EP0382109A1 - Process for treating a work piece made from a metallic shape memory alloy offering two states of reversible shape memory - Google Patents

Process for treating a work piece made from a metallic shape memory alloy offering two states of reversible shape memory Download PDF

Info

Publication number
EP0382109A1
EP0382109A1 EP90102048A EP90102048A EP0382109A1 EP 0382109 A1 EP0382109 A1 EP 0382109A1 EP 90102048 A EP90102048 A EP 90102048A EP 90102048 A EP90102048 A EP 90102048A EP 0382109 A1 EP0382109 A1 EP 0382109A1
Authority
EP
European Patent Office
Prior art keywords
state
shape memory
temperature
austenitic
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90102048A
Other languages
German (de)
French (fr)
Other versions
EP0382109B1 (en
Inventor
Guy Grenouillet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nivarox Far SA
Nivarox SA
Original Assignee
Nivarox Far SA
Nivarox SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH428/89A external-priority patent/CH677677A5/fr
Priority claimed from FR8901764A external-priority patent/FR2643086B1/en
Application filed by Nivarox Far SA, Nivarox SA filed Critical Nivarox Far SA
Publication of EP0382109A1 publication Critical patent/EP0382109A1/en
Application granted granted Critical
Publication of EP0382109B1 publication Critical patent/EP0382109B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/006Resulting in heat recoverable alloys with a memory effect

Definitions

  • the invention relates to a method for packaging parts made of metal alloy capable of undergoing a reversible transformation from the state of crystallographic phase of austenitic type to a state of crystallographic phase of martensitic type, and relates in particular to the packaging of parts having complex configurations for the reversible memorization by these of two states of shape memory.
  • the process can be broken down into two series of operations, namely the preparation of the part to be educated and the education of the part itself.
  • This preparation essentially comprises three successive operations during which the part is first shaped according to a configuration constituting a first state of shape memory, then heated in order to be brought into a state of austenitic phase and finally cooled and stabilized at a temperature close to room temperature.
  • the education method comprises the operations consisting successively of deforming the part in order to bring it into the configuration constituting its second state of shape memory by subjecting it, at ambient temperature, to mechanical stress, to subject this part under mechanical stress to lower the temperature as it is brought into a martensitic phase state, to remove the mechanical stress, and to heat the part to a temperature such that it is again brought into a phase state austenitic so that it resumes the configuration constituting its first state of shape memory.
  • This cycle can be repeated a number of times to complete the education.
  • the main object of the invention is therefore to remedy the drawbacks of the above-mentioned prior art.
  • the subject of the present invention is a method of conditioning a piece of metal alloy capable of undergoing a reversible transformation from the state of crystallographic phase of austenitic type to state of crystallographic phase of martensitic type for memorization.
  • reversible of two states of shape memory including the operations consisting - to conform, at room temperature, the part to the form constituting the first state of shape memory, to mechanically maintain the part in its first state of shape memory and to heat the part thus maintained to bring it into a state of austenitic crystallographic phase, and - subjecting the mechanically maintained part to a sudden lowering of the temperature, then to a thermal stabilization treatment while retaining its austenitic phase state, and - to submit the part to an education process, in order to conform it in the second state of shape memory.
  • the part is prepared while being maintained in a configuration corresponding precisely to its first state of shape memory so that it retains the desired initial conformation, whatever the complexity of its geometry.
  • the education method consists in subjecting the stabilized part in its austenitic state to a sudden lowering of temperature to bring the part into a martensitic state, while simultaneously imposing on it a mechanical stress intended for the conform in the second state of shape memory.
  • this education method further comprises an operation consisting in subjecting the part in its second state of shape memory and maintained under said mechanical stress, to a series of thermal stresses to bring the part alternately from a martensitic state to an austenitic state.
  • the packaging method according to the invention allows the preparation and education of metal alloy parts with shape memory for the purpose of their memorization, in a reversible manner, of two states of shape memory.
  • the transition from one phase state to another takes place in one direction as in the other in a temperature range.
  • the temperature at which the austenitic phase begins to appear when the alloy is heated is called As and the temperature at which the phase formation is completed is called Af (Af> As).
  • Af the temperature at which the phase formation is completed.
  • Ms and Mf the temperatures at the start and end of the martensitic phase transformation are called Ms and Mf respectively (Mf ⁇ Ms).
  • Ms and Mf are significantly lower than Af and As respectively, the temperature intervals [As, Af] and [Ms, Mf] being dependent on the composition of the alloy.
  • Figure 1 is a graph whose abscissa axis represents time and the ordinate axis of temperature. This graph schematically represents the thermal cycles and the configurations of a part P to be conditioned, during the successive operations 01, 02 ... O7 of the process.
  • the first two operations 01 and 02 are carried out at ambient temperature T1, that is to say from 0 ° to 50 ° C. approximately.
  • ambient temperature T1 that is to say from 0 ° to 50 ° C. approximately.
  • the reference temperatures As, Af, Ms, Mf can be higher or lower than ambient temperature, depending on the metal alloy used. These temperatures can be lower than 0 ° C, or higher than 0 ° C as shown on the graph.
  • the part P is shaped using appropriate configuration means according to a determined configuration.
  • This configuration which constitutes a first state of shape memory corresponds to the configuration of the part at high temperature.
  • the part thus shaped is then placed in a device in which it can be maintained under mechanical stress ⁇ (tension, compression or other) and / or simply supported, for example by a template, depending on the complexity of its geometry (operation 02). Thanks to this holding and / or support, it overcomes the inherent elasticity problems of the deformed part and the mechanical strength problems of the part during heat treatments. As a result, the part precisely retains its first state of shape memory.
  • mechanical stress ⁇ tension, compression or other
  • / or simply supported for example by a template, depending on the complexity of its geometry
  • the part is then subjected to a rise in temperature to be brought into a state of austenitic crystallographic phase (operation 03).
  • operation 03 heating is carried out at the heart of the part to a temperature T3 comprised in a range extending from approximately 600 ° to 850 ° C depending on the alloy considered.
  • This heating is carried out, for example, in a conventional chamber oven, the latter having been previously heated.
  • the passage time of the part in the oven must be as short as possible, taking into account the shape and size of the part, in order to avoid evaporation of the light metals of the alloy. Indeed, such evaporation results in a modification of the composition of the alloy and therefore a significant modification of the thermal (transition points, etc.) and mechanical (elastic limit, etc.) characteristics. which risks modifying the ability to educate the alloy on the one hand, and the temperature range of use of the part on the other hand.
  • the part still maintained and / or supported is subjected to a sudden cooling down to a temperature T4 (operation 04).
  • the lowering of the temperature achieved, for example, by means of quenching, allows the fixation of the austenitic phase.
  • the temperature T4 reached after cooling must be higher than the temperature Af otherwise the education potential of the part is lost, the latter having, in this case, passed through its austenitic-martensitic phase transformation zone without changing the configuration.
  • the temperature T4 to which the part is cooled must be chosen so that any appearance of a parasitic phase, that is to say a phase other than austenite or associated with austenite, is avoided.
  • heat treatment is carried out to stabilize the part (operation 05).
  • This treatment consists in maintaining the part for a few tens of hours at a temperature T5 higher than Af and, for example, equal to the temperature T4 to which the part has been previously cooled.
  • This treatment allows a structural reorganization of the alloy and in particular makes it possible to release the internal stresses and to eliminate the gaps and other punctual defects which could have appeared during the sudden cooling.
  • the room temperature between the two operations 04 and 05 must remain a few tens of degrees above the temperature Af.
  • the part obtained being stabilized in its first state of shape memory can then be subjected to an education process.
  • the part prepared according to the invention (operations 01 to 05) can be educated according to the education process described in patent application EP-A1-161 952.
  • this education process requires, as mentioned above, numerous manipulations of the parts which makes it not very advantageous in the context of mass production.
  • an educational method is advantageously used according to the invention in which the part is first subjected to a sudden lowering of temperature to bring it into a martensitic state, while simultaneously imposing on it a mechanical stress intended to conform it in the second state of shape memory (operation 06). At this time, the play is already educated. Again, by lowering the temperature to bring the part into a martensitic state is meant a lowering to a temperature T6 lower than Mf.
  • This operation consists in subjecting the part mechanically maintained in its second state of shape memory to a series of thermal stresses to bring it alternately from the martensitic state to the austenitic state.
  • the education obtained is all the more effective as the number of thermal stresses is large and / or as the metal alloy used is of good quality.
  • FIGS. 2 and 3 show a helical spring 2 respectively in its first and second shape memory states.
  • the first state of shape memory corresponds to the shape of the spring at high temperature (T> Af) while the second state corresponds to the shape of the spring at low temperature (T ⁇ Mf).
  • the spring 2 has in its form at high temperature turns 4 spaced apart from one another by a pitch X and has in its form at low temperature, its turns 4 spaced apart by a pitch Y where X> Y.
  • pitch X the choice of the shapes of the parts at high and low temperatures is arbitrary and depends essentially on the application of these.
  • the following operation consists in energizing the spring 2 at ambient temperature so that it takes the configuration corresponding to its first state of shape memory.
  • the spring is fixed, for example, by each of its ends to a support device 6.
  • This support can be constituted by a gutter, the edges 8 of the walls of the latter being each engaged between two turns of a end of the spring.
  • a support device having a thermal inertia lower than or equal to that of the spring so as not to disturb the effects of subsequent heat treatments.
  • the support has been produced from a stainless steel mesh in order to avoid diffusion of the materials constituting the support on the part to be packaged.
  • the spring 2 placed on the support (that is to say under tension) is subjected to a temperature of approximately 750 ° C. in order to bring the spring in a certain manner into the state of austenitic phase.
  • the spring is introduced, for example, into a conventional chamber oven, the latter having been preheated for two hours at 750 ° C.
  • the spring is then kept in the oven for a few minutes, this time actually corresponding to the time necessary to carry out an austenitic transformation at the heart of the spring. Consequently, the heating time depends on the shapes and dimensions of the spring, and for reasons already explained above, the heating time must be as short as possible.
  • the spring retains its configuration during heating, and this even at high temperature, the tension under which it is kept preventing it from sagging despite the state of softening of the material at this temperature.
  • the austenitic phase is fixed (FIG. 7). This fixing is carried out by suddenly cooling the part to a temperature above Af while avoiding the formation of parasitic phases. In the case of the spring, it is cooled to a temperature 20 to 30 ° C higher than the temperature Af of the alloy, that is to say about 90 to 100 ° C.
  • This abrupt lowering of the temperature consists in quenching the spring in a bath thermostatically controlled at approximately 100 ° C.
  • This bath contains a heat-transfer fluid having characteristics of rapid and homogeneous cooling.
  • cryothermal types of oils are used in this temperature range, for example, a silicone oil of the type sold under the name Rhodorsil manufactured by Rhone Poulenc.
  • quenching can easily be carried out in water at ambient temperature.
  • the spring 2 is subjected to a thermal stabilization treatment (FIG. 8) in order to reorganize the crystal structure of the alloy and to release the internal stresses.
  • This treatment consists in keeping the spring in the bath in which it has been cooled for 10 to 20 hours, the latter having not been removed after the previous step. Since the configuration of the spring in its first shape memory state was fixed at the same time as the quenching, it is no longer necessary to keep the latter under tension.
  • FIG. 9 illustrates the essential operation of education, this operation consisting in simultaneously subjecting the spring 2, on the one hand, to a mechanical compressive stress C, in order to conform it in its second state of shape memory. and, on the other hand, to a sudden lowering of the temperature, namely, to a temperature lower than Mf.
  • the spring undergoes a so-called martensitic quenching at a temperature between 0 ° and 20 ° C, the spring being pinched, for example, between the edges 10 of a gutter 12 in order to reduce its pitch .
  • the conformation of the spring in its low temperature form is carried out in the temperature range between Af and Mf.
  • the spring while remaining subject to the above mechanical stress, is alternately heated to a temperature above Af, ie 90 ° to 110 ° C, then to sudden cooling to a temperature below Mf, ie from 0 ° to 20 ° C for the alloy in question this being repeated a few tens of times.
  • the support allowing the spring to be held under stress in its second shape memory state, is designed to allow the education of a large number of springs simultaneously. This eliminates the manipulation of the springs inherent in the process of the prior art described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Springs (AREA)

