EP0382823B1 - Process and device for adjusting operating parameters of an internal combustion engine - Google Patents

Process and device for adjusting operating parameters of an internal combustion engine Download PDF

Info

Publication number
EP0382823B1
EP0382823B1 EP89908389A EP89908389A EP0382823B1 EP 0382823 B1 EP0382823 B1 EP 0382823B1 EP 89908389 A EP89908389 A EP 89908389A EP 89908389 A EP89908389 A EP 89908389A EP 0382823 B1 EP0382823 B1 EP 0382823B1
Authority
EP
European Patent Office
Prior art keywords
programs
time
group
dependent
interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89908389A
Other languages
German (de)
French (fr)
Other versions
EP0382823A1 (en
Inventor
Ernst Wild
Gerhard Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0382823A1 publication Critical patent/EP0382823A1/en
Application granted granted Critical
Publication of EP0382823B1 publication Critical patent/EP0382823B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/263Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor the program execution being modifiable by physical parameters

Definitions

  • the invention relates to a method and a device for setting operating variables, in particular the ignition angle and / or the lambda value of an internal combustion engine.
  • programs of different temporal priority run.
  • High priority are all programs that have to ensure that a certain process is triggered at a certain crank angle, e.g. B. is ignited or the injection of fuel is started or this process is ended.
  • These programs usually synchronize processes with the crankshaft revolution.
  • the entirety of these programs, which are very short and are started depending on the crankshaft, is referred to below as a synchro program.
  • priority to the synchro program are programs that, for. B. Evaluate maps or characteristic curves to provide output values for higher priority programs.
  • the entirety of such lower priority Programs are referred to below as background programs.
  • the priority between the background program and the synchro program is a group of time-dependent programs, which are mainly used for integration purposes. It is important for these programs that they are called up as precisely as possible, with a value, e.g. B. the integral value of the manipulated variable for regulating the lambda value is increased or decreased by a predetermined count value. Since the count value is fixed, a desired integration speed can only be achieved if the time period between two integration steps is as constant as possible.
  • the sequence of the background program HGP from its start HGPA to its end HGPE and the group of time-dependent programs GZAP according to the prior art is shown in FIG. 1.
  • the group of time-dependent programs GZAP and parts of the background program HGP are processed alternately.
  • it is checked whether a timer has set a flag which indicates that a predetermined raster period ZSR has elapsed since the last start of the group of time-dependent programs.
  • This grid period is z. B. 10 ms.
  • the pure runtime of the group of time-dependent programs, however, is z. B. only about 4 ms and the synchro program less than 1 ms.
  • the method and device for setting the operating parameters of an internal combustion engine have always been manufactured in various stages of expansion. In very simple systems, only a few influencing variables are taken into account and only a few operating variables are calculated, while in extensive systems considerably more calculations take place and learning processes of the most varied types are also carried out.
  • the group of time-dependent programs GZAP is composed of different numbers of time-dependent programs ZAP, for example in the example according to FIG. 2. from four time-dependent programs ZAP1 - ZAP4. The more programs within the group of time-dependent programs GZAP, the longer it takes to process this group. This has been taken into account in the prior art by increasing the grid period ZSR. Was the pure duration of the group z. B.
  • the raster time ZSR z. B. set to 14 ms.
  • Such an extension of the grid period was possible and is still possible without any problems, since the times mentioned are by far sufficiently short to be able to process time-dependent processes with sufficient accuracy.
  • changing the grid period has the disadvantage that it is necessary to adapt operating parameters to the changed grid period, e.g. B. the counting steps in integration processes.
  • the concrete application of the method and the device in an internal combustion engine, the so-called application is associated with a relatively great effort.
  • a motor control program which does not work with a raster time period is known from GB 2 058 406.
  • subroutines are broken down into classes with different priorities.
  • the execution of programs from the different priority classes is triggered by interrupt signals that correlate either with the angular position of the crankshaft or with specific time stamps in the overall program sequence. So it is e.g. intended to repeat certain programs with a distance of 10 ms and other programs with a distance of 20 ms. If, as in this example, two programs are to be started at the same time every 20 ms, a defined priority, with which each program is marked, decides on the sequence of execution.
  • this type of interrupt programming leads to a similar program flow as described at the beginning, other method steps (or means) are used for this.
  • the invention is based on the object of specifying an easily applicable device or an easily applicable method for setting operating variables of an internal combustion engine.
  • the method and the device according to the invention are characterized in that the time-dependent programs are no longer collected in a single group, but are divided into different groups, namely at least one program group with the shortest distance and longer programs and that at least one program group with the least distance Programs is added, whereby at least one group is formed.
  • How many programs are combined in the shortest-spaced program group and how many programs are added to form a combined group depends on the specified grid period and the duration of the individual programs. It is advisable to choose the pure running time of the longest running group only so large that even if it is often interrupted by the synchro program at very high speed, it does not completely fill the raster time span, so there is still some time for further processing of the background program during leaves every grid period.
  • systems which calculate different numbers of sizes no longer differ in that different raster time periods are used, but rather in the same raster time period, the more interconnected groups are formed the more different arithmetic operations have to be carried out.
  • time-dependent programs are started when the specified grid time has expired. However, these programs are no longer a total group of all time-dependent programs, but the named different groups.
  • the time-independent programs are summarized in different groups. 3, as in FIG. 2, it is assumed that there are a total of four time-dependent programs ZAP1-ZAP4. In the example it has been assumed that the time-dependent programs ZAP1 and ZAP2 are combined to form a group GAKP with the shortest time-dependent programs. It can e.g. B. a program for calculating the integral value of a lambda controller and a program for integrating the signal of the lambda sensor in a lean concept. It is advisable to update the quantities mentioned relatively frequently, which is why they should be called up after each grid period, ie with the shortest possible distance.
  • the ZAP3 programs and ZAP4 are against it, e.g. B. Programs to compensate for disturbances through learning processes, e.g. B. to compensate for a multiplicative or an additive error in the injection time. It is sufficient to call these programs less frequently and to use correspondingly larger counter increments in integration processes than would be used if the corresponding programs were called after each raster period.
  • the combination of the GAKP group of shortest time-dependent programs with the time-dependent program 3 is referred to as the group group VG1 and the summary of GAKP with the time-dependent program 4 as the group group VG2.
  • the simplest embodiment of a device according to the invention and a method according to the invention work in such a way that the group GAKP, the shortest distance-dependent time-dependent programs, the group VG1 and the group VG2 are processed alternately at the beginning of each grid period.
  • the background program HGP continues to run during the times of the grid period in which the group programs mentioned do not run. All of these programs are interrupted by the synchro program.
  • each section comprises three groups of time-dependent programs and the background program is processed three times.
  • all groups of time-dependent programs are each formed by the GAKP group of shortest time-dependent programs.
  • the three groups are against it the groups GAKP, VG1 and VG2.
  • the first and second sections alternate from the beginning HGPA of the main program to the end HGPE.
  • FIG. 5 shows an exemplary embodiment in which the groups GAKP, VG1 and VG2 are started with different time periods.
  • the group of shortest time-dependent programs is started again at the end of each raster period ZSR, either as the sole group or as a sub-group within one of the group groups VG1 or VG2.
  • the group VG1 is started after three grid periods ZSR and the group VG2 after six grid periods ZSR.
  • the device according to the invention and the method according to the invention also make it possible to compensate for integration errors on average over time, as they arise when the time period between two start times of groups of time-dependent programs becomes longer than the raster time period.
  • This shift in the start time occurs inevitably in that it always occurs that the high-priority synchro program has to be processed when the raster time period has elapsed and a group of time-dependent programs should actually be started.
  • This error can lead to e.g. B. only 49 groups of time-dependent programs have been processed when 50 grid periods have already expired. This results in a deviation of the actual integration parameters from the actually required integration parameters. In the example, too little was integrated in one step.
  • This error cannot be corrected for the group of shortest-distance time-dependent programs, but for the less frequently started network groups, namely that if the sum of the time intervals with which a particular network group is called and the expected sum of raster time periods between half and one whole raster period, a group of GAKP shortest time-dependent programs is omitted. As a result, the actually missing integration step is caught up again for the association groups.
  • the method according to the invention can also be used advantageously in a device which is used for stereo control of an internal combustion engine.
  • two cylinder banks of an internal combustion engine which has two exhaust gas channels, each with a lambda probe and a catalytic converter, are controlled separately.
  • it is advantageous to regulate quantities that depend on the lambda value individually for the block but to use other quantities together, e.g. B. pre-tax values or tank adaptation values.
  • the known method according to FIGS. 1 and 2 results in a long duration of the entire group of time-dependent programs, which requires extensive adaptation of the integration parameters because of a very long raster time period.
  • a grid period of z. B. maintain 10 ms so that it is not necessary to adjust integration parameters solely for program execution reasons.

