EP0375758B1 - A method and device for lambda control with several probes - Google Patents

A method and device for lambda control with several probes Download PDF

Info

Publication number
EP0375758B1
EP0375758B1 EP89906022A EP89906022A EP0375758B1 EP 0375758 B1 EP0375758 B1 EP 0375758B1 EP 89906022 A EP89906022 A EP 89906022A EP 89906022 A EP89906022 A EP 89906022A EP 0375758 B1 EP0375758 B1 EP 0375758B1
Authority
EP
European Patent Office
Prior art keywords
phase
control
values
lambda
control circuits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89906022A
Other languages
German (de)
French (fr)
Other versions
EP0375758A1 (en
Inventor
Winfried Moser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0375758A1 publication Critical patent/EP0375758A1/en
Application granted granted Critical
Publication of EP0375758B1 publication Critical patent/EP0375758B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • F02D41/1443Plural sensors with one sensor per cylinder or group of cylinders

Definitions

  • the invention relates to a method and a device for lambda control for an internal combustion engine with at least two lambda sensors.
  • the plurality of probes are located in successive locations in the exhaust gas duct of the internal combustion engine.
  • the lambda probes are attached to the same position in different subchannels of the exhaust gas duct system.
  • the invention relates to an arrangement of the latter type.
  • Such an arrangement is provided, for example, for the methods and devices according to DE-A1-22 55 874 and DE-A1-27 13 988.
  • one lambda probe is arranged in the exhaust subchannel in each case one half of a V-engine in front of that point before the two subchannels are brought together to form a manifold in which a catalyst is arranged.
  • the signals from the two probes serve to supply actual values for two separate control loops, one of which is assigned to one engine half.
  • the signals from both probes serve as actual values for a single control loop.
  • the controller increases, decreases or leaves the manipulated value unchanged.
  • the manipulated variable is wobbled so that the mixture, overlaid with the usual oscillation of the two-point controller, constantly and quickly changes between rich and lean.
  • the two control loops are controlled so that there is a phase difference of 180 ° between their control vibrations.
  • the method described allows improvements, in particular in the manner in which the synchronization of the control vibrations is carried out.
  • the known methods and devices serve to supply air / fuel mixtures which lead to exhaust gas of such a type that pollutants still present in the exhaust gas can be optimally converted by a catalytic converter.
  • the invention has for its object to provide a method for lambda control for an internal combustion engine with at least two lambda sensors in the same position, which allows even better pollutant conversion than previous methods.
  • the invention is also based on the object of specifying a device for carrying out such a method.
  • the invention uses the following consideration. With a two-point lambda control, the lambda value continuously oscillates between rich and lean. The greater the amplitude of these vibrations, the lower the relative pollutant conversion of the catalytic converter. If two control loops are now used instead of one control loop, it must be possible to adapt the vibrations in the two circles to one another such that the mixture in one control loop just swings in the rich direction when the mixture in the other control loop swings in the lean direction.
  • the exhaust gases of the rich mixture come together in the collecting pipe in front of the catalytic converter and lead there to exhaust gas with approximately lambda value 1.
  • the lambda value of the exhaust gas will hardly oscillate any more if the phase shift is approximately half a period of oscillation.
  • the known methods mentioned at the outset are intended for engines in which, due to their structure, very long exhaust gas ducts exist, especially for V-engines.
  • the method according to the invention has advantages for all types of motors, that is to say also for. B. in a four-cylinder in-line engine.
  • a probe can be arranged in each outlet connection, to which a control loop is assigned.
  • the phase shifts between the four control loops are set so that mixed exhaust gas with essentially lambda value 1 is produced in the collecting duct, or that for the reason mentioned above there is still a small residual lambda vibration in the mixed exhaust gas.
  • the phase correction can be carried out particularly easily if reference is made continuously to the phase of a specific control loop.
  • the regulation on the other hand, becomes faster if the earliest vibration is variably referred to.
  • the method according to the block diagram of FIG. 1 works on an internal combustion engine 12 with a first cylinder bank 13.I and a second cylinder bank 13.II.
  • a first injection valve arrangement 15.I is present in the intake duct 14.I for the first cylinder bank 13.I.
  • a corresponding second injection valve arrangement 15.II is located in the second intake duct 14.II.
  • a first lambda probe 17.1 is arranged in the exhaust gas duct 16.I and a second lambda probe 17.2 is accordingly arranged in the second exhaust gas duct 16.II.
  • the two exhaust gas sub-channels open into a collecting channel 18 in which a catalytic converter 19 is arranged.
  • the method for regulating the mixture composition for the first cylinder bank 13.I is explained in broad outline below with additional reference to FIG. 2.
  • the first injection valve arrangement 15.I is supplied with a first injection time signal TI.I, which is formed by multiplying a signal TIV (n, L) for a predetermined injection time by a control factor FR.I in a multiplication step 20.I.
  • the control factor FR.I is the manipulated variable output by a control step 21.I in response to a control deviation signal RAW.I.
  • the control deviation value RAW.I is formed by subtracting the signal Lambda-Ist.I from the first lambda probe 17.I from a lambda setpoint in a subtraction step 22.I.
  • Corresponding method steps are carried out in the control circuit which adjusts the mixture supplied to the second cylinder bank 13.II.
  • Actual control loops are structured in a considerably refined manner.
  • different disturbance variable correction steps are available, and adaptation methods are used which have the purpose of continuously adapting different correction values to changing conditions.
  • the signal ⁇ s of a lambda probe such as is used for two-point control, has jump behavior from the transition from rich to lean, as is shown in FIG. 2a.
  • the actual course of lambda, which leads to this jump signal is shown in FIG. 2c. 2b, which shows the timing of a control factor FR, be it the control factor FR.I for the first control loop or the factor FR.II for the second control loop to understand how the actual signal curve comes about. If the probe signal ⁇ s jumps from rich to lean or vice versa, the control deviation signal RAW passes through the value 0 in one direction or the other.
  • the integration direction of the control step 21 changes, as a result of which enrichment takes place as soon as the probe signal has jumped to lean, and is thinned out as soon as it has jumped to rich.
  • the control factor FR reaches the value 1
  • TIV n, L
  • n speed; L - load-indicating signal
  • FIG. 2c shows not only the time profile of the control factor, but also the time profile of the control factor, but also the time profile of the lambda value on the injection side.
  • the time profile of the lambda value on the exhaust gas side according to FIG. 2c is shifted by the dead time TT.
  • the turning points are also somewhat flattened, but this is not important for the explanation of the following.
  • FIGS. 3 and 4 corresponds to that of FIG. 2c, however, with the addition that instead of the course of the lambda signal for a single control loop, the courses for two control loops are shown.
  • Fig. 3 it is assumed that the lambda signal ⁇ Ist.II for the second control loop compared to the lambda signal ⁇ Ist.I for the first control loop is shifted by a phase shift PS which corresponds to half the oscillation period SP. 4, however, the phase shift PS is only a quarter of an oscillation period.
  • the mixture in the first control loop reaches the greatest value in the rich direction when the mixture in the second control loop reaches the greatest value in the lean direction and vice versa.
  • the lambda values are opposite to each other in relation to the lambda value 1.
  • the consequence of this for the lambda value ⁇ .18 in the collecting channel 18 is that it remains essentially at the value 1.
  • the phase shift is more or less - as shown in FIG. 4 - than a half oscillation period
  • the oscillation amplitude of the lambda value of the mixed exhaust gas can be determined by the extent of the phase shift. The value to be used in practice depends on the properties of the type of catalyst used in each case.
  • the method according to FIG. 1 has a phase calculation step 23 which calculates the phase shift between the two control loop vibrations from the control deviation signals RAW.I and RAW.II.
  • the actual phase shift value is compared in a phase correction step with the target phase shift value, and in the event of a deviation, the phase of one oscillation is shifted relative to the other in such a way that the desired phase shift value is set.
  • FIGS. 5-11. 5-8 relate to the method according to FIG. 1, while FIGS. 10 and 11 relate to a modified method, which is explained below with reference to FIG. 9.
  • phase-shifted control factors (corresponding to FIG. 2b) are no longer shown, but phase-shifted.
  • the course of the control factor FR.I is drawn through and the course of the control factor FR.II is shown in dash-dot lines.
  • the course of the respective reference phase is shown in dashed lines. Reference points, from which the phase shift is measured, are given by dots shown in bold. In all cases it is assumed that the target phase shift should correspond to half an oscillation period.
  • the phase of the signal FR.I is the reference phase and the jump from lambda to lean night is the reference point. This corresponds to the reversal point in the control factor from increasing to decreasing.
  • the course of the signal FR.II is determined at each of these times in the signal FR.I.
  • the reversal point is not triggered directly by the jump in the associated probe signal, but with the help of the reference point in signal FR.I. According to FIG. 5a, this occurs with the lagging signal FR.II in that it is determined at the reference time that the associated probe signal has not yet jumped for the signal FR.II.
  • the time ⁇ PS is then measured, which passes until the probe signal associated with the signal FR.II jumps. If this jump time were not delayed by the time period ⁇ PS compared to the reference point, but rather without delay, the signal FR.II would have already increased by the value ⁇ PS x IV in the time period ⁇ PS, where IV is the rate of integration. The signal FR.II is therefore increased by the specified value ⁇ PS x IV with the lapse of the time interval ⁇ PS, as a result of which the lagging is eliminated. If the signal FR.II is leading, the probe jump from rich to lean occurs before the probe jump from lean to rich for signal FR.I.
  • the reversal of the signal FR.II is not yet permitted, but its value is reduced further until the signal FR.I is reversed in its direction of change, that is to say reaches the reference point.
  • the elapsed time period is also referred to as ⁇ PS in FIG. 6.
  • the signal FR.II is raised by the value ⁇ PS x IV even in the case of leading, which eliminates the undesired phase shift ⁇ PS.
  • FIG. 5b like FIG. 5a, relates to the case of the lagging signal FR.II.
  • the correction takes place differently than according to FIG. 5a.
  • the reference point appears in signal FR.I namely the value determined on which the signal FR.II is currently. This is compared with the value that the signal FR.II should have at its lower reversal point. If the measured value does not match the expected value, the signal FR.II is set to the expected value.
  • Fig. 7 largely corresponds to Fig; 5a, but with the difference that the undesired phase shift ⁇ PS is approximately twice as large as in the case of FIG. 5a.
  • the result of this is that the correction value ⁇ PS x IV is quite high. If this correction were carried out in a single step, this could lead to restless driving behavior. It is therefore provided in accordance with FIG. 7 that instead of a single large correction step, two smaller correction steps are used, each of which corresponds to the value ⁇ PS x IV / 2.
  • the individual correction steps are carried out in predetermined successive periods, z. B. with each computer cycle to calculate the control factors, in the case of implementation by a microcomputer.
  • FIG. 8a As soon as the Time period ⁇ PS jumps the probe signal for the signal FR.I, its value is reduced by the correction value ⁇ PS x IV. If the signal FR.II were to lag behind the signal FR.I at a later time, an image according to FIG. 5a would result. As FIGS. 8a and 5a correspond, FIGS. 8b and 5b correspond. According to FIG. 8b, the signal FR.I is raised to the expected amplitude as soon as the probe signal belonging to the control factor signal FR.II jumps from rich to lean.
  • phase shift TT applies equally to both control factor signals FR.I and FR.II, so that it has no influence whatsoever on a mutual shift of these two signals to one another.
  • the phase shift can thus not only be calculated with the aid of the step signals from the lambda sensors 17.I and 17.II, but also the control factors FR.I and FR.II can be compared directly with one another. This is shown in FIG. 9. The only difference from the corresponding part of the illustration in FIG.
  • phase correction step 24 is to indicate that in all cases it is either possible to hold on to one of the control factor signals, in the example the control factor signal FR.I, and only to correct the other (FIGS. 5 and 6), or that it is possible to do so at the earliest To refer to the signal and correct the other.
  • the phase correction step 24 must deliver a correction value to the first control step 21.I and another time to the control step 21.II.
  • the reference point lies on the auxiliary line for the value mentioned.
  • the reference point is the point in time at which one of the two signals FR.I and FR.II first reaches the value 1.
  • this is the signal FR.I because the signal FR.II lags.
  • Fig. 11 it is the reverse.
  • the time interval ⁇ PS is measured in each case, which takes place between the passage of the previous signal by the value 1 and the passage of the later signal by this value.
  • the lagging signal FR.II is lowered by the value ⁇ PS x IV in FIG. 10 so that it reaches the lower value that it would have had if it had already passed through the value 1 earlier in the decreasing state by the time period ⁇ PS would be, in time with the passage of FR.I from bottom to top.
  • the signal FR.I is increased by the value ⁇ PS x IV at the end of the time period ⁇ PS in order to eliminate its lagging compared to the signal FR.II.
  • the correction step can be broken down into a number of individual steps if a single correction step would be undesirably large.
  • a device for executing the described methods and others is preferably provided by a microcomputer, to which the signals of the two lambda sensors are fed and which has two means for two-point control, one means for determining the actual phase shift and one means for setting the target phase shift between the two control loops. If there are more than two control loops with associated lambda probes, the device has a means for determining the actual phase shift as they exist between the control vibrations, which are generated by two means for two-point control, and the means for setting the target phase shifts designed so that it maintains a target phase shift between two associated control loops.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