Abstract

The process for treating a piece (P) made of metal alloy with double-effect shape memory according to the invention comprises the operations O1 to O7 consisting - in shaping (O1) at the ambient temperature T1 the piece (P) in the shape constituting a first shape memory state, - in mechanically maintaining the piece in its first shape memory state (O2) and in heating the mechanically maintained piece to the temperature T3 to bring it into an austenitic crystallographic phase state (O3), - in abruptly lowering the mechanically maintained piece to a temperature T4 (O4) and in a stabilising thermal treatment (O5) while maintaining its austenitic state, and - in subjecting the piece to a process of education in order to shape it in the second shape memory state (O6, O7). <IMAGE>

Description

L'invention est relative à un procédé de conditionnement de pièces réalisées en alliage métallique susceptible de subir une transformation réversible de l'état de phase cristallographique de type austénitique à un état de phase cristallographique de type martensitique, et concerne notamment le conditionnement de pièces présentant des configurations complexes en vue de la mémorisation réversible par celles-ci de deux états de mémoire de forme.The invention relates to a method for packaging parts made of metal alloy capable of undergoing a reversible transformation from the state of crystallographic phase of austenitic type to a state of crystallographic phase of martensitic type, and relates in particular to the packaging of parts having complex configurations for the reversible memorization by these of two states of shape memory.

On connaît déjà de la demande de brevet EP-A-161 952 un procédé de conditionnement d'une pièce en un alliage du type mentionné plus haut permettant de conférer à cette dernière un double effet de mémoire de forme réversible.There is already known from patent application EP-A-161 952 a method of packaging a part made of an alloy of the type mentioned above, making it possible to give the latter a double effect of reversible shape memory.

Le procédé peut être décomposé en deux séries d'opérations, à savoir la préparation de la pièce à éduquer et l'éducation de la pièce proprement dite.The process can be broken down into two series of operations, namely the preparation of the part to be educated and the education of the part itself.

En effet, avant de mettre en oeuvre le procédé d'éducation il est nécessaire de préparer la pièce, celle-ci étant au départ dans un état de phase cristallographique non défini qui ne permet pas son éducation. Cette préparation comprend essentiellement trois opéra­tions successives au cours desquelles la pièce est d'abord conformée selon une configuration constituant un premier état de mémoire de forme, puis chauffée afin d'être amenée dans un état de phase austénitique et enfin refroidie et stabilisée à une température voisine de la température ambiante.Indeed, before implementing the education process it is necessary to prepare the part, this one being at the start in a state of undefined crystallographic phase which does not allow its education. This preparation essentially comprises three successive operations during which the part is first shaped according to a configuration constituting a first state of shape memory, then heated in order to be brought into a state of austenitic phase and finally cooled and stabilized at a temperature close to room temperature.