Abstract

A process and a device are useful for adjusting operating parameters of an internal combustion engine. Time-independent programs are executed during a low-priority background program, and programs dependent on the crank angle are executed during a high-priority synchronous program. The time-dependent programs are divided into various groups, including at least one group of shortest time-dependent programs and at least one composite group containing the group of shortest time-dependent programs. One group of time-dependent programs, i.e. either a group of shortest time-dependent programs or a composite group, is executed during a predetermined screen time-interval. This process and device make it possible to always use the same screen time-interval in systems of various degrees of complexity. This dispenses with the need to convert integration constants for constantly changing screen time-intervals.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Einstellen von Betriebsgrößen, insbesondere des Zündwinkels und/oder des Lambdawertes einer Brennkraftmaschine.The invention relates to a method and a device for setting operating variables, in particular the ignition angle and / or the lambda value of an internal combustion engine.

Stand der TechnikState of the art

In einer Vorrichtung zum Einstellen von Betriebsgrößen einer Brennkraftmaschine laufen Programme unterschiedlicher zeitlicher Priorität ab. Prioritätshoch sind alle Programme, die dafür zu sorgen haben, daß bei einem bestimmten Kurbelwinkel ein bestimmter Vorgang ausgelöst wird, z. B. gezündet wird oder mit dem Einspritzen von Kraftstoff begonnen wird oder dieser Vorgang beendet wird. Diese Programme synchronisieren somit in der Regel Vorgänge mit der Kurbelwellenumdrehung. Die Gesamtheit dieser Programme, die sehr kurz sind und kurbelwellenabhängig gestartet werden, wird im folgenden als Synchroprogramm bezeichnet. Prioritätsmäßig im Gegensatz zum Synchroprogramm stehen Programme, die z. B. Kennfelder oder Kennlinien auswerten, um Ausgangswerte für prioritätshöhere Programme bereitzustellen. Die Gesamtheit derartiger prioritätsniedriger Programme wird im folgenden als Hintergrundprogramm bezeichnet. Prioritätsmäßig zwischen dem Hintergrundprogramm und dem Synchroprogramm steht eine Gruppe zeitabhängiger Programme, die überwiegend irgendwelchen Integrationszwecken dienen. Für diese Programme ist es wichtig, daß sie in möglichst genau eingehaltenen Zeitabständen aufgerufen werden, wobei bei jedem Ablauf ein Wert, z. B. der Integralwert der Stellgröße zum Regeln des Lambdawertes um einen vorbestimmten Zählwert erhöht oder erniedrigt wird. Da der Zählwert festliegt, läßt sich eine gewünschte Integrationsgeschwindigkeit nur dann erzielen, wenn die Zeitspanne zwischen zwei Integrationsschritten möglichst konstant ist.In a device for setting operating variables of an internal combustion engine, programs of different temporal priority run. High priority are all programs that have to ensure that a certain process is triggered at a certain crank angle, e.g. B. is ignited or the injection of fuel is started or this process is ended. These programs usually synchronize processes with the crankshaft revolution. The entirety of these programs, which are very short and are started depending on the crankshaft, is referred to below as a synchro program. In priority to the synchro program are programs that, for. B. Evaluate maps or characteristic curves to provide output values for higher priority programs. The entirety of such lower priority Programs are referred to below as background programs. The priority between the background program and the synchro program is a group of time-dependent programs, which are mainly used for integration purposes. It is important for these programs that they are called up as precisely as possible, with a value, e.g. B. the integral value of the manipulated variable for regulating the lambda value is increased or decreased by a predetermined count value. Since the count value is fixed, a desired integration speed can only be achieved if the time period between two integration steps is as constant as possible.

