EP0384724B1 - A method for lubricating refrigerating machines - Google Patents

A method for lubricating refrigerating machines Download PDF

Info

Publication number
EP0384724B1
EP0384724B1 EP90301844A EP90301844A EP0384724B1 EP 0384724 B1 EP0384724 B1 EP 0384724B1 EP 90301844 A EP90301844 A EP 90301844A EP 90301844 A EP90301844 A EP 90301844A EP 0384724 B1 EP0384724 B1 EP 0384724B1
Authority
EP
European Patent Office
Prior art keywords
oil
range
weight
groups
base oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90301844A
Other languages
German (de)
French (fr)
Other versions
EP0384724A1 (en
Inventor
Hiroshi Hasegawa
Umekichi Sasaki
Fujio Komatu
Shigetoshi Ogura
Hideo Yokota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Publication of EP0384724A1 publication Critical patent/EP0384724A1/en
Application granted granted Critical
Publication of EP0384724B1 publication Critical patent/EP0384724B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/10Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/02Well-defined hydrocarbons
    • C10M105/06Well-defined hydrocarbons aromatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/30Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/32Condensation polymers of aldehydes or ketones; Polyesters; Polyethers
    • C10M107/34Polyoxyalkylenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/16Ethers
    • C10M129/18Epoxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/008Lubricant compositions compatible with refrigerants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/06Well-defined aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/06Well-defined aromatic compounds
    • C10M2203/065Well-defined aromatic compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/104Aromatic fractions
    • C10M2203/1045Aromatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/106Naphthenic fractions
    • C10M2203/1065Naphthenic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/108Residual fractions, e.g. bright stocks
    • C10M2203/1085Residual fractions, e.g. bright stocks used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/0206Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/042Epoxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/124Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms containing hydroxy groups; Ethers thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/1033Polyethers, i.e. containing di- or higher polyoxyalkylene groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • C10M2209/1045Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • C10M2209/1055Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/106Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing four carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/106Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing four carbon atoms only
    • C10M2209/1065Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing four carbon atoms only used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/107Polyethers, i.e. containing di- or higher polyoxyalkylene groups of two or more specified different alkylene oxides covered by groups C10M2209/104 - C10M2209/106
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/107Polyethers, i.e. containing di- or higher polyoxyalkylene groups of two or more specified different alkylene oxides covered by groups C10M2209/104 - C10M2209/106
    • C10M2209/1075Polyethers, i.e. containing di- or higher polyoxyalkylene groups of two or more specified different alkylene oxides covered by groups C10M2209/104 - C10M2209/106 used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/108Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
    • C10M2209/1085Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/109Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
    • C10M2209/1095Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/022Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/06Perfluorinated compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/042Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for automatic transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/044Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for manual transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/046Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/06Instruments or other precision apparatus, e.g. damping fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/22Metal working with essential removal of material, e.g. cutting, grinding or drilling
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/24Metal working without essential removal of material, e.g. forming, gorging, drawing, pressing, stamping, rolling or extruding; Punching metal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/241Manufacturing joint-less pipes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/242Hot working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/243Cold working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/245Soft metals, e.g. aluminum
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/246Iron or steel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/247Stainless steel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/251Alcohol fueled engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • C10N2040/253Small diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • C10N2040/26Two-strokes or two-cycle engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • C10N2040/28Rotary engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/32Wires, ropes or cables lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/34Lubricating-sealants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/36Release agents or mold release agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/38Conveyors or chain belts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/40Generators or electric motors in oil or gas winning field
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/42Flashing oils or marking oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/44Super vacuum or supercritical use
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/50Medical uses

