EP0379915A1 - Substituierte Phenoxybenzonitril-Derivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide und Pflanzenwuchsregulatoren - Google Patents

Substituierte Phenoxybenzonitril-Derivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide und Pflanzenwuchsregulatoren Download PDF

Info

Publication number
EP0379915A1
EP0379915A1 EP90100701A EP90100701A EP0379915A1 EP 0379915 A1 EP0379915 A1 EP 0379915A1 EP 90100701 A EP90100701 A EP 90100701A EP 90100701 A EP90100701 A EP 90100701A EP 0379915 A1 EP0379915 A1 EP 0379915A1
Authority
EP
European Patent Office
Prior art keywords
chlorine
alkyl
fluorine
formula
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP90100701A
Other languages
English (en)
French (fr)
Inventor
Ulrich Dr. Busse
Hans-Joachim Dr. Santel
Robert R. Dr. Schmidt
Klaus Dr. Lürssen
Harry Dr. Strang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0379915A1 publication Critical patent/EP0379915A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/01Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms
    • C07C311/02Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C311/08Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/36Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids
    • A01N37/38Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids having at least one oxygen or sulfur atom attached to an aromatic ring system
    • A01N37/40Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids having at least one oxygen or sulfur atom attached to an aromatic ring system having at least one carboxylic group or a thio analogue, or a derivative thereof, and one oxygen or sulfur atom attached to the same aromatic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/44Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N41/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom
    • A01N41/02Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom containing a sulfur-to-oxygen double bond
    • A01N41/04Sulfonic acids; Derivatives thereof
    • A01N41/06Sulfonic acid amides
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/10Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof
    • A01N47/22O-Aryl or S-Aryl esters thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/28Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N<
    • A01N47/30Derivatives containing the group >N—CO—N aryl or >N—CS—N—aryl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/57Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and carboxyl groups, other than cyano groups, bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/58Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the carbon skeleton
    • C07C255/59Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the carbon skeleton the carbon skeleton being further substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/58Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the carbon skeleton
    • C07C255/60Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the carbon skeleton at least one of the singly-bound nitrogen atoms being acylated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/28Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C275/32Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton being further substituted by singly-bound oxygen atoms
    • C07C275/34Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton being further substituted by singly-bound oxygen atoms having nitrogen atoms of urea groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C275/36Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton being further substituted by singly-bound oxygen atoms having nitrogen atoms of urea groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring with at least one of the oxygen atoms further bound to a carbon atom of a six-membered aromatic ring, e.g. N-aryloxyphenylureas

Definitions

  • the invention relates to new substituted phenoxybenzonitrile derivatives, processes for their preparation and their use as herbicides and plant growth regulators.
  • the substituted phenoxybenzonitrile derivatives of the formula (I) according to the invention are more potent against weeds than methyl 3- (2,4-dichlorophenoxy) -6-nitro-benzoate, which is a structurally similar previously known active ingredient with the same direction of action .
  • the invention preferably relates to compounds of the formula (I) in which R1 represents hydrogen, fluorine, chlorine, bromine, cyano or trifluoromethyl, R2 represents hydrogen, fluorine or chlorine, R3 represents fluorine, chlorine, bromine, trifluoromethyl, trifluoromethoxy or trifluoromethylsulfonyl, R4 represents hydrogen, fluorine or chlorine, R5 represents hydrogen, fluorine or chlorine and R6 for the groupings or stands in what R7 and R8 are the same or different and each independently represent hydrogen, C1-C6-alkoxy-carbonyl-ethyl, the grouping -CO-R9 or the grouping -SO2-R19, where R9 for C1-C6-alkyl optionally substituted by fluorine, chlorine, bromine, C1-C4-alkoxy and / or C1-C4-alkoxy-carbonyl, for C2-C4-alkenyl optionally substituted by fluorine, chlorine and / or
  • the invention relates in particular to compounds of the formula (I) in which R1 represents hydrogen, fluorine or chlorine, in particular chlorine, R2 represents hydrogen, fluorine or chlorine, in particular hydrogen, R3 represents trifluoromethyl, R4 represents hydrogen, fluorine or chlorine, in particular hydrogen, R5 represents hydrogen, fluorine or chlorine, in particular fluorine or chlorine and R6 for the groupings or stands in what R7 represents hydrogen or acetyl and R8 represents hydrogen, methoxycarbonylethyl, ethoxycarbonylethyl, the grouping -CO-R9 or the grouping -SO2-R10, wherein R9 for C1-C4-alkyl optionally substituted by chlorine, bromine, methoxy or ethoxy, for cyclopropyl, for benzyl, for phenyl optionally substituted by fluorine, chlorine, bromine, methyl, ethyl, methoxy and / or ethoxy, for C1-C4- Alkoxy
  • Formula (II) provides a general definition of the halogenobenzene derivatives to be used as starting materials in process (a) according to the invention for the preparation of compounds of the formula (I).
  • R1, R2, R3, R4 and R5 preferably or in particular have those meanings which have already been mentioned above in connection with the description of the compounds of the formula (I) according to the invention preferably or as particularly preferred for R1, R2, R3 , R4 and R5 have been specified and X preferably represents fluorine or chlorine.
  • the compounds to be used as starting materials in the processes (b), (c) and (d) according to the invention are generally defined by the formula (I) with the proviso that R6 is amino.
  • the radicals R1, R2, R3, R4 and R5 preferably or in particular have those meanings which have already been given as preferred or as particularly preferred in the context of the description of the compounds of the formula (I) according to the invention.
  • R9 and R10 preferably or in particular have those meanings which have already been mentioned above in connection with the description of the compounds of the formula (I) according to the invention preferably or as particularly preferred for R9 and R10 and X1 as well as X2 are preferably fluorine, chlorine or bromine, in particular chlorine.
  • Examples of the starting materials of the formulas (IV) and (V) are: Acetylchloride, propionylchloride, butyroylchloride, isobutyroylchloride, valeroylchloride, isovaleroylchloride, chloroacetylchloride, dichloroacetylchloride, trichloroacetylchloride, 2-chloropropionylchloride, 2-bromopropionylchloride, methoxyacetylchloride, ethoxyacetylchloride, 2-methoxypropylchloride, 2-methoxypropyl chloride, 2-methoxypropyl chloride, 2-methoxypropyl chloride, 2-methoxypropyl chloride, 2-methoxypropyl chloride, 2-methoxypropyl chloride, 2-methoxypropyl chloride, 2-methoxypropyl chloride, 2-methoxypropyl chloride, 2-meth
  • the starting materials of the formula (IV) and (V) are known compounds.
  • Formula (VI) provides a general definition of the acrylic acid esters to be used as starting materials in processes (c) and (d) according to the invention.