Der Ablauf des Hintergrundprogrammes HGP von seinem Anfang HGPA bis zu seinem Ende HGPE und der Gruppe zeitabhängiger Programme GZAP gemäß dem Stand der Technik ist in Fig. 1 dargestellt. Abwechselnd wird die Gruppe zeitabhängiger Programme GZAP und Teile des Hintergrundprogrammes HGP abgearbeitet. Während der Ausführung des Hintergrundprogrammes wird überprüft, ob von einem Zeitgeber eine Flagge gesetzt ist, die anzeigt, daß seit dem letzten Start der Gruppe zeitabhängiger Programme eine vorgegebene Rasterzeitspanne ZSR abgelaufen ist. Diese Rasterzeitspanne beträgt z. B. 10 ms. Die reine Laufzeit der Gruppe zeitabhängiger Programme beträgt dagegen z. B. nur etwa 4 ms und die des Synchroprogrammes weniger als 1 ms. Nun ist es jedoch so, daß die Abarbeitung des Hintergrundprogrammes bzw. der Gruppe zeitabhängiger Programme immer wieder durch das prioritätshöchste Synchroprogramm unterbrochen wird. Dies hat zur Folge, daß die tatsächliche Laufdauer der Gruppe zeitabhängiger Programme bei hoher Drehzahl nicht mehr 4 ms sondern z. B. 8 ms beträgt. Für das Abarbeiten von Teilen des Hintergrundprogrammes innerhalb der Rasterzeitspanne verbleiben dann jeweils etwa 2 ms.The sequence of the background program HGP from its start HGPA to its end HGPE and the group of time-dependent programs GZAP according to the prior art is shown in FIG. 1. The group of time-dependent programs GZAP and parts of the background program HGP are processed alternately. During the execution of the background program, it is checked whether a timer has set a flag which indicates that a predetermined raster period ZSR has elapsed since the last start of the group of time-dependent programs. This grid period is z. B. 10 ms. The pure runtime of the group of time-dependent programs, however, is z. B. only about 4 ms and the synchro program less than 1 ms. However, it is now the case that the processing of the background program or the group of time-dependent programs is interrupted again and again by the highest-priority synchro program. As a result, the actual duration of the group of time-dependent programs at high speed is no longer 4 ms but z. B. is 8 ms. About 2 ms each then remain for the processing of parts of the background program within the raster period.

Verfahren und Vorrichtung zum Einstellen von Betriebsgrößen einer Brennkraftmaschine werden seit jeher in untershiedlichen Ausbaustufen hergestellt. In sehr einfachen Systemen werden nur wenige Einflußgrößen berücksichtigt und nur wenige Betriebsgrößen berechnet, während in umfangreichen Systemen erheblich mehr Berechnungen stattfinden und auch Lernvorgänge unterschiedlichster Art durchgeführt werden. Dies hat zur Folge, daß die Gruppe zietabhängiger Programme GZAP aus unterschiedlich vielen zeitabhängigen Programmen ZAP zusammengesetzt ist, beim Beispiel gemäß Fig. 2 z .B. aus vier zeitabhängigen Programmen ZAP1 - ZAP4. Je mehr Programme innerhalb der Gruppe zeitabhängiger Programme GZAP untergebracht sind, desto länger dauert das Abarbeiten dieser Gruppe. Dem wurde im Stand der Technik dadurch Rechnung getragen, daß die Rasterzeitspanne ZSR erhöht wurde. Betrug die reine Laufdauer der Gruppe z. B. 6 ms statt der oben genannten 4 ms, was bei hoher Drehzahl zu einer echten Laufzeit von 12 ms statt 8 ms führte, wurde die Rasterzeitspanne ZSR z. B. auf 14 ms festgelegt. Ein solches Verlängern der Rasterzeitspanne war möglich und ist nach wie vor problemlos möglich, da die genannten Zeiten bei weitem ausreichend kurz sind, um zeitabhängige Vorgänge mit ausreichender Genauigkeit abarbeiten zu können. Das Ändern der Rasterzeitspanne bringt jedoch den Nachteil mit sich, daß es erforderlich ist, Betriebsparameter an die geänderte Rasterzeitspanne anzupassen, z. B. die Zählschrittweisen in Integrationsvorgängen. Die konkrete Anwendung des Verfahrens und der Vorrichtung bei einer Brennkraftmaschine, die sogennante Applikation, ist dadurch mit verhältnismäßig großem Aufwand verbunden.The method and device for setting the operating parameters of an internal combustion engine have always been manufactured in various stages of expansion. In very simple systems, only a few influencing variables are taken into account and only a few operating variables are calculated, while in extensive systems considerably more calculations take place and learning processes of the most varied types are also carried out. This has the consequence that the group of time-dependent programs GZAP is composed of different numbers of time-dependent programs ZAP, for example in the example according to FIG. 2. from four time-dependent programs ZAP1 - ZAP4. The more programs within the group of time-dependent programs GZAP, the longer it takes to process this group. This has been taken into account in the prior art by increasing the grid period ZSR. Was the pure duration of the group z. B. 6 ms instead of the above 4 ms, which led to a real runtime of 12 ms instead of 8 ms at high speed, the raster time ZSR z. B. set to 14 ms. Such an extension of the grid period was possible and is still possible without any problems, since the times mentioned are by far sufficiently short to be able to process time-dependent processes with sufficient accuracy. However, changing the grid period has the disadvantage that it is necessary to adapt operating parameters to the changed grid period, e.g. B. the counting steps in integration processes. The concrete application of the method and the device in an internal combustion engine, the so-called application, is associated with a relatively great effort.