A method for lambda control operates with two control circuits for different groups of cylinders. Two-point control is operated in each control circuit, causing control oscillation each time. The phase shift between the two oscillations is found and set to a predetermined value. If the predetermined value of the phase shift corresponds to half an oscillation period, the exhaust gas from one group of cylinders changes from rich to lean when the exhaust gas from the other changes from lean to rich, and vice versa. If the two quantities of exhaust gas are mixed upstream of a catalyser, the latter receives a gas mixture with a lambda value of substantially 1. The method thus makes it possible to attain an oscillation amplitude in the exhaust gas lambda value which is smaller than those of the air-fuel mixture fed to both groups of cylinders. The result is the improved conversion of the pollutants. A device for implementing said method has two means of two-point control, one to determine the actual and one to set the target phase shift.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Lambdaregelung für eine Brennkraftmaschine mit mindestens zwei Lambdasonden.The invention relates to a method and a device for lambda control for an internal combustion engine with at least two lambda sensors.

Stand der TechnikState of the art

Mehrere Lambdasonden an einer Brennkraftmaschine werden in zwei grundsätzlich verschiedenen Anordnungen verwendet. Bei der einen Anordnung befinden sich die mehreren Sonden im Abgaskanal der Brennkraftmachine an aufeinanderfolgenden Stellen. Bei der anderen Anordnung sind die Lambdasonden an jeweils gleichartiger Position in verschiedenen Teilkanälen des Abgaskanalsystems angebracht. Die Erfindung bezieht sich auf eine Anordnung der letztgenannten Art.Several lambda sensors on an internal combustion engine are used in two fundamentally different arrangements. In one arrangement, the plurality of probes are located in successive locations in the exhaust gas duct of the internal combustion engine. In the other arrangement, the lambda probes are attached to the same position in different subchannels of the exhaust gas duct system. The invention relates to an arrangement of the latter type.

Eine derartige Anordnung ist zum Beispiel für die Verfahren und Vorrichtungen gemäß DE-A1-22 55 874 und DE-A1-27 13 988 vorgesehen. Jeweils eine Lambdasonde ist im Abgasteilkanal jeweils einer Hälfte eines V-Motores vor derjenigen Stelle angeordnet, bevor die beiden Teilkanäle zu einem Sammelrohr zusammengeführt sind, in dem ein Katalysator angeordnet ist. Beim Verfahren gemäß der DE-A1-22 55 874 dienen die Signale der beiden Sonden dazu, Istwerte für zwei getrennte Regelkreise zu liefern, von denen jeweils einer einer Motorhälfte zugeordnet ist. Beim Verfahren gemäß der DE-A1- 27 13 988 dienen die Signale beider Sonden als Istwerte für einen einzigen Regelkreis. Abhängig von der Art der Signale von den beiden Sonden wird entschieden, ob der Regler den Stellwert erhöht, erniedrigt oder unverändert läßt. Außerdem wird abhängig von einer summierten Regelabweichung der Stellwert so gewobbelt, daß das Gemisch überlagert zur üblichen Schwingung des Zweipunktreglers dauernd und schnell zwischen fett und mager wechselt.Such an arrangement is provided, for example, for the methods and devices according to DE-A1-22 55 874 and DE-A1-27 13 988. In each case one lambda probe is arranged in the exhaust subchannel in each case one half of a V-engine in front of that point before the two subchannels are brought together to form a manifold in which a catalyst is arranged. In the method according to DE-A1-22 55 874, the signals from the two probes serve to supply actual values for two separate control loops, one of which is assigned to one engine half. In the method according to DE-A1-27 13 988, the signals from both probes serve as actual values for a single control loop. Depending on the type of signals from the two probes, a decision is made as to whether the controller increases, decreases or leaves the manipulated value unchanged. In addition, depending on a summed control deviation, the manipulated variable is wobbled so that the mixture, overlaid with the usual oscillation of the two-point controller, constantly and quickly changes between rich and lean.

Die US 4 703 735 offenbart ein Verfahren, bei dem in den zunächst getrennten Abgasrohren der zwei Zylinderbänke eines V-Motors je eine Abgassonde angeordnet ist, die jeweils als Regelfühler der Lambda=1-Gemischregelung für die zugehörige Zylinderbank dient. Die beiden Regelkreise werden so geregelt, daß sich zwischen ihren Regelschwingungen eine Phasendifferenz von 180° einstellt. Das beschriebene Verfahren läßt aber insbesondere bei der Art und Weise, in der die Synchronisation der Regelschwingungen durchgeführt wird, Verbesserungen zu.US Pat. No. 4,703,735 discloses a method in which one exhaust gas probe is arranged in each of the initially separated exhaust pipes of the two cylinder banks of a V-type engine, each of which serves as a control sensor for the lambda = 1 mixture control for the associated cylinder bank. The two control loops are controlled so that there is a phase difference of 180 ° between their control vibrations. However, the method described allows improvements, in particular in the manner in which the synchronization of the control vibrations is carried out.