  • R12 is preferably C1-C6 alkyl, especially C1-C4 alkyl.
  • the compounds of formula (VI) are known organic synthetic chemicals.
  • the compounds to be used as starting materials in process (e) according to the invention are represented by the formula (I) with the proviso that R6 for the grouping stands, generally defined.
  • the radicals R1, R2, R3, R4, R5 and R12 preferably or in particular have those meanings which have already been given in the description of the compounds of the formula (I) according to the invention preferably or as particularly preferred and R11 is above preferably for chlorine or bromine.
  • Process (a) according to the invention for the preparation of the new compounds of the formula (I) is preferably carried out using diluents.
  • diluents Practically all inert organic solvents can be used as diluents. These preferably include aliphatic and aromatic, optionally halogenated hydrocarbons such as pentane, hexane, heptane, cyclohexane, petroleum ether, gasoline, ligroin, benzene, toluene, xylene, methylene chloride, ethylene chloride, chloroform, carbon tetrachloride, chlorobenzene and o-dichlorobenzene, ethers such as diethyl and Dibutyl ether, glycol dimethyl ether and diglycol dimethyl ether, tetrahydrofuran and dioxane, ketones such as acetone, methyl ethyl, methyl isopropyl and methyl isobut
  • aprotic polar solvents such as. B. acetone, acetonitrile, methyl ethyl ketone, propionitrile, methyl isobutyl ketone, methyl isopropyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and dimethyl sulfoxide, particularly preferred.
  • Acid acceptors which can be used in process (a) according to the invention are all acid binders which can customarily be used for such reactions.
  • Alkali metal hydroxides such as, for. B. sodium and potassium hydroxide, alkaline earth metal hydroxides such. B.
  • alkali carbonates and alcoholates such as sodium and potassium carbonate, sodium and potassium tert-butoxide, also aliphatic, aromatic or heterocyclic amines, for example triethylamine, trimethylamine, dimethylaniline, dimethylbenzylamine, pyridine, 1,5-diazabicyclo- [4 , 3,0] non-5-ene (DBN), 1,8-diazabicyclo- [5,4,0] -undec-7-ene (DBU) and 1,4-diazabicyclo- [2,2,2 ] octane (DABCO).
  • DBN 1,5-diazabicyclo- [4 , 3,0] non-5-ene
  • DBU 1,8-diazabicyclo- [5,4,0] -undec-7-ene
  • DABCO 1,4-diazabicyclo- [2,2,2 ] octane
  • reaction temperatures in process (a) according to the invention can be varied within a substantial range. In general, temperatures between 0 ° C and 200 ° C, preferably at temperatures between 20 ° C and 120 ° C.
  • Process (a) according to the invention is generally carried out under normal pressure. However, it is also possible to work under increased or reduced pressure.
  • process (a) the starting materials required in each case are generally used in approximately equimolar amounts. However, it is also possible to use one of the two components used in each case in a larger excess.
  • the reactions are generally carried out in a suitable diluent in the presence of an acid Acceptor performed, and the reaction mixture is stirred for several hours at the required temperature.
  • Working up in process (a) according to the invention is carried out in each case by customary methods.
  • Process (b) according to the invention for the preparation of the new compounds of the formula (I) is optionally carried out using diluents.
  • Suitable diluents here are all inert organic solvents as specified above for process (a) according to the invention.
  • Process (b) is optionally carried out in the presence of an acid acceptor.
  • Suitable acid acceptors here are virtually all acid binders which can usually be used for such reactions, as indicated above for process (a) according to the invention.
  • reaction temperatures can be varied within a substantial range in process (b) according to the invention. In general, temperatures between -20 ° C and +150 ° C, preferably at temperatures between 0 ° C and 100 ° C.
  • Process (b) according to the invention is generally carried out under normal pressure. However, it is also possible Lich to work under increased or reduced pressure.
  • process (b) the starting materials required in each case are generally used in approximately equimolar amounts. However, it is also possible to use one of the two components used in each case in a larger excess.
  • the reactions are generally carried out in a suitable diluent in the presence of an acid acceptor, and the reaction mixture is stirred for several hours at the temperature required in each case.
  • Working up in process (b) according to the invention is carried out by customary methods.
  • Process (c) according to the invention for the preparation of the new compounds of the formula (I) is preferably carried out using diluents.
  • diluents Practically all inert organic solvents as specified above for process (a) according to the invention are suitable as diluents. Of these, the aprotic polar solvents indicated above are particularly preferred.
  • Process (c) is optionally carried out in the presence of a basic catalyst.
  • Suitable basic catalysts are alkali metal hydroxides or alcoholates, such as sodium or potassium hydroxide, methylate, ethylate or tert-butoxide, alkali metal salts of carboxylic acids, such as. B. sodium or potassium acetate, and basic nitrogen compounds such as diethylamine or piperidine.
  • reaction temperatures can be varied within a substantial range in process (c) according to the invention. In general, temperatures between 0 ° C and 150 ° C, preferably at temperatures between 20 ° C and 120 ° C.
  • Process (c) according to the invention is generally carried out under normal pressure. However, it is also possible to work under increased or reduced pressure.
  • process (c) the starting materials required in each case are generally used in approximately equimolar amounts. However, it is also possible to use one of the two components used in each case in a larger excess.
  • the reactions are generally carried out in a suitable diluent in the presence of a basic catalyst, and the reaction mixture is stirred for several hours at the temperature required in each case.
  • Working up in process (c) according to the invention is carried out by customary methods.
  • Process (d) according to the invention for the preparation of compounds of the formula (I) is carried out using a hydrogen halide (HX 3).
  • HX 3 hydrogen halide
  • Examples of these are hydrogen fluoride, hydrogen chloride, hydrogen bromide and hydrogen iodide. Hydrogen chloride and hydrogen bromide are preferably used.
  • Process (d) is preferably carried out using an organic solvent.
  • organic solvent particularly suitable are ethers, such as glycol dimethyl ether and diglycol dimethyl ether, tetrahydrofuran and dioxane, ketones, such as. B. acetone and methyl ethyl ketone, and amides such as. B. Dimethylformamide.
  • Process (d) is further preferably carried out in the presence of catalysts.
  • catalysts As such come in particular copper and copper compounds such.
  • reaction temperatures can be varied within a substantial range in process (d) according to the invention. In general, temperatures between -20 ° C and +80 ° C, preferably at temperatures between 0 ° C and 60 ° C.
  • Process (d) is generally carried out under normal pressure.
  • process (d) generally between 0.8 and 2.5 mol, preferably between 1.1 and 2.0 mol, sodium nitrite or potassium nitrite, between 2 and 50 mol are used per mol of phenoxyphenylamino compound of the formula (I) , preferably between 5 and 25 mol, hydrogen halide, and between 1 and 3 mol, preferably between 1.5 and 2.5 mol, acrylic acid derivative of the formula (VI).