Ein Motorsteuerungsprogramm, das nicht mit einer Rasterzeitspanne arbeitet, ist aus der GB 2 058 406 bekannt. Dort werden zunächst Unterprogramme in Klassen verschiedener Priorität aufgegliedert. Die Abarbeitung von Programmen aus den verschiedenen Prioritätsklassen wird durch Interruptsignale ausgelöst, die entweder mit der Winkelstellung der Kurbelwelle oder mit bestimmten Zeitmarken im Gesamtprogrammablauf korrelieren. So ist es z.B. vorgesehen, bestimmte Programme mit einem Abstand von 10ms und andere Programme mit einem Abstand von 20 ms zu wiederholen. Wenn, wie in diesem Beispiel alle 20 ms, zwei Programme gleichzeitig gestartet werden sollen, entscheidet eine festgelegte Priorität, mit der jedes Programm ausgezeichnet ist, über die Reihenfolge der Abarbeitung. Diese Art der Interruptprogrammierung führt zwar zu einem ähnlichen Programmablauf wie eingangs geschildert, es werden dazu jedoch andere Verfahrensschritte (oder Mittel) verwendet.A motor control program which does not work with a raster time period is known from GB 2 058 406. First, subroutines are broken down into classes with different priorities. The execution of programs from the different priority classes is triggered by interrupt signals that correlate either with the angular position of the crankshaft or with specific time stamps in the overall program sequence. So it is e.g. intended to repeat certain programs with a distance of 10 ms and other programs with a distance of 20 ms. If, as in this example, two programs are to be started at the same time every 20 ms, a defined priority, with which each program is marked, decides on the sequence of execution. Although this type of interrupt programming leads to a similar program flow as described at the beginning, other method steps (or means) are used for this.

Der Erfindung liegt die Aufgabe zugrunde, eine leicht applizierbare Vorrichtung bzw. ein leicht applizierbares Verfahren zum Einstellen von Betriebsgrößen einer Brennkraftmaschine anzugeben.The invention is based on the object of specifying an easily applicable device or an easily applicable method for setting operating variables of an internal combustion engine.

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Verfahren ist durch die Merkmale von Anspruch 1 und die erfindungsgemäße Vorrichtung durch die Merkmale von Anspruch 5 gegeben. Vorteilhafte Weiterbildungen und Ausgestaltungen sind Gegenstand der Unteransprüche.The method according to the invention is given by the features of claim 1 and the device according to the invention by the features of claim 5. Advantageous further developments and refinements are the subject of the dependent claims.

Das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung zeichnen sich dadurch aus, daß die zeitabhängigen Programme nicht mehr in einer einzigen Gruppe gesammelt, sondern in verschiedene Gruppen eingeteilt sind, nämlich mindestens in eine abstandskürzeste Programmgruppe und abstandslängere Programme und daß an die abstandskürzeste Programmgruppe mindestens eines der abstandslängeren Programme angefügt ist, wodurch mindestens eine Verbundgruppe gebildet ist.The method and the device according to the invention are characterized in that the time-dependent programs are no longer collected in a single group, but are divided into different groups, namely at least one program group with the shortest distance and longer programs and that at least one program group with the least distance Programs is added, whereby at least one group is formed.

Wieviele Programme in der abstandskürzesten Programmgruppe zusammengefaßt werden und wieviele Programme zum Bilden einer Verbundgruppe jeweils angefügt werden, hängt vor der vorgegebenen Rasterzeitspanne und der Laufdauer der Einzelprogramme ab. Zweckmäßig ist es, die reine Laufdauer der längstlaufenden Verbundgruppe nur so groß zu wählen, daß sie auch dann, wenn sie bei sehr hoher Drehzahl oft durch das Synchroprogramm unterbrochen wird, die Rasterzeitspanne nicht ganz ausfüllt, also noch etwas Zeit zum weiteren Abarbeiten des Hintergrundprogrammes während jeder Rasterzeitspanne läßt.How many programs are combined in the shortest-spaced program group and how many programs are added to form a combined group depends on the specified grid period and the duration of the individual programs. It is advisable to choose the pure running time of the longest running group only so large that even if it is often interrupted by the synchro program at very high speed, it does not completely fill the raster time span, so there is still some time for further processing of the background program during leaves every grid period.

Beim erfindungsgemäßen Verfahren und der erfindungsgemäßen Vorrichtung unterscheiden sich System, die unterschiedlich viele Größen berechnen, nicht mehr dadurch, daß unterschiedliche Rasterzeitspannen verwendet werden, sondern daß bei gleicher Rasterzeitspanne umsomehr Verbundgruppen gebildet werden, je mehr unterschiedliche Rechenoperationen auszuführen sind. Wie beim Stand der Technik werden jeweils dann zeitabhängige Programme gestartet, wenn die vorgegebene Rasterzeitspanne abgelaufen ist. Bei diesen Programmen handelt es sich jedoch nicht mehr um eine Gesamtgruppe aller zeitabhängiger Programme, sondern um die gennanten unterschiedlichen Gruppen.In the method and the device according to the invention, systems which calculate different numbers of sizes no longer differ in that different raster time periods are used, but rather in the same raster time period, the more interconnected groups are formed the more different arithmetic operations have to be carried out. As in the prior art, time-dependent programs are started when the specified grid time has expired. However, these programs are no longer a total group of all time-dependent programs, but the named different groups.

Aus programmtechnischen Gründen ist es von besonderem Vorteil, das Verfahren so ablaufen zu lassen, daß in einem ersten Programmbearbeitungsabschnitt an zeitabhängigen Programmen nur jeweils die abstandskürzeste Programmgruppe und in einem anschließenden zweiten Programmbearbeitungsabschnitt an zeitabhängigen Programmen jeweils nur Verbundgruppen aufgerufen und abgearbeitet werden und erste und zweite Abschnitte dauernd aufeinander folgen.For technical reasons, it is particularly advantageous to run the procedure in such a way that in a first program processing section on time-dependent programs, only the shortest-distance program group is called up and in a subsequent second program processing section on time-dependent programs, only compound groups and first and second sections are called up and processed follow each other continuously.