Definitions

  • the present invention relates to a method for lubricating refrigerating machines.
  • refrigerating machines which are effected by compressing the vapor of a refrigerant are classified into three types composed of rotary compressor type, reciprocating compressor type and centrifugal compressor type, in accordance with structural type of their compressors.
  • the rotary refrigerating machines namely refrigerating machines having a rotary compressor, are widely employed to refrigerators, air conditioners and the like for home use, because they have such a meritorious property that they can be miniaturized and driven with a highly reduced noise.
  • the reciprocative refrigerating machines are also widely employed as refrigerating machines for car air conditioners and the like, because they can be made as a big one having a large refrigerating capacity and have high mechanical reliability.
  • halogenated hydrocarbons typified by trichloromonofluoromethane (CFC-11), dichlorodifluoromethane (CFC-12), monochlorodifluoromethane (HCFC-22), trichlorotrifluoroethane (CFC-113) orthe like, hydrocarbons, in which propane is a typical substance, and inorganic gases typified by ammonia, carbon dioxide or the like.
  • HFC-134a 1,1,1,2-tetrafluoroethane
  • oils forthe refrigerating machines using such refrigerants there are generally used paraffinic mineral oils, naphthenic mineral oils, alkylbenzenes, poly-a-olefines, oils consisting of polyoxyalkylene and/or polyalkylene glycol compounds and a mixture of two or more of these oils, or oils obtained by adding one or more additives to these base oils.
  • antioxidants of phenolic or amino compounds there are mainly used antioxidants of phenolic or amino compounds, compounds of benzotriazole type for inactivating metals (Japanese Patent Publication 19352/1985), hydrogen chloride removing agents typified by epoxy compounds (Japanese Patent Publication 42119/1982), load carrying additives of esterified compounds of phosphoric acid typified by triphenyl phosphate and tricresyl phosphate.
  • the refrigerating machines which are effected by compressing the vapor of the refrigerant under the use of such a lubricating oil, are continuously operated for a very long period of time as refrigerating machines in refrigerators, or are intermittently operated under rigorous conditions as refrigerating machines in car air conditioners accompanied by a high load and the repeated and sudden changes between their stopped state and operated state. Therefore, they must have a high grade safety and reliability in their operations.
  • the refrigerating machine According to the recently strengthened tendency of demanding the miniaturization and lightening with regard to almost every kinds of machines, the refrigerating machine have also been forced so as to operate under more rigorous conditions caused by its miniaturized and lightened design.
  • the wear resistant properties of the metal portions contacting and sliding each other in such refrigerating machines are very important. For example, when the top ends of the vanes of the rotor or the inner surface of the compressor housing in a rotary compressor are worn, the vapor of the refrigerant leaks through the gap generated between the vane and the housing by the abrasion, and as the result, the compression efficiency of the compressor is reduced. Moreover, when the wear proceeded to an extreme state, the compressor can not continue its mechanically smooth operation, and finally it becomes entirely impossible to operate by the reason of co-searing phenomenon of the metal portions to be smoothly slided each other.
  • esters of phosphorous acid which have heretofore been used as extreme pressure agents can increase the lubricational properties of the metal processing oil
  • the esters have problems in their stabilities such as storage stability, thermal stability and stability for hydrolysis.
  • the shortage in these stabilities can be improved by adding an amine compound to the oil.
  • the lubricational properties of the metal processing oil is inversely reduced by the addition of such an amine compound.
  • phosphate esters and zinc dithiophosphate as the alternatives of the esters of phosphorous acid are excellent in the stabilities, however, such alternatives cannot give any satisfactory metal processing oil having sufficient lubricational properties.
  • EP 205995 describes a lubricating oil composition for refrigerating machines which comprises a base oil and an ester of phosphoric acid.
  • the esters disclosed are non-halogen containing ones such as tricresyl phosphate which is the most preferred ester.
  • the present inventors have been completed the invention on the basis of such a fortunate finding that the lubricating oil compositions added with an ester of phosphoric acid as an additive, which has a specified chemical structure and contains one or more of halogen atoms in its molecule, have excellent anti-wear properties which could not heretofore be obtained by adding any conventional additive.
  • the purpose of the present invention is to provide a method for lubricating refrigerating machines using lubricating oil compositions superior in their stabilities and anti-wear properties.
  • the lubricating oil composition used in the present invention comprises a base oil consisting of a mineral oil and/or a synthetic oil and a halogen containing ester of phosphoric acid as an essential component which is expressed by the following general formula: wherein the respective atomic groups of X, Y and Z are the same or different groups each selected from the assemblage composing of alkyl groups having a carbon number of from 1 to 12, modified alkyl groups having one or more oxygen atoms each located between two carbon atoms of the alkyl group and a carbon number of from 1 to 12, phenyl, cresyl, xylyl and halogen substituted groups of the above groups, and the total number of the halogen atoms in the groups of X, Y and Z is in the range of from 1 to 9, in an amount in the range of from 0.01 to 5 parts by weight, preferably in the range of from 0.1 to 2.0 parts by weight, more preferably in the range of from 0.5 to 1.0 part by weight, relative to 100 parts by weight of
  • the lubricating oil composition of the present invention can further comprise an epoxy compound in an amount in the range of from 0.1 to 5.0 parts by weight, preferably in the range of from 0.2 to 2.0 parts by weight, relative to 100 parts by weight of the base oil consisting of a mineral oil and/or a synthetic oil.
  • any oil can be employed so long as it is used for preparing a base oil of conventional lubricating oils.
  • the mineral oil for preparing the base oil there is used a mineral oil obtained by purifying a relatively heavy fraction got from atmospheric or reduced pressure distillation of a raw petroleum with a purifying procedure composed of a suitable combination of various purification techniques such as deasphalting by a solvent, solvent extraction, hydrogenating decomposition, solvent dewaxing, catalytic dewaxing, sulfuric acid washing, purification by using a terra alba, hydrogenating purification and the like.
  • the synthetic oils for preparing the base oil there may be specifically mentioned normal paraffines; isoparaffines; oligomers of a-olefines such as polybutenes, polyisobutylenes, oligomers of 1-decence and the like; alkylbenzenes such as monoalkylbenzenes, dialkylbenzenes, polyalkylbenzenes and the like; alkylnaphthalenes such as monoalkylnaphthalenes, dialkylnaphthalenes, polyalkylnaphthalenes and the like; diesters of dicarboxylic acids such as di-2-ethylhexyl sebacate, dioctyl adipate, di-iso-decyl adipate, ditridecyl adipate, ditridecyl glutarate and the like; esters of polyhydric alcohols such as trimethylolpropane mono-, di
  • These mineral and synthetic base oils can also be used in combination of two or more.
  • the mineral oil employed for preparing the base oil of the lubricating oil composition used as lubricating oil for a refrigerating machine there can preferably be used a mineral oil which is obtained by purifying, for example, a paraffinic or naphthenic raw petroleum with a purifying procedure composed of a suitable combination of various purification manners such as distillation under a reduced pressure, deasphalting by a solvent, solvent extraction, hydrogenating decomposition, solvent dewaxing, catalytic dewaxing, sulfuric acid washing, purification with a terra alba, hydrogenating purification and the like and has a sulfur content in the range of from 0.05 to 2.0% by weight and an aromotic hydrocarbon content in the range of from 2 to 20% by weight.
  • a mineral oil which is obtained by purifying, for example, a paraffinic or naphthenic raw petroleum with a purifying procedure composed of a suitable combination of various purification manners such as distillation under a reduced pressure, deasphalting by a solvent,
  • synthetic oils such as poly-a-olefines obtained by polymerizing a-olefines, alkylbenzenes and mixtures of alkylbenzenes having one and/or two of straight chain or branched chain alkyl groups of a carbon number in the range of from 5 to 30 as the side chains, and polyoxyalkylene glycol compounds.
  • Especially preferred base oil in these base oils is a synthetic oil consisting of at least one polyoxyalkylene glycol compound selected from the assemblage composing of [I] polyoxyalkylene glycol compounds expressed by the following general formula: wherein a is an integer in the range of from 5 to 70, R 1 indicates an alkylene group having a carbon number of from 2 to 4, and each of R 2 and R 3 indicates independently a hydrogen atom or an alkyl group having a carbon number of from 1 to 18; and [II] glycerol ethers of polyoxyalkylene glycols compounds expressed by the following general formula: wherein each of b, c and d is an integer selected from 3 to 40 so as to satisfy the equation of 92 b + c + dZ 50; R 4 , R 5 , and R 6 are the same or different alkylene groups each having a carbon number of from 2 to 4; and each of R 7 , R 8 , and R 9 is independently a hydrogen atom or an alkyl group having a carbon number
  • alkylene groups expressed by R 1 , R 4 , R 5 , and R 6 and each having a carbon number of from 2 to 4 there may be mentioned, more specifically, the following atomic groups:
  • alkylene groups the groups of ethylene, propylene, butylene and tetramethylene are preferable.
  • alkyl groups expressed by R 2 ,R 3 , R 7 , R 8 and R 9 and each having a carbon number of from 1 to 18 there may be specifically mentioned alkyl groups of methyl, ethyl,propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl and octadecyl.
  • alkyl groups the alkyl groups of methyl, ethyl, propyl, butyl, pentyl, hexyl, octyl, decyl and octadecyl are preferable.
  • polyoxyalkylene glycol compounds [I] and the polyoxyalkylene glycol glycerol ether compounds [II] in the present invention may have alkylene groups different each other in their carbon numbers in a molecule.
  • each polyoxyalkylene chain in a molecule of these polyoxyalkylene glycol compounds [I] and polyoxyalkylene glycol glycerol ether compounds [II] may be a chain obtained by randum copolymerization or block copolymerization of oxyalkylene groups different each other in their carbon numbers.