La préparation telle que décrite précédemment présente cependant quelques difficultés lors de sa mise en oeuvre.The preparation as described above however presents some difficulties during its implementation.

Il est notamment difficile, selon ce procédé de préparation, de conformer précisément des pièces dans leur premier état de mémoire de forme, la difficulté d'obtention d'une configuration précise étant d'autant plus grande que la géométrie de la pièce est comple­xe. Cela s'explique par le fait que lorsque la pièce est chauffée afin d'atteindre son état de phase austénitique, elle est portée, pour des raisons de sécurité, à une température légèrement supérieu­re à la température théorique de début d'apparition de la phase austénitique monophasée. Or à cette température on est proche de la température de fusion de l'alliage, il en résulte que la pièce se trouve dans un état de ramollissement dans lequel elle s'affaisse sous son propre poids et par suite perd sa forme initiale. Ceci constitue un inconvénient important dans de nombreuses applications telles que la préparation de pièces complexes de faibles sections.It is in particular difficult, according to this preparation process, to precisely conform parts in their first state of shape memory, the difficulty of obtaining a precise configuration being all the greater as the geometry of the part is complex. This is explained by the fact that when the part is heated in order to reach its austenitic phase state, it is worn, for safety reasons, at a temperature slightly higher than the theoretical temperature at which the single-phase austenitic phase begins to appear. Now, at this temperature, it is close to the melting temperature of the alloy, it follows that the part is in a softening state in which it collapses under its own weight and consequently loses its initial shape. This is a major drawback in many applications such as the preparation of complex parts with small sections.

Par ailleurs, le procédé d'éducation comprend les opérations consistant successivement à déformer la pièce afin de l'amener dans la configuration constituant son second état de mémoire de forme en la soumettant, à température ambiante, à une contrainte mécanique, à soumettre cette pièce sous la contrainte mécanique à un abaissement de la température telle qu'elle est amenée dans un état de phase martensitique, à supprimer la contrainte mécanique, et à chauffer la pièce à une température telle qu'elle est à nouveau amenée dans un état de phase austénitique si bien qu'elle reprend la configuration constituant son premier état de mémoire de forme. Ce cycle peut être répété en une pluralité de fois pour parfaire l'éducation.Furthermore, the education method comprises the operations consisting successively of deforming the part in order to bring it into the configuration constituting its second state of shape memory by subjecting it, at ambient temperature, to mechanical stress, to subject this part under mechanical stress to lower the temperature as it is brought into a martensitic phase state, to remove the mechanical stress, and to heat the part to a temperature such that it is again brought into a phase state austenitic so that it resumes the configuration constituting its first state of shape memory. This cycle can be repeated a number of times to complete the education.

Le procédé d'éducation décrit n'apporte pas non plus entière satisfaction. En effet, la mise en oeuvre de ce procédé nécessite un grand nombre de manipulations délicates , puisqu'au cours de chaque cycle il faut successivement imposer une contrainte mécanique à la pièce et supprimer cette contrainte mécanique. Ainsi l'éducation d'une série de pièces est consommatrice de temps et par conséquent coûteuse.The education process described does not bring complete satisfaction either. Indeed, the implementation of this process requires a large number of delicate manipulations, since during each cycle it is necessary to successively impose a mechanical stress on the part and remove this mechanical stress. Thus the education of a series of parts is time consuming and therefore expensive.

L'invention a donc pour but principal de remédier aux inconvé­nients de l'art antérieur susmentionné.The main object of the invention is therefore to remedy the drawbacks of the above-mentioned prior art.

A cet effet, la présente invention a pour objet un procédé de conditionnement d'une pièce en alliage métallique susceptible de subir une transformation réversible de l'état de phase cristallogra­phique de type austénitique à l'état de phase cristallographique de type martensitique pour la mémorisation réversible de deux états de mémoire de forme comprenant les opérations consistant
- à conformer, à la température ambiante, la pièce à la forme constituant le premier état de mémoire de forme,
- à maintenir mécaniquement la pièce sous son premier état de mémoire de forme et à chauffer la pièce ainsi maintenue pour l'ame­ner dans un état de phase cristallographique austénitique, et
- à soumettre la pièce maintenue mécaniquement à un brusque abaissement de la température, puis à un traitement thermique de stabilisation tout en conservant son état de phase austénitique, et
- à soumettre la pièce à un procédé d'éducation, afin de la conformer dans le second état de mémoire de forme.
To this end, the subject of the present invention is a method of conditioning a piece of metal alloy capable of undergoing a reversible transformation from the state of crystallographic phase of austenitic type to state of crystallographic phase of martensitic type for memorization. reversible of two states of shape memory including the operations consisting
- to conform, at room temperature, the part to the form constituting the first state of shape memory,
to mechanically maintain the part in its first state of shape memory and to heat the part thus maintained to bring it into a state of austenitic crystallographic phase, and
- subjecting the mechanically maintained part to a sudden lowering of the temperature, then to a thermal stabilization treatment while retaining its austenitic phase state, and
- to submit the part to an education process, in order to conform it in the second state of shape memory.

Ainsi, selon ce procédé la pièce est préparée tout en étant maintenue dans une configuration correspondant précisément à son premier état de mémoire de forme si bien qu'elle garde la conforma­tion initiale désirée, quelle que soit la complexité de sa géomé­trie.Thus, according to this method the part is prepared while being maintained in a configuration corresponding precisely to its first state of shape memory so that it retains the desired initial conformation, whatever the complexity of its geometry.

Selon une caractéristique avantageuse de l'invention, le procédé d'éducation consiste à soumettre la pièce stabilisée dans son état austénitique à un brusque abaissement de température pour amener la pièce dans un état martensitique, tout en lui imposant simultanément une contrainte mécanique destinée à la conformer dans le second état de mémoire de forme.According to an advantageous characteristic of the invention, the education method consists in subjecting the stabilized part in its austenitic state to a sudden lowering of temperature to bring the part into a martensitic state, while simultaneously imposing on it a mechanical stress intended for the conform in the second state of shape memory.

De préférence, ce procédé d'éducation comprend en outre une opération consistant à soumettre la pièce dans son second état de mémoire de forme et maintenue sous ladite contrainte mécanique, à une série de contraintes thermiques pour amener alternativement la pièce d'un état martensitique à un état austénitique.Preferably, this education method further comprises an operation consisting in subjecting the part in its second state of shape memory and maintained under said mechanical stress, to a series of thermal stresses to bring the part alternately from a martensitic state to an austenitic state.

On évite ainsi les différentes manipulations de mise sous contraintes mécaniques de la pièce à chaque cycle d'éducation du procédé connu décrit plus haut, si bien que l 'éducation est simpli­fiée et facilitée.This avoids the various manipulations of mechanical stressing of the part at each education cycle of the known method described above, so that education is simplified and facilitated.

D'autres caractéristiques et avantages de l'invention apparaî­tront au cours de la description détaillée qui suit d'une manière possible, mais non limitative, de mise en oeuvre du procédé selon l'invention.Other characteristics and advantages of the invention will appear during the detailed description which follows in a possible, but not limiting, way of implementing the method according to the invention.

