substances 0.000 claims description 9
- 238000009835 boiling Methods 0.000 claims description 6
- 229930195733 hydrocarbon Natural products 0.000 claims description 5
- 150000002430 hydrocarbons Chemical class 0.000 claims description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 229910052675 erionite Inorganic materials 0.000 claims description 3
- 229910001657 ferrierite group Inorganic materials 0.000 claims description 3
- 229910052914 metal silicate Inorganic materials 0.000 claims description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 239000003921 oil Substances 0.000 description 9
- 229910000323 aluminium silicate Inorganic materials 0.000 description 7
- 150000001336 alkenes Chemical class 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- -1 gallium silicates Chemical class 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 235000012211 aluminium silicate Nutrition 0.000 description 3
- 239000000571 coke Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000004523 catalytic cracking Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical class O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- PZZYQPZGQPZBDN-UHFFFAOYSA-N aluminium silicate Chemical compound O=[Al]O[Si](=O)O[Al]=O PZZYQPZGQPZBDN-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002026 crystalline silica Inorganic materials 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G35/00—Reforming naphtha
- C10G35/04—Catalytic reforming
- C10G35/10—Catalytic reforming with moving catalysts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/14—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
- C10G11/16—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "moving bed" method
Definitions
- the present invention relates to a process for the conversion of a hydrocarbonaceous feedstock.
- US 4,171,257 describes a process for upgrading a hydrocarbonaceous feedstock by contacting the feedstock with a ZSM-5 crystalline aluminosilicate catalyst at a pressure below 14 bar, a temperature of 260 to 427 °C and a space velocity of 0.1 to 15 l/l.h.
- the feedstock exemplified as gas oil having a boiling point range of 230 to 437 °C, must contain less than 5 ppmw of nitrogen-containing compounds, calculated as nitrogen.
- the upgraded product includes olefinic hydrocarbons, such as propene and butenes.
- the present invention provides a process for the conversion of a straight-run hydrocarbonaceous feedstock containing hydrocarbons having such a boiling range that an amount thereof boils at a temperature of at least 330 °C, which process comprises contacting the feedstock with a moving bed of a zeolitic catalyst comprising a zeolite with a pore diameter of 0.3 to 0.7 nm, preferably 0.5 to 0.7 nm, at a temperature of greater than 480 °C during less than 10 seconds.
- the feedstock is contacted with the zeolitic catalyst for less than 10 seconds.
- the minimum contact time is 0.1 second. Very good results are obtainable with a process in which the feedstock is contacted with the zeolitic catalyst during 0.2 to 6 seconds.
- the temperature during the reaction is relatively high. It is this combination of high temperature and short contact time which allows a high conversion to olefins.
- a preferred temperature range is 500 to 900 °C, more preferably 550 to 850 °C.
- the zeolitic catalyst may comprise one or more zeolites with a pore diameter of from 0.3 to 0.7 nm.
- the catalyst suitably further comprises a refractory oxide that serves as binder material. Suitable refractory oxides include alumina, silica, silica-alumina, magnesia, titania, zirconia and mixtures thereof. Alumina is especially preferred.
- the weight ratio of refractory oxide and zeolite suitably ranges from 10:90 to 90:10, preferably from 50:50 to 85:15.
- the catalyst may comprise up to about 40% by weight of further zeolites with a pore diameter above 0.7 nm.
- zeolites include the faujasite-type zeolites, zeolite beta, zeolite omega and in particular zeolite X and Y.
- the zeolitic catalyst preferably comprises as zeolite substantially only zeolites with a pore diameter of from 0.3 to 0.7 nm.
- zeolite in this specification is not to be regarded as comprising only crystalline aluminium silicates.
- the term also includes crystalline silica (silicalite), silicoaluminophosphates (SAPO), chromosilicates, gallium silicates, iron silicates, aluminium phosphates (ALPO), titanium aluminosilicates (TASO), boron silicates, titanium aluminophosphates (TAPO) and iron aluminosilicates.