  • Process (d) can be carried out under the usual conditions of "sea wine arylation".
  • the starting compound of the formula (I) is first stirred in a diluent which comprises at least water and a hydrogen halide and diazotized with cooling with an aqueous solution of sodium nitrite or potassium nitrite.
  • the acrylic acid derivative of the formula (VI) and optionally the catalyst are added to the reaction mixture.
  • Process (e) according to the invention for the preparation of compounds of the formula (I) is carried out using a dehalogenating agent.
  • a dehalogenating agent can be the usual substances suitable for dehalogenation, such as. B. tributyltin hydride can be used.
  • Process (e) is optionally carried out in the presence of a catalyst.
  • catalysts here come as free radical initiators, such as. B. azo-bis-isobutyronitrile, into consideration.
  • Process (e) is preferably carried out in the presence of a diluent.
  • a diluent Practically all inert organic solvents can be used as diluents. These preferably include aliphatic and aromatic, optionally halogenated hydrocarbons, such as pentane, hexane, heptane, cyclohexane, methylcyclohexane, benzene, toluene, xylene, chlorobenzene and o-dichlorobenzene, and ethers, such as diethyl ether, dipro pyl ether, diisopropyl ether, dibutyl ether, diisobutyl ether, glycol dimethyl ether, diglycol dimethyl ether, tetrahydrofuran and dioxane.
  • reaction temperatures can be varied within a substantial range in process (e) according to the invention. In general, temperatures between 0 ° C and 150 ° C, preferably at temperatures between 10 ° C and 100 ° C.
  • Process (e) according to the invention is generally carried out under normal pressure. However, it is also possible to work under increased or reduced pressure.
  • process (e) the starting materials required in each case are generally used in approximately equimolar amounts. However, it is also possible to use one of the two components used in each case in a larger excess.
  • the reactions are generally carried out in a suitable diluent in the presence of a catalyst and the reaction mixture is stirred for several hours at the temperature required in each case.
  • Working up in process (e) according to the invention is carried out in each case by customary methods.
  • the active compounds according to the invention can be used as defoliants, desiccants, haulm killers and in particular as weed killers. Weeds in the broadest sense are all plants hen who grow up in places where they are undesirable. Whether the substances according to the invention act as total or selective herbicides depends essentially on the amount used.
  • the active compounds according to the invention can be used, for example, in the following plants: Dicotyledon weeds of the genera: Sinapis, Lepidium, Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthium, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduippum, Sonuanum , Rotala, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea.
  • the compounds are suitable for total weed control, e.g. on industrial and track systems and on paths and squares with and without tree cover.
  • the compounds for weed control in permanent crops e.g. Forests, ornamental trees, fruit, wine, citrus, nut, banana, coffee, tea, rubber, oil palm, cocoa, berry fruit and hop plants and for selective weed control in annual crops.
  • the compounds according to the invention are particularly suitable for the selective control of dicotyledon weeds in monocotyledon crops, especially in the wake process.
  • the active compounds according to the invention intervene in the metabolism of the plants and can therefore be used as growth regulators.
  • plant growth regulators According to previous experience, the principle of action of plant growth regulators is that an active ingredient can also have several different effects on plants.
  • the effects of the substances essentially depend on the point in time of use, based on the stage of development of the plant, on the amounts of active ingredient applied to the plants or their environment and on the type of application. In any case growth regulators are intended to influence the crop plants in a desired manner.
  • the amount of leaves in the plants can be controlled in such a way that defoliation of the plants is achieved at a desired point in time.
  • defoliation plays a large role in the mechanical harvesting of cotton, but is also important in other crops, such as e.g. of interest in viticulture to facilitate harvesting.
  • Defoliation of the plants can also be carried out in order to reduce the transpiration of the plants before transplanting.
  • the active compounds can be converted into the customary formulations, such as solutions, emulsions, wettable powders, suspensions, powders, dusts, pastes, soluble powders, granules, suspension emulsion concentrates, active substance-impregnated natural and synthetic substances and very fine encapsulations in polymeric substances.
  • formulations are prepared in a known manner, e.g. B. by mixing the active ingredients with extenders, that is liquid solvents and / or solid carriers, optionally using surface-active agents, ie emulsifiers and / or dispersants and / or foam-generating agents.
  • extenders that is liquid solvents and / or solid carriers
  • surface-active agents ie emulsifiers and / or dispersants and / or foam-generating agents.
  • organic solvents can, for example, also be used as auxiliary solvents.
  • Com as liquid solvent Men essentially in question: aromatics, such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics and chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chlorethylenes or methylene chloride, aliphatic hydrocarbons, such as cyclohexane or paraffins, for example petroleum fractions, mineral and vegetable oils, alcohols, such as butanol or Glycol and its ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulfoxide, and water.
  • aromatics such as xylene, toluene or alkylnaphthalenes
  • chlorinated aromatics and chlorinated aliphatic hydrocarbons such as chlor
  • solid carriers e.g. ammonium salts and natural rock powders, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and synthetic rock powders, such as highly disperse silica, aluminum oxide and silicates, as solid carriers for granulates are possible: e.g.
  • suitable emulsifiers and / or foam-generating agents are: for example nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkyl sulfonates, alkyl sulfates, aryl sulfonates and protein hydrolyzates;
  • suitable emulsifiers and / or foam-generating agents are: for example nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkyl sulfonates, alkyl sulfates, aryl sulfonates and protein hydrolyzates;
  • dispersants for example lignin sulfite waste liquor and methyl cellulose.
  • Adhesives such as carboxy can be used in the formulations methyl cellulose, natural and synthetic powdery, granular or latex-shaped polymers are used, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and natural phospholipids, such as cephalins and lecithins and synthetic phospholipids.
  • Other additives can be mineral and vegetable oils.
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc can be used.
  • the formulations generally contain between 0.1 and 95 percent by weight of active compound, preferably between 0.5 and 90%.
  • the active compounds according to the invention can also be used in a mixture with known herbicides for weed control, finished formulations or tank mixes being possible.
  • Known herbicides such as 1-amino-6-ethylthio-3- (2,2-dimethylpropyl) -1, 3,5-triazine-2,4 (1H, 3H) -dione (AMETHYDIONE) or N- (2-benzothiazolyl) -N, N'-dimethyl-urea (METABENZTHIAZURON) for weed control in cereals; 4-amino-3-methyl-6-phenyl-1,2,4-triazin-5 (4H) -one (METAMITRON) for weed control in sugar beets and 4-amino-6- (1,1-dimethylethyl) -3- methylthio-1,2,4-triazin-5 (4H) -one (METRIBUZIN) for weed control in soybeans, in question; also 2,4-Di chlorophenoxyacetic acid (2,4-D); 4- (2,4-dichlorophenoxy) butyric acid (2,4-DB); 2,4-dich
  • a mixture with other known active compounds such as fungicides, insecticides, acaricides, nematicides, bird repellants, plant nutrients and agents which improve soil structure, is also possible.