Cette description sera faite en référence aux dessins annexés parmi lesquels :

  • - la figure 1 montre un graphique représentant les traitements thermiques que subit une pièce en fonction du temps, au cours de la mise en oeuvre du procédé selon l'invention,
  • - les figures 2 et 3 montrent respectivement les configura­tions à haute température et à basse température d'un ressort réalisé selon le procédé de l'invention, et
  • - les figures 4 à 10 montrent les différentes configurations du ressort aux différentes étapes du procédé de conditionnement selon l'invention.
This description will be made with reference to the accompanying drawings, in which:
  • FIG. 1 shows a graph representing the heat treatments which a part undergoes as a function of time, during the implementation of the method according to the invention,
  • FIGS. 2 and 3 respectively show the high temperature and low temperature configurations of a spring produced according to the method of the invention, and
  • - Figures 4 to 10 show the different configurations of the spring at the different stages of the packaging process according to the invention.

Le procédé de conditionnement selon l'invention permet la préparation et l'éducation de pièces en alliage métallique à mémoire de forme en vue de ta mémorisation par ces dernières, de façon réversible, de deux états de mémoire de forme.The packaging method according to the invention allows the preparation and education of metal alloy parts with shape memory for the purpose of their memorization, in a reversible manner, of two states of shape memory.

Ces pièces sont réalisées de façon connue en alliage métallique du type ayant la propriété de pouvoir subir une transformation réversible de leur état de phase cristallographique austénitique (haute température) à l'état de phase cristallographique martensi­tique (basse température).These parts are produced in a known manner from a metal alloy of the type having the property of being able to undergo a reversible transformation from their austenitic crystallographic phase state (high temperature) to the martensitic crystallographic phase state (low temperature).

Avec de tels alliages, la transition d'un état de phase à l'autre s'effectue dans un sens comme dans l'autre dans un interval­le de température. La température à laquelle la phase austénitique commence à apparaître lors du chauffage de l'alliage est appelée As et la température à laquelle la formation de la phase est achevée est appelée Af (Af > As). De façon similaire, lors du refroidisse­ment de l'alliage les températures de début et de fin de transfor­mation de phase martensitique sont appelés Ms et Mf respectivement (Mf < Ms).With such alloys, the transition from one phase state to another takes place in one direction as in the other in a temperature range. The temperature at which the austenitic phase begins to appear when the alloy is heated is called As and the temperature at which the phase formation is completed is called Af (Af> As). Similarly, during cooling of the alloy, the temperatures at the start and end of the martensitic phase transformation are called Ms and Mf respectively (Mf <Ms).

D'une manière générale, il est à noter que Ms et Mf sont sensi­blement inférieures à Af et As respectivement, les intervalles de températures [As, Af] et [Ms, Mf] étant dépendants de la composition de l'alliage.In general, it should be noted that Ms and Mf are significantly lower than Af and As respectively, the temperature intervals [As, Af] and [Ms, Mf] being dependent on the composition of the alloy.

On va maintenant décrire en liaison avec la figure 1 le procédé de conditionnement d'une pièce P selon l'invention.We will now describe in connection with Figure 1 the method of packaging a part P according to the invention.

La figure 1 est un graphe dont l'axe des abscisses représente le temps et l'axe des ordonnées de la température. Ce graphe représente schématiquement les cycles thermiques et les configurations d'une pièce P à conditionner, pendant les opérations successives 0₁, 0₂ ... O₇ du procédé.Figure 1 is a graph whose abscissa axis represents time and the ordinate axis of temperature. This graph schematically represents the thermal cycles and the configurations of a part P to be conditioned, during the successive operations 0₁, 0₂ ... O₇ of the process.

Les deux premières opérations 0₁ et 0₂ sont réalisées à tempéra­ture ambiante T₁, c'est-à-dire de 0° à 50° C environ. Il est à noter que les températures de références As, Af, Ms, Mf peuvent être supérieures ou inférieures à la température ambiante, selon l'allia­ge métallique utilisé. Ces températures peuvent être inférieures à 0° C, ou supérieure à 0° C comme on l'a représenté sur le graphe.The first two operations 0₁ and 0₂ are carried out at ambient temperature T₁, that is to say from 0 ° to 50 ° C. approximately. Note that the reference temperatures As, Af, Ms, Mf can be higher or lower than ambient temperature, depending on the metal alloy used. These temperatures can be lower than 0 ° C, or higher than 0 ° C as shown on the graph.

Au cours de l'opération 0₁, la pièce P est conformée à l'aide de moyens de configuration appropriés selon une configuration détermi­née. Cette configuration qui constitue un premier état de mémoire de forme correspond à la configuration de la pièce à haute température.During operation 0₁, the part P is shaped using appropriate configuration means according to a determined configuration. This configuration which constitutes a first state of shape memory corresponds to the configuration of the part at high temperature.

Notamment dans le cas où la configuration initiale de la pièce et le premier état de mémoire de forme sont très éloignés, il peut être avantageux de procéder à la configuration de la pièce en plusieurs étapes successives, chacune utilisant un moyen de configu­ration particulier pour passer progressivement de la configuration initiale au premier état de forme.In particular in the case where the initial configuration of the part and the first state of shape memory are very far apart, it may be advantageous to proceed with the configuration of the part in several successive stages, each using a particular configuration means for progressively passing from the initial configuration to the first state of form.

La pièce ainsi conformée est ensuite mise en place dans un dispositif dans lequel elle peut être maintenue sous une contrainte mécanique σ (tension, compression ou autre) et/ou simplement soute­nue, par exemple par un gabarit, selon la complexité de sa géométrie (opération 0₂). Grâce à ce maintien et/ou soutien, on s'affranchit des problèmes d'élasticité propre de la pièce déformée et des problèmes de tenue mécanique de la pièce lors des traitements thermiques. Il en résulte que la pièce conserve précisément son premier état de mémoire de forme.The part thus shaped is then placed in a device in which it can be maintained under mechanical stress σ (tension, compression or other) and / or simply supported, for example by a template, depending on the complexity of its geometry (operation 0₂). Thanks to this holding and / or support, it overcomes the inherent elasticity problems of the deformed part and the mechanical strength problems of the part during heat treatments. As a result, the part precisely retains its first state of shape memory.

La pièce est alors soumise à une élévation de température pour être amenée dans un état de phase cristallographique austénitique (opération 0₃). Lors de cette opération, on réalise un chauffage à coeur de la pièce à une température T₃ comprise dans une gamme s'étendant d'environ de 600° à 850° C selon l'alliage considéré. Ce chauffage est réalisé, par exemple, dans un four à chambre classi­que, ce dernier ayant été préalablement chauffé.The part is then subjected to a rise in temperature to be brought into a state of austenitic crystallographic phase (operation 0₃). During this operation, heating is carried out at the heart of the part to a temperature T₃ comprised in a range extending from approximately 600 ° to 850 ° C depending on the alloy considered. This heating is carried out, for example, in a conventional chamber oven, the latter having been previously heated.

Il est à noter, à ce propos, que le temps de passage de la pièce dans le four doit être le plus court possible, compte tenu de la forme et de la dimension de la pièce, afin d'éviter une évaporation des métaux légers de l'alliage. En effet, une telle évaporation entraîne une modification de la composition de l'alliage et par conséquent une modification sensible des caractéristiques thermiques (points de transition, etc) et mécaniques (limite d'élasticité, etc) qui risque de modifier l'aptitude à l'éducation de l'alliage d'une part, et la plage de températures d'utilisation de la pièce d'autre part.It should be noted in this regard that the passage time of the part in the oven must be as short as possible, taking into account the shape and size of the part, in order to avoid evaporation of the light metals of the alloy. Indeed, such evaporation results in a modification of the composition of the alloy and therefore a significant modification of the thermal (transition points, etc.) and mechanical (elastic limit, etc.) characteristics. which risks modifying the ability to educate the alloy on the one hand, and the temperature range of use of the part on the other hand.