Wie oben erwähnt, wird während des Ausführens des Hauptprogramms dauernd geprüft, ob die Flagge gesetzt ist, die den Ablauf der Rasterzeitspanne anzeigt. Nun ist es so, daß gerade dann, wenn diese Überprüfung erfolgt, das prioritätshohe Synchroprogramm abzuarbeiten ist. Dann verzögert sich der Start der zeitabhängigen Programme. Eine solche Verzögerung kann auch bei extrem hohen Drehzahlen auftreten, bei denen das Abarbeiten der zeitabhängigen Programme so oft durch das Synchroprogramm unterbrochen wird, daß die Gesamtlaufzeit zumindest der längstlaufenden Verbundgruppe die Rasterzeitspanne überschreitet. Eine Weiterbildung der Erfindung sieht vor, daß durch eine Zeitmeßeinrichtung die genannte Verschiebung gemessen wird und dann, wenn diese Verschiebung einen vorgegebenen Wert überschreitet, das Abarbeiten einer abstandskürzesten Programmgruppe ausgelassen wird. Dadurch wirken sich die genannten Verschiebungen auf von Verbundgruppenprogrammen ausgeführten Integrationsverfahren kaum aus.As mentioned above, it is continuously checked during the execution of the main program whether the flag which indicates the expiration of the raster time period is set. It is the case that the high-priority synchro program must be processed precisely when this check is carried out. Then the start of the time-dependent programs is delayed. Such a delay can also occur at extremely high speeds, at which the processing of the time-dependent programs is interrupted by the synchro program so often that the total runtime, at least for the longest running group of groups, exceeds the raster time span. A further development of the invention provides that the mentioned displacement is measured by a time measuring device and, if this displacement exceeds a predetermined value, the execution of a program group with the shortest distance is omitted. As a result, the shifts mentioned have hardly any effect on integration processes carried out by joint group programs.

Die Erfindung wird im folgenden anhand von durch Figuren 3 - 5 veranschaulichten Ausführungsbeispielen näher erläutert. Es zeigen:

  • Fig. 1 ein Diagramm betreffend die Ablauffolge unterschiedlicher Programme beim Stand der Technik;
  • Fig. 2 ein Zeitdiagramm betreffend das Zusammenfassen zeitabhängiger Programme beim Stand der Technik;
  • Fig. 3 Diagramme betreffend das Aufteilen zeitabhängiger Programme in unterschiedliche Gruppen; und
  • Fig. 4 und 5 Diagramme betreffend zwei Ausführungsbeispiele der Aufeinanderfolge unterschiedlicher Gruppen zeitabhängiger Programme.
The invention is explained in more detail below on the basis of exemplary embodiments illustrated by FIGS. 3-5. Show it:
  • 1 shows a diagram relating to the sequence of different programs in the prior art;
  • 2 shows a time diagram relating to the combination of time-dependent programs in the prior art;
  • 3 shows diagrams relating to the division of time-dependent programs into different groups; and
  • 4 and 5 diagrams relating to two exemplary embodiments of the sequence of different groups of time-dependent programs.

Beschreibung von AusführungsbeispielenDescription of exemplary embodiments

Wie bereits erläutert, werden beim erfindungsgemäßen Verfahren und der erfindungsgemäßen Vorrichtung die zeitunabhängigen Programme in verschiedenen Gruppen zusammengefaßt. Bei der Veranschaulichung durch Fig. 3 ist wie bei Fig. 2 davon ausgegangen, daß insgesamt vier zeitabhängige Programme ZAP1 - ZAP4 bestehen. Im Beispiel ist davon ausgegangen, daß die zeitabhängigen Programme ZAP1 und ZAP2 zu einer Gruppe GAKP abstandskürzester zeitabhängiger Programme zusammengefaßt sind. Es kann dies z. B. ein Programm zum Berechnen des Integralwertes eines Lambdareglers und ein Programm zum Integrieren des Signales der Lambdasonde bei einem Magerkonzept sein. Es ist zweckmäßig, die genannten Größen relativ häufig zu aktualisieren, weswegen diese nach Ablauf jeder Rasterzeitspanne, also mit dem kürzest möglichen Abstand, aufgerufen werden sollen. Die Programme ZAP3 und ZAP4 seien dagegen, z. B. Programme zum Kompensieren von Störgrößen durch Lernverfahren, z. B. zum Kompensieren eines multiplikativen bzw. eines additiven Fehlers in der Einspritzzeit. Es reicht aus, diese Programme seltener aufzurufen und dafür entsprechend größere Zählerschrittweiten in Integrationsverfahren zu benutzen, als sie verwendet würden, wenn die entsprechenden Programme nach Ablauf jeder Rasterzeitspanne aufgerufen würden. Die Zusammenfassung der Gruppe GAKP abstandskürzester zeitabhängiger Programme mit dem zeitabhängigen Programm 3 ist als Verbundgruppe VG1 und die Zusammenfassung von GAKP mit dem zeitabhängigen Programm 4 als Verbundgruppe VG2 bezeichnet.As already explained, in the method and the device according to the invention, the time-independent programs are summarized in different groups. 3, as in FIG. 2, it is assumed that there are a total of four time-dependent programs ZAP1-ZAP4. In the example it has been assumed that the time-dependent programs ZAP1 and ZAP2 are combined to form a group GAKP with the shortest time-dependent programs. It can e.g. B. a program for calculating the integral value of a lambda controller and a program for integrating the signal of the lambda sensor in a lean concept. It is advisable to update the quantities mentioned relatively frequently, which is why they should be called up after each grid period, ie with the shortest possible distance. The ZAP3 programs and ZAP4 are against it, e.g. B. Programs to compensate for disturbances through learning processes, e.g. B. to compensate for a multiplicative or an additive error in the injection time. It is sufficient to call these programs less frequently and to use correspondingly larger counter increments in integration processes than would be used if the corresponding programs were called after each raster period. The combination of the GAKP group of shortest time-dependent programs with the time-dependent program 3 is referred to as the group group VG1 and the summary of GAKP with the time-dependent program 4 as the group group VG2.

Die einfachste Ausführungsform einer erfindungsgemäßen Vorrichtung und eines erfindungsgemäßen Verfahren arbeiten so, daß abwechselnd mit Beginn einer jeden Rasterzeitspanne die Gruppe GAKP abstandskürzester zeitabhängiger Programme, die Verbundgruppe VG1 und die Verbundgruppe VG2 abgearbeitet werden. Innerhalb der Zeiten der Rasterzeitspanne, in denen die genannten Gruppenprogramme nicht laufen, läuft das Hintergrundprogramm HGP weiter. Alle diese Programme werden jeweils vom Synchroprogramm unterbrochen.The simplest embodiment of a device according to the invention and a method according to the invention work in such a way that the group GAKP, the shortest distance-dependent time-dependent programs, the group VG1 and the group VG2 are processed alternately at the beginning of each grid period. The background program HGP continues to run during the times of the grid period in which the group programs mentioned do not run. All of these programs are interrupted by the synchro program.