  • the active compounds can be used as such, in the form of their formulations or in the use forms prepared therefrom by further dilution, such as ready-to-use solutions, suspensions, emulsions, powders, pastes and granules. They are used in the usual way, e.g. by pouring, spraying, spraying, sprinkling.
  • the active compounds according to the invention can be applied both before and after emergence of the plants.
  • the amount of active ingredient used can vary over a wide range. It essentially depends on the type of effect desired. In general, the application rates are between 0.01 and 10 kg of active ingredient per hectare of soil, preferably between 0.05 and 5 kg per ha.
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amount of solvent, the stated amount of emulsifier is added and the concentrate is diluted with water to the desired concentration.
  • Test plants which have a height of 5-15 cm are sprayed with the active substance preparation in such a way that the desired amounts of active substance are applied per unit area.
  • the concentration of the spray liquor is chosen so that the particular amounts of active compound desired are applied in 2000 l of water / ha.
  • the compounds according to preparation examples (2) and (4) show considerably stronger activity than the known compound (A) against weeds, such as. B. Ipomoea, Sida, Sinapis and Viola.
  • Emulsifier 1 part by weight of polyoxyethylene sorbitan monolaurate
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the mixture is made up to the desired concentration with water.
  • Cotton plants are grown in the greenhouse until the 5th following leaf is fully developed. At this stage, the plants are sprayed dripping wet with the active ingredient preparations. After 1 week, the leaf fall and the drying out of the leaves are rated in comparison to the control plants.
  • the active ingredients according to the preparation examples (3) and (4) show very strong drying out of the leaves and very strong falling of the leaves.

Abstract

Die Erfindung betrifft neue substituierte Phenoxybenzonitril-Derivate der Formel (I), <IMAGE> in welcher R¹ für Wasserstoff, Halogen, Cyano oder Trifluormethyl steht, R² für Wasserstoff oder Halogen steht, R³ für Halogen, Trifluormethyl, Trifluormethoxy oder Trifluormethylsulfonyl steht, R<4> für Wasserstoff oder Halogen steht, R<5> für Wasserstoff oder Halogen steht und R<6> für die Gruppierungen <IMAGE> oder <IMAGE> steht, mehrere Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide und Pflanzenwuchsregulatoren.

Description

  • Die Erfindung betrifft neue substituierte Phenoxybenzo­nitril-Derivate, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Herbizide und Pflanzenwuchsregula­toren.
  • Es ist bereits bekannt, daß bestimmte Phenoxybenzoesäu­re-Derivate, wie z. B. 3-(2,4-Dichlor-phenoxy)-6-nitro­benzoesäure-methylester (Bifenox) herbizid wirksam sind (vgl. US-P 3 652 645 und US-P 3 776 715). Die Wirkung dieser bekannten Verbindungen ist jedoch nicht immer zu­friedenstellend.
  • Es wurden nun neue substituierte Phenoxybenzonitril-­Derivate der allgemeinen Formel (I)
    Figure imgb0001
    in welcher
    R¹ für Wasserstoff, Halogen, Cyano oder Trifluormethyl steht,
    R² für Wasserstoff oder Halogen steht,
    R³ für Halogen, Trifluormethyl, Trifluormethoxy oder Trifluormethylsulfonyl steht,
    R⁴ für Wasserstoff oder Halogen steht,
    R⁵ für Wasserstoff oder Halogen steht und
    R⁶ für die Gruppierungen
    Figure imgb0002
    oder
    Figure imgb0003
    steht, worin
    R⁷ und R⁸ gleich oder verschieden sind und unab­hängig voneinander jeweils für Wasserstoff, Alkoxycarbonylethyl, die Gruppierung -CO-R⁹ oder die Gruppierung -SO₂-R¹⁰ stehen, wobei
    R⁹ für jeweils gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkylalkyl, Benzyl, Phenyl, Naphthyl, Pyridyl, Furyl, Thienyl, Alkoxy, Phenoxy, Alkylthio, Phenylthio, Alkylamino, Dialkylamino, Cycloalkylamino oder Phenylamino steht und
    R¹⁰ für jeweils gegebenenfalls substituiertes Alkyl, Phenyl, Naphthyl, Pyridyl oder Thienyl steht,
    R¹¹ für Wasserstoff oder Halogen steht und
    R¹² für Alkyl steht,
    gefunden.
  • Weiter wurde gefunden, daß man die neuen substituierten Phenoxybenzonitril-Derivate der allgemeinen Formel (I) erhalt, wenn man
    • (a) für den Fall, daß in Formel (I) R⁶ für Amino steht und R¹, R², R³, R⁴ und R⁵ die oben angegebenen Be­deutungen haben,
      Halogen-benzol-Derivate der allgemeinen Formel (II)
      Figure imgb0004
      in welcher
      R¹, R², R³, R⁴ und R⁵ die oben angegebenen Bedeutungen haben und
      X für Halogen steht,
      mit 2-Amino-4-hydroxy-benzonitril der Formel (III)
      Figure imgb0005
      gegebenenfalls in Gegenwart eines Säureakzeptors und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt, oder wenn man
    • (b) für den Fall, daß in Formel (I) R⁶ für die Gruppierung
      Figure imgb0006
      steht, worin R⁷ und/oder R⁸ für die Gruppierung -CO-R⁹ oder die Gruppierung -SO₂-R¹⁰ stehen, und R¹, R², R³, R⁴, R⁵, R⁹ und R¹⁰ die oben angegebene Bedeutung haben,
      Verbindungen der allgemeinen Formel (I), in welcher R⁶ für Amino steht und R¹, R², R³, R⁴ und R⁵ die oben angegebenen Bedeutungen haben,
      mit Verbindungen der allgemeinen Formel (IV)
      X¹-CO-R⁹      (IV)
      in welcher
      R⁹ die oben angegebene Bedeutung hat und
      X¹ für Halogen steht,
      oder mit Verbindungen der allgemeinen Formel (V)
      X²-SO₂-R¹⁰      (V)
      in welcher
      R¹⁰ die oben angegebene Bedeutung hat und