Die bekannten Verfahren und Vorrichtungen dienen dazu, Luft/ Kraftstoff-Gemische zu liefern, die zu Abgas solcher Art führen, daß im Abgas noch vorhandene Schadstoffe durch einen Katalysator optimal konvertiert werden können.The known methods and devices serve to supply air / fuel mixtures which lead to exhaust gas of such a type that pollutants still present in the exhaust gas can be optimally converted by a catalytic converter.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Lambdaregelung für eine Brennkraftmaschine mit mindestens zwei Lambdasonden in gleichartiger Position anzugeben, das noch bessere Schadstoffkonvertierung erlaubt als bisherige Verfahren. Der Erfindung liegt weiterhin die Aufgabe zugrunde, eine Vorrichtung zum Durchführen eines solchen Verfahrens anzugeben.The invention has for its object to provide a method for lambda control for an internal combustion engine with at least two lambda sensors in the same position, which allows even better pollutant conversion than previous methods. The invention is also based on the object of specifying a device for carrying out such a method.

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Verfahren ist durch die Merkmale von Anspruch 1 oder 2 und die erfindungsgemäße Vorrichtung durch die Merkmale von Anspruch 6 oder 7 gegeben. Vorteilhafte Ausgestaltungen des Verfahrens sind Gegenstand der Unteransprüche.The method according to the invention is given by the features of claim 1 or 2 and the device according to the invention by the features of claim 6 or 7. Advantageous embodiments of the method are the subject of the dependent claims.

Die Erfindung nutzt folgende Überlegung. Bei einer Zweipunkt-Lambdaregelung führt der Lambdawert dauernd Schwingungen zwischen fett und mager aus. Je größer die Amplitude dieser Schwingungen ist, desto geringer ist die relative Schadstoffkonvertierung des Katalysators. Werden nun statt eines Regelkreises zwei Regelkreise verwendet, muß es möglich sein, die Schwingungen in den beiden Kreisen so aneinander anzupassen, daß das Gemisch im einen Regelkreis gerade in Richtung fett schwingt, wenn das Gemisch im anderen Regelkreis in Richtung mager schwingt. Die Abgase des fetten Gemisches kommen im Sammelrohr vor dem Katalysator zusammen und führen dort zu Abgas mit etwa dem Lambdawert 1. Der Lambdawert des Abgases wird kaum noch eine Schwingung ausführen, wenn die Phasenverschiebung etwa eine halbe Schwingungsperiode beträgt. Ist sie mehr oder weniger, kommt es zwar noch zu einer Schwingung des Lambdawertes, jedoch mit erheblich geringerer Amplitude als sie ohne Phasenverschiebung der beiden Regelschwingungen vorhanden ist. Durch das Ausmaß der Phasenverschiebung läßt sich die Amplitude festlegen. Eine geringe Restschwingung ist bei manchen Katalysatoren wünschenswert, da diese nur dann optimal arbeiten, wenn sie während jeweils einer Halbperiode der Regelschwingung oxidierend und während der anderen Halbperiode reduzierend arbeiten können.The invention uses the following consideration. With a two-point lambda control, the lambda value continuously oscillates between rich and lean. The greater the amplitude of these vibrations, the lower the relative pollutant conversion of the catalytic converter. If two control loops are now used instead of one control loop, it must be possible to adapt the vibrations in the two circles to one another such that the mixture in one control loop just swings in the rich direction when the mixture in the other control loop swings in the lean direction. The exhaust gases of the rich mixture come together in the collecting pipe in front of the catalytic converter and lead there to exhaust gas with approximately lambda value 1. The lambda value of the exhaust gas will hardly oscillate any more if the phase shift is approximately half a period of oscillation. If it is more or less, there is still an oscillation of the lambda value, but with a considerably lower amplitude than is present without a phase shift of the two control oscillations. The amplitude can be determined by the extent of the phase shift. A low residual vibration is desirable for some catalysts, since they only work optimally if they can work oxidizing during one half cycle of the control vibration and reducing during the other half cycle.

Die eingangs erwähnten bekannten Verfahren sind für Motoren bestimmt, bei denen aufgrund ihres Aufbaues sehr lange Abgasteilkanäle bestehen, also insbesondere für V-Motoren. Das erfindungsgemäße Verfahren bringt dagegen bei allen Arten von Motoren Vorteile, also auch z. B. bei einem Vierzylinder-Reihenmotor. Es kann dort in jedem Auslaßstutzen eine Sonde angeordnet sein, der jeweils ein Regelkreis zugeordnet ist. Die Phasenverschiebungen zwischen den vier Regelkreisen werden so eingestellt, daß im Sammelkanal gemischtes Abgas mit im wesentlichen dem Lambdawert 1 entsteht, oder daß aus dem oben genannten Grund noch eine geringe Lambda-Restschwingung im gemischten Abgas vorhanden ist.The known methods mentioned at the outset are intended for engines in which, due to their structure, very long exhaust gas ducts exist, especially for V-engines. The method according to the invention, on the other hand, has advantages for all types of motors, that is to say also for. B. in a four-cylinder in-line engine. A probe can be arranged in each outlet connection, to which a control loop is assigned. The phase shifts between the four control loops are set so that mixed exhaust gas with essentially lambda value 1 is produced in the collecting duct, or that for the reason mentioned above there is still a small residual lambda vibration in the mixed exhaust gas.

Die Phasenkorrektur läßt sich dann besonders einfach vornehmen, wenn dauernd auf die Phase eines bestimmten Regelkreises Bezug genommen wird. Schneller wird die Regelung dagegen, wenn variabel jeweils auf die früheste Schwingung bezogen wird.The phase correction can be carried out particularly easily if reference is made continuously to the phase of a specific control loop. The regulation, on the other hand, becomes faster if the earliest vibration is variably referred to.

Zeichnungdrawing

Die Erfindung wird im folgenden anhand von durch Figuren veranschaulichten Ausführungsbeispielen näher erläutert. Es zeigen:

  • Fig. 1 ein als Blockschaltbild dargestelltes Verfahren zur Lambdaregelung mit zwei Sonden und zwei Regelkreisen, zwischen denen eine vorgegebene Phasenverschiebung eingestellt wird;
  • Fig. 2a - c zeitkorrelierte Diagramme des Signales von einer Lambdasonde, des zugehörigen Stellwertes und des tatsächlichen Lambdawertes am Ort der Sonde;
  • Fig. 3 ein Diagramm des zeitlichen Verlaufs des Lambdawertes von zwei Einzelabgasen und des Lambdawertes des gemischten Abgases bei einer Phasenverschiebung von einer halben Schwingungsperiode;
  • Fig. 4 ein Diagramm entsprechend dem von Fig. 3, jedoch mit einer Phasenverschiebung von weniger als einer halben Schwingungsperiode;
  • Fig. 5a und b Diagramme der zeitlichen Verläufe zweier Stellwerte mit zwei unterschiedlichen Arten der Phasenverschiebung für ein verspätetes Signal;
  • Fig. 6 ein Diagramm entsprechend dem von Fig. 5a, jedoch betreffend die Phasenverschiebung eines voreilenden Signales;
  • Fig. 7 ein Diagramm entsprechend dem von Fig. 5a, jedoch mit einer größeren Phasenverschiebung und mit einer Korrektur der Phase in zwei Schritten;
  • Fig. 8a und b Diagramm entsprechend denen von Fig. 5a bzw. b, wobei jedoch die voreilende Phase Bezugsphase ist;
  • Fig. 9 ein als Blockschaltbild dargestelltes Teilverfahren zur Phasenberechnung und Phasenkorrektur, bei dem von Stellwerten statt von Regelabweichungen, wie beim Verfahren von Fig. 1, ausgegangen wird;
  • Fig. 10 ein Diagramm betreffend den zeitlichen Verlauf der der Stellwerte von zwei phasenverschobenen Regelkreisen, wobei ein Signal nacheilt; und
  • Fig. 11 ein Diagramm entsprechend dem von Fig. 10, wobei jedoch das dort nacheilende Signal nun voreilt.
The invention is explained in more detail below on the basis of exemplary embodiments illustrated by figures. Show it:
  • 1 shows a method for lambda control with two probes and two control loops, between which a predetermined phase shift is set, shown as a block diagram;
  • 2a-c show time-correlated diagrams of the signal from a lambda probe, the associated control value and the actual lambda value at the location of the probe;
  • 3 shows a diagram of the time profile of the lambda value of two individual exhaust gases and the lambda value of the mixed exhaust gas with a phase shift of half an oscillation period;
  • FIG. 4 shows a diagram corresponding to that of FIG. 3, but with a phase shift of less than half an oscillation period;
  • 5a and b show diagrams of the time profiles of two manipulated values with two different types of phase shift for a delayed signal;
  • FIG. 6 shows a diagram corresponding to that of FIG. 5a, but relating to the phase shift of a leading signal;
  • FIG. 7 shows a diagram corresponding to that of FIG. 5a, but with a larger phase shift and with a correction of the phase in two steps;
  • Figures 8a and b are diagrams corresponding to those of Figures 5a and b, however, the leading phase is the reference phase;
  • FIG. 9 shows a partial method for phase calculation and phase correction, shown as a block diagram, in which control values are used instead of control deviations, as in the method of FIG. 1;
  • 10 shows a diagram relating to the time course of the control values of two phase-shifted control loops, with one signal lagging; and
  • 11 is a diagram corresponding to that of FIG. 10, but the signal lagging there now leads.