Eine aus programmtechnischen Gründen vorteilhaftere Ausführungsform ist in Fig. 4 dargestellt. In einem ersten Zeitabschnitt wechseln sich nur das Hintergrundprogramm HGP und die Gruppe GAKP ab. In einem zweiten Zeitabschnitt werden dann auch die Verbundgruppen abgearbeitet. Beim dargestellten Ausführungsbeispiel umfaßt jeder Abschnitt drei Gruppen zeitabhängiger Programme und dreimal wird das Hintergrundprogramm weiterbearbeitet. Im ersten Abschnitt sind alle Gruppen zeitabhängiger Programme jeweils durch die Gruppe GAKP abstandskürzester zeitabhängiger Programme gebildet. Im zweiten Abschnitt sind die drei Gruppen dagegen die Gruppen GAKP, VG1 und VG2. Der erste und der zweite Abschnitt folgen vom Anfang HGPA des Hauptprogramms bis zu dessen Ende HGPE abwechselnd aufeinander.An embodiment which is more advantageous for technical reasons is shown in FIG. 4. In the first period only the background program HGP and the group GAKP take turns. In a second period of time, the composite groups will also be processed. In the exemplary embodiment shown, each section comprises three groups of time-dependent programs and the background program is processed three times. In the first section, all groups of time-dependent programs are each formed by the GAKP group of shortest time-dependent programs. In the second section, the three groups are against it the groups GAKP, VG1 and VG2. The first and second sections alternate from the beginning HGPA of the main program to the end HGPE.

Fig. 5 zeigt ein Ausführungsbeispiel, bei dem die Gruppen GAKP, VG1 und VG2 mit unterschiedlichen Zeitspannen gestartet werden. Die Gruppe abstandskürzester zeitabhängiger Programme wird wieder mit Ablauf jeder Rasterzeitspanne ZSR gestartet, und zwar entweder als alleinige Gruppe oder als Teilgruppe innerhalb einer der Verbundgruppen VG1 oder VG2. Die Verbundgruppe VG1 wird jeweils nach drei Rasterzeitspannen ZSR und die Verbundgruppe VG2 nach sechs Rasterzeitspannen ZSR gestartet.FIG. 5 shows an exemplary embodiment in which the groups GAKP, VG1 and VG2 are started with different time periods. The group of shortest time-dependent programs is started again at the end of each raster period ZSR, either as the sole group or as a sub-group within one of the group groups VG1 or VG2. The group VG1 is started after three grid periods ZSR and the group VG2 after six grid periods ZSR.

Die vorstehenden Beispiele machen deutlich, daß die erfindungsgemäße Vorrichtung und das erfindungsgemäße Verfahren sehr flexibel sind und es ermöglichen, bei Systemen unterschiedlichster Kompliziertheit mit derselben Rasterzeitspanne ZSR, z. B. einer Zeitspanne von 10 ms auszukommen. Über herkömmliche Funktionsmittel hinaus wird nur ein Mittel benötigt, das das Einhalten der gewünschten Abarbeitungsfolge der Gruppen zeitabhängiger Programme überwacht.The above examples make it clear that the device according to the invention and the method according to the invention are very flexible and make it possible to use the same raster time period ZSR, z. B. a period of 10 ms. In addition to conventional functional means, only one means is required that monitors compliance with the desired processing sequence of the groups of time-dependent programs.

Die erfindungsgemäße Vorrichtung und das erfindungsgemäße verfahren ermöglichen es darüberhinaus, Integrationsfehler im zeitlichen Mittel auszugleichen, wie sie entstehen, wenn die Zeitspanne zwischen zwei Startzeitpunkten von Gruppen zeitabhängiger Programme länger wird als die Rasterzeitspanne. Diese Verschiebung des Startzeitpunktes tritt unvermeidbar dadurch auf, daß immer wieder der Fall eintritt, daß gerade das prioritätshohe Synchroprogramm abzuarbeiten ist, wenn die Rasterzeitspanne verstrichen ist und eigentlich eine Gruppe zeitabhängiger Programme gestartet werden sollte. Dieser Fehler kann dazu führen, daß z. B. erst 49 Gruppen zeitabhängiger Programme abgearbeitet sind, wenn bereits 50 Rasterzeitspannen abgelaufen sind. Dadurch ergibt sich eine Abweichung tatsächlicher Integrationsgrößen von eigentlich vorausgesetzten Integrationsgrößen. Im Beispielsfall wurde über einen Schritt zu wenig integriert. Dieser Fehler läßt sich für die Gruppe abstandskürzester zeitabhängiger Programme nicht beheben, jedoch für die seltener gestarteten Verbundgruppen, nämlich dadurch, daß dann, wenn die Summe der Zeitabstände, mit denen eine bestimmte Verbundgruppe aufgerufen wird und der erwarteten Summe von Rasterzeitspannen zwischen einer halben und einer ganzen Rasterzeitspanne liegt, eine Gruppe GAKP abstandskürzester zeitabhängiger Programme ausgelassen wird. Dadurch wird für die Verbundgruppen der eigentlich fehlende Integrationsschritt wieder eingeholt.The device according to the invention and the method according to the invention also make it possible to compensate for integration errors on average over time, as they arise when the time period between two start times of groups of time-dependent programs becomes longer than the raster time period. This shift in the start time occurs inevitably in that it always occurs that the high-priority synchro program has to be processed when the raster time period has elapsed and a group of time-dependent programs should actually be started. This error can lead to e.g. B. only 49 groups of time-dependent programs have been processed when 50 grid periods have already expired. This results in a deviation of the actual integration parameters from the actually required integration parameters. In the example, too little was integrated in one step. This error cannot be corrected for the group of shortest-distance time-dependent programs, but for the less frequently started network groups, namely that if the sum of the time intervals with which a particular network group is called and the expected sum of raster time periods between half and one whole raster period, a group of GAKP shortest time-dependent programs is omitted. As a result, the actually missing integration step is caught up again for the association groups.