- Examples of zeolites that may be used in the process of the invention and that have a pore diameter of 0.3 to 0.7 nm include SAPO-4 and SAPO-11, which are described in US-A-4,440,871, ALPO-11, described in US-A-4,310,440, TAPO-11, described in US-A-4,500,651, TASO-45, described in EP-A-229,295, boron silicates, described in e.g. US-A-4,254,297, aluminium silicates like erionite, ferrierite, theta and the ZSM-type zeolites such as ZSM-5, ZSM-11, ZSM-12, ZSM-35, ZSM-23, and ZSM-38.
- SAPO-4 and SAPO-11 which are described in US-A-4,440,871, ALPO-11, described in US-A-4,310,440, TAPO-11, described in US-A-4,500,651, TASO-45, described in EP-A-229,29
- the zeolite is selected from the group consisting of crystalline metal silicates having a ZSM-5 structure, ferrierite, erionite and mixtures thereof.
- crystalline metal silicates with ZSM-5 structure are aluminium, gallium, iron, scandium, rhodium and/or scandium silicates as described in e.g. GB-B-2,110,559.
- the zeolites usually a significant amount of alkali metal oxide is present in the prepared zeolite.
- the amount of alkali metal is removed by methods known in the art, such as ion exchange, optionally followed by calcination, to yield the zeolite in its hydrogen form.
- the zeolite used in the present process is substantially in its hydrogen form.
- the pressure in the present process can be varied within wide ranges. It is, however, preferred that the pressure is such that at the prevailing temperature the feedstock is substantially in its gaseous phase or brought thereinto by contact with the catalyst. Then it is easier to achieve the short contact times envisaged. Hence, the pressure is preferably relatively low. This can be advantageous since no expensive compressors and high-pressure vessels and other equipment are necessary. A suitable pressure range is from 1 to 10 bar. Subatmospheric pressures are possible, but not preferred. It can be economically advantageous to operate at atmospheric pressure. Other gaseous materials may be present during the conversion such as steam and/or nitrogen.
- the present process is carried out in a moving bed.
- the bed of catalyst may move upwards or downwards.
- When the bed moves upwards a process somewhat similar to a fluidized catalytic cracking process is obtained.
- the catalyst is regenerated by subjecting it, after having been contacted with the feedstock, to a treatment with an oxidizing gas, such as air.
- a continuous regeneration similar to the regeneration carried out in a fluidized catalytic cracking process, is especially preferred.
- the residence time of the catalyst particles in a reaction zone is longer than the residence time of the feedstock in the reaction zone.
- the contact time between feedstock and catalyst should be less than 10 seconds.
- the contact time generally corresponds with the residence time of the feedstock.
- the residence time of the catalyst is from 1 to 20 times the residence time of the feedstock.
- the catalyst/feedstock weight ratio may vary widely, for example up to 150 kg of catalyst per kg of feedstock or even more. Preferably, the catalyst/feedstock weight ratio is from 20 to 100:1.
- the feedstock which is to be converted in the present process comprises hydrocarbons which have a boiling point of at least 330 °C.
- hydrocarbons which have a boiling point of at least 330 °C.
- relatively light petroleum fractions such as naphtha and kerosine, have been excluded.
- the feedstock has such a boiling range that at least 50% by weight thereof boils at a temperature of 330 °C.
- Suitable feedstocks include vacuum distillates, long residues, deasphalted residual oils, paraffinic feedstocks and atmospheric distillates which fulfil the requirement as to boiling range, such as gas oils.
- the feedstock is a gas oil or vacuum gas oil. When these feedstocks are subjected to the present process a gas oil with a very low pour point and an olefin-rich gaseous fraction are obtained.
- a feedstock with a nitrogen content greater than 5 ppmw may be used with substantially no effect on the catalyst activity.
- Suitable feedstocks may have a nitrogen content of more than 10 ppmw, calculated as nitrogen.
- the feedstock may even have a nitrogen content of 1000 ppmw or more, calculated as nitrogen.