Beschreibung von AusführungsbeispielenDescription of exemplary embodiments

Das Verfahren gemäß dem Blockdiagramm von Fig. 1 arbeitet an einer Brennkraftmaschine 12 mit einer ersten Zylinderbank 13.I und einer zweiten Zylinderbank 13.II. Im Ansaugkanal 14.I für die erste Zylinderbank 13.I ist eine erste Einspritzventilanordnung 15.I vorhanden. Eine entsprechende zweite Einspritzventilanordnung 15.II liegt im zweiten Ansaugkanal 14.II. Im Abgasteilkanal 16.I ist eine erste Lambdasonde 17.1 und entsprechend im zweiten Abgasteilkanal 16.II eine zweite Lambdasonde 17.2 angeordnet. Die beiden Abgasteilkanäle münden in einen Sammelkanal 18, in dem ein Katalysator 19 angeordnet ist.The method according to the block diagram of FIG. 1 works on an internal combustion engine 12 with a first cylinder bank 13.I and a second cylinder bank 13.II. A first injection valve arrangement 15.I is present in the intake duct 14.I for the first cylinder bank 13.I. A corresponding second injection valve arrangement 15.II is located in the second intake duct 14.II. A first lambda probe 17.1 is arranged in the exhaust gas duct 16.I and a second lambda probe 17.2 is accordingly arranged in the second exhaust gas duct 16.II. The two exhaust gas sub-channels open into a collecting channel 18 in which a catalytic converter 19 is arranged.

Im folgenden wird in groben Zügen unter zusätzlicher Bezugnahme auf Fig. 2 das Verfahren zum Regeln der Gemischzusammensetzung für die erste Zylinderbank 13.I erläutert. Der ersten Einspritzventilanordnung 15.I wird ein erstes Einspritzzeitsignal TI.I zugeführt, das durch Multiplikation eines Signales TIV (n, L) für eine vorbestimmte Einspritzzeit mit einem Regelfaktor FR.I in einem Multiplikationschritt 20.I gebildet ist. Der Regelfaktor FR.I ist der von einem Regelungsschritt 21.I auf ein Regelabweichungssignal RAW.I hin ausgegebene Stellwert. Der Regelabweichungswert RAW.I wird dadurch gebildet, daß von einem Lambdassollwert das Signal Lambda-Ist.I von der ersten Lambdasonde 17.I in einem Subtraktionsschritt 22.I abgezogen wird.The method for regulating the mixture composition for the first cylinder bank 13.I is explained in broad outline below with additional reference to FIG. 2. The first injection valve arrangement 15.I is supplied with a first injection time signal TI.I, which is formed by multiplying a signal TIV (n, L) for a predetermined injection time by a control factor FR.I in a multiplication step 20.I. The control factor FR.I is the manipulated variable output by a control step 21.I in response to a control deviation signal RAW.I. The control deviation value RAW.I is formed by subtracting the signal Lambda-Ist.I from the first lambda probe 17.I from a lambda setpoint in a subtraction step 22.I.

Entsprechende Verfahrensschritte werden im Regelkreis durchgeführt, der das zweiten Zylinderbank 13.II zugeführte Gemisch einstellt. Tatsächliche Regelkreise sind erheblich verfeinert aufgebaut. Insbesondere sind verschiedene Störgrößen-Korrekturschritte vorhanden, und es werden Adaptionsverfahren genutzt, die eine dauernde Anpassung verschiedener Korrekturwerte an sich verändernde Bedingungen zum Zweck haben.Corresponding method steps are carried out in the control circuit which adjusts the mixture supplied to the second cylinder bank 13.II. Actual control loops are structured in a considerably refined manner. In particular, different disturbance variable correction steps are available, and adaptation methods are used which have the purpose of continuously adapting different correction values to changing conditions.

Das Signal λs einer Lambdasonde, wie sie für Zweipunktregelung eingesetzt wird, weist Sprungverhalten von Übergang von fett nach mager auf, wie dies in Fig. 2a dargestellt ist. Der tatsächliche Verlauf von Lambda, der zu diesem Sprungsignal führt, ist in Fig. 2c dargestellt. Zum Verständnis, wie der tatsächliche Signalverlauf zustandekommt, dient Fig. 2b, die den zeitlichen Ablauf eines Regelfaktors FR zeigt, sei es nun der Regelfaktor FR.I für den ersten Regelkreis oder der Faktor FR.II für den zweiten Regelkreis. Wenn das Sondensignal λs von fett nach mager oder umgekehrt springt, durchläuft das Regelabweichungssignal RAW den Wert 0 in der einen oder anderen Richtung. Beim Durchlauf durch 0 ändert sich die Integrationsrichtung des Regelungsschrittes 21, wodurch angefettet wird, sobald das Sondensignal auf mager gesprungen ist, und abgemagert wird, sobald es auf fett gesprungen ist. Sobald der Regelungsfaktor FR den Wert 1 erreicht, weist das einer Zylinderbank zugeführte Gemisch den Lambdawert 1 auf, vorausgesetzt, der Vorsteuerwert TIV (n, L) (n = Drehzahl; L - lastanzeigendes Signal) ist richtig bestimmt, was hier angenommen ist. Bei weiterem Hochintegrieren des Regelungsfaktors FR stellt sich ein fetter Lambdawert ein. Dieser wird jedoch erst um eine Totzeit TT verzögert von der Lambadsonde gemessen, was durch die nacheilende Phasenverschiebung TT des Sondensignales λs gegenüber dem Regelungsfaktorsignal FR aus den Fig. 2a und b erkennbar ist. Dieselbe Phasenverschiebung weist der Signalverlauf gemäß Fig. 2c gegenüber dem von Fig. 2b auf. Ansonsten sind die Signalverläufe der Fig. 2c und b identisch dargestellt. Dies liegt darin begründet, daß bei korrekt bestimmten Vorsteuerwert und ohne weitere Korrekturmaßnahmen der Lambdawert auf der Einspritzseite mit dem Wert des Regelungsfaktors FR übereinstimmt. Fig. 2b stellt unter diesen Voraussetzungen also nicht nur den zeitlichen Verlauf des Regelungsfaktors, sondern auch den zeitlichen Verlauf des Regelungsfaktors, sondern auch den zeitlichen Verlauf des Lambdawertes auf der Einspritzseite dar. Der zeitliche Verlauf des Lambdawertes auf der Abgasseite gemäß Fig. 2c ist demgegenüber um die Totzeit TT verschoben. Bei tatsächlichem Betrieb sind auch die Wendepunkte etwas abgeflacht, worauf es zur Erläuterung des Folgenden jedoch nicht ankommt.The signal λ s of a lambda probe, such as is used for two-point control, has jump behavior from the transition from rich to lean, as is shown in FIG. 2a. The actual course of lambda, which leads to this jump signal, is shown in FIG. 2c. 2b, which shows the timing of a control factor FR, be it the control factor FR.I for the first control loop or the factor FR.II for the second control loop to understand how the actual signal curve comes about. If the probe signal λ s jumps from rich to lean or vice versa, the control deviation signal RAW passes through the value 0 in one direction or the other. When passing through 0, the integration direction of the control step 21 changes, as a result of which enrichment takes place as soon as the probe signal has jumped to lean, and is thinned out as soon as it has jumped to rich. As soon as the control factor FR reaches the value 1, the mixture supplied to a cylinder bank has the lambda value 1, provided the pilot control value TIV (n, L) (n = speed; L - load-indicating signal) is correctly determined, which is assumed here. If the control factor FR is further integrated, a rich lambda value is set. However, this is measured by the lambad probe only after a dead time TT, which can be seen from the lagging phase shift TT of the probe signal λ s compared to the control factor signal FR from FIGS. 2a and b. The signal curve according to FIG. 2c has the same phase shift compared to that of FIG. 2b. Otherwise, the waveforms of FIGS. 2c and b are shown identically. This is due to the fact that, with a correctly determined pilot control value and without further corrective measures, the lambda value on the injection side corresponds to the value of the control factor FR. Under these conditions, FIG. 2b therefore shows not only the time profile of the control factor, but also the time profile of the control factor, but also the time profile of the lambda value on the injection side. The time profile of the lambda value on the exhaust gas side according to FIG. 2c is shifted by the dead time TT. In actual operation, the turning points are also somewhat flattened, but this is not important for the explanation of the following.