      X² für Halogen steht,
      gegebenenfalls in Gegenwart eines Säureakzeptors und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt, oder wenn man
    • (c) für den Fall, daß in Formel (I) R⁶ für die Guppierung
      Figure imgb0007
      steht, worin R⁷ und/oder R⁸ für Alkoxycarbonylethyl stehen, und R¹, R², R³, R⁴ und R⁵ die oben angegebenen Bedeutungen haben,
      Verbindungen der allgemeinen Formel (I), in welcher R⁶ für Amino steht und R¹, R², R³, R⁴ und R⁵ die oben angegebenen Bedeutungen haben,
      mit Acrylsäureestern der Formel (VI)
      CH₂=CH-COOR¹²      (VI)
      in welcher
      R¹² für Alkyl steht,
      gegebenenfalls in Gegenwart eines basischen Katalysators und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt, oder wenn man
    • (d) für den Fall, daß in Formel (I) R⁶ für die Gruppie­rung
      Figure imgb0008
      steht, worin R¹¹ für Halogen steht und R¹² für Alkyl steht sowie R¹, R², R³, R⁴ und R⁵ die oben angegebenen Bedeutungen haben,
      Verbindungen der allgemeinen Formel (I), in welcher R⁶ für Amino steht und R¹, R², R³, R⁴ und R⁵ die oben angegebenen Bedeutungen haben,
      mit Natriumnitrit oder Kaliumnitrit und mit einem Hydrogenhalogenid (HX³) in Gegenwart von Wasser und gegebenenfalls in Gegenwart eines organischen Lö­sungsmittels umsetzt und die hierbei gebildeten Diazoniumsalze der allgemeinen Formel (VII)
      Figure imgb0009
      in welcher
      R¹, R², R³, R⁴ und R⁵ die oben angegebenen Bedeu­tungen haben und
      X³ für Halogen steht,
      mit Acrylsäureestern der Formel (VI)
      CH₂=CH-COOR¹²      (VI)
      in welcher
      R¹² für Alkyl steht,
      in Gegenwart von Hydrogenhalogeniden (HX³), gegebenen­falls in Gegenwart von Katalysatoren und gegebenenfalls in Gegenwart von Wasser und dem gegebenenfalls bei der Erzeugung der Verbindungen der Formel (VII) verwendeten organischen Lösungsmittel umsetzt, oder wenn man
    • (e) für den Fall, daß in Formel (I) R⁶ für die Gruppie­rung
      Figure imgb0010
      steht, worin R¹¹ für Wasser­stoff steht und R¹² für Alkyl steht sowie R¹, R², R³, R⁴ und R⁵ die oben angegebenen Bedeutungen haben,
      Verbindungen der allgemeinen Formel (I), in welcher
      R⁶ für die Gruppierung
      Figure imgb0011
      steht, worin R¹¹ für Halogen steht und R¹² für Alkyl steht sowie R¹, R², R³, R⁴ und R⁵ die oben angegebenen Bedeu­tungen haben,
      mit einem Dehalogenierungsmittel, gegebenenfalls in Gegenwart eines Katalysators und gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt.
  • Schließlich wurde gefunden, daß die neuen substituierten Phenoxybenzonitril-Derivate der Formel (I) hervorragende herbizide bzw. pflanzen­wuchsregulierende Eigenschaften aufweisen.
  • Überraschenderweise sind die erfindungsgemäßen substituierten Phenoxybenzonitril-Derivate der For­mel (I) gegen Unkräuter wesentlich stärker wirksam als 3-(2,4-Dichlor-phenoxy)-6-nitro-benzoe-säure-­methylester, welches ein strukturell ähnlicher vorbekannter Wirkstoff gleicher Wirkungsrichtung ist.
  • Die Erfindung betrifft vorzugsweise Verbindungen der Formel (I), in welcher
    R¹ für Wasserstoff, Fluor, Chlor, Brom, Cyano oder Trifluormethyl steht,
    R² für Wasserstoff, Fluor oder Chlor steht,
    R³ für Fluor, Chlor, Brom, Trifluormethyl, Trifluormethoxy oder Trifluormethylsulfonyl steht,
    R⁴ für Wasserstoff, Fluor oder Chlor steht,
    R⁵ für Wasserstoff, Fluor oder Chlor steht und
    R⁶ für die Gruppierungen
    Figure imgb0012
    oder
    Figure imgb0013
    steht, worin
    R⁷ und R⁸ gleich oder verschieden sind und unabhängig voneinander jeweils für Was­serstoff, C₁-C₆-Alkoxy-carbonyl-ethyl, die Gruppierung -CO-R⁹ oder die Gruppie­rung -SO₂-R¹⁹ stehen, wobei
    R⁹ für gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkoxy und/oder C₁-C₄-Alkoxy-carbonyl substituiertes C₁-C₆-Alkyl, für gegebenenfalls durch Fluor, Chlor und/oder Brom substituier­tes C₂-C₄-Alkenyl, für C₂-C₄-Alkinyl, für ge­gebenenfalls durch Fluor, Chlor, Brom, C₁-C₄­Alkyl und/oder C₁-C₄-Alkoxy-carbonyl substi­ tuiertes C₃-C₆-Cycloalkyl, für gegebenenfalls durch Fluor, Chlor, Brom und/oder C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl-C₁-C₂-alkyl, für gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkyl und/oder C₁-C₄-Alkoxy substituier­tes Benzyl, für gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, C₁-C₄-Alkyl und/­oder C₁-C₄-Alkoxy substituiertes Phenyl, für Naphthyl, für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro und/oder C₁-­C₄-Alkyl substituiertes Pyridyl, Furyl oder Thienyl, für C₁-C₆-Alkoxy, Phenoxy, C₁-C₆-­Alkylthio, Phenylthio, C₁-C₆-Alkyl-amino, Di-­(C₁-C₄)-alkylamino, C₃C₆-Cycloalkylamino oder für gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, C₁-C₄-Alkyl, Trifluormethyl, C₁-­C₄-Alkoxy und/oder C₁-C₄-Alkoxy-carbonyl sub­stituiertes Phenylamino steht und
    R¹⁰ für gegebenenfalls durch Fluor und/oder Chlor substituiertes C₁-C₆-Alkyl, für gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, C₁-C₄-­Alkyl, Trifluormethyl, C₁-C₄-Alkoxy, Difluor­methoxy, Trifluormethoxy, C₁-C₄-Alkylthio, C₁-­C₄- Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, Di-­(C₁-C₂)alkylaminosulfonyl und/oder C₁-C₄-­Alkoxy-carbonyl substituiertes Phenyl, für gegebenenfalls durch Chlor und/oder C₁-C₄-­Alkyl substituiertes Naphtyl oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro und/oder C₁-C₄-Alkyl substi­tuiertes Pyridyl oder Thienyl steht,
    R¹¹ für Wasserstoff, Chlor oder Brom steht und
    R¹² für C₁-C₆-Alkyl steht.