  • the ratio of the total number of the oxyethylene groups in the polyoxyalkylene chain relative to the total number (a) of the oxyalkylene groups in the polyoxyalkylene chain has an average value in the range of from 0 to 0.8 and that, in a molecule of the polyoxyalkylene glycol glycerol ether compounds [II], the ratio of the total number of the oxyethylene groups in the polyoxyalkylene chains relative to the total number (b+c+d) of the oxyalkylene groups in the polyoxyalkylene chains has also an average value in the range of from 0 to 0.8.
  • polyoxyalkylene glycol compound of [I] or [II] is generally preferable to use in its average molecular weight in the range of from 300 to 4,000, more preferably in the range of from 500 to 3,500.
  • mineral and synthetic oils can be employed solely or in a combination of two or more for preparing the base oil of the present invention.
  • the preferable viscosity of these base oils is in the range of from 2.0 to 100 cSt at 40°C.
  • the method of the present invention uses a composition which comprises the base oil described above to which is added the halogen containing ester of phosphoric acid which is an essential component for the lubricating oil compositions used in the present invention and expressed by the following general formula.
  • the respective groups of X, Y and Z indicate the same or different groups each selected from the assemblage composing of alkyl groups having a carbon number of from 1 to 12, preferably from 3 to 9, modified alkyl groups having one or more oxygen atoms each located between two carbon atoms of the alkyl group and a carbon number of from 1 to 12, preferably from 3 to 9, phenyl, cresyl, xylyl and halogen substituted groups of the above groups.
  • the total number of the halogen atoms contained in the groups of X, Y and Z is in the range of from 1 to 9, and is preferably in the range of from 2 to 6.
  • alkyl groups each having a carbon number of from 1 to 12
  • alkyl groups of methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl and dodecyl.
  • modified alkyl group having a carbon number of from 1 to 12 means a group which has one or more oxygen atoms each located between two carbon atoms of the alkyl group.
  • modified alkyl groups there may be mentioned modified alkyl groups having at lest one ether structure and expressed by the following general formula of R1°-fOR11 wherein R 10 is an alkyl group, R 11 is an alkylene group and n is an integer of 1 or more.
  • Such an alkyl group or a modified alkyl group for the groups of X, Y and Z may have a straight or branched atomic chain.
  • methyl substituent on the benzene rings of cresyl and xylyl groups for X, Y and Z can be attached to any carbon atom of the benzene rings.
  • halogen atom substituting the hydrogen atom in the groups of X, Y and Z there may be mentioned atoms of fluorine, chlorine, bromine and iodine, and chlorine is preferred in these halogens.
  • the halogen containing ester of phosphoric acid described above is included in an amount in the range of from 0.01 to 5.0 parts by weight, preferably in the range of from 0.1 to 2.0 parts by weight, more preferably in the range of from 0.5 to 1.0 part by weight, relative to 100 parts by weight of the base oil described hereinbefore.
  • the resultant lubricating oil is inferior in its lubricating performance.
  • the content is greater than the upper limit of the range, the lubricating performance of the resulting lubricating oil obtained by adding the ester of phosphoric acid is not increased in proportion to the content of the ester. Therefore, the content of the ester out of the above range is not preferred in the resultant lubricating oil.
  • esters of phosphoric acid there are some esters each of which has the tendency of easily liberating its chlorine atom from the molecule of the ester. In this case, the metals used in the refrigerating system encounter the danger of corrosion due to the liberated chlorine.
  • the lubricating oil composition may additionally be mixed with one or more epoxy compounds selected from the assemblage composing of:
  • epoxy compounds (i) of phenyl glycidyl ether type mentioned above there can be exemplified phenyl glycidyl ether and alkylphenyl glycidyl ethers.
  • alkylphenyl group in the ethers is a modified phenyl group with one, two or three alkyl groups each having a carbon number of from 1 to 13.
  • alkylphenyl glycidyl ethers there may be preferred alkylphenyl glycidyl ethers each having an alkyl group of a carbon number in the range of from 4 to 10 on the phenyl group, such as butylphenyl glycidyl ether, pentylphenyl glycidyl ether, hexylphenyl glycidyl ether, heptylphenyl glycidyl ether, octylphenyl glycidyl ether, nonylphenyl glycidyl ether and decylphenyl glycidyl ether.
  • alkylphenyl glycidyl ethers each having an alkyl group of a carbon number in the range of from 4 to 10 on the phenyl group, such as butylphenyl glycidyl ether, pentylphenyl glycidyl
  • esters (ii) of epoxidized fatty acids there can be exemplified esters formed from fatty acids having a carbon number of from 12 to 20 and various alcohols having a carbon number of from 1 to 8, phenol or alkyl phenols.
  • butyl, hexyl, benzyl, cyclohexyl, methoxyethyl, octyl, phenyl or butylphenyl ester of epoxidized stearic acid is preferably used.
  • epoxidized vegetable oils (iii) there can be exemplified an epoxidized vegetable oil obtained by epoxidizing a vegetable oils such as soybean oil, linseed oil, cottonseed oil and the like.
  • epoxy compounds of from (i) to (iii) the epoxy compounds of phenyl glycidyl ether type and monoesters of epoxidized fatty acids are preferable.
  • the epoxy compounds of phenyl glycidyl ether type are especially preferred in these preferable epoxy compounds of phenyl glycidyl ether type and monoesters of epoxidized fatty acids. Furthermore, phenyl glycidyl ether, butylphenyl glycidyl ether and a mixture of both the ethers are more especially preferred.
  • the amount of the epoxy compound to be added is in the range of from 0.1 to 5.0 parts by weight, preferably in the range of from 0.2 to 2.0 parts by weight, relative to 100 parts by weight of the base oil in the lubricating oil compositions.
  • the adding amount of the epoxy compound does not reach to the lower limit of the above range, the effect of preventing the metal corrosion obtained by adding the epoxy compound into the lubricating oil composition of the present invention becomes poor.
  • the adding amount of the epoxy compound is larger beyond the upper limit of the above range, the abrasion resistant properties and the load carrying properties of the compressor to be lubricated are influenced by adverse effects. Therefore, both the cases are not preferable.
  • additives for lubricating oils can be added to the lubricating oil compositions of the present invention for further improving the properties of the resultant compositions.
  • antoxidants such as various compounds of phennol type, amine type and the like; purifying detergents or dispersants such as sulfonates, phenolates and salicylates of alkaline earth metals, alkenylsuccinimide, benzylamine and the like; pour point depressants such as polyalkylmethacrylates, polystyrenes, polubutenes, ethylene-propylene copolymers and the like; viscosity-index improving agents such as polyalkylmethacrylates, polyisobutylenes, polystyrenes, ethylene-propylene copolymers and the like; oiliness agents such as fatty acids and their esters, higher alcohols and the like; extreme pressure agents
  • the lubricating oil compositions used in the method of the present invention can be utilized in many applications such as lubricants used in the compressors of refrigerating machines for automobile or home use air conditioners, cold and/or freezed storage, automatic vending machines, showcases, cooling apparatuses used in chemical plants, airdrying machines and the like; oils for various metal processing such as cutting, grinding, rolling, pressing, drawing, drawing-ironing, forging and the like; engine oils for four cycle and two cycle gasoline engines, diesel engines of land or marine use, gas engines and the like; turbine oils for industrial turbines, gas turbines, marine turbines and the like; gear oils for gears of automobiles, various gears of industrial use, variable speed hydraulic transmissions and the like; oils for actuating hydraulic presses; compressor oils; oils for vacuum pumps; oils for sliding guide way, bearing oils and the like.
  • the searing load in this test was measured in accordance with the method of ASTM D 3233 after the antecedent inuring operation for 5 minutes under. conditions of the initial oil temperature of 25 °C and the load of 113.25 Kg (250 Ib).
  • the amount of wear of the test journal was measured for the operation of 3 hours under the load of 158.55 Kg (350 Ib) in accordance with the method of ASTM D 2670 after an antecedent inuring operation for 5 minutes under conditions of the initial oil temperature of 25 °C and the load of 113.5 Kg (250 Ib).
  • the degree of the color change of the lubricating oil tested was classified into twelve grades defining its black-brown state as 11 and colorless state as 0.
  • the lubricating oil has no problem on its thermal stability, and on the other hand, when the iron catalyst was plated by the copper or was blackened, the lubricating oil is inferior on its thermal stability.
  • the lubricating oils for refrigerating machines according to the present invention are higher at a value in the range of from 90.6 - 135.9 Kg (200 to 300 Ib) in the searing loads of Falex test and are also reduced to a value of from one fourth to one fifth in the amounts of wears of Falex test. in comparison with those of the lubricating oils of Comparative Examples 1 to 3 in each of which an antiwear agent used to conventional lubricating oils for refrigerating machine was added with.
  • the lubricating oils for refrigerating machines according to the present invention exhibit sufficient thermal stability in the sealed-tube tests and are also superior than the lubricating oils using the conventional antiwear agents.
  • the amount of wear of the test journal was measured for the operation of 30 minutes under the load of 588.9 Kg (1300 Ib) in ccordance with the method of ASTM D 2670 after an antecedent inuring operation for 5 minutes under conditions of the initial oil temperature of 25°C and the load of 113.25 Kg (250 Ib).
  • a sample of the cutting oil was placed in a test tube and was maintained for 24 hours in a thermostatic air bath at the temperature of 120 °C, and then the cutting oil was observed visually.
  • the cutting oil according to the present invention is superior in thermal stability by comparison to the cutting oil of Comparative Example 9 which was added with DLHP as a phosphite compound, and is also superior in antiwear property by comparison to the cutting oil of Comparative Example 10 which was added with Zn-DTP.
  • the cutting oil of Example 11 which was prepared by further adding an amine compound to the cutting oil composition of Comparative Example 9 is improved in thermal stability, but is inferior in antiwear property.
  • the lubricating oil compositions according to the present invention are superior in performance of reducing the wear of metals and thermal stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Lubricants (AREA)