Die Darstellung der Figuren 3 und 4 entsprechen der von Fig. 2c jedoch mit der Ergänzung, daß statt der Verlaufs des Lambdasignales für einen einzigen Regelkreis die Verläufe für zwei Regelkreise dargestellt sind. Bei Fig. 3 ist angenommen, daß das Lambdasignal λ Ist.II für den zweiten Regelkreis gegenüber dem Lambdasignal λ Ist.I für den ersten Regelkreis um eine Phasenverschiebung PS verschoben ist, die der halben Schwingungsperiode SP entspricht. In Fig. 4 beträgt die Phasenberschiebung PS dagegen nur eine viertel Schwingungsperiode. Bei Verschiebung um eine halbe Periode erreicht das Gemisch im ersten Regelkreis gerade dann den größten Wert in Richtung fett, wenn das Gemisch im zweiten Regelkreis den größten Wert in Richtung mager erreicht und umgekert. Auch für den übrigen zeitlichen Verlauf gilt, daß die Lambdawerte jeweils in Bezug auf den Lambdawert 1 zueinander entgegengesetzt sind. Dies hat für den Lambdawert λ.18 im Sammelkanal 18 zur Konsequenz, daß er im wesentlichen dauernd auf dem Wert 1 bleibt. Beträgt die Phasenverschiebung dagegen mehr oder weniger - wie in Fig. 4 dargestellt - als eine halbe Schwingungsperiode, schwingt auch der Lambdawert λ.18 des gemischten Abgases im Sammelkanal 18 um den Wert Lambda = 1. Dies jedoch mit geringerer Amplitude als sie der Amplitude der Einzelschwingungen entspricht. Durch das Ausmaß der Phasenverschiebung läßt sich die Schwingungsamplitude des Lambdawertes des gemischten Abgases festlegen. Der in der Praxis zu verwendende Wert hängt von den Eigenschaften des jeweils verwendeten Katalysatortyps ab. Benötigt dieser für abwechselndes Oxidieren und Reduzieren eine gewisse Schwingungsamplitude des Lambdawertes wird eine entsprechende zugehörige Lambdaverschiebung eingestellt. Benötigt der Katalysator keine Lambdawertschwingung, ist eine Phasenverschiebung von einer halben Schwingungsperiode bevorzugt.The representation of FIGS. 3 and 4 corresponds to that of FIG. 2c, however, with the addition that instead of the course of the lambda signal for a single control loop, the courses for two control loops are shown. In Fig. 3 it is assumed that the lambda signal λ Ist.II for the second control loop compared to the lambda signal λ Ist.I for the first control loop is shifted by a phase shift PS which corresponds to half the oscillation period SP. 4, however, the phase shift PS is only a quarter of an oscillation period. When shifted by half a period, the mixture in the first control loop reaches the greatest value in the rich direction when the mixture in the second control loop reaches the greatest value in the lean direction and vice versa. It also applies to the rest of the time course that the lambda values are opposite to each other in relation to the lambda value 1. The consequence of this for the lambda value λ.18 in the collecting channel 18 is that it remains essentially at the value 1. If, on the other hand, the phase shift is more or less - as shown in FIG. 4 - than a half oscillation period, the lambda value λ.18 of the mixed exhaust gas in the collection channel 18 also oscillates by the value lambda = 1 Corresponds to individual vibrations. The oscillation amplitude of the lambda value of the mixed exhaust gas can be determined by the extent of the phase shift. The value to be used in practice depends on the properties of the type of catalyst used in each case. If the latter requires a certain oscillation amplitude of the lambda value for alternating oxidation and reduction, a corresponding lambda shift is set. If the catalytic converter does not require a lambda value oscillation, one is Phase shift of half an oscillation period is preferred.

Um eine Phasenverschiebung in der beschriebenen Art vornehmen zu können, weist das Verfahren gemäß Fig. 1 eine Phasenberechnungsschritt 23 auf, der aus den Regelabweichungssignalen RAW.I und RAW.II die Phasenverschiebung zwischen den beiden Regelkreisschwingungen berechnet. Der Ist-Phasenverschiebungswert wird in einem Phasenkorrekturschritt mit dem Soll-Phasenverschiebungswert verglichen, und im Falle einer Abweichung wird die Phase der einen Schwingung gegenüber der anderen so verschoben, daß sich der gewünschte Phasenverschiebungswert einstellt.In order to be able to carry out a phase shift in the manner described, the method according to FIG. 1 has a phase calculation step 23 which calculates the phase shift between the two control loop vibrations from the control deviation signals RAW.I and RAW.II. The actual phase shift value is compared in a phase correction step with the target phase shift value, and in the event of a deviation, the phase of one oscillation is shifted relative to the other in such a way that the desired phase shift value is set.

Einige Möglichkeiten zum Berechnen und Korrigieren der Phasenverschiebung werden nun anhand der Figuren 5 -11 erläutert. Die Fig. 5 - 8 beziehen sich dabei auf das Verfahren gemäß Fig. 1, während sich die Fig; 10 und 11 auf ein modifiziertes Verfahren beziehen, das weiter unten anhand von Fig. 9 erläutert wird.Some possibilities for calculating and correcting the phase shift will now be explained with reference to FIGS. 5-11. 5-8 relate to the method according to FIG. 1, while FIGS. 10 and 11 relate to a modified method, which is explained below with reference to FIG. 9.

Die Signalverläufe der Fig. 5 - 8 sowie 10 und 11 unterscheiden von denen der Fig. 3 und 4 dadurch, daß nicht mehr phasenverschobene Lambdawerte, sondern phasenverschobene Regelfaktoren (entsprechend Fig. 2b) dargestellt sind. In allen gennanten Figuren ist der Verlauf des Regelfaktors FR.I durchgezogen und der Verlauf des Regelfaktors FR.II strichpunktiert dargestellt. Der Verlauf der jeweiligen Bezugsphase ist gestrichelt eingezeichnet. Bezugspunkte, ab denen die Phasenverschiebung gemessen wird, sind durch dick dargestellte Punkte gegeben. In allen Fällen ist davon ausgegangen, daß die Soll-Phasenverschiebung einer halben Schwingungsperiode entsprechen soll.5-8 as well as 10 and 11 differ from those of FIGS. 3 and 4 in that phase-shifted control factors (corresponding to FIG. 2b) are no longer shown, but phase-shifted. In all the figures mentioned, the course of the control factor FR.I is drawn through and the course of the control factor FR.II is shown in dash-dot lines. The course of the respective reference phase is shown in dashed lines. Reference points, from which the phase shift is measured, are given by dots shown in bold. In all cases it is assumed that the target phase shift should correspond to half an oscillation period.

Es seien zunächst die Fig. 5a und 6 besprochen. In beiden Fällen ist die Phase des Signales FR.I Bezugsphase, und der Sprung von Lambda von mager nacht fett ist Bezugspunkt. Dies entspricht dem Umkehrpunkt im Regelungsfaktor von zunehmend nach abnehmend. Zu jedem dieser Zeitpunkte im Signal FR.I wird der Verlauf des Signales FR.II ermittelt. Für dieses Signal wird der Umkehrpunkt nicht direkt durch den Sprung im zugehörigen Sondensignal, sondern mit Hilfe des Bezugspunktes im Signal FR.I getriggert. Gemäß Fig. 5a erfolgt dies bei nacheilendem Signal FR.II dadurch, daß im Bezugszeitpunkt festgestellt wird, daß für das Signal FR.II das zugehörige Sondensignal noch nicht gesprungen ist. Es wird dann die Zeit Δ PS gemessen, die vergeht, bis das zum Signal FR.II gehörige Sondensignal springt. Wäre dieser Sprungzeitpunkt nicht um die Zeitspanne Δ PS gegenüber dem Bezugspunkt verzögert, sondern vielmehr unverzögert, wäre das signal FR.II in der Zeitspanne Δ PS bereits um den Wert Δ PS x IV gestiegen, wobei IV die Integrationsgeschwindigkeit ist. Das Signal FR.II wird daher mit Ablauf der Zeitspanne Δ PS um den genannten Wert Δ PS x IV erhöht, wodurch das Nacheilen beseitigt ist. Bei vorauseilendem Signal FR.II tritt für dieses der Sondensprung von fett nach mager vor dem Sondensprung von mager nach fett für das Signal FR.I auf. In diesem Fall wird die Umkehr des Signales FR.II noch nicht zugelassen, sondern dessen Wert wird weiter erniedrigt und zwar so lange, bis das Signal FR.I in seiner Änderungsrichtung umgekehrt wird, also den Bezugspunkt erreicht. Die verstrichene Zeitspanne ist auch in Fig. 6 als Δ PS bezeichnet. Mit Auftreten des Bezugspunktes wird auch im Fall des Voreilens das Signal FR.II um den Wert Δ PS x IV angehoben, wodurch die unerwünschte Phasenverschiebung Δ PS behoben ist.5a and 6 are discussed first. In both cases, the phase of the signal FR.I is the reference phase and the jump from lambda to lean night is the reference point. This corresponds to the reversal point in the control factor from increasing to decreasing. The course of the signal FR.II is determined at each of these times in the signal FR.I. For this signal, the reversal point is not triggered directly by the jump in the associated probe signal, but with the help of the reference point in signal FR.I. According to FIG. 5a, this occurs with the lagging signal FR.II in that it is determined at the reference time that the associated probe signal has not yet jumped for the signal FR.II. The time Δ PS is then measured, which passes until the probe signal associated with the signal FR.II jumps. If this jump time were not delayed by the time period Δ PS compared to the reference point, but rather without delay, the signal FR.II would have already increased by the value Δ PS x IV in the time period Δ PS, where IV is the rate of integration. The signal FR.II is therefore increased by the specified value Δ PS x IV with the lapse of the time interval Δ PS, as a result of which the lagging is eliminated. If the signal FR.II is leading, the probe jump from rich to lean occurs before the probe jump from lean to rich for signal FR.I. In this case, the reversal of the signal FR.II is not yet permitted, but its value is reduced further until the signal FR.I is reversed in its direction of change, that is to say reaches the reference point. The elapsed time period is also referred to as Δ PS in FIG. 6. When the reference point occurs, the signal FR.II is raised by the value Δ PS x IV even in the case of leading, which eliminates the undesired phase shift Δ PS.