- the feedstock in this example was a gas oil having the following properties: IBP, °C 213 20 %wt 331 50 %wt 379 90 %wt 421 FBP 448 pour point, °C 19.5 flash point, °C 147 carbon, %wt 86.6 hydrogen, %wt 13.1 sulphur, %wt 0.3 nitrogen, ppmw 330
- the gas oil was treated in a down flow reactor in which co-currently a flow of feedstock and catalyst particles, having an average particle size of 74 micrometers, was passed downwards.
- the catalyst used comprised ZSM-5, in hydrogen form, in an alumina matrix (weight ratio ZSM-5/alumina was 1:3). All experiments were carried out at atmospheric pressure. Further process conditions and the results of the experiments are indicated in the table below.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
- The present invention relates to a process for the conversion of a hydrocarbonaceous feedstock.
- US 4,171,257 describes a process for upgrading a hydrocarbonaceous feedstock by contacting the feedstock with a ZSM-5 crystalline aluminosilicate catalyst at a pressure below 14 bar, a temperature of 260 to 427 °C and a space velocity of 0.1 to 15 l/l.h. The feedstock, exemplified as gas oil having a boiling point range of 230 to 437 °C, must contain less than 5 ppmw of nitrogen-containing compounds, calculated as nitrogen. The upgraded product includes olefinic hydrocarbons, such as propene and butenes.
- The production of olefins is desirable as their reactivity renders them suitable for conversion to further products, in contrast to the low value lower paraffins. However, the above described process has the drawback that the initial feedstock must have been severely denitrified in order to avoid rapid catalyst deactivation.
- It is also known from EP-B-131986 and US 3,758,403 to employ mixtures of aluminosilicate catalysts comprising a large pore diameter crystalline aluminium silicate and a narrow pore silicate such as ZSM-5 in the production of gasoline. C₃ and C₄ olefin byproduct obtained can be alkylated to increase the overall gasoline yield. The space velocities and other conditions employed in the examples given indicate the use of fixed bed reactors with comparatively high catalyst contact times.
- It has surprisingly been found that a comparatively high yield of olefins can be obtained, under less stringent conditions as regards nitrogen content, using certain zeolitic catalysts, at high temperature with a short contact time of the feedstock with the catalyst. Furthermore, it has been surprisingly found that the conversion is suitable for comparatively heavy straight-run hydrocarbon feedstocks and a product rich in lower olefins can be obtained therefrom.
- Accordingly, the present invention provides a process for the conversion of a straight-run hydrocarbonaceous feedstock containing hydrocarbons having such a boiling range that an amount thereof boils at a temperature of at least 330 °C, which process comprises contacting the feedstock with a moving bed of a zeolitic catalyst comprising a zeolite with a pore diameter of 0.3 to 0.7 nm, preferably 0.5 to 0.7 nm, at a temperature of greater than 480 °C during less than 10 seconds.
- The feedstock is contacted with the zeolitic catalyst for less than 10 seconds. Suitably, the minimum contact time is 0.1 second. Very good results are obtainable with a process in which the feedstock is contacted with the zeolitic catalyst during 0.2 to 6 seconds.
- The temperature during the reaction is relatively high. It is this combination of high temperature and short contact time which allows a high conversion to olefins. A preferred temperature range is 500 to 900 °C, more preferably 550 to 850 °C.
- The zeolitic catalyst may comprise one or more zeolites with a pore diameter of from 0.3 to 0.7 nm. The catalyst suitably further comprises a refractory oxide that serves as binder material. Suitable refractory oxides include alumina, silica, silica-alumina, magnesia, titania, zirconia and mixtures thereof. Alumina is especially preferred. The weight ratio of refractory oxide and zeolite suitably ranges from 10:90 to 90:10, preferably from 50:50 to 85:15. The catalyst may comprise up to about 40% by weight of further zeolites with a pore diameter above 0.7 nm. Suitable examples of such zeolites include the faujasite-type zeolites, zeolite beta, zeolite omega and in particular zeolite X and Y. The zeolitic catalyst preferably comprises as zeolite substantially only zeolites with a pore diameter of from 0.3 to 0.7 nm.