Description

  • The present invention relates to a method for lubricating refrigerating machines.
  • With respect to the present applicational field of the lubricating oil compositions, the recent technical situation and the technical subject which is required to solve, will firstly be described.
  • Various types of refrigerating machines have heretofore been used. In these refrigerating machines, refrigerating machines which are effected by compressing the vapor of a refrigerant are classified into three types composed of rotary compressor type, reciprocating compressor type and centrifugal compressor type, in accordance with structural type of their compressors.
  • The rotary refrigerating machines, namely refrigerating machines having a rotary compressor, are widely employed to refrigerators, air conditioners and the like for home use, because they have such a meritorious property that they can be miniaturized and driven with a highly reduced noise.
  • On the other hand, the reciprocative refrigerating machines are also widely employed as refrigerating machines for car air conditioners and the like, because they can be made as a big one having a large refrigerating capacity and have high mechanical reliability.
  • As the refrigerants forthe refrigerating machines having a type of compressing the vapor of the refrigerant, there are widely used halogenated hydrocarbons typified by trichloromonofluoromethane (CFC-11), dichlorodifluoromethane (CFC-12), monochlorodifluoromethane (HCFC-22), trichlorotrifluoroethane (CFC-113) orthe like, hydrocarbons, in which propane is a typical substance, and inorganic gases typified by ammonia, carbon dioxide or the like.
  • In addition, it has recently been known that 1,1,1,2-tetrafluoroethane (HFC-134a) is also useful as a refrigerant alternative to CFC-12, for avoiding the destruction of the ozone layer in the high altitude atmosphere due to the conventional refrigerants of CFC type.
  • As lubricating oils forthe refrigerating machines using such refrigerants, there are generally used paraffinic mineral oils, naphthenic mineral oils, alkylbenzenes, poly-a-olefines, oils consisting of polyoxyalkylene and/or polyalkylene glycol compounds and a mixture of two or more of these oils, or oils obtained by adding one or more additives to these base oils.
  • As such additives, there are mainly used antioxidants of phenolic or amino compounds, compounds of benzotriazole type for inactivating metals (Japanese Patent Publication 19352/1985), hydrogen chloride removing agents typified by epoxy compounds (Japanese Patent Publication 42119/1982), load carrying additives of esterified compounds of phosphoric acid typified by triphenyl phosphate and tricresyl phosphate.
  • The refrigerating machines which are effected by compressing the vapor of the refrigerant under the use of such a lubricating oil, are continuously operated for a very long period of time as refrigerating machines in refrigerators, or are intermittently operated under rigorous conditions as refrigerating machines in car air conditioners accompanied by a high load and the repeated and sudden changes between their stopped state and operated state. Therefore, they must have a high grade safety and reliability in their operations.
  • According to the recently strengthened tendency of demanding the miniaturization and lightening with regard to almost every kinds of machines, the refrigerating machine have also been forced so as to operate under more rigorous conditions caused by its miniaturized and lightened design.
  • As a matter of course, the wear resistant properties of the metal portions contacting and sliding each other in such refrigerating machines are very important. For example, when the top ends of the vanes of the rotor or the inner surface of the compressor housing in a rotary compressor are worn, the vapor of the refrigerant leaks through the gap generated between the vane and the housing by the abrasion, and as the result, the compression efficiency of the compressor is reduced. Moreover, when the wear proceeded to an extreme state, the compressor can not continue its mechanically smooth operation, and finally it becomes entirely impossible to operate by the reason of co-searing phenomenon of the metal portions to be smoothly slided each other.
  • Conventional lubricating oils become insufficient forgiving enough wear resistant properties to the sliding metal portions of the compressor which is designed in accordance with the recent tendency of miniaturizing and lightening the refrigerating machines and is driven under more rigorous operating conditions than those of conventional one.
  • US patents 2542604 and 2866755, and French patents 1419606 and 2068771 describe lubricating compositions which contain a haloalkyl phosphate, however, none of them discloses that the halogen-containing ester of phosphoric acid may be used in a lubricating oil for refrigerating machines which are used in the presence of refrigerants.
  • Additionally, with regard to the lubricating oils for metal processing which is an important application field of lubricating oils, although esters of phosphorous acid which have heretofore been used as extreme pressure agents can increase the lubricational properties of the metal processing oil, the esters have problems in their stabilities such as storage stability, thermal stability and stability for hydrolysis. The shortage in these stabilities can be improved by adding an amine compound to the oil. However, the lubricational properties of the metal processing oil is inversely reduced by the addition of such an amine compound.
  • Further, phosphate esters and zinc dithiophosphate as the alternatives of the esters of phosphorous acid are excellent in the stabilities, however, such alternatives cannot give any satisfactory metal processing oil having sufficient lubricational properties.
  • EP 205995 describes a lubricating oil composition for refrigerating machines which comprises a base oil and an ester of phosphoric acid. The esters disclosed are non-halogen containing ones such as tricresyl phosphate which is the most preferred ester.
  • As the results of a series of investigational experiments intending to develop a lubricating oil composition which can solve the problems described above, the present inventors have been completed the invention on the basis of such a fortunate finding that the lubricating oil compositions added with an ester of phosphoric acid as an additive, which has a specified chemical structure and contains one or more of halogen atoms in its molecule, have excellent anti-wear properties which could not heretofore be obtained by adding any conventional additive.
  • The purpose of the present invention is to provide a method for lubricating refrigerating machines using lubricating oil compositions superior in their stabilities and anti-wear properties.
  • The lubricating oil composition used in the present invention comprises a base oil consisting of a mineral oil and/or a synthetic oil and a halogen containing ester of phosphoric acid as an essential component which is expressed by the following general formula:
    Figure imgb0001
    wherein the respective atomic groups of X, Y and Z are the same or different groups each selected from the assemblage composing of alkyl groups having a carbon number of from 1 to 12, modified alkyl groups having one or more oxygen atoms each located between two carbon atoms of the alkyl group and a carbon number of from 1 to 12, phenyl, cresyl, xylyl and halogen substituted groups of the above groups, and the total number of the halogen atoms in the groups of X, Y and Z is in the range of from 1 to 9, in an amount in the range of from 0.01 to 5 parts by weight, preferably in the range of from 0.1 to 2.0 parts by weight, more preferably in the range of from 0.5 to 1.0 part by weight, relative to 100 parts by weight of the base oil. In addition, the lubricating oil composition of the present invention can further comprise an epoxy compound in an amount in the range of from 0.1 to 5.0 parts by weight, preferably in the range of from 0.2 to 2.0 parts by weight, relative to 100 parts by weight of the base oil consisting of a mineral oil and/or a synthetic oil.
  • The contents of the present invention will hereinafter be illustrated in more detail.
  • As the mineral and synthetic oils for preparing the base oil of the lubricating oil composition in the present invention, any oil can be employed so long as it is used for preparing a base oil of conventional lubricating oils.
  • As the mineral oil for preparing the base oil, there is used a mineral oil obtained by purifying a relatively heavy fraction got from atmospheric or reduced pressure distillation of a raw petroleum with a purifying procedure composed of a suitable combination of various purification techniques such as deasphalting by a solvent, solvent extraction, hydrogenating decomposition, solvent dewaxing, catalytic dewaxing, sulfuric acid washing, purification by using a terra alba, hydrogenating purification and the like.
  • Further, as examples of the synthetic oils for preparing the base oil, there may be specifically mentioned normal paraffines; isoparaffines; oligomers of a-olefines such as polybutenes, polyisobutylenes, oligomers of 1-decence and the like; alkylbenzenes such as monoalkylbenzenes, dialkylbenzenes, polyalkylbenzenes and the like; alkylnaphthalenes such as monoalkylnaphthalenes, dialkylnaphthalenes, polyalkylnaphthalenes and the like; diesters of dicarboxylic acids such as di-2-ethylhexyl sebacate, dioctyl adipate, di-iso-decyl adipate, ditridecyl adipate, ditridecyl glutarate and the like; esters of polyhydric alcohols such as trimethylolpropane mono-, di- or tricaprylate, trimethylolpropane mono-, di- or tri-pelargonate, pentaerythrithol mono-, di-, tr- or tetra-2-ethylhexanoate, pentaerythritol mono-, di-, tr- or tetrapelargonate and the like; polyoxyalkylene glycol compounds such as polyoxyethylene glycols, monoethers of polyoxyethylene glycols, polyoxypropylene glycols, monoethers of polyoxypropylene glycols and the like; polyoxyphenylenes with phenyl terminations; tricresyl phosphates; silicone oils; perfluoropolyoxyalkyl ethers; and the like.
  • These mineral and synthetic base oils can also be used in combination of two or more.