Fig. 5b betrifft genau wie Fig. 5a den Fall des nacheilenden Signales FR.II. Die Korrektur erfolgt jedoch anders als gemäß Fig. 5a. Bei Auftreten des Bezugspunktes im Signal FR.I wird nämlich der Wert ermittelt, auf dem das Signal FR.II gerade steht. Dies wird mit dem Wert verglichen, den das Signal FR.II in seinem unteren Umkehrpunkt aufweisen müßte. Stimmt der gemessene Wert nicht mit dem erwarteten überein, wird das Signal FR.II auf den erwarteten Wert gesetzt. Der erwartete Wert kann z. B. der Umkehrwert in der vorigen Schwingung sein, oder es kann der am Wert Lambda = 1 gespiegelte Werte des Bezugspunktes für das Signal FR.I sein.5b, like FIG. 5a, relates to the case of the lagging signal FR.II. However, the correction takes place differently than according to FIG. 5a. When the reference point appears in signal FR.I namely the value determined on which the signal FR.II is currently. This is compared with the value that the signal FR.II should have at its lower reversal point. If the measured value does not match the expected value, the signal FR.II is set to the expected value. The expected value may e.g. B. the inverse value in the previous oscillation, or it can be the values of the reference point for the signal FR.I mirrored at the value Lambda = 1.

Fig. 7 entspricht weitgehen Fig; 5a, jedoch mit dem Untershchied, daß die unerwünschte Phasenverschiebung Δ PS etwa doppelt so groß ist wie im Fall von Fig. 5a. Dies hat zur Folge, daß sich als Korrekturwert Δ PS x IV ein recht hoher Wert ergibt. Würde diese Korrektur in einem einzigen Schritt durchgeführt werden, könnte dies zu unruhigem Fahrverhalten führen. Daher ist gemäß Fig. 7 vorgesehen, daß statt eines einzigen großen Korrekturschrittes zwei kleinere Korrekturschritte angewendet werden, von denen jeder dem Wert Δ PS x IV/2 entspricht. Die einzelnen Korrekturschritte werden in vorgegebenen aufeinanderfolgenden Zeitspannen ausgeführt, z. B. mit jedem Rechnerzyklus zum Berechnen der Regelfaktoren, im Falle der Realisierung durch einen Mikrocomputer.Fig. 7 largely corresponds to Fig; 5a, but with the difference that the undesired phase shift Δ PS is approximately twice as large as in the case of FIG. 5a. The result of this is that the correction value Δ PS x IV is quite high. If this correction were carried out in a single step, this could lead to restless driving behavior. It is therefore provided in accordance with FIG. 7 that instead of a single large correction step, two smaller correction steps are used, each of which corresponds to the value Δ PS x IV / 2. The individual correction steps are carried out in predetermined successive periods, z. B. with each computer cycle to calculate the control factors, in the case of implementation by a microcomputer.

Für die Darstellungen gemäß den Fig. 8a und b ist davon ausgegangen, daß nicht mehr dauernd auf die Phase der Schwingung FR.I bezogen wird, sondern daß Bezughnahme jeweils auf das früheste Signal erfolgt. Im fall der Fig. 8 a und b ist dies das Signal FR.II, da es, entsprechend der Darstellung von Fig. 6, dem Signal FR.I vorauseilt. Dasjenige Signal, für das zuerst ein Sprung im zugehörigen Sondensignal auftritt, setzt eine Zeitmessung auf O, die die Zeitspanne Δ PS mißt, die vergeht, bis auch das Sondensignal für das andere Regelfaktorsignal springt. Die Fig. 5a und 8a unterscheiden sich somit nur dadurch, daß bei Fig. 8a der Bezungspunkt auf dem vorauseilenden Signal FR.II liegt. Sobald mit Ablauf der Zeitspanne Δ PS das Sondensignal für das Signal FR.I springt, wird dessen Wert um den Korrekturwert Δ PS x IV erniedrigt. Würde zu einem späteren Zeitpunkt wieder das Signal FR.II gegenüber dem Signal FR.I nacheilen, würde sich ein Bild gemäß Fig. 5a ergeben. So wie sich die Fig. 8a und 5a entsprechen, entsprechen sich die Fig. 8b und 5b. Gemäß Fig. 8b wird nämlich das Signal FR.I auf die erwartete Amplitude gehoben, sobald das zum Regelfaktorsignal FR.II gehörige Sondensignal von fett nach mager springt.For the representations according to FIGS. 8a and b, it is assumed that reference is no longer made to the phase of the oscillation FR.I, but that reference is always made to the earliest signal. In the case of FIGS. 8 a and b, this is the signal FR.II, since, as shown in FIG. 6, it leads the signal FR.I. The signal for which a jump occurs first in the associated probe signal sets a time measurement to O, which measures the time period Δ PS that passes until the probe signal for the other control factor signal also jumps. 5a and 8a differ only in that in FIG. 8a the reference point lies on the leading signal FR.II. As soon as the Time period Δ PS jumps the probe signal for the signal FR.I, its value is reduced by the correction value Δ PS x IV. If the signal FR.II were to lag behind the signal FR.I at a later time, an image according to FIG. 5a would result. As FIGS. 8a and 5a correspond, FIGS. 8b and 5b correspond. According to FIG. 8b, the signal FR.I is raised to the expected amplitude as soon as the probe signal belonging to the control factor signal FR.II jumps from rich to lean.

In den Fig. 5 und 6 ist somit davon ausgegangen, daß das Signal FR.I dauernd das Bezugssignal zum Festellen der Phasenverschiebung bildet. Demgegenüber ist im Verhältnis der Fig. 5 und 8 davon ausgegangen, daß jeweils der früheste Sondensprungpunkt Bezugspunkt ist. In allen Fällen wurde davon ausgegangen, daß jeweils nur eine bestimmte Sprungrichtung für das Sondensiganl zur Bezugspunktbildung verwendet wird, jedoch kann jeder Sondensprung herangezogen werden.5 and 6 it is therefore assumed that the signal FR.I continuously forms the reference signal for determining the phase shift. In contrast, in the ratio of FIGS. 5 and 8 it has been assumed that the earliest probe jump point is the reference point. In all cases it was assumed that only one specific direction of jump was used for the probe signal to form the reference point, however, each probe jump can be used.

Wie oben anhand der Fig. 2a und b erläutert, besteht zwischen dem Regelabweichungssignal RAW und dem Regelfaktorsignal FR eine feste Phasenverschiebung des Wertes der Totzeit TT. Diese Phasenverschiebung TT gilt für beide Regelfaktorsignale FR.I und FR.II gleichermaßen, so daß sie keinerlei Einfluß auf eine gegenseitige Verschiebung dieser beiden Signale zueinander hat. Das Berechnen der Phasenverschiebung kann somit nicht nur mit Hilfe der Sprungsignale von den Lambdasonden 17.I und 17.II erfolgen, sondern es können auch direkt die Regelfaktoren FR.I und FR.II miteinander verglichen werden. Dies ist in Fig. 9 dargestellt. Der Unterschied zum entsprechenden Teil der Darstellung von Fig. 1 besteht nur darin, daß dem Phasenberechnungsschritt 23 die Werte Regelfaktoren FR.I und FR.II statt die Werte der Regelabweichungen RAW.I und RAW.II zugeführt werden. Auch in Fig. 9 führt vom Phasenkorrekturschritt 24 eine durchgezogene Linie zum Regelungsschritt 21.II, dagegen eine gestrichelte Linie zum Regelungsschritt 21.I. Dies soll andeuten, daß es in allen Fällen entweder möglicht ist, eines der Regelfaktorensignale, im Beispielsfall das Regelfaktorsignal FR.I, festzuhalten und nur das andere zu korrigieren (Fig. 5 und 6), oder daß es möglicht ist, jeweils auf das früheste Signal Bezug zu nehmen und das jeweils andere zu korrigieren. In diesem Fall muß der Phasenkorrekturschritt 24 einmal einen Korrekturwert zum ersten Regelungsschritt 21.I und ein anderes Mal zum Regelungsschritt 21.II liefern.As explained above with reference to FIGS. 2a and b, there is a fixed phase shift in the value of the dead time TT between the control deviation signal RAW and the control factor signal FR. This phase shift TT applies equally to both control factor signals FR.I and FR.II, so that it has no influence whatsoever on a mutual shift of these two signals to one another. The phase shift can thus not only be calculated with the aid of the step signals from the lambda sensors 17.I and 17.II, but also the control factors FR.I and FR.II can be compared directly with one another. This is shown in FIG. 9. The only difference from the corresponding part of the illustration in FIG. 1 is that the values of control factors FR.I and FR.II are supplied to the phase calculation step 23 instead of the values of the control deviations RAW.I and RAW.II. In FIG. 9, too, a solid line leads from the phase correction step 24 to the control step 21.II, on the other hand a dashed line to control step 21.I. This is to indicate that in all cases it is either possible to hold on to one of the control factor signals, in the example the control factor signal FR.I, and only to correct the other (FIGS. 5 and 6), or that it is possible to do so at the earliest To refer to the signal and correct the other. In this case, the phase correction step 24 must deliver a correction value to the first control step 21.I and another time to the control step 21.II.