Consécutivement à ce chauffage, la pièce toujours maintenue et/ou soutenue est soumise à un brusque refroidissement jusqu'à une température T₄ (opération 0₄). L'abaissement de la température réalisé, par exemple, au moyen d'une trempe, permet la fixation de la phase austénitique. Dans tous les cas, la température T₄ atteinte après le refroidissement doit être supérieure à la température Af sans quoi la potentialité d'éducation de la pièce est perdue, cette dernière ayant, dans ce cas, traversé sa zone de transformation de phase austénitique-martensitique sans changement de configuration. Par ailleurs, la température T₄ à laquelle la pièce est refroidie doit être choisie de sorte que toute apparition d'une phase parasi­te, c'est-à-dire une phase autre que l'austénite ou associée à l'austénite, soit évitée.Following this heating, the part still maintained and / or supported is subjected to a sudden cooling down to a temperature T₄ (operation 0₄). The lowering of the temperature achieved, for example, by means of quenching, allows the fixation of the austenitic phase. In all cases, the temperature T₄ reached after cooling must be higher than the temperature Af otherwise the education potential of the part is lost, the latter having, in this case, passed through its austenitic-martensitic phase transformation zone without changing the configuration. Furthermore, the temperature T₄ to which the part is cooled must be chosen so that any appearance of a parasitic phase, that is to say a phase other than austenite or associated with austenite, is avoided.

Une fois la phase austénitique fixée, on procéde à un traitement thermique de stabilisation de la pièce (opération 0₅). Ce traitement consiste à maintenir la pièce pendant quelques dizaines d'heures à une température T₅ supérieure à Af et, par exemple, égale à la température T₄ à laquelle la pièce a été précédemment refroidie. Ce traitement permet une réorganisation structurelle de l'alliage et permet notamment de libérer les contraintes internes et d'éliminer les lacunes et autres défauts ponctuels qui auraient pu apparaître lors du refroidissement brusque.Once the austenitic phase has been fixed, heat treatment is carried out to stabilize the part (operation 0₅). This treatment consists in maintaining the part for a few tens of hours at a temperature T₅ higher than Af and, for example, equal to the temperature T₄ to which the part has been previously cooled. This treatment allows a structural reorganization of the alloy and in particular makes it possible to release the internal stresses and to eliminate the gaps and other punctual defects which could have appeared during the sudden cooling.

On notera également que pendant cette stabilisation le maintien et/ou soutien peut être supprimé, puisque la pièce est déjà fixée dans son premier état de mémoire de forme.It will also be noted that during this stabilization the maintenance and / or support can be eliminated, since the part is already fixed in its first state of shape memory.

Il est à noter de manière impérative que pour conserver la possibilité d'éduquer la pièce, la température de la pièce entre les deux opérations 0₄ et 0₅ doit rester quelques dizaines de degré au dessus de la température Af.It is imperative to note that to keep the possibility of educating the room, the room temperature between the two operations 0₄ and 0₅ must remain a few tens of degrees above the temperature Af.

La pièce obtenue étant stabilisée dans son premier état de mémoire de forme, peut être alors soumise à un procédé d'éducation.The part obtained being stabilized in its first state of shape memory, can then be subjected to an education process.

La pièce préparée selon l'invention (opérations 0₁ à 0₅) peut être éduquée selon le procédé d'éducation décrit dans la demande de brevet EP-A1-161 952. Cependant, ce procédé d'éducation nécessite, commme on l'a mentionné plus haut, de nombreuses manipulations des pièces ce qui le rend peu avantageux dans le cadre d'une production en série.The part prepared according to the invention (operations 0₁ to 0₅) can be educated according to the education process described in patent application EP-A1-161 952. However, this education process requires, as mentioned above, numerous manipulations of the parts which makes it not very advantageous in the context of mass production.

Pour éviter ces inconvénients, on utilise avantageusement selon l'invention un procédé d'éducation dans lequel la pièce est d'abord soumise à un brusque abaissement de température pour l'amener dans un état martensitique, tout en lui imposant simultanément une contrainte mécanique destinée à la conformer dans le second état de mémoire de forme (opération 0₆). A ce moment, la pièce est déjà éduquée. Là encore, on entend par abaissement de température pour amener la pièce dans un état martensitique un abaissement à une température T₆ inférieure à Mf.To avoid these drawbacks, an educational method is advantageously used according to the invention in which the part is first subjected to a sudden lowering of temperature to bring it into a martensitic state, while simultaneously imposing on it a mechanical stress intended to conform it in the second state of shape memory (operation 0₆). At this time, the play is already educated. Again, by lowering the temperature to bring the part into a martensitic state is meant a lowering to a temperature T₆ lower than Mf.

Pour parfaire l'éducation de la pièce selon l'invention, on peut imposer à cette dernière une opération supplémentaire 0₇. Cette opération consiste à soumettre la pièce maintenue mécaniquement dans son second état de mémoire de forme à une série de contraintes thermiques pour l'amener alternativement de l'état martensitique à l'état austénitique. L'éducation obtenue est d'autant plus efficace que le nombre de contraintes thermiques est grand et/ou que l'allia­ge métallique utilisé est de bonne qualité.To complete the education of the part according to the invention, it can be imposed on the latter an additional operation 0₇. This operation consists in subjecting the part mechanically maintained in its second state of shape memory to a series of thermal stresses to bring it alternately from the martensitic state to the austenitic state. The education obtained is all the more effective as the number of thermal stresses is large and / or as the metal alloy used is of good quality.

On va maintenant décrire successivement les différentes opéra­tions du procédé de conditionnement selon l'invention en l'appli­quant au conditionnement d'un ressort hélicoïdal en vue de la mémorisation par ce dernier de deux positions de mémoire de forme en liaison avec les figures 2 à 10.We will now successively describe the different operations of the conditioning method according to the invention by applying it to the conditioning of a helical spring with a view to memorizing by the latter two shape memory positions in connection with FIGS. 2 to 10 .

Sur les figures 2 et 3, on a représenté un ressort hélicoïdal 2 respectivement dans ses premier et second états de mémoire de forme.FIGS. 2 and 3 show a helical spring 2 respectively in its first and second shape memory states.

Le premier état de mémoire de forme correspond à la forme du ressort à haute température (T > Af) tandis que le second état correspond à la forme du ressort à basse température (T < Mf).The first state of shape memory corresponds to the shape of the spring at high temperature (T> Af) while the second state corresponds to the shape of the spring at low temperature (T <Mf).

Dans l'exemple décrit, le ressort 2 a dans sa forme à haute température des spires 4 écartées les unes des autres d'un pas X et a dans sa forme à basse température, ses spires 4 écartées d'un pas Y où X > Y. Bien entendu, le choix des formes des pièces à haute et à basse températures est arbitraire et dépend essentiellement de l'application de celles-ci.In the example described, the spring 2 has in its form at high temperature turns 4 spaced apart from one another by a pitch X and has in its form at low temperature, its turns 4 spaced apart by a pitch Y where X> Y. Of course, the choice of the shapes of the parts at high and low temperatures is arbitrary and depends essentially on the application of these.