  • Die Erfindung betrifft insbesondere Verbindungen der Formel (I), in welcher
    R¹ für Wasserstoff, Fluor oder Chlor, insbesondere für Chlor steht,
    R² für Wasserstoff, Fluor oder Chlor, insbesondere für Wasserstoff steht,
    R³ für Trifluormethyl steht,
    R⁴ für Wasserstoff, Fluor oder Chlor, insbesondere für Wasserstoff steht,
    R⁵ für Wasserstoff, Fluor oder Chlor, insbesondere für Fluor oder Chlor steht und
    R⁶ für die Gruppierungen
    Figure imgb0014
    oder
    Figure imgb0015
    steht, worin
    R⁷ für Wasserstoff oder Acetyl steht und
    R⁸ für Wasserstoff, Methoxycarbonylethyl, Ethoxycarbonylethyl, die Gruppierung -CO-R⁹ oder die Gruppierung -SO₂-R¹⁰ steht, wobei
    R⁹ für gegebenenfalls durch Chlor, Brom, Methoxy oder Ethoxy substituiertes C₁-C₄-­Alkyl, für Cyclopropyl, für Benzyl, für gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Methoxy und/oder Ethoxy substituiertes Phenyl, für C₁-C₄-Alkoxy, Phenoxy, C₁-C₄-Alkylamino, Dimethyl­amino, Diethylamino, Cyclopentylamino, Cyclohexylamino oder für gegegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, Tri­fluormethyl, Methoxy und/oder Ethoxy sub­stituiertes Phenylamino steht und
    R¹⁰ für gegebenenfalls durch Fluor und/oder Chlor substituiertes C₁-C₄-Alkyl, für gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Trifluormethoxy, Dimethylamino­sulfonyl und/oder Methoxycarbonyl sub­stituiertes Phenyl steht,
    R¹¹ für Wasserstoff, Chlor oder Brom steht und
    R¹² für C₁-C₄-Alkyl steht.
  • Beispiele für die erfindungsgemäßen Verbindungen der Formel (I) sind in der nachstehenden Tabelle 1 aufge­führt (vgl. auch die Herstellungsbeispiele).
    Figure imgb0016
    Figure imgb0017
    Figure imgb0018
    Figure imgb0019
    Figure imgb0020
  • Verwendet man für das erfindungsgemäße Verfahren (a) beispielsweise 3,4-Dichlor-benzotrifluorid und 2-Amino-­4-hydroxy-benzonitril als Ausgangsstoffe, so kann der Reaktionsablauf durch das folgende Formelschema wieder­gegeben werden:
    Figure imgb0021
  • Verwendet man für das erfindungsgemäße Verfahren (b) beispielsweise 2-Amino-4-(2,6-difluor-4-trifluormethyl-­phenoxy)-benzonitril und Dichloracetylchlorid als Aus­gangsstoffe, so kann der Reaktionsablauf durch das fol­gende Formelschema wiedergegeben werden:
    Figure imgb0022
  • Verwendet man für das erfindungsgemäße Verfahren (c) beispielsweise 2-Amino-4-(2,3,6-Trichlor-4-trifluor­methyl-phenoxy)-benzonitril und Acrylsäurebutylester als Ausgangsstoffe, so kann der Reaktionsablauf durch das folgende Formelschema wiedergegeben werden:
    Figure imgb0023
  • Verwendet man für das erfindungsgemäße Verfahren (d) beispielsweise 2-Amino-4-(2-Chlor-6-fluor-4-trifluor­methyl-phenoxy)-benzonitril, Natriumnitrit und Salzsäure sowie anschließend Acrylsäure-isopropylester als Aus­gangsstoffe, so kann der Reaktionsablauf durch das fol­gende Formelschema wiedergegeben werden:
    Figure imgb0024
  • Verwendet man für das erfindungsgemäße Verfahren (e) beispielsweise 2-Chlor-3-[2-cyano-5-(2,6-dichlor-4-tri­ fluormethyl-phenoxy)-phenyl]-propionsäure-ethylester und Tributylzinnhydrid als Ausgangsstoffe, so kann der Reak­tionsablauf durch das folgende Formelschema wiederge­geben werden:
    Figure imgb0025
  • Die beim erfindungsgemäßen Verfahren (a) zur Herstellung von Verbindungen der Formel (I) als Ausgangsstoffe zu verwendenden Halogen-benzol-Derivate sind durch die For­mel (II) allgemein definiert.
  • In Formel (II) haben R¹, R², R³, R⁴ und R⁵ vorzugsweise bzw. insbesondere diejenigen Bedeutungen, die bereits oben im Zusammenhang mit der Beschreibung der erfin­dungsgemäßen Verbindungen der Formel (I) vorzugsweise bzw. als insbesondere bevorzugt für R¹, R², R³, R⁴ und R⁵ angegeben wurden und X steht vorzugsweise für Fluor oder Chlor.
  • Als Beispiele für die Ausgangsstoffe der Formel (II) seien genannt:
    3,4-Dichlor-benzotrifluorid, 3,4,5-Trichlor-benzotri­fluorid, 3,4-Dichlor-5-fluor-benzotrifluorid, 2,3,4,5-­Tetrachlor-benzotrifluorid, 3,5-Dichlor-2,4-difluor-ben­zotrifluorid und 3-Chlor-4,5-difluor-benzotrifluorid.
  • Die Verbindungen der Formel (II) sind bekannt und/oder können nach an sich bekannten Verfahren hergestellt wer­den (vgl. J. Chem. Soc. 1969, 211-217; ibid. 1971, FR-A 2 538 380 (Chem. Abstracts 102 (1985), 61914x); EP-A 180 057; US-P 4 388 472).
  • Das bei Verfahren (a) weiter als Ausgangsstoff einzu­setzende 2-Amino-4-hydroxy-benzonitril der Formel (III) ist bereits bekannt (vgl. Synthesis 1985, 778 - 779).
  • Die bei den erfindungsgemäßen Verfahren (b), (c) und (d) als Ausgangsstoffe zu verwendenden Verbindungen sind durch die Formel (I) mit der Maßgabe, daß R⁶ für Amino steht, allgemein definiert. In diesem Fall haben die Reste R¹, R², R³, R⁴ und R⁵ vorzugsweise bzw. insbeson­dere diejenigen Bedeutungen, die bereits im Rahmen der Beschreibung der erfindungsgemäßen Verbindungen der For­mel (I) vorzugsweise bzw. als insbesondere bevorzugt an­gegeben wurden.
  • Beispiele für diese Verbindungen sind Tabelle 1 (R⁶:NH₂) zu entnehmen. Diese Ausgangsstoffe sind erfindungsge­mäße, neue Verbindungen; sie können nach dem erfindungs­gemäßen Verfahren (a) hergestellt werden.