Das erfindungsgemäße Verfahren läßt sich auch mit Vorteil bei einer Vorrichtung verwenden, die zur Stereoregelung einer Brennkraftmaschine dient. Bei der Stereoregelung werden zwei Zylinderbänke einer Brennkraftmaschine, die zwei Abgaskanäle mit jeweils einer Lambdasonde und einem Katalysator aufweist, gesondert geregelt. Bei dieser Regelung ist es von Vorteil, Größen, die vom Lambdawert abhängen, blockindividuell zu regeln, andere Größen dagegen gemeinsam zu verwenden, z. B. Vorsteuerwerte oder Tankadaptionswerte. Da bei dieser Anwendung in der Vorrichtung Teilprogramme für die beiden Zylinderbänke gesondert auszuführen sind, ergibt sich beim bekannten Verfahren gemäß den Fig. 1 und 2 eine lange Laufdauer der Gesamtgruppe zeitabhängiger Programme, was eine umfangreiche Anpassung der Integrationsparameter wegen sehr langer Rasterzeitspanne erfordert. Wird aber an einer solchen Vorrichtung das erfindungsgemäße Verfahren angewandt, kann auch hier eine für ein Systemkonzept einheitliche Rasterzeitspanne von z. B. 10 ms beibehalten werden, so daß ein Anpassen von Integrationsparametern alleine aus Programmablaufgründen nicht erforderlich ist.The method according to the invention can also be used advantageously in a device which is used for stereo control of an internal combustion engine. In the stereo control, two cylinder banks of an internal combustion engine, which has two exhaust gas channels, each with a lambda probe and a catalytic converter, are controlled separately. With this regulation, it is advantageous to regulate quantities that depend on the lambda value individually for the block, but to use other quantities together, e.g. B. pre-tax values or tank adaptation values. Since, in this application, partial programs for the two cylinder banks are to be executed separately in the device, the known method according to FIGS. 1 and 2 results in a long duration of the entire group of time-dependent programs, which requires extensive adaptation of the integration parameters because of a very long raster time period. However, if the method according to the invention is applied to such a device, a grid period of z. B. maintain 10 ms so that it is not necessary to adjust integration parameters solely for program execution reasons.

Bei den Ausführungsbeispielen wurde davon ausgegangen, daß nur eine einzige Gruppe GAKP abstandskürzester zeitabhängiger Programme vorhanden ist. Es ist jedoch auch möglich, mehrere solcher Gruppen vorzusehen, z. B. zwei Gruppen abstandskürzester zeitabhängiger Programme, die kein Programm miteinander gemeinsam haben. Diese werden dann derartig mit weiteren zeitabhängigen Programmen zu Verbundgruppen zusammengesetzt und dann abgearbeitet, daß immer abwechselnd die eine Gruppe abstandskürzester zeitabhängiger Programme und dann die andere bearbeitet wird, sei es als einzelne Gruppe oder als Verbundgruppe mit mindestens einem weiteren zeitabhängigen Programm.In the exemplary embodiments, it was assumed that there is only a single group of GAKP-shortest time-dependent programs. However, it is also possible to provide several such groups, e.g. B. two groups of shortest time-dependent programs that have no program in common. These are then combined with other time-dependent programs to form composite groups and then processed so that one group of the shortest-spaced time-dependent programs and then the other is processed alternately, whether as a single group or as a composite group with at least one other time-dependent program.

Claims (6)

1. Process for setting operating parameters of an internal-combustion engine, in which time-independent programs are executed in a low-priority background program, programs dependent on the crank angle are executed in a high-priority synchroprogram and time-dependent programs are executed at a mutual interval of at least one predetermined grid interval, characterized in that the time-dependent programs are divided into different groups, namely at least into a program group of shortest interval (GAKP) and programs of longer interval, and in that at least one of the programs of longer interval (ZAP3, ZAP4) is added to the program group of shortest interval, thereby forming at least one composite group (VG1, VG2), all the time-dependent programs being contained in the groups as a whole, and in that the program group of shortest interval or one of the composite groups is started when the grid interval (ZSR) has elapsed and the previously started group of time-dependent programs of shortest interval or composite group is run through, and in that the run-through sequence of the groups is controlled, if appropriate variably.
2. Process according to Claim 1, characterized in that different composite groups are called up at different, respectively predetermined intervals and then run through.
3. Process according to Claim 1, characterized in that, in a first program-processing segment of time-dependent programs, only the group of time-dependent programs of shortest interval is called up and run through and, in a subsequent second program-processing segment of time-dependent programs, only composite groups are called up and run through, and first and second segments succeed one another continuously.
4. Process according to one of Claims 1 to 3, characterized in that the sum of the intervals in which a specific composite group is called up is measured and compared with an expected sum of grid intervals and, when the difference of the sums amounts to between one half and a full grid interval, a group of time-dependent programs of shortest interval (GAKP) is omitted.
5. Device for setting operating parameters of an internal-combustion engine, in which device time-independent programs are executed in a low-priority background program, programs dependent on the crank angle are executed in a high-priority synchroprogram and time-dependent programs are executed at a mutual interval of at least one predetermined grid interval, characterized in that the time-dependent programs (ZAP1 - ZAP4) are divided into different groups, namely into at least one group of time-dependent programs of shortest interval (GAKP) and programs of longer interval (ZAP3, ZAP4), and in that at least one of the programs of longer interval is added to the group of time-dependent programs of shortest interval, thereby forming at least one composite group (VG1, VG2), all the time-dependent programs being contained in the groups as a whole, and in that means are provided to start the program group of shortest interval or one of the composite groups when the grid interval has elapsed and the previously started group of time-dependent programms of shortest interval or composite group is run through, and means being provided for controlling the run-through sequence of the groups, if appropriate variably.
6. Device according to Claim 5, characterized in that it serves for setting the operating parameters of an internal-combustion engine with two cylinder banks and two separate exhaust-gas channels, each with a lambda probe and a catalytic converter, and for this purpose has means for causing various time-dependent programs to be executed twice, namely once for each cylinder bank, within a program segment.
EP89908389A 1988-08-04 1989-07-21 Process and device for adjusting operating parameters of an internal combustion engine Expired - Lifetime EP0382823B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3826526 1988-08-04
DE3826526A DE3826526A1 (en) 1988-08-04 1988-08-04 METHOD AND DEVICE FOR ADJUSTING THE OPERATING SIZE OF AN INTERNAL COMBUSTION ENGINE