- The term zeolite in this specification is not to be regarded as comprising only crystalline aluminium silicates. The term also includes crystalline silica (silicalite), silicoaluminophosphates (SAPO), chromosilicates, gallium silicates, iron silicates, aluminium phosphates (ALPO), titanium aluminosilicates (TASO), boron silicates, titanium aluminophosphates (TAPO) and iron aluminosilicates.
- Examples of zeolites that may be used in the process of the invention and that have a pore diameter of 0.3 to 0.7 nm, include SAPO-4 and SAPO-11, which are described in US-A-4,440,871, ALPO-11, described in US-A-4,310,440, TAPO-11, described in US-A-4,500,651, TASO-45, described in EP-A-229,295, boron silicates, described in e.g. US-A-4,254,297, aluminium silicates like erionite, ferrierite, theta and the ZSM-type zeolites such as ZSM-5, ZSM-11, ZSM-12, ZSM-35, ZSM-23, and ZSM-38. Preferably the zeolite is selected from the group consisting of crystalline metal silicates having a ZSM-5 structure, ferrierite, erionite and mixtures thereof. Suitable examples of crystalline metal silicates with ZSM-5 structure are aluminium, gallium, iron, scandium, rhodium and/or scandium silicates as described in e.g. GB-B-2,110,559.
- During the preparation of the zeolites usually a significant amount of alkali metal oxide is present in the prepared zeolite. Preferably the amount of alkali metal is removed by methods known in the art, such as ion exchange, optionally followed by calcination, to yield the zeolite in its hydrogen form. Preferably the zeolite used in the present process is substantially in its hydrogen form.
- The pressure in the present process can be varied within wide ranges. It is, however, preferred that the pressure is such that at the prevailing temperature the feedstock is substantially in its gaseous phase or brought thereinto by contact with the catalyst. Then it is easier to achieve the short contact times envisaged. Hence, the pressure is preferably relatively low. This can be advantageous since no expensive compressors and high-pressure vessels and other equipment are necessary. A suitable pressure range is from 1 to 10 bar. Subatmospheric pressures are possible, but not preferred. It can be economically advantageous to operate at atmospheric pressure. Other gaseous materials may be present during the conversion such as steam and/or nitrogen.
- The present process is carried out in a moving bed. The bed of catalyst may move upwards or downwards. When the bed moves upwards a process somewhat similar to a fluidized catalytic cracking process is obtained.
- During the process some coke forms on the catalyst. Therefore, it is advantageous to regenerate the catalyst. Preferably the catalyst is regenerated by subjecting it, after having been contacted with the feedstock, to a treatment with an oxidizing gas, such as air. A continuous regeneration, similar to the regeneration carried out in a fluidized catalytic cracking process, is especially preferred.
- If the coke formation does not occur at too high a rate, it would be possible to arrange for a process in which the residence time of the catalyst particles in a reaction zone is longer than the residence time of the feedstock in the reaction zone. Of course the contact time between feedstock and catalyst should be less than 10 seconds. The contact time generally corresponds with the residence time of the feedstock. Suitably the residence time of the catalyst is from 1 to 20 times the residence time of the feedstock.
- The catalyst/feedstock weight ratio may vary widely, for example up to 150 kg of catalyst per kg of feedstock or even more. Preferably, the catalyst/feedstock weight ratio is from 20 to 100:1.
- The feedstock which is to be converted in the present process comprises hydrocarbons which have a boiling point of at least 330 °C. By means of this feature relatively light petroleum fractions, such as naphtha and kerosine, have been excluded. Preferably the feedstock has such a boiling range that at least 50% by weight thereof boils at a temperature of 330 °C. Suitable feedstocks include vacuum distillates, long residues, deasphalted residual oils, paraffinic feedstocks and atmospheric distillates which fulfil the requirement as to boiling range, such as gas oils. Preferably, the feedstock is a gas oil or vacuum gas oil. When these feedstocks are subjected to the present process a gas oil with a very low pour point and an olefin-rich gaseous fraction are obtained.