  • In the present invention, as the mineral oil employed for preparing the base oil of the lubricating oil composition used as lubricating oil for a refrigerating machine, there can preferably be used a mineral oil which is obtained by purifying, for example, a paraffinic or naphthenic raw petroleum with a purifying procedure composed of a suitable combination of various purification manners such as distillation under a reduced pressure, deasphalting by a solvent, solvent extraction, hydrogenating decomposition, solvent dewaxing, catalytic dewaxing, sulfuric acid washing, purification with a terra alba, hydrogenating purification and the like and has a sulfur content in the range of from 0.05 to 2.0% by weight and an aromotic hydrocarbon content in the range of from 2 to 20% by weight. In addition, as the synthetic oil employed for the same purpose as described above, there can preferably be used synthetic oils such as poly-a-olefines obtained by polymerizing a-olefines, alkylbenzenes and mixtures of alkylbenzenes having one and/or two of straight chain or branched chain alkyl groups of a carbon number in the range of from 5 to 30 as the side chains, and polyoxyalkylene glycol compounds.
  • Especially preferred base oil in these base oils is a synthetic oil consisting of at least one polyoxyalkylene glycol compound selected from the assemblage composing of [I] polyoxyalkylene glycol compounds expressed by the following general formula:
    Figure imgb0002
    wherein a is an integer in the range of from 5 to 70, R1 indicates an alkylene group having a carbon number of from 2 to 4, and each of R2 and R3 indicates independently a hydrogen atom or an alkyl group having a carbon number of from 1 to 18; and [II] glycerol ethers of polyoxyalkylene glycols compounds expressed by the following general formula:
    Figure imgb0003
    wherein each of b, c and d is an integer selected from 3 to 40 so as to satisfy the equation of 92 b + c + dZ 50; R4, R5, and R6 are the same or different alkylene groups each having a carbon number of from 2 to 4; and each of R7, R8, and R9 is independently a hydrogen atom or an alkyl group having a carbon number of from 1 to 18.
  • As examples of the alkylene groups expressed by R1, R4, R5, and R6 and each having a carbon number of from 2 to 4, there may be mentioned, more specifically, the following atomic groups:
    • ethylene group (-CH2CH2-),
    • propylene group
      Figure imgb0004
    • trimethylene group (-CH2CH2CH2-),
    • butylene group
      Figure imgb0005
    • 1,2-dimethylethylene group
      Figure imgb0006
    • 1-methyltrimethylene group
      Figure imgb0007
    • 2-methyltrimethylene group
      Figure imgb0008
      and
    • tetramethylene group (-CH2CH2CH2CH2-).
  • In these alkylene groups, the groups of ethylene, propylene, butylene and tetramethylene are preferable.
  • Further, as examples of the alkyl groups expressed by R2,R3, R7, R8 and R9 and each having a carbon number of from 1 to 18, there may be specifically mentioned alkyl groups of methyl, ethyl,propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl and octadecyl. In these alkyl groups, the alkyl groups of methyl, ethyl, propyl, butyl, pentyl, hexyl, octyl, decyl and octadecyl are preferable.
  • In addition, the polyoxyalkylene glycol compounds [I] and the polyoxyalkylene glycol glycerol ether compounds [II] in the present invention may have alkylene groups different each other in their carbon numbers in a molecule. In other words, each polyoxyalkylene chain in a molecule of these polyoxyalkylene glycol compounds [I] and polyoxyalkylene glycol glycerol ether compounds [II] may be a chain obtained by randum copolymerization or block copolymerization of oxyalkylene groups different each other in their carbon numbers. However, it is preferred from the view point with regard to the pour point of the resultant lubricating oil for refrigerating machines that, in a molecule of the polyoxyalkylene glycol compounds [I], the ratio of the total number of the oxyethylene groups in the polyoxyalkylene chain relative to the total number (a) of the oxyalkylene groups in the polyoxyalkylene chain has an average value in the range of from 0 to 0.8 and that, in a molecule of the polyoxyalkylene glycol glycerol ether compounds [II], the ratio of the total number of the oxyethylene groups in the polyoxyalkylene chains relative to the total number (b+c+d) of the oxyalkylene groups in the polyoxyalkylene chains has also an average value in the range of from 0 to 0.8.
  • Further, the polyoxyalkylene glycol compound of [I] or [II] is generally preferable to use in its average molecular weight in the range of from 300 to 4,000, more preferably in the range of from 500 to 3,500.
  • These mineral and synthetic oils can be employed solely or in a combination of two or more for preparing the base oil of the present invention.
  • Additionally, the preferable viscosity of these base oils is in the range of from 2.0 to 100 cSt at 40°C.
  • The method of the present invention uses a composition which comprises the base oil described above to which is added the halogen containing ester of phosphoric acid which is an essential component for the lubricating oil compositions used in the present invention and expressed by the following general formula.
    Figure imgb0009
  • In this formula, the respective groups of X, Y and Z indicate the same or different groups each selected from the assemblage composing of alkyl groups having a carbon number of from 1 to 12, preferably from 3 to 9, modified alkyl groups having one or more oxygen atoms each located between two carbon atoms of the alkyl group and a carbon number of from 1 to 12, preferably from 3 to 9, phenyl, cresyl, xylyl and halogen substituted groups of the above groups.
  • Further, the total number of the halogen atoms contained in the groups of X, Y and Z is in the range of from 1 to 9, and is preferably in the range of from 2 to 6.
  • Any similar ester of phosphoric acid not satisfying the above numerical ranges with respects to the carbon number of the alkyl groups and the modified alkyl groups and to the total number of the halogen atoms in the groups of X, Y and Z, is not preferred because the use of such an ester of phosphoric acid leads to a resultant lubricating oil inferior in its lubricating performances.
  • As examples of the alkyl groups each having a carbon number of from 1 to 12, there may be specifically mentioned alkyl groups of methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl and dodecyl.
  • Further, the above modified alkyl group having a carbon number of from 1 to 12 means a group which has one or more oxygen atoms each located between two carbon atoms of the alkyl group. As examples of such modified alkyl groups, there may be mentioned modified alkyl groups having at lest one ether structure and expressed by the following general formula of R1°-fOR11 wherein R10 is an alkyl group, R11 is an alkylene group and n is an integer of 1 or more.
  • Such an alkyl group or a modified alkyl group for the groups of X, Y and Z may have a straight or branched atomic chain.
  • In addition, the methyl substituent on the benzene rings of cresyl and xylyl groups for X, Y and Z can be attached to any carbon atom of the benzene rings.
  • Additionaly, as examples of kinds of the halogen atom substituting the hydrogen atom in the groups of X, Y and Z, there may be mentioned atoms of fluorine, chlorine, bromine and iodine, and chlorine is preferred in these halogens.
  • In the lubricating oil compositions of the present invention, the halogen containing ester of phosphoric acid described above is included in an amount in the range of from 0.01 to 5.0 parts by weight, preferably in the range of from 0.1 to 2.0 parts by weight, more preferably in the range of from 0.5 to 1.0 part by weight, relative to 100 parts by weight of the base oil described hereinbefore.
  • When the content of the halogen containing ester is not reached to the lower limit of the above range, the resultant lubricating oil is inferior in its lubricating performance. On the other hand, when the content is greater than the upper limit of the range, the lubricating performance of the resulting lubricating oil obtained by adding the ester of phosphoric acid is not increased in proportion to the content of the ester. Therefore, the content of the ester out of the above range is not preferred in the resultant lubricating oil.
  • In the halogan containing esters of phosphoric acid, there are some esters each of which has the tendency of easily liberating its chlorine atom from the molecule of the ester. In this case, the metals used in the refrigerating system encounter the danger of corrosion due to the liberated chlorine.
  • Therefore, for further improving the overall properties of the lubricating oil composition of the present invention which is used as the lubricating oil for refrigerating machines, the lubricating oil composition may additionally be mixed with one or more epoxy compounds selected from the assemblage composing of:
    • (i) epoxy compounds of phenyl glycidyl ether type,
    • (ii) monoesters of epoxidized fatty acids, and
    • (iii) epoxidized vegetable oils.
  • As the epoxy compounds (i) of phenyl glycidyl ether type mentioned above, there can be exemplified phenyl glycidyl ether and alkylphenyl glycidyl ethers.
  • With regard to the alkylphenyl glycidyl ethers described above, alkylphenyl group in the ethers is a modified phenyl group with one, two or three alkyl groups each having a carbon number of from 1 to 13. In these alkylphenyl glycidyl ethers, there may be preferred alkylphenyl glycidyl ethers each having an alkyl group of a carbon number in the range of from 4 to 10 on the phenyl group, such as butylphenyl glycidyl ether, pentylphenyl glycidyl ether, hexylphenyl glycidyl ether, heptylphenyl glycidyl ether, octylphenyl glycidyl ether, nonylphenyl glycidyl ether and decylphenyl glycidyl ether.
  • Further, as the monoesters (ii) of epoxidized fatty acids, there can be exemplified esters formed from fatty acids having a carbon number of from 12 to 20 and various alcohols having a carbon number of from 1 to 8, phenol or alkyl phenols.
  • Especially, butyl, hexyl, benzyl, cyclohexyl, methoxyethyl, octyl, phenyl or butylphenyl ester of epoxidized stearic acid is preferably used.
  • Furthermore, as the epoxidized vegetable oils (iii), there can be exemplified an epoxidized vegetable oil obtained by epoxidizing a vegetable oils such as soybean oil, linseed oil, cottonseed oil and the like.
  • In these epoxy compounds of from (i) to (iii), the epoxy compounds of phenyl glycidyl ether type and monoesters of epoxidized fatty acids are preferable.
  • The epoxy compounds of phenyl glycidyl ether type are especially preferred in these preferable epoxy compounds of phenyl glycidyl ether type and monoesters of epoxidized fatty acids. Furthermore, phenyl glycidyl ether, butylphenyl glycidyl ether and a mixture of both the ethers are more especially preferred.