Um die Phasenverschiebung zwischen den Regelungsfaktorsignalen FR.I und FR.II zu ermitteltn, es es günstig, auf den Durchlauf durch den fest Wert 1 abzuheben. Entsprechend liegt in den Darstellungen der Fig. 6 und 11 der Bezugspunkt auf der Hilfslinie für den genannten Wert. Bezugspunkt ist jeweils derjenige Zeitpunkt, zu dem eines der beiden Signale FR.I und FR.II als erstes den Wert 1 erreicht. In Fig. 10 ist dies das Signal FR.I, da das Signal FR.II nacheilt. In Fig. 11 ist es umgekehrt. Es wird jeweils die Zeitspanne Δ PS gemessen, die zwischen dem Durchgang des früheren Signales durch den Wert 1 und dem Durchgang des späteren Signales durch diesen wert erfolgt. Entsprechend wird in Fig. 10 das nacheilende Signal FR.II um den Wert Δ PS x IV erniedrigt, damit es denjenigen niederen Wert erreicht, den es eingenommen hätte, wenn es im abnehmenden Zustand bereits um die Zeitspanne Δ PS früher durch den Wert 1 gelaufen wäre, also rechtzeitig mit dem Durchlauf von FR.I von unten nach oben. Umgekehrt wird beim Ablauf gemäß Fig. 11 das Signal FR.I mit Ablauf der Zeitspanne Δ PS um den Wert Δ PS x IV erhöht, um sein Nacheilen gegenüber dem Signal FR.II zu beheben. Auch in Fällen gemäß denen der Fig. 10 und 11 kann der Korrekturschritt in mehrere Einzelschritte zerlegt werde, falls ein einzelner Korrekturschritt unerwünscht groß wäre.In order to determine the phase shift between the control factor signals FR.I and FR.II, it is expedient to take the run through the fixed value 1. Correspondingly, in the representations of FIGS. 6 and 11, the reference point lies on the auxiliary line for the value mentioned. The reference point is the point in time at which one of the two signals FR.I and FR.II first reaches the value 1. In Fig. 10, this is the signal FR.I because the signal FR.II lags. In Fig. 11 it is the reverse. The time interval Δ PS is measured in each case, which takes place between the passage of the previous signal by the value 1 and the passage of the later signal by this value. Correspondingly, the lagging signal FR.II is lowered by the value Δ PS x IV in FIG. 10 so that it reaches the lower value that it would have had if it had already passed through the value 1 earlier in the decreasing state by the time period Δ PS would be, in time with the passage of FR.I from bottom to top. Conversely, in the sequence according to FIG. 11, the signal FR.I is increased by the value Δ PS x IV at the end of the time period Δ PS in order to eliminate its lagging compared to the signal FR.II. Even in cases according to those of FIGS. 10 and 11, the correction step can be broken down into a number of individual steps if a single correction step would be undesirably large.

Unter den beschriebenen Verfahren haben diejenigen, die einen der Signalverläufe der Regelungsfaktoren als dauernden Bezugsverlauf verwenden, den Vorteil der Einfachheit. Dagegen sind diejenigen Verfahren schneller, die jeweils auf die früheste Phase Bezug nehmen. Die Korrektur braucht nicht notwendigerweise in Sprüngen zu erfolgen, sondern sie kann auch dadurch erfolgen, daß die Integrationszeiten verändert werden, mit denen die Regelabweichungswerte zum Bilden der Regelfaktoren integriert werden.Among the methods described, those that use one of the signal curves of the control factors as a permanent reference curve have the advantage of simplicity. On the other hand, the procedures that refer to the earliest phase are faster. The correction does not necessarily have to be made in steps, but can also be done by changing the integration times with which the control deviation values are integrated to form the control factors.

Eine Vorrichtung zum Ausführen der beschriebenen Verfahren und auch anderer, ist vorzugsweise durch einen Mikrocomputer gegeben, dem die Signale der beiden Lambdasonden zugeführt werden und der zwei Mittel zur Zweipunktregelung, ein Mittel zum Bestimmen der Ist-Phasenverschiebung und ein Mittel zum Einstellen der Soll-Phasenverschiebung zwischen den beiden Regelkreisen aufweist. Sind mehr als zwei Regelkreise mit zugehörigen Lambdasonden vorhanden, weist die Vorrichtung ein Mittel zum Bestimmen der Ist-Phasenverschiebung auf, wie sie zwischen den Regelschwingungen bestehen, die von jeweils zwei Mitteln zur Zweipunktregelung erzeugt werden, und das Mittel zum Einstellen der Soll-Phasenverschiebungen ist so ausgebildet, daß es jeweils eine Soll-Phasenverschiebung zwischen zwei zugehörigen Regelkreisen aufrechterhält.A device for executing the described methods and others is preferably provided by a microcomputer, to which the signals of the two lambda sensors are fed and which has two means for two-point control, one means for determining the actual phase shift and one means for setting the target phase shift between the two control loops. If there are more than two control loops with associated lambda probes, the device has a means for determining the actual phase shift as they exist between the control vibrations, which are generated by two means for two-point control, and the means for setting the target phase shifts designed so that it maintains a target phase shift between two associated control loops.

Claims (7)

1. Method for lambda control in an internal-combustion engine with at least two lambda probes in an identical position in different part channels of an exhaust gas system which together supply a catalyst, in which at least two different air/fuel mixtures for different cylinders or groups of cylinders are put under two-position control in different control circuits and where desired phase shifts are set between the control oscillations, and in which either the phase of one of the control circuits is used continuously as reference phase or the earliest phase in each case is used as reference phase, and in which the phase shifts of the other control circuits are set to the desired values,
characterised in that
the phase shift of the other control circuits is carried out by means of addition or subtraction of correction values which are determined from the product of phase-shift differences and a variable dependent on the integration speed of the other control circuits, the phase-shift difference being the time difference between measured and predetermined phase difference.
2. Method for lambda control in an internal combustion engine with at least two lambda probes in an identical position in different part channels of an exhaust gas system which together supply a catalyst, in which at least two different air/fuel mixtures for different cylinders or groups of cylinders are put under two-position control in different control circuits and where desired phase shifts are set between the control oscillations, and in which either the phase of one of the control circuits is used continuously as reference phase or the earliest phase in each case is used as reference phase, and in which the phase shifts of the other control circuits are set to the desired values,
characterised in that
the phase shift of the other control circuits is carried out by means of addition or subtraction of correction values, the correction values corresponding to the difference between actual values and expected values of the respective control factors (FR2,...) and the expected values being given by the respective reversal values of the preceding oscillation of the respective control factor or by the values of the reference signal at a reference time which are reflected at the value lambda = 1.
3. Method according to Claim 1 or 2, characterised in that, when a maximum value is exceeded, the correction value is broken down into a plurality of individual values, each of which corresponds at most to the maximum value, and in that these individual values are added or subtracted with a time offset relative to one another.
4. Method according to Claim 3, characterised in that the time offset corresponds to a computing cycle of a microcomputer.
5. Method according to one of Claims 1 to 4, characterised in that a phase shift of approximately half an oscillation period is set for two control circuits.
6. Device for lambda control in an internal-combustion engine with at least two lambda probes in an indentical position in different part channels of an exhaust gas system which together supply a catalyst, in which at least two different air/fuel mixtures for different cylinders or groups of cylinders are put under two-position control in different control circuits and which has means with which desired phase shifts are set between the control oscillations, and in which either the phase of one of the control circuits is used continuously as reference phase or the earliest phase in each case is used as reference phase, and in which the phase shifts of the other control circuits are set to the desired values,
characterised in that
means are present which effect the phase shift of the other control circuits by means of addition or subtraction of correction values which are determined form the product of phase-shift differences and a variable dependent on the integration speed of the other control circuits, the phase-shift difference being the time difference between measured and predetermined phase difference.
7. Device for lambda control in an internal-combustion engine with at least two lambda probes in an identical position in different part channels of an exhaust gas system which together supply a catalyst, in which at least two different air/fuel mixtures for different cylinders or groups of cylinders are put under two-position control in different control circuits and which has means with which desired phase shifts are set between the control oscillations, and in which either the phase of one of the control circuits is used continuously as reference phase or the earliest phase in each case is used as reference phase, and in which the phase shifts of the other control circuits are set to the desired values,
characterised in that
means are present which effect the phase shift of the other control circuits by means of addition of subtraction of corrections values, the correction values corresponding to the differences between actual values and expected values of the respective control factors (FR2,...) and the expected values being given by the respective reversal values of the preceding oscillation of the respective control factor or by the values of the reference signal at a reference time which are reflected at the value lambda = 1.
EP89906022A 1988-06-24 1989-05-31 A method and device for lambda control with several probes Expired - Lifetime EP0375758B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3821357 1988-06-24
DE3821357A DE3821357A1 (en) 1988-06-24 1988-06-24 METHOD AND DEVICE FOR LAMB CONTROL WITH SEVERAL PROBES