- One of the advantages of the present invention over the process according to US 4,171,257 resides in the fact that a feedstock with a nitrogen content greater than 5 ppmw may be used with substantially no effect on the catalyst activity. Suitable feedstocks may have a nitrogen content of more than 10 ppmw, calculated as nitrogen. The feedstock may even have a nitrogen content of 1000 ppmw or more, calculated as nitrogen.
- The invention will now be further described with reference to the following example.
- The feedstock in this example was a gas oil having the following properties:
IBP, °C 213 20 %wt 331 50 %wt 379 90 %wt 421 FBP 448 pour point, °C 19.5 flash point, °C 147 carbon, %wt 86.6 hydrogen, %wt 13.1 sulphur, %wt 0.3 nitrogen, ppmw 330 - The gas oil was treated in a down flow reactor in which co-currently a flow of feedstock and catalyst particles, having an average particle size of 74 micrometers, was passed downwards. The catalyst used comprised ZSM-5, in hydrogen form, in an alumina matrix (weight ratio ZSM-5/alumina was 1:3). All experiments were carried out at atmospheric pressure. Further process conditions and the results of the experiments are indicated in the table below.
TABLE 1 Process conditions: Reactor temperature, °C 576 Catalyst/oil ratio, g/g 124 Contact time, s 1.8 Product, %w on feed C₁ 1.9 C₂ 1.4 C₂= 11.3 C₃ 3.8 C₃= 25.4 C₄ 3.3 C₄= 12.2 C₅-221 °C 15.3 221-370 °C 12.59 370+ °C 1.1 Coke 11.1 - From the above results it will be seen that a high proportion of the gaseous products was olefinically unsaturated.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8904408 | 1989-02-27 | ||
GB898904408A GB8904408D0 (en) | 1989-02-27 | 1989-02-27 | Process for the conversion of a hydrocarbonaceous feedstock |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0385538A1 true EP0385538A1 (en) | 1990-09-05 |
EP0385538B1 EP0385538B1 (en) | 1994-06-01 |
Family
ID=10652368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90200415A Revoked EP0385538B1 (en) | 1989-02-27 | 1990-02-21 | Process for the conversion of a hydrocarbonaceous feedstock |
Country Status (11)
Country | Link |
---|---|
EP (1) | EP0385538B1 (en) |
JP (1) | JPH02276888A (en) |
KR (1) | KR910015689A (en) |
CN (1) | CN1019981C (en) |
AU (1) | AU628929B2 (en) |
BR (1) | BR9000880A (en) |
CA (1) | CA2009986A1 (en) |
DE (1) | DE69009234T2 (en) |
ES (1) | ES2056362T3 (en) |
GB (1) | GB8904408D0 (en) |
RU (1) | RU2017791C1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0490435A1 (en) * | 1990-12-10 | 1992-06-17 | Shell Internationale Researchmaatschappij B.V. | Process for the preparation of an olefins-containing mixture of hydrocarbons |
US5278114A (en) * | 1991-07-03 | 1994-01-11 | Shell Oil Company | Hydrocarbon conversion process and catalyst composition |
US6222087B1 (en) | 1999-07-12 | 2001-04-24 | Mobil Oil Corporation | Catalytic production of light olefins rich in propylene |
EP1195424A1 (en) * | 2000-10-05 | 2002-04-10 | ATOFINA Research | A process for cracking an olefin-rich hydrocarbon feedstock |
US6835863B2 (en) | 1999-07-12 | 2004-12-28 | Exxonmobil Oil Corporation | Catalytic production of light olefins from naphtha feed |
US10689586B2 (en) | 2015-12-21 | 2020-06-23 | Sabic Global Technologies B.V. | Methods and systems for producing olefins and aromatics from coker naphtha |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012006992A1 (en) * | 2012-04-05 | 2013-10-10 | Linde Aktiengesellschaft | Process for the separation of olefins with mild cleavage |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4514285A (en) * | 1983-03-23 | 1985-04-30 | Texaco Inc. | Catalytic cracking system |