  • When such an epoxy compound is additionally mixed to the lubricating oil compositions of the present invention as an essential additive, the amount of the epoxy compound to be added is in the range of from 0.1 to 5.0 parts by weight, preferably in the range of from 0.2 to 2.0 parts by weight, relative to 100 parts by weight of the base oil in the lubricating oil compositions. When the adding amount of the epoxy compound does not reach to the lower limit of the above range, the effect of preventing the metal corrosion obtained by adding the epoxy compound into the lubricating oil composition of the present invention becomes poor. On the other hand, when the adding amount of the epoxy compound is larger beyond the upper limit of the above range, the abrasion resistant properties and the load carrying properties of the compressor to be lubricated are influenced by adverse effects. Therefore, both the cases are not preferable.
  • If needed, a variety of additives, which have heretofore been known as additives for lubricating oils, can be added to the lubricating oil compositions of the present invention for further improving the properties of the resultant compositions. As examples of such additives, there may be mentioned antoxidants such as various compounds of phennol type, amine type and the like; purifying detergents or dispersants such as sulfonates, phenolates and salicylates of alkaline earth metals, alkenylsuccinimide, benzylamine and the like; pour point depressants such as polyalkylmethacrylates, polystyrenes, polubutenes, ethylene-propylene copolymers and the like; viscosity-index improving agents such as polyalkylmethacrylates, polyisobutylenes, polystyrenes, ethylene-propylene copolymers and the like; oiliness agents such as fatty acids and their esters, higher alcohols and the like; extreme pressure agents such as various compounds of phosphorous type, chlorine type, sulfur type, organic metal compound type and the like, antirust agents such as sulfonic and carboxylate compounds, esters of sorbitane and the like; metal deactivating agents such as benzotriazol compounds and the like; antifoaming agents such as silicone oils; and other additives such as emulsifying agents, anti-emulsifying agents, bactericides, colorants and the like. The details of such various additives have been disclosed, for example, in "Journal of Japanese Society of Lubricating Oils" 15 (6) or in "Additives for Petroleum Products" edited by Toshio Sakurai and published from Saiwai Book Company.
  • The lubricating oil compositions used in the method of the present invention can be utilized in many applications such as lubricants used in the compressors of refrigerating machines for automobile or home use air conditioners, cold and/or freezed storage, automatic vending machines, showcases, cooling apparatuses used in chemical plants, airdrying machines and the like; oils for various metal processing such as cutting, grinding, rolling, pressing, drawing, drawing-ironing, forging and the like; engine oils for four cycle and two cycle gasoline engines, diesel engines of land or marine use, gas engines and the like; turbine oils for industrial turbines, gas turbines, marine turbines and the like; gear oils for gears of automobiles, various gears of industrial use, variable speed hydraulic transmissions and the like; oils for actuating hydraulic presses; compressor oils; oils for vacuum pumps; oils for sliding guide way, bearing oils and the like.
  • The present invention will hereinafter be illustrated more specifically by using Examples and Comparative Examples.
  • The following symbols are used in these examples for abbreviating the names of the related compounds: For additives concerning to the present invention:
    • TDCPP : Tris-dichloropropyl phosphate,
    • TCEP : Tris-chloroethyl phosphate,
    • PGDCPP: Polyoxyalkylene-bis[di(chloroalkyl)] phosphate,
    • TCPP : Tris-chlorophenyl phosphate, and
    • PGE : Phenyl glycidyl ether; and
  • For other additives:
    • TCP : Tricresyl phosphate,
    • TPP : Triphenyl phosphate,
    • DBDS : Dibenzyl disulfide,
    • Zn-DTP: Zinc dithiophosphate,
    • CPW : Chlorinated paraffine wax,
    • DBPC : 2,6-di-t-butyl-p-cresol, and
    • DLHP : Dilauryl hydrogen phosphite.
    (Examples 1 to 9 and Comparative Examples 1 to 8)
  • With respects to the lubricating oils for refrigerating machine which were used in these Examples and Comparative Examples, their compositions, kinematic viscosities and kinds of additives are shown in Table 1.
  • In Examples of 1 to 9 related to the present invention, Falex load carrying test. Falex wear test and sealed-tube test were conducted for evaluating the performances of the lubricating oils for refrigerating machine, and the results of these tests are shown in Table 2.
  • In addition. the same evaluation results as described above with regard to similar lubricating oils using conventional antiwear agents which have heretofore been used in luricating oils for refrigerating machine or for general uses, are also shown in Table 2 for comparison with the lubricating oils according to the present invention.
  • Falex Load Carrying Test:
  • The searing load in this test was measured in accordance with the method of ASTM D 3233 after the antecedent inuring operation for 5 minutes under. conditions of the initial oil temperature of 25 °C and the load of 113.25 Kg (250 Ib).
  • Falex Wear Test:
  • The amount of wear of the test journal was measured for the operation of 3 hours under the load of 158.55 Kg (350 Ib) in accordance with the method of ASTM D 2670 after an antecedent inuring operation for 5 minutes under conditions of the initial oil temperature of 25 °C and the load of 113.5 Kg (250 Ib).
  • Sealed-tube Test:
  • The equivolume mixture of the lubricating oil to be tested and the refrigerant which was CFC-12 in Examples of 1 to 6 and Comparative Examples of 1 to 6 and was HFC-134a in Examples of 7 to 9 and Comparative Examples of 7 and 8, was placed in a sealed glass tube together with iron and copper catalysts, and the contents in the sealed glass tube were heated at the temperature of 150 °C for 480 hours. Then, the color changes of the lubricating oil and the catalysts were observed and measured visually.
  • In this connection, the degree of the color change of the lubricating oil tested was classified into twelve grades defining its black-brown state as 11 and colorless state as 0.
  • Further, with regard to the color changes of the catalysts, it is considered that, when the color changes of the metal catalysts were only in a degree of losing their glosses, the lubricating oil has no problem on its thermal stability, and on the other hand, when the iron catalyst was plated by the copper or was blackened, the lubricating oil is inferior on its thermal stability.
    Figure imgb0010
    Figure imgb0011
  • As indicated by the results-of Examples of 1 to 9 described in Table 2. the lubricating oils for refrigerating machines according to the present invention are higher at a value in the range of from 90.6 - 135.9 Kg (200 to 300 Ib) in the searing loads of Falex test and are also reduced to a value of from one fourth to one fifth in the amounts of wears of Falex test. in comparison with those of the lubricating oils of Comparative Examples 1 to 3 in each of which an antiwear agent used to conventional lubricating oils for refrigerating machine was added with. In addition, it is similarly recognized that the lubricating oils for refrigerating machines according to the present invention exhibit sufficient thermal stability in the sealed-tube tests and are also superior than the lubricating oils using the conventional antiwear agents. On the other hand, as shown by the results of Comparative Examples of 4 to 8, the lubricating oils added with the antiwear agents which have heretofore been used to various kinds of lubricating oil, exhibit the nearly equal performances in both Falex tests with those of the lubricating oils for refrigerating machine according to the present invention. However, in the thermal stability by using the sealed-tube test, the lubricating oils added with such conventional antiwear agents are remarkably inferior as if they can not actually be used in comparison with the lubricating oils according to the present invention.
  • (Example 10 and Comparative Examples 9 to 11)
  • With regard to the cutting oils used in these Example and Comparative Examples. their compositions, kinematic viscosities and kinds of additives are shown in Table 3. Falex wear test and another thermal stability test were conducted for evaluating the performances of the cutting oil of Example 10 related to the present invention, and results of these tests are shown in Table 3. In addition, the same evaluation results as described above with regard to the similar cutting oils using conventional antiwear agents which have heretofore been used to lubricating oils for verious applicational uses, are also shown in Table 3 for comparison with the lubricating oil according to the present invention.
  • Falex Wear Test:
  • The amount of wear of the test journal (SUS 304) was measured for the operation of 30 minutes under the load of 588.9 Kg (1300 Ib) in ccordance with the method of ASTM D 2670 after an antecedent inuring operation for 5 minutes under conditions of the initial oil temperature of 25°C and the load of 113.25 Kg (250 Ib).
  • Thermal Stability Test:
  • A sample of the cutting oil was placed in a test tube and was maintained for 24 hours in a thermostatic air bath at the temperature of 120 °C, and then the cutting oil was observed visually.
  • In Table 3, the results of the observation are indicated in the way that no sludge generated is 0, some sludge generated is A, and a large amount of sludge generated is X.
    Figure imgb0012
  • As shown by the results in Table 3, the cutting oil according to the present invention is superior in thermal stability by comparison to the cutting oil of Comparative Example 9 which was added with DLHP as a phosphite compound, and is also superior in antiwear property by comparison to the cutting oil of Comparative Example 10 which was added with Zn-DTP. In addition, the cutting oil of Example 11 which was prepared by further adding an amine compound to the cutting oil composition of Comparative Example 9, is improved in thermal stability, but is inferior in antiwear property.
  • As clearly shown by the hereinabove description and results of Examples and Comparative Examples, the lubricating oil compositions according to the present invention are superior in performance of reducing the wear of metals and thermal stability.