Publications (2)

Publication Number Publication Date
EP0375758A1 EP0375758A1 (en) 1990-07-04
EP0375758B1 true EP0375758B1 (en) 1992-08-05

Family

ID=6357178

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89906022A Expired - Lifetime EP0375758B1 (en) 1988-06-24 1989-05-31 A method and device for lambda control with several probes

Country Status (6)

Country Link
US (1) US4984551A (en)
EP (1) EP0375758B1 (en)
JP (1) JPH02504661A (en)
KR (1) KR0141371B1 (en)
DE (2) DE3821357A1 (en)
WO (1) WO1989012737A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819871B2 (en) * 1990-02-28 1996-02-28 本田技研工業株式会社 Method for detecting abnormality in fuel supply system of internal combustion engine
US5462039A (en) * 1992-12-14 1995-10-31 Mazda Motor Corporation Air-fuel ratio control system for internal combustion engine
US5390650A (en) * 1993-03-15 1995-02-21 Ford Motor Company Exhaust gas oxygen sensor monitoring
JPH06280643A (en) * 1993-03-26 1994-10-04 Mitsubishi Electric Corp Air-fuel ratio control device for internal combustion engine
DE19549633C2 (en) * 1994-02-09 2002-06-27 Fuji Heavy Ind Ltd Air=fuel ratio controller for catalyser engine vehicle
DE19503852C2 (en) * 1994-02-09 2000-01-27 Fuji Heavy Ind Ltd Air-fuel ratio control device and method for controlling the air-fuel ratio of an engine
JPH07224703A (en) * 1994-02-09 1995-08-22 Fuji Heavy Ind Ltd Air-fuel ratio control method
US5511377A (en) * 1994-08-01 1996-04-30 Ford Motor Company Engine air/fuel ratio control responsive to stereo ego sensors
DE19735367C1 (en) * 1997-08-14 1998-09-03 Siemens Ag Lambda regulation of internal combustion (IC) engine with two cylinder groups
DE19819204C1 (en) 1998-04-29 1999-09-30 Siemens Ag Trimming two-point exhaust gas sensor indication, to compensate behavioral shift due to aging and poisoning
US6324835B1 (en) * 1999-10-18 2001-12-04 Ford Global Technologies, Inc. Engine air and fuel control
DE10003903B4 (en) * 2000-01-29 2009-12-17 Volkswagen Ag Device and method for controlling an operation of a multi-cylinder engine for motor vehicles with a multi-flow exhaust gas purification system
US6550466B1 (en) 2001-02-16 2003-04-22 Ford Global Technologies, Inc. Method for controlling the frequency of air/fuel ratio oscillations in an engine
US6553982B1 (en) 2001-02-16 2003-04-29 Ford Global Technologies, Inc. Method for controlling the phase difference of air/fuel ratio oscillations in an engine
US6553756B1 (en) 2001-02-16 2003-04-29 Ford Global Technologies, Inc. Method for selecting a cylinder group when changing an engine operational parameter
US6497228B1 (en) 2001-02-16 2002-12-24 Ford Global Technologies, Inc. Method for selecting a cylinder group when adjusting a frequency of air/fuel ratio oscillations
KR100428343B1 (en) * 2001-12-18 2004-04-28 현대자동차주식회사 Method of controlling air flow for gasoline vehicles
DE102004030759B4 (en) * 2004-06-25 2015-12-17 Robert Bosch Gmbh Method for controlling an internal combustion engine
US10570844B2 (en) * 2012-01-18 2020-02-25 Ford Global Technologies, Llc Air/fuel imbalance monitor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1062859B (en) * 1976-02-16 1985-02-11 Alfa Romeo Spa INTERNAL COMBUSTION ENGINE EQUIPPED WITH AN EXHAUST SYSTEM EQUIPPED WITH PROBES FOR THE EXHAUST GAS ANALYSIS
DE2713988A1 (en) * 1977-03-30 1978-10-05 Bosch Gmbh Robert PROCESS AND DEVICE FOR DETERMINING THE PROPORTIONAL PART OF THE FUEL-AIR MIXTURE ADDED TO A COMBUSTION ENGINE
US4149502A (en) * 1977-09-08 1979-04-17 General Motors Corporation Internal combustion engine closed loop fuel control system
JPS5537562A (en) * 1978-09-08 1980-03-15 Nippon Denso Co Ltd Air-fuel ratio control system
JPS562548A (en) * 1979-06-22 1981-01-12 Nissan Motor Co Ltd Controller for air fuel ratio of internal combustion engine
DE2941753A1 (en) * 1979-10-16 1981-04-30 Robert Bosch Gmbh, 7000 Stuttgart METHOD FOR REGULATING THE COMPOSITION OF THE OPERATING MIXTURE ON AN INTERNAL COMBUSTION ENGINE
JPS56129730A (en) * 1980-03-18 1981-10-12 Nissan Motor Co Ltd Fuel injection controlling system for internal combustion engine
JPS57148042A (en) * 1981-03-09 1982-09-13 Mazda Motor Corp Air-fuel ratio controller for multi-cylinder engine
JPS60190631A (en) * 1984-03-12 1985-09-28 Nissan Motor Co Ltd Air-fuel ratio control device
US4703735A (en) * 1984-05-25 1987-11-03 Mazda Motor Corporation Air-fuel ratio control system for multicylinder engine
JPS61118538A (en) * 1984-11-14 1986-06-05 Honda Motor Co Ltd Air-fuel ratio control of internal-combustion engine
JPS62261627A (en) * 1986-05-08 1987-11-13 Mitsubishi Electric Corp Idle revolution control device for internal combustion engine
JP2738542B2 (en) * 1988-09-07 1998-04-08 富士通株式会社 Coherent optical communication system

Also Published As

Publication number Publication date
DE3821357A1 (en) 1990-02-15
WO1989012737A1 (en) 1989-12-28
JPH02504661A (en) 1990-12-27
DE58901995D1 (en) 1992-09-10
KR900702198A (en) 1990-12-06
KR0141371B1 (en) 1998-07-01
US4984551A (en) 1991-01-15
EP0375758A1 (en) 1990-07-04

Similar Documents

Publication Publication Date Title
EP0375758B1 (en) A method and device for lambda control with several probes
DE69307824T2 (en) Device for determining the wear of a catalytic converter for an internal combustion engine
DE2633617C2 (en) Method and device for determining setting variables in an internal combustion engine, in particular the duration of fuel injection pulses, the ignition angle, the exhaust gas recirculation rate
DE3226537C2 (en) Method for regulating the air / fuel mixture ratio in an internal combustion engine
DE602004003390T2 (en) METHOD FOR REAL-TIME DETERMINATION OF A FUEL INJECTION FLOW CHARACTERISTIC
DE69120632T2 (en) Exhaust gas recirculation system
EP0154710B1 (en) Control apparatus for controlling the operating parameters of an internal-combustion engine
DE19829308C2 (en) Control device for a gasoline engine with direct injection
DE69822712T2 (en) Control system for an internal combustion engine
DE3201372A1 (en) Feedback control system for the air/fuel ratio of an internal combustion engine with a plurality of cylinders and feedback control method for the air/fuel ratio of an internal combustion engine with a plurality of cylinders
EP0152604A1 (en) Control and regulation method for the operating parameters of an internal-combustion engine
DE102006056326A1 (en) Method for detecting a faulty operating state in a cylinder deactivation of an internal combustion engine
DE3423144A1 (en) METHOD FOR CONTROLLING THE FUEL SUPPLY TO AN INTERNAL COMBUSTION ENGINE WHILE ACCELERATING
DE2713988C2 (en)
DE69918914T2 (en) Method and device for controlling the air-fuel ratio in an internal combustion engine
EP1215388B1 (en) Method and system for controlling an internal combustion engine
DE4140527A1 (en) CONTROL DEVICE FOR THE AIR / FUEL RATIO FOR USE IN AN INTERNAL COMBUSTION ENGINE
DE69107809T2 (en) Device for controlling torque changes in an internal combustion engine.
DE4013661C2 (en)
DE69819632T2 (en) Control system for a plant
DE4315885C1 (en) Torque adjustment procedure
DE69101929T2 (en) Method and device for controlling the torque of an internal combustion engine.
DE10141022A1 (en) Air / fuel ratio control device for an internal combustion engine
DE4013943C2 (en)
DE2941753A1 (en) METHOD FOR REGULATING THE COMPOSITION OF THE OPERATING MIXTURE ON AN INTERNAL COMBUSTION ENGINE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17Q First examination report despatched

Effective date: 19910222

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 58901995

Country of ref document: DE

Date of ref document: 19920910

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020507

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020625

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031202

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030531