EP0315179A1 (en) * | 1987-11-05 | 1989-05-10 | David B. Bartholic | Ultra-short contact time fluidized catalytic cracking process |
EP0347003A1 (en) * | 1988-06-16 | 1989-12-20 | Shell Internationale Researchmaatschappij B.V. | Process for the conversion of a hydrocarbonaceous feedstock |
EP0349086A1 (en) * | 1988-06-29 | 1990-01-03 | Stork Kwant B.V. | Control system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3856659A (en) * | 1972-12-19 | 1974-12-24 | Mobil Oil Corp | Multiple reactor fcc system relying upon a dual cracking catalyst composition |
GB8814292D0 (en) * | 1988-06-16 | 1988-07-20 | Shell Int Research | Process for conversion of hydrocarbonaceous feedstock |
GB8828206D0 (en) * | 1988-12-02 | 1989-01-05 | Shell Int Research | Process for conversion of hydrocarbonaceous feedstock |
-
1989
- 1989-02-27 GB GB898904408A patent/GB8904408D0/en active Pending
-
1990
- 1990-02-14 CA CA002009986A patent/CA2009986A1/en not_active Abandoned
- 1990-02-21 DE DE69009234T patent/DE69009234T2/en not_active Revoked
- 1990-02-21 EP EP90200415A patent/EP0385538B1/en not_active Revoked
- 1990-02-21 ES ES90200415T patent/ES2056362T3/en not_active Expired - Lifetime
- 1990-02-22 BR BR909000880A patent/BR9000880A/en not_active Application Discontinuation
- 1990-02-23 AU AU50149/90A patent/AU628929B2/en not_active Ceased
- 1990-02-23 JP JP2041386A patent/JPH02276888A/en active Pending
- 1990-02-26 KR KR1019900002434A patent/KR910015689A/en not_active Application Discontinuation
- 1990-02-26 CN CN90100978A patent/CN1019981C/en not_active Expired - Fee Related
- 1990-02-26 RU SU904743371A patent/RU2017791C1/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4514285A (en) * | 1983-03-23 | 1985-04-30 | Texaco Inc. | Catalytic cracking system |
EP0315179A1 (en) * | 1987-11-05 | 1989-05-10 | David B. Bartholic | Ultra-short contact time fluidized catalytic cracking process |
EP0347003A1 (en) * | 1988-06-16 | 1989-12-20 | Shell Internationale Researchmaatschappij B.V. | Process for the conversion of a hydrocarbonaceous feedstock |
EP0349086A1 (en) * | 1988-06-29 | 1990-01-03 | Stork Kwant B.V. | Control system |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0490435A1 (en) * | 1990-12-10 | 1992-06-17 | Shell Internationale Researchmaatschappij B.V. | Process for the preparation of an olefins-containing mixture of hydrocarbons |
US5278114A (en) * | 1991-07-03 | 1994-01-11 | Shell Oil Company | Hydrocarbon conversion process and catalyst composition |
US6222087B1 (en) | 1999-07-12 | 2001-04-24 | Mobil Oil Corporation | Catalytic production of light olefins rich in propylene |
US6835863B2 (en) | 1999-07-12 | 2004-12-28 | Exxonmobil Oil Corporation | Catalytic production of light olefins from naphtha feed |
EP1195424A1 (en) * | 2000-10-05 | 2002-04-10 | ATOFINA Research | A process for cracking an olefin-rich hydrocarbon feedstock |
WO2002028987A1 (en) * | 2000-10-05 | 2002-04-11 | Atofina Research | A process for cracking an olefin-rich hydrocarbon feedstock |
US7375257B2 (en) | 2000-10-05 | 2008-05-20 | Total Petrochemicals Research Feluy | Process for cracking an olefin-rich hydrocarbon feedstock |
US10689586B2 (en) | 2015-12-21 | 2020-06-23 | Sabic Global Technologies B.V. | Methods and systems for producing olefins and aromatics from coker naphtha |
Also Published As
Publication number | Publication date |
---|---|
ES2056362T3 (en) | 1994-10-01 |
KR910015689A (en) | 1991-09-30 |
GB8904408D0 (en) | 1989-04-12 |
RU2017791C1 (en) | 1994-08-15 |
CN1019981C (en) | 1993-03-03 |
CA2009986A1 (en) | 1990-08-27 |
AU628929B2 (en) | 1992-09-24 |
DE69009234T2 (en) | 1994-11-24 |
EP0385538B1 (en) | 1994-06-01 |
JPH02276888A (en) | 1990-11-13 |
CN1045120A (en) | 1990-09-05 |
AU5014990A (en) | 1990-08-30 |