Claims (8)

1. A method for lubricating refrigerating machines using a lubricating oil composition comprising:
(a) a base oil which is one or more compounds selected from the group consisting of a mineral oil and synthetic oil; and
(b) a halogen-containing ester of phosphoric acid of the following general formula:
Figure imgb0013
wherein groups X, Y and Z are the same or different, and are each selected from the group consisting of alkyl groups having a carbon number from 1 to 12, modified alkyl groups having one or more oxygen atoms each located between two carbon atoms of the alkyl and a carbon number of from 1 to 12, phenyl, cresyl, xylyl, and halogen substituted groups of the above groups, wherein the total number of halogen atoms in the groups X, Y and Z is in the range from 1 to 9;

wherein the halogen-containing ester of phosphoric acid is present in an amount of 0.01 to 5 parts by weight, relative to 100 parts by weight of the base oil.
2. A method according to claim 1 in which said base oil is a purified mineral oil having a sulfur content in the range of from 0.05 to 2.0% by weight and an aromatic hydrocarbon content in the range of from 2 to 20% by weight.
3. Amethod according to claim 1 in which said base oil is a synthetic oil of polyoxyalkylene glycol compounds.
4. A method according to claim 1 in which said base oil is a synthetic oil consisting of a poly-a-olefin, alkylbenzenes monosubstituted and/or disubstituted with straight chain alkyl groups having a carbon number of from 5 to 30 or alkylbenzenes monosubstituted and/or disubstituted with branched chain alkyl groups having a carbon number of from 5 to 30.
5. A method according to claim 1, 2, 3 or 4 in which said base oil is a mixture consisting of two or more oils selected from the group consisting of mineral oils and synthetic oils.
6. A method according to claim 3, wherein said polyoxyalkylene glycol base oil is a synthetic oil consisting of at least one polyoxyalkylene glycol selected from the group consisting of:
(I) polyoxyalkylene glycols of the general formula:
R2-(OR').-OR3

wherein a is an integer in the range from 5 to 70, R1 is a C2 to C4 alkylene group, and each of R2 and R3 is independently selected from a hydrogen atom and a C1 to C18 alkyl group; and
(II) glycerol ethers of polyoxyalkylene glycols of the general formula:
Figure imgb0014
wherein each of b, c and d is an integer independently selected from integers in the range of 3 to 40, so as to satisfy the equation 92 b+c+d 250, and each of R4, R5 and R6 is independently a C2 to C4 alkylene group, and each of R7, R8 and R9 is independently selected from a hydrogen atom and a C1 to C18 alkyl group.
7. A method according to claim 1, 2, 3 or 4 in which said lubricating oil composition further comprises an epoxy compound in an amount in the range from 0.1 to 5.0 parts by weight relative to 100 parts by weight of the base oil.
8. A method according to claim 5 in which said lubricating oil composition further comprises an epoxy compound in an amount in the range from 0.1 to 5.0 parts by weight relative to 100 parts by weight of the base oil.
EP90301844A 1989-02-22 1990-02-21 A method for lubricating refrigerating machines Expired - Lifetime EP0384724B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP4027889 1989-02-22
JP40278/89 1989-02-22
JP291065/89 1989-11-10
JP1291065A JP2588287B2 (en) 1989-02-22 1989-11-10 Refrigeration oil composition