Publications (2)

Publication Number Publication Date
EP0382823A1 EP0382823A1 (en) 1990-08-22
EP0382823B1 true EP0382823B1 (en) 1992-04-01

Family

ID=6360244

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89908389A Expired - Lifetime EP0382823B1 (en) 1988-08-04 1989-07-21 Process and device for adjusting operating parameters of an internal combustion engine

Country Status (6)

Country Link
US (1) US5162999A (en)
EP (1) EP0382823B1 (en)
JP (1) JP2740317B2 (en)
KR (1) KR0147075B1 (en)
DE (2) DE3826526A1 (en)
WO (1) WO1990001629A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2819836B2 (en) * 1991-01-23 1998-11-05 日産自動車株式会社 Self-diagnosis device for internal combustion engine
DE4241790B4 (en) * 1992-12-11 2016-06-09 Robert Bosch Gmbh Method and device for operating control devices, in particular for vehicles
DE59302747D1 (en) * 1993-01-28 1996-07-04 Siemens Ag Engine control
DE59303660D1 (en) * 1993-02-25 1996-10-10 Siemens Ag Engine control
DE59306821D1 (en) 1993-04-29 1997-07-31 Siemens Ag Electronic control
DE4410775C2 (en) * 1994-03-28 2000-04-06 Daimler Chrysler Ag Control unit and operating method of an operating system for this control unit
DE19757875C2 (en) 1997-12-24 2001-11-29 Bosch Gmbh Robert Method for operating an internal combustion engine, in particular a motor vehicle
JP3578082B2 (en) * 2000-12-20 2004-10-20 株式会社デンソー Processing execution device and recording medium

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51152716U (en) * 1975-05-30 1976-12-06
EP0017219B1 (en) * 1979-04-06 1987-10-14 Hitachi, Ltd. Electronic type engine control method and apparatus
JPS5638542A (en) * 1979-09-05 1981-04-13 Hitachi Ltd Controlling method for engine
DE3224030A1 (en) * 1982-06-28 1983-12-29 Robert Bosch Gmbh, 7000 Stuttgart METHOD FOR CONTROLLING A MICROCALCULATOR
JPH06100155B2 (en) * 1985-12-20 1994-12-12 本田技研工業株式会社 Calculation processing method of engine control device
US4954948A (en) * 1986-12-29 1990-09-04 Motorola, Inc. Microprocessor operating system for sequentially executing subtasks
DE3733717A1 (en) * 1987-10-06 1989-04-20 Deutsche Fernsprecher Gmbh Circuit for programming a telephony system or a telecommunication terminal

Also Published As

Publication number Publication date
KR0147075B1 (en) 1998-08-17
DE58901094D1 (en) 1992-05-07
DE3826526A1 (en) 1990-02-08
WO1990001629A1 (en) 1990-02-22
JP2740317B2 (en) 1998-04-15
US5162999A (en) 1992-11-10
KR900702208A (en) 1990-12-06
EP0382823A1 (en) 1990-08-22
JPH03500438A (en) 1991-01-31

Similar Documents

Publication Publication Date Title
DE19527218B4 (en) Method and device for regulating the smooth running of an internal combustion engine
DE2633617C2 (en) Method and device for determining setting variables in an internal combustion engine, in particular the duration of fuel injection pulses, the ignition angle, the exhaust gas recirculation rate
DE102008054690B4 (en) Method and device for calibrating partial injections in an internal combustion engine, in particular a motor vehicle
DE102008043165B4 (en) Method and device for calibrating the pre-injection quantity of an internal combustion engine, in particular a motor vehicle
EP0483166B1 (en) Sequential fuel injection process
DE3423144C2 (en) Method for controlling the supply of fuel to an internal combustion engine during acceleration
DE3929746A1 (en) METHOD AND DEVICE FOR CONTROLLING AND REGULATING A SELF-IGNITIONING INTERNAL COMBUSTION ENGINE
EP0152604A1 (en) Control and regulation method for the operating parameters of an internal-combustion engine
EP0154710A1 (en) Control apparatus for controlling the operating parameters of an internal-combustion engine
EP0375758B1 (en) A method and device for lambda control with several probes
DE3033526A1 (en) ELECTRONIC CONTROL METHOD FOR INTERNAL COMBUSTION ENGINES
DE3221640A1 (en) METHOD AND DEVICE FOR THE OPTIMAL CONTROL OF INTERNAL COMBUSTION ENGINES
DE4140527A1 (en) CONTROL DEVICE FOR THE AIR / FUEL RATIO FOR USE IN AN INTERNAL COMBUSTION ENGINE
DE19516239A1 (en) Parameter setting method for IC engine linear lambda regulator
EP0382823B1 (en) Process and device for adjusting operating parameters of an internal combustion engine
DE102005038492B4 (en) Method and device for determining the offset of a calculated or measured lambda value
DE60203223T2 (en) Fuel injection control for internal combustion engine
EP0449851B1 (en) Processes for metering fuel
DE4319677A1 (en) Method and device for regulating the smooth running of an internal combustion engine
DE3202614C2 (en)
EP1311751B1 (en) Method and device for controlling an internal combustion engine
DE3423110C2 (en)
DE10221337B4 (en) Method and device for correcting an amount of fuel that is supplied to an internal combustion engine
DE4322319C2 (en) Method and device for controlling an internal combustion engine
DE102011077698A1 (en) Method for controlling smooth running of e.g. diesel engine used in motor vehicle, involves assigning working cycles for each cylinder so as to control smooth running of internal combustion engine via two working cycles of cylinder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900317

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19910131

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 58901094

Country of ref document: DE

Date of ref document: 19920507

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080726

Year of fee payment: 20

Ref country code: FR

Payment date: 20080718

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080723

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080925

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20090720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090720