DE69009234D1 (en) | 1994-07-07 |
BR9000880A (en) | 1991-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0372632A1 (en) | Process for the conversion of a hydrocarbonaceous feedstock | |
EP0347003B1 (en) | Process for the conversion of a hydrocarbonaceous feedstock | |
US5069776A (en) | Process for the conversion of a hydrocarbonaceous feedstock | |
AU743504B2 (en) | Two stage fluid catalytic cracking process for selectively producing c2 to c4 olefins | |
US4976847A (en) | Process for the catalytic cracking of a hydrocarbon feedstock | |
EP0418370B1 (en) | Process for the production of alkyl aromatic hydrocarbons | |
US5637207A (en) | Fluid catalytic cracking process | |
US5278114A (en) | Hydrocarbon conversion process and catalyst composition | |
EP0490435B1 (en) | Process for the preparation of an olefins-containing mixture of hydrocarbons | |
EP0349036B1 (en) | Process for the conversion of a hydrocarbonaceous feedstock | |
US3801493A (en) | Slack wax cracking in an fccu with a satellite reactor | |
EP0385538B1 (en) | Process for the conversion of a hydrocarbonaceous feedstock | |
EP0392590B1 (en) | Process for the conversion of a hydrocarbonaceous feedstock | |
EP0436253A1 (en) | Process for preparing one or more light hydrocarbon oil distillates | |
JPH1046160A (en) | Method for fluidized bed catalytic cracking of heavy oil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE ES FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19901220 |
|
17Q | First examination report despatched |
Effective date: 19920316 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE ES FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 69009234 Country of ref document: DE Date of ref document: 19940707 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2056362 Country of ref document: ES Kind code of ref document: T3 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: EXXON CHEMICAL PATENTS INC. Effective date: 19950228 Opponent name: MOBIL OIL CORPORATION Effective date: 19950227 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: EXXON CHEMICAL PATENTS INC. Opponent name: MOBIL OIL CORPORATION |
|
R26 | Opposition filed (corrected) |
Opponent name: MOBIL OIL CORPORATION * 950228 EXXON CHEMICAL PATE Effective date: 19950227 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: EXXON CHEMICAL PATENTS INC. Opponent name: MOBIL OIL CORPORATION |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: MOBIL OIL CORPORATION * 950228 EXXON CHEMICAL PATE Effective date: 19950227 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: EXXON CHEMICAL PATENTS INC. Opponent name: MOBIL OIL CORPORATION |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19961218 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19970116 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19970204 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19970218 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19970227 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19970310 Year of fee payment: 8 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
RDAH | Patent revoked |
Free format text: ORIGINAL CODE: EPIDOS REVO |
|
R26 | Opposition filed (corrected) |
Opponent name: MOBIL OIL CORPORATION * 950228 EXXON CHEMICAL PATE Effective date: 19950227 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: EXXON CHEMICAL PATENTS INC. Opponent name: MOBIL OIL CORPORATION |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 19970908 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Free format text: 970908 |
|
NLR2 | Nl: decision of opposition | ||
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: MOBIL OIL CORPORATION * 950228 EXXON CHEMICAL PATE Effective date: 19950227 |