Publications (2)

Publication Number Publication Date
EP0384724A1 EP0384724A1 (en) 1990-08-29
EP0384724B1 true EP0384724B1 (en) 1993-10-13

Family

ID=26379729

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90301844A Expired - Lifetime EP0384724B1 (en) 1989-02-22 1990-02-21 A method for lubricating refrigerating machines

Country Status (4)

Country Link
EP (1) EP0384724B1 (en)
JP (1) JP2588287B2 (en)
DE (1) DE69003835T2 (en)
ES (1) ES2046691T3 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991009097A1 (en) * 1989-12-14 1991-06-27 Idemitsu Kosan Co., Ltd. Refrigerator oil composition for hydrofluorocarbon refrigerant
US5391311A (en) * 1990-04-20 1995-02-21 Nippon Oil Co., Ltd. Fluid compositions for refrigerators
EP0452816B1 (en) * 1990-04-20 1994-06-29 Nippon Oil Co. Ltd. Use of synthetic lubricating oils in refrigerators
US5198135A (en) * 1990-09-21 1993-03-30 The Lubrizol Corporation Antiemulsion/antifoam agent for use in oils
US5084197A (en) * 1990-09-21 1992-01-28 The Lubrizol Corporation Antiemulsion/antifoam agent for use in oils
DE69201983T2 (en) * 1991-01-18 1995-11-23 Nippon Oil Co Ltd Synthetic lubricating oils.
JP2901369B2 (en) * 1991-01-30 1999-06-07 株式会社日立製作所 Refrigerator oil composition, refrigerant compressor and refrigeration device incorporating the same
KR920016586A (en) * 1991-02-26 1992-09-25 도키와 후미카즈 Freezer Working Fluid Composition
WO1992017563A1 (en) * 1991-04-08 1992-10-15 Allied-Signal Inc. Stabilized polyoxyalkylene glycols
EP0510633A1 (en) * 1991-04-24 1992-10-28 Japan Sun Oil Company, Ltd. Lubricating oil composition and use thereof
CN1031758C (en) * 1991-04-30 1996-05-08 株式会社日立制作所 Lubricant for refrigeration compressors
JP2999622B2 (en) * 1992-02-20 2000-01-17 日石三菱株式会社 Refrigeration oil composition for fluorinated alkane refrigerant
WO1993024585A1 (en) * 1992-06-03 1993-12-09 Henkel Corporation Polyol ester lubricants for refrigerant heat transfer fluids
US5853609A (en) * 1993-03-10 1998-12-29 Henkel Corporation Polyol ester lubricants for hermetically sealed refrigerating compressors
DE59808991D1 (en) 1997-05-07 2003-08-14 Rwe Dea Ag POLYALKYLENE GLYCOLES AS LUBRICANTS FOR CO 2 REFRIGERATORS
JP2000096071A (en) * 1998-09-21 2000-04-04 Nippon Mitsubishi Oil Corp Lubricating oil for refrigerator using dimethyl ether as refrigerant
AU5085301A (en) * 2000-03-16 2001-09-24 Lubrizol Corp Lubricant composition for ammonia based refrigerants with good seal performance
WO2002008366A1 (en) 2000-07-26 2002-01-31 Idemitsu Kosan Co., Ltd. Lubricating oil for refrigerator and hydraulic fluid composition for refrigerator using the same
EP1792970B1 (en) * 2004-09-14 2013-01-23 Idemitsu Kosan Co., Ltd. Refrigerator oil composition containing an aromatic sulfur compound
US20100205980A1 (en) * 2008-12-23 2010-08-19 Shrieve Chemical Products, Inc. Refrigerant lubricant composition

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2542604A (en) * 1948-12-01 1951-02-20 Standard Oil Dev Co Extreme pressure lubricant and extreme pressure agents therefor
US2866755A (en) * 1955-05-31 1958-12-30 Texas Co Ester-base lubricant containing non-corrosive ep agent
FR1419606A (en) * 1963-04-23 1965-12-03 Shell Int Research New organic phosphates and lubricating oils containing them
US3652411A (en) * 1969-12-04 1972-03-28 Mobil Oil Corp Polyglycol base lubricant
US4199461A (en) * 1977-02-14 1980-04-22 Chevron Research Company Refrigeration oil containing wear-inhibiting amounts of an aryl phosphate-fatty acid combination
JPS53140469A (en) * 1977-05-13 1978-12-07 Nippon Oil Co Ltd Component of high viscosity refrigerator oil
DE2801956B1 (en) * 1978-01-18 1979-05-31 Hoechst Ag Process for the high temperature stabilization of polychloroalkanes and stabilizer combinations for carrying out this process
JPS5710694A (en) * 1980-06-11 1982-01-20 Mitsubishi Oil Co Ltd Oil composition for refrigerator
DE3522165C1 (en) * 1985-06-21 1986-10-30 Texaco Technologie Europa GmbH, 2102 Hamburg Lubricants and their use
ES2058368T3 (en) * 1988-04-06 1994-11-01 Nippon Oil Co Ltd LUBRICATING OIL COMPOSITIONS FOR REFRIGERATORS.
JPH01319589A (en) * 1988-06-22 1989-12-25 Matsushita Electric Ind Co Ltd Ice machine oil
JPH0218496A (en) * 1988-07-06 1990-01-22 New Japan Chem Co Ltd Base for water-soluble metal processing oil

Also Published As

Publication number Publication date
DE69003835T2 (en) 1994-03-03
EP0384724A1 (en) 1990-08-29
JP2588287B2 (en) 1997-03-05
ES2046691T3 (en) 1994-02-01
DE69003835D1 (en) 1993-11-18
JPH0328297A (en) 1991-02-06

Similar Documents

Publication Publication Date Title
EP0384724B1 (en) A method for lubricating refrigerating machines
US5279752A (en) Composition for lubricating oil
US5403503A (en) Refrigerator oil composition for hydrogen-containing hydrofluorocarbon refrigerant
KR0131691B1 (en) Lubricating oil for refrigerator with compressor
EP0336171B1 (en) Use of lubricating oil compositions for refrigerators
US7179769B2 (en) Poly (trimethylene-ethylene ether) glycol lube oils
US5639719A (en) Lubricating oil containing aromatic ether compounds
JP2514090B2 (en) Lubricating oil composition for freezers
US5414103A (en) Polyether phosphate esters
EP0428757B1 (en) Lubricating oil composition
KR100742444B1 (en) Lubricating oil composition containing cyclic organophosphorus compound
Randles Esters
KR20040075914A (en) Operating medium for carbon dioxide-cooling systems and air-conditioning systems
JPH0491194A (en) Synthetic lubricating oil
JPH0631363B2 (en) Lubricating oil composition for refrigerator
EP1192240B1 (en) Refrigerator lubricant composition comprising an aliphatic substituted naphthalene with carbon dioxide as refrigerant
Murphy et al. Benefits of synthetic lubricants in industrial applications
EP0422822B1 (en) Lubricating oil compositions
JPS62241996A (en) Lubricating oil composition for gear
EP0416914B1 (en) Lubricating oil compositions
EP0227469B1 (en) Improved lubricating oil composition
EP0733618B1 (en) Monocarbonates, use thereof and process for the preparation of compositions containing monocarbonates
JP4101934B2 (en) Lubricating oil additive and lubricating oil composition
JPH0688086A (en) Lubricating oil composition
CA2022832A1 (en) Polyglycol lubricant composition for use with tetrafluoroethane refrigerant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR IT

17P Request for examination filed

Effective date: 19901214

17Q First examination report despatched

Effective date: 19910729

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT

REF Corresponds to:

Ref document number: 69003835

Country of ref document: DE

Date of ref document: 19931118

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2046691

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19970205

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970214

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970327

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050221