  • Die beim erfindungsgemäßen Verfahren (b) weiter als Aus­gangsstoffe zu verwendenden Verbindungen sind durch die Formeln (IV) und (V) allgemein definiert In diesen For­meln haben R⁹ und R¹⁰ vorzugsweise bzw. insbesondere diejenigen Bedeutungen, die bereits oben im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) vorzugsweise bzw. als insbesondere bevor­zugt für R⁹ und R¹⁰ angegeben wurden und X¹ wie auch X² stehen vorzugsweise für Fluor, Chlor oder Brom, insbe­sondere für Chlor.
  • Als Beispiele für die Ausgangsstoffe der Formeln (IV) und (V) seien genannt:
    Acetylchlorid, Propionylchlorid, Butyroylchlorid, Iso­butyroylchlorid, Valeroylchlorid, Isovaleroylchlorid, Chloracetylchlorid, Dichloracetylchlorid, Trichlor­acetylchlorid, 2-Chlorpropionylchlorid, 2-Brompropionyl­chlorid, Methoxyacetylchlorid, Ethoxyacetylchlorid, 2-­Methoxypropionylchlorid, 2-Ethoxypropionylchlorid, Cyclopropancarbonsäurechlorid, Phenylacetylchlorid, Benzoylchlorid, 2-Fluor-, 4-Fluor-, 2 Chlor-, 4-Chlor-, 2-Brom-, 4-Brom-, 2-Methyl-, 2-Ethyl-, 3-Methyl-, 4-­Methyl-, 4-Ethyl-, 3-Methoxy-, 4-Methoxy- und 4-Ethoxy­benzoylchlorid, Chlorameisensäure-methylester, -ethyl­ester, -propylester und -butylester, Chlorameisensäure­phenylester, Dimethylcarbamidsäurechlorid, Methan-, Ethan-, Propan-, Butan-, Chlormethan-, Trifluormethan-, 2-Chlor-ethan- und Perfluorbutan-sulfonsäurechlorid, Benzolsulfonsäurechlorid, 2-Chlor-, 3-Chlor-, 4-Chlor-, 2,4-Dichlor-, 2,5-Dichlor-, 2-Fluor-, 4-Fluor-, 2-Brom-, 4-Brom-, 2-Methyl-, 3-Methyl-, 4-Methyl-, 2-Trifluor­methyl-, 2-Methoxy-, 4-Methoxy-, 2-Difluormethoxy-, 2-­ Trifluormethoxy-, 4-Trifluormethoxy-, 2-Dimethylamino­sulfonyl-, 2-Methoxycarbonyl- und 4-Methoxycarbonyl­benzolsulfonsäurechlorid.
  • Die Ausgangsstoffe der Formel (IV) und (V) sind bekannte Verbindungen.
  • Die bei den erfindungsgemäßen Verfahren (c) und (d) als Ausgangsstoffe zu verwendenden Acrylsäureester sind durch die Formel (VI) allgemein definiert. In Formel (VI) steht R¹² vorzugsweise für C₁-C₆-Alkyl, insbeson­dere für C₁-C₄-Alkyl.
  • Als Beispiele für die Ausgangsstoffe der Formel (VI) seien genannt:
    Acrylsäure-methylester, -ethylester, -propylester und -butylester.
  • Die Verbindungen der Formel (VI) sind bekannte orga­nische Synthesechemikalien.
  • Die beim erfindungsgemäßen Verfahren (e) als Ausgangs­stoffe zu verwendenden Verbindungen sind durch die For­mel (I) mit der Maßgabe, daß R⁶ für die Gruppierung
    Figure imgb0026
    steht, allgemein definiert. In diesem Fall haben die Reste R¹, R², R³, R⁴, R⁵ und R¹² vorzugs­weise bzw. insbesondere diejenigen Bedeutungen, die be­reits im Rahmen der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) vorzugsweise bzw. als insbe­sondere bevorzugt angegeben wurden und R¹¹ steht vor­ zugsweise für Chlor oder Brom.
  • Beispiele für diese Verbindungen sind Tabelle 1 zu ent­nehmen. Diese Ausgangsstoffe sind erfindungsgemäße, neue Verbindungen; sie können nach dem erfindungsgemäßen Ver­fahren (d) hergestellt werden.
  • Das erfindungsgemäße Verfahren (a) zur Herstellung der neuen Verbindungen der Formel (I) wird vorzugsweise un­ter Verwendung von Verdünnungsmitteln durchgeführt. Als Verdünnungsmittel kommen dabei praktisch alle inerten organischen Lösungsmittel in Frage. Hierzu gehören vor­zugsweise aliphatische und aromatische, gegebenenfalls halogenierte Kohlenwasserstoffe wie Pentan, Hexan, Hep­tan, Cyclohexan, Petrolether, Benzin, Ligroin, Benzol, Toluol, Xylol, Methylenchlorid, Ethylenchlorid, Chloro­form, Tetrachlorkohlenstoff, Chlorbenzol und o-Dichlor­benzol, Ether wie Diethyl- und Dibutylether, Glykoldime­thylether und Diglykoldimethylether, Tetrahydrofuran und Dioxan, Ketone wie Aceton, Methyl-ethyl-, Methyl-isopro­pyl- und Methyl-isobutyl-keton, Ester wie Essigsäureme­thylester und -ethylester, Nitrile wie z B. Acetonitril und Propionitril, Amide wie z B. Dimethylformamid, Di­methylacetamid und N-Methyl-pyrrolidon sowie Dimethyl­sulfoxid, Tetramethylensulfon und Hexamethylphosphor­säuretriamid.
  • Hiervon werden die aprotisch polaren Lösungsmittel, wie z. B. Aceton, Acetonitril, Methylethylketon, Propio­nitril, Methylisobutylketon, Methylisopropylketon, Dime­thylformamid, Dimethylacetamid, N-Methylpyrrolidon und Dimethylsulfoxid, besonders bevorzugt.
  • Als Säureakzeptoren können bei dem erfindungsgemäßen Verfahren (a) alle üblicherweise für derartige Umset­zungen verwendbaren Säurebindemittel eingesetzt werden. Vorzugsweise in Frage kommen Alkalimetallhydroxide wie z. B. Natrium- und Kaliumhydroxid, Erdalkalihydroxide wie z. B. Calciumhydroxid, Alkalicarbonate und -alkoho­late wie Natrium- und Kaliumcarbonat, Natrium- und Ka­lium-tert-butylat, ferner aliphatische, aromatische oder heterocyclische Amine, beispielsweise Triethylamin, Tri­methylamin, Dimethylanilin, Dimethylbenzylamin, Pyridin, 1,5-Diazabicyclo-[4,3,0]-non-5-en (DBN), 1,8-Diazabi­cyclo-[5,4,0]-undec-7-en (DBU) und 1,4-Diazabicyclo-­[2,2,2]-octan (DABCO).