L'alliage utilisé pour réaliser le ressort est, de manière non limitative, un alliage métallique à mémoire de forme comprenant approximativement 75 % de cuivre, 18 % de zinc et 7 % d'aluminium et dont les températures de transition de phase sont sensiblement les suivantes : As = 43° C, Af = 68° C, Ms = 56° C et Mf = 41° C.The alloy used to make the spring is, without limitation, a metal alloy with shape memory comprising approximately 75% copper, 18% zinc and 7% aluminum and whose phase transition temperatures are substantially the following: As = 43 ° C, Af = 68 ° C, Ms = 56 ° C and Mf = 41 ° C.

Bien entendu, les nuances de l'alliage peuvent varier selon que l'on désire obtenir un ressort ayant des températures de transition de phases plus au moins élevées. On notera également que le procédé qui va être décrit maintenant plus précisément est valable pour d'autres alliages à mémoire de formes tels que les alliages Ti + Ni, Ti + Ni + X, Cu + Al + X, Fe + X ; etc... X appartenant à l'ensemble des dopants métalliques.Of course, the nuances of the alloy can vary depending on whether it is desired to obtain a spring having more or less high phase transition temperatures. It will also be noted that the process which will now be described more precisely is valid for other shape memory alloys such as the Ti + Ni, Ti + Ni + X, Cu + Al + X, Fe + X alloys; etc ... X belonging to the set of metallic dopants.

En se référant plus particulièrement aux figures 4 à 8, on voit le ressort 2 aux différentes opérations successives constituant la préparation avant son éducation proprement dite.Referring more particularly to Figures 4 to 8, we see the spring 2 to the different successive operations constituting the preparation before its actual education.

A la figure 4, on voit le ressort à température ambiante avant sa préparation. Ce ressort à été mis en forme par roulage, ou tout autre moyen équivalent, à partir d'un fil en alliage à mémoire de forme du type défini précédemment.In Figure 4, we see the spring at room temperature before its preparation. This spring has been shaped by rolling, or any other equivalent means, from a shape memory alloy wire of the type defined above.

L'opération suivante, représentée à la figure 5, consiste à une mise sous tension F du ressort 2 à la température ambiante de sorte qu'il prend la configuration correspondant à son premier état de mémoire de forme. Pour ce faire, on fixe, par exemple, le ressort par chacune de ses extrémités à un dispositif de support 6. Ce support peut être constitué par une gouttière, les bords 8 des parois de cette dernière étant chacun engagés entre deux spires d'une extrémité du ressort. On choisit de préférence un dispositif de support présentant une inertie thermique plus faible ou égale à celle du ressort pour ne pas perturber les effets des traitements thermiques ultérieurs. Dans le présent exemple, le support a été réalisé à partir d'un grillage en acier inoxydable afin d'éviter une diffusion des matériaux constitutifs du support sur la pièce à conditionner.The following operation, represented in FIG. 5, consists in energizing the spring 2 at ambient temperature so that it takes the configuration corresponding to its first state of shape memory. To do this, the spring is fixed, for example, by each of its ends to a support device 6. This support can be constituted by a gutter, the edges 8 of the walls of the latter being each engaged between two turns of a end of the spring. It is preferable to choose a support device having a thermal inertia lower than or equal to that of the spring so as not to disturb the effects of subsequent heat treatments. In the present example, the support has been produced from a stainless steel mesh in order to avoid diffusion of the materials constituting the support on the part to be packaged.

On notera que de manière avantageuse, l'utilisation d'un support tel qu'une gouttière permet la mise sous tension d'un grand nombre de pièces simultanément.It will be noted that advantageously, the use of a support such as a gutter allows the tensioning of a large number of parts simultaneously.

A l'opération illustrée à la figure 6 le ressort 2 mis en place sur le support (c'est-à-dire sous tension) est soumis à une tempéra­ture d'environ 750° C afin d'amener le ressort de façon certaine dans l'état de phase austénitique.During the operation illustrated in FIG. 6, the spring 2 placed on the support (that is to say under tension) is subjected to a temperature of approximately 750 ° C. in order to bring the spring in a certain manner into the state of austenitic phase.

Pour ce faire, le ressort est introduit, par exemple, dans un four à chambre classique, ce dernier ayant été préchauffé pendant deux heures à 750° C. Le ressort est alors maintenu dans le four quelques minutes, ce temps correspondant en fait au temps nécessaire pour effectuer une transformation austénitique à coeur du ressort. Par conséquent, le temps de chauffage dépend des formes et dimen­sions du ressort, et pour des raisons déjà explicitées plus haut, le temps de chauffage doit être le plus court possible.To do this, the spring is introduced, for example, into a conventional chamber oven, the latter having been preheated for two hours at 750 ° C. The spring is then kept in the oven for a few minutes, this time actually corresponding to the time necessary to carry out an austenitic transformation at the heart of the spring. Consequently, the heating time depends on the shapes and dimensions of the spring, and for reasons already explained above, the heating time must be as short as possible.

Selon le procédé de l'invention, on remarque de façon avanta­geuse que le ressort conserve sa configuration au cours du chauffa­ge, et cela même à température élevée, la tension sous laquelle il est maintenu l'empêchant de s'affaisser malgré l'état de ramollis­sement de la matière à cette température.According to the method of the invention, it is advantageously noted that the spring retains its configuration during heating, and this even at high temperature, the tension under which it is kept preventing it from sagging despite the state of softening of the material at this temperature.

Suite à cette opération, on procède à une fixation de la phase austénitique (figure 7). Cette fixation est réalisée en refroidis­sant brusquement la pièce à une température supérieure à Af tout en évitant la formation de phases parasites. Dans le cas du ressort, on refroidit à une température supérieure de 20 à 30° C à la tempéra­ture Af de l'alliage, soit à environ 90 à 100° C.Following this operation, the austenitic phase is fixed (FIG. 7). This fixing is carried out by suddenly cooling the part to a temperature above Af while avoiding the formation of parasitic phases. In the case of the spring, it is cooled to a temperature 20 to 30 ° C higher than the temperature Af of the alloy, that is to say about 90 to 100 ° C.

Ce brusque abaissement de la température consiste en une trempe du ressort dans un bain thermostaté à environ 100° C. Ce bain contient un un fluide caloporteur ayant des caractéristiques de refroidissement rapide et homogène. De préférence, on utilise dans cette gamme de température des huiles de types cryothermales, par exemple, une huile de silicone de type vendue sous la dénomination Rhodorsil manufacturée par Rhone Poulenc.This abrupt lowering of the temperature consists in quenching the spring in a bath thermostatically controlled at approximately 100 ° C. This bath contains a heat-transfer fluid having characteristics of rapid and homogeneous cooling. Preferably, cryothermal types of oils are used in this temperature range, for example, a silicone oil of the type sold under the name Rhodorsil manufactured by Rhone Poulenc.

Dans le cas où l'on utilise des alliages métalliques à mémoire de forme présentant des températures de transition inférieures à 0° C, la trempe pourra aisément être réalisée dans de l'eau à tempéra­ture ambiante.In the case where metal alloys with shape memory having transition temperatures below 0 ° C. are used, quenching can easily be carried out in water at ambient temperature.

L'opération sus-décrite terminée, il convient alors de supprimer les défauts ponctuels et les contraintes internes inhérentes au brusque refroidissement.Once the above-described operation has been completed, it is then necessary to eliminate point faults and internal constraints inherent in sudden cooling.