  • Die Reaktionstemperaturen können bei dem erfindungsge­mäßen Verfahren (a) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0 °C und 200 °C, vorzugsweise bei Temperaturen zwischen 20 °C und 120 °C.
  • Das erfindungsgemäße Verfahren (a) wird im allgemeinen unter Normaldruck durchgeführt. Es ist jedoch auch mög­lich, unter erhöhtem oder vermindertem Druck zu arbei­ten.
  • Zur Durchführung des erfindungsgemäßen Verfahrens (a) werden die jeweils benötigten Ausgangsstoffe im allge­meinen in angenähert äquimolaren Mengen eingesetzt. Es ist jedoch auch möglich, eine der beiden jeweils einge­setzten Komponenten in einem größeren Überschuß zu ver­wenden. Die Reaktionen werden im allgemeinen in einem geeigneten Verdünnungsmittel in Gegenwart eines Säure­ akzeptors durchgeführt, und das Reaktionsgemisch wird mehrere Stunden bei der jeweils erforderlichen Tempera­tur gerührt. Die Aufarbeitung erfolgt bei dem erfin­dungsgemäßen Verfahren (a) jeweils nach üblichen Me­thoden.
  • Das erfindungsgemäße Verfahren (b) zur Herstellung der neuen Verbindungen der Formel (I) wird gegebenenfalls unter Verwendung von Verdünnungsmitteln durchgeführt. Als Verdünnungsmittel kommen dabei alle inerten orga­nischen Lösungsmittel in Frage, wie sie oben für das er­findungsgemäße Verfahren (a) angegeben sind.
  • Verfahren (b) wird gegebenenfalls in Gegenwart eines Säureakzeptors durchgeführt. Als Säureakzeptoren kommen hierbei praktisch alle üblicherweise für derartige Um­setzungen verwendbaren Säurebindemittel in Frage, wie sie oben für das erfindungsgemäße Verfahren (a) angege­ben sind.
  • Hiervon werden die oben genannten aliphatischen, aroma­tischen oder heterocyclischen Amine, wie z. B. Pyridin und DABCO, besonders bevorzugt.
  • Die Reaktionstemperaturen können bei dem erfindungsge­mäßen Verfahren (b) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20 °C und +150 °C, vorzugsweise bei Tem­peraturen zwischen 0 °C und 100 °C.
  • Das erfindungsgemäße Verfahren (b) wird im allgemeinen unter Normaldruck durchgeführt. Es ist jedoch auch mög­ lich, unter erhöhtem oder vermindertem Druck zu arbei­ten.
  • Zur Durchführung des erfindungsgemäßen Verfahrens (b) werden die jeweils benötigten Ausgangsstoffe im allge­meinen in angenähert äquimolaren Mengen eingesetzt. Es ist jedoch auch möglich, eine der beiden jeweils einge­setzten Komponenten in einem größeren Überschuß zu ver­wenden. Die Reaktionen werden im allgemeinen in einem geeigneten Verdünnungsmittel in Gegenwart eines Säureak­zeptors durchgeführt, und das Reaktionsgemisch wird mehrere Stunden bei der jeweils erforderlichen Tempera­tur gerührt. Die Aufarbeitung erfolgt bei dem erfin­dungsgemäßen Verfahren (b) nach üblichen Methoden.
  • Das erfindungsgemäße Verfahren (c) zur Herstellung der neuen Verbindungen der Formel (I) wird vorzugsweise un­ter Verwendung von Verdünnungsmitteln durchgeführt. Als Verdünnungsmittel kommen dabei praktisch alle inerten organischen Lösungsmittel in Frage, wie sie oben für das erfindungsgemäße Verfahren (a) angegeben sind. Hiervon werden die oben angegebenen aprotisch polaren Lösungs­mittel besonders bevorzugt.
  • Verfahren (c) wird gegebenenfalls in Gegenwart eines basischen Katalysators durchgeführt. Geeignete basische Katalysatoren sind hierbei Alkalimetall-hydroxide oder -alkoholate, wie Natrium- oder Kalium-hydroxid, -methyl­at, -ethylat oder -tert-butylat, Alkalimetallsalze von Carbonsäuren, vie z. B. Natrium- oder Kalium -acetat, sowie basische Stickstoffverbindungen, wie Diethylamin oder Piperidin.
  • Die Reaktionstemperaturen können bei dem erfindungsge­mäßen Verfahren (c) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0 °C und 150 °C, vorzugsweise bei Temperaturen zwischen 20 °C und 120 °C.
  • Das erfindungsgemäße Verfahren (c) wird im allgemeinen unter Normaldruck durchgeführt. Es ist jedoch auch mög­lich, unter erhöhtem oder vermindertem Druck zu arbeiten.
  • Zur Durchführung des erfindungsgemäßen Verfahrens (c) werden die jeweils benötigten Ausgangsstoffe im allge­meinen in angenähert äquimolaren Mengen eingesetzt. Es ist jedoch auch möglich, eine der beiden jeweils einge­setzten Komponenten in einem größeren Überschuß zu ver­wenden. Die Reaktionen werden im allgemeinen in einem geeigneten Verdünnungsmittel in Gegenwart eines ba­sischen Katalysators durchgeführt, und das Reaktionsge­misch wird mehrere Stunden bei der jeweils erforder­lichen Temperatur gerührt. Die Aufarbeitung erfolgt bei dem erfindungsgemäßen Verfahren (c) nach üblichen Methoden.
  • Das erfindungsgemäße Verfahren (d) zur Herstellung von Verbindungen der Formel (I) wird unter Einsatz eines Hydrogenhalogenids (HX³) durchgeführt. Als Beispiele hierfür seien Hydrogenfluorid, Hydrogenchlorid, Hydro­genbromid und Hydrogeniodid genannt. Hydrogenchlorid und Hydrogenbromid werden vorzugsweise eingesetzt.
  • Verfahren (d) wird vorzugsweise unter Verwendung eines organischen Lösungsmittels durchgeführt. Insbesondere geeignet sind Ether, wie z B. Glycoldimethylether und Diglycoldimethylether, Tetrahydrofuran und Dioxan, Ke­tone, wie z. B. Aceton und Methylethylketon, sowie Amide wie z. B. Dimethylformamid.
  • Verfahren (d) wird weiter vorzugsweise in Gegenwart von Katalysatoren duchgeführt. Als solche kommen insbeson­dere Kupfer und Kupferverbindungen, wie z. B. Kupfer(I)-­chlorid, Kupfer(II)-chlorid, Kupfer(I)-bromid, Kupfer­(I)-iodid, Kupfer