Pour ce faire, on soumet le ressort 2 à un traitement thermique de stabilisation (figure 8) afin de réorganiser la structure cris­talline de l'alliage et de libérer les contraintes internes. Ce traitement consiste à maintenir pendant 10 à 20 heures le ressort dans le bain dans lequel il a été refroidi, ce dernier n'en ayant pas été retiré après l 'étape précédente. Puisque la configuration du ressort dans son premier état de mémoire de forme à été fixé en même temps que la trempe, il n'est alors plus nécessaire de maintenir ce dernier sous tension.To do this, the spring 2 is subjected to a thermal stabilization treatment (FIG. 8) in order to reorganize the crystal structure of the alloy and to release the internal stresses. This treatment consists in keeping the spring in the bath in which it has been cooled for 10 to 20 hours, the latter having not been removed after the previous step. Since the configuration of the spring in its first shape memory state was fixed at the same time as the quenching, it is no longer necessary to keep the latter under tension.

La préparation de la pièce étant terminée, on procède comme cela est illustré aux figures 9 et 10 à l'éducation du ressort.The preparation of the part being finished, we proceed as illustrated in Figures 9 and 10 to educate the spring.

A la figure 9, est illustrée l'opération essentielle de l'éduca­tion, cette opération consistant à soumettre simultanément le ressort 2, d'une part, à une contrainte mécanique de compression C, pour le conformer dans son second état de mémoire de forme et, d'autre part, à un brusque abaissement de la température, à savoir, à une température inférieure à Mf. Dans le cas de l'alliage choisi, le ressort subit une trempe dite martensitique à une température comprise entre 0° et 20° C, le ressort étant pincé, par exemple, entre les bords 10 d'une gouttière 12 afin de diminuer son pas. De préférence, la conformation du ressort dans sa forme basse température est réalisée dans l'intervalle de température compris entre Af et Mf.FIG. 9 illustrates the essential operation of education, this operation consisting in simultaneously subjecting the spring 2, on the one hand, to a mechanical compressive stress C, in order to conform it in its second state of shape memory. and, on the other hand, to a sudden lowering of the temperature, namely, to a temperature lower than Mf. In the case of the chosen alloy, the spring undergoes a so-called martensitic quenching at a temperature between 0 ° and 20 ° C, the spring being pinched, for example, between the edges 10 of a gutter 12 in order to reduce its pitch . Preferably, the conformation of the spring in its low temperature form is carried out in the temperature range between Af and Mf.

Enfin, le ressort tout en restant soumis à la contrainte méca­nique susdite, est alternativement chauffé à une température supé­rieure à Af soit 90°à 110° C puis à un brusque refroidissement à une température inférieure à Mf soit de 0° à 20° C pour l 'alliage en question ceci étant répété quelques dizaines de fois.Finally, the spring while remaining subject to the above mechanical stress, is alternately heated to a temperature above Af, ie 90 ° to 110 ° C, then to sudden cooling to a temperature below Mf, ie from 0 ° to 20 ° C for the alloy in question this being repeated a few tens of times.

De manière avantageuse, le support, permettant le maintien sous contrainte du ressort dans son second état de mémoire de forme, est conçu pour permettre l'éducation d'un grand nombre de ressorts simultanément. Ainsi on supprime les manipulations des ressorts inhérentes au procédé de l'art antérieur décrit plus haut.Advantageously, the support, allowing the spring to be held under stress in its second shape memory state, is designed to allow the education of a large number of springs simultaneously. This eliminates the manipulation of the springs inherent in the process of the prior art described above.

Claims (7)

1. Procédé de conditionnement d'une pièce en alliage métallique susceptible de subir une transformation réversible de l'état de phase cristallographique de type austénitique à l'état de phase cristallographique de type martensitique pour la mémorisation réversible de deux états de mémoire de forme, caractérisé en ce qu'il comprend les opérations consistant
- à conformer, à la température ambiante, la pièce à la forme constituant le premier état de mémoire de forme,
- à maintenir mécaniquement la pièce dans son premier état de mémoire de forme et à chauffer la pièce mécaniquement maintenue pour l'amener dans un état de phase cristallographique austénitique,
- à soumettre la pièce mécaniquement maintenue à un brusque abaissement de la température et à un traitement thermique de stabilisation, tout en conservant son état austénitique, et
- à soumettre la pièce à un procédé d'éducation afin de la conformer dans le second état de mémoire de forme.
1. A method of conditioning a piece of metal alloy capable of undergoing a reversible transformation from the crystallographic phase state of the austenitic type to the crystallographic phase state of the martensitic type for the reversible storage of two shape memory states, characterized in that it comprises the operations consisting
- to conform, at room temperature, the part to the form constituting the first state of shape memory,
- mechanically maintaining the part in its first shape memory state and heating the mechanically maintained part to bring it into a state of austenitic crystallographic phase,
- subjecting the mechanically maintained part to a sudden lowering of the temperature and to a stabilization heat treatment, while retaining its austenitic state, and
- to submit the part to an education process in order to conform it in the second state of shape memory.
2. Procédé selon la revendication 1, caractérisé en ce que le procédé d'éducation comprend les opérations consistant à soumettre la pièce stabilisée dans son état austénitique à un brusque abaisse­ment de température pour amener la pièce dans un état martensitique en lui imposant simultanément une contrainte mécanique destinée à conformer la pièce dans le second état de mémoire de forme.2. Method according to claim 1, characterized in that the education method comprises the operations of subjecting the stabilized part in its austenitic state to a sudden lowering of temperature to bring the part into a martensitic state by simultaneously imposing on it a constraint mechanical intended to conform the part in the second state of shape memory. 3. Procédé selon la revendication 2, caractérisé en ce que le procédé d'éducation comprend en outre une opération consistant à imposer à la pièce mécaniquement maintenue dans son second état de mémoire de forme une série de contraintes thermiques pour amener alternativement la pièce d'un état martensitique à un état austéni­tique.3. Method according to claim 2, characterized in that the education method further comprises an operation consisting in imposing on the part mechanically maintained in its second shape memory state a series of thermal stresses to bring the part alternately. a martensitic state to an austenitic state. 4. Procédé selon l'une quelconque des revendications précéden­tes, caractérisé en ce que l'opération de conformation de la pièce à la température ambiante comprend plusieurs étapes successives pour passer progressivement d'une configuration initiale de la pièce au premier état de mémoire de forme.4. Method according to any one of the preceding claims, characterized in that the operation of shaping the part at ambient temperature comprises several successive stages for progressively passing from an initial configuration of the part to the first state of shape memory . 5. Procédé selon l'une quelconque des revendications précéden­tes, caractérisé en ce que lors de l'opération pendant laquelle la pièce mécaniquement maintenue est soumise à un brusque abaissement de la température et à un traitement thermique de stabilisation, la pièce est soumise brusquement à une température sensiblement supé­rieure à la température (Ms) de début de formation de la phase martensitique pour fixer la phase austénitique et est maintenue à cette température pendant 10 à 20 heures.5. Method according to any one of the preceding claims, characterized in that during the operation during which the mechanically maintained part is subjected to a sudden lowering of the temperature and to a stabilization heat treatment, the part is suddenly subjected to a temperature appreciably higher than the temperature (Ms) of the start of formation of the martensitic phase to fix the austenitic phase and is maintained at this temperature for 10 to 20 hours. 6. Procédé selon l'une quelconque des revendications précé­dentes, caractérisé en ce que, dans le procédé d'éducation la contrainte mécanique destinée à conformer la pièce dans le second état de mémoire de forme est imposée à la pièce entre les tempéra­tures de début et de fin de la phase martensitique.6. Method according to any one of the preceding claims, characterized in that, in the education method the mechanical stress intended to conform the part in the second state of shape memory is imposed on the part between the temperatures of start and end of the martensitic phase. 7. Procédé selon l'une quelconque des revendications précéden­tes, caractérisé en ce que lors de l'opération pendant laquelle la pièce est soumise à un traitement thermique pour l'amener dans un état de phase cristallographique austénitique, la pièce est amenée à une température voisine de 800° C et est maintenue à cette tempéra­ture entre 1 et 60 mn.7. Method according to any one of the preceding claims, characterized in that during the operation during which the part is subjected to a heat treatment to bring it into a state of austenitic crystallographic phase, the part is brought to a temperature close to 800 ° C and is maintained at this temperature between 1 and 60 min.
EP19900102048 1989-02-08 1990-02-02 Process for treating a work piece made from a metallic shape memory alloy offering two states of reversible shape memory Expired - Lifetime EP0382109B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH428/89A CH677677A5 (en) 1989-02-08 1989-02-08
CH428/89 1989-02-08
FR8901764 1989-02-10
FR8901764A FR2643086B1 (en) 1989-02-10 1989-02-10 METHOD FOR CONDITIONING A SHAPE MEMORY METAL ALLOY PART HAVING TWO REVERSIBLE SHAPE MEMORY STATES

Publications (2)

Publication Number Publication Date
EP0382109A1 true EP0382109A1 (en) 1990-08-16
EP0382109B1 EP0382109B1 (en) 1993-12-08

Family

ID=25684554

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900102048 Expired - Lifetime EP0382109B1 (en) 1989-02-08 1990-02-02 Process for treating a work piece made from a metallic shape memory alloy offering two states of reversible shape memory

Country Status (2)

Country Link
EP (1) EP0382109B1 (en)
DE (1) DE69004986D1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2681331A1 (en) * 1991-09-17 1993-03-19 Imago Modifying characteristic transformation temp. of shape memory alloys contg. zinc@ and aluminium@ - comprises heat treating alloy at above 700 deg. C in air or neutral gas opt. in two stages with alloy being mechanically or ultrasonically cleaned after cooling between stages
EP0709482A1 (en) * 1994-10-28 1996-05-01 Kazuhiro Otsuka Method of manufacturing high-temperature shape memory alloys
CN112570715A (en) * 2019-09-30 2021-03-30 上海微创医疗器械(集团)有限公司 Structural member and processing method thereof
CN114570948A (en) * 2022-02-15 2022-06-03 中南大学 Post-processing method for shape control of shape memory alloy part manufactured by additive manufacturing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4283233A (en) * 1980-03-07 1981-08-11 The United States Of America As Represented By The Secretary Of The Navy Method of modifying the transition temperature range of TiNi base shape memory alloys
EP0035069A1 (en) * 1980-03-03 1981-09-09 BBC Aktiengesellschaft Brown, Boveri & Cie. Memory alloy based on Cu-Al or on Cu-Al-Ni and process for the stabilisation of the two-way effect
EP0161952A2 (en) * 1984-04-12 1985-11-21 Souriau Et Cie Process for inducing a state to an article, made from a memory shape alloy with two reversible memory states

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0035069A1 (en) * 1980-03-03 1981-09-09 BBC Aktiengesellschaft Brown, Boveri & Cie. Memory alloy based on Cu-Al or on Cu-Al-Ni and process for the stabilisation of the two-way effect
US4283233A (en) * 1980-03-07 1981-08-11 The United States Of America As Represented By The Secretary Of The Navy Method of modifying the transition temperature range of TiNi base shape memory alloys
EP0161952A2 (en) * 1984-04-12 1985-11-21 Souriau Et Cie Process for inducing a state to an article, made from a memory shape alloy with two reversible memory states

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2681331A1 (en) * 1991-09-17 1993-03-19 Imago Modifying characteristic transformation temp. of shape memory alloys contg. zinc@ and aluminium@ - comprises heat treating alloy at above 700 deg. C in air or neutral gas opt. in two stages with alloy being mechanically or ultrasonically cleaned after cooling between stages
EP0709482A1 (en) * 1994-10-28 1996-05-01 Kazuhiro Otsuka Method of manufacturing high-temperature shape memory alloys
CN112570715A (en) * 2019-09-30 2021-03-30 上海微创医疗器械(集团)有限公司 Structural member and processing method thereof
CN112570715B (en) * 2019-09-30 2022-10-25 微创投资控股有限公司 Structural member and processing method thereof
CN114570948A (en) * 2022-02-15 2022-06-03 中南大学 Post-processing method for shape control of shape memory alloy part manufactured by additive manufacturing

Also Published As

Publication number Publication date
DE69004986D1 (en) 1994-01-20
EP0382109B1 (en) 1993-12-08

Similar Documents

Publication Publication Date Title
EP0807276B1 (en) Metal frame for spectacles
EP0886195B1 (en) Auto-compensating spring for mechanical oscillatory spiral spring of clockwork movement and method of manufacturing the same
EP0161952B1 (en) Process for inducing a state to an article, made from a memory shape alloy with two reversible memory states
EP0864664A1 (en) Process for producing a superelastic article from an alloy of nickel and titanium
WO2000034536A1 (en) Method for treating an object with laser
CA2517239C (en) Process for reloading a single-crystal or gradient solidification metal part
EP3502785B1 (en) Hairspring for clock movement and method for manufacturing same
EP1039352B1 (en) Self-compensating spring for clockwork movement spring balance and method for treating the same
EP2510405A1 (en) Method for making a spring for a timepiece
EP2400354A1 (en) Dial feet for a timepiece
EP0382109B1 (en) Process for treating a work piece made from a metallic shape memory alloy offering two states of reversible shape memory
EP2585238B1 (en) Method of joining parts
CH677677A5 (en)
EP1670963A2 (en) Method of producing a flat zirconium alloy product, flat product thus obtained and a nuclear plant reactor grid which is made from said flat product
EP0421368B1 (en) Device for rehabilitation of a body member
FR2616696A1 (en) METHOD FOR OVEN BURNING UNDER RARE-OR CONTROLLED ATMOSPHERE OF TWO PIECES
FR2525150A1 (en) STEEL SUPPORT FOR PLANOGRAPHIC PLATE AND MANUFACTURING METHOD
EP1531696B1 (en) Process for manufacturing an automatic clasp for wristwatch strap
FR2643086A1 (en) Process for conditioning a component made of metal alloy with shape memory exhibiting two reversible shape memory states
EP0830462B1 (en) Method for making arcuate coil springs, resulting springs and devices for carrying out the method
EP1538492B1 (en) Enamelled watch face with feet and its fabrication method
FR2686902A1 (en) NICKEL - BASED MONOCRYSTALLINE SUPERALLIATION HAVING IMPROVED OXIDATION AND PROCESS FOR PREPARING THE SAME.
FR2546426A1 (en) METAL SHEET BEARING AND METHOD OF MANUFACTURING
WO2023232938A1 (en) Method for manufacturing a timepiece or jewellery component, and said timepiece or jewellery component
WO2003000961A2 (en) Alloy crystal production device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT NL SE

17P Request for examination filed

Effective date: 19900831

17Q First examination report despatched

Effective date: 19921208

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19931208

Ref country code: SE

Effective date: 19931208

Ref country code: GB

Effective date: 19931208

Ref country code: DE

Effective date: 19931208

Ref country code: NL

Effective date: 19931208

REF Corresponds to:

Ref document number: 69004986

Country of ref document: DE

Date of ref document: 19940120

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19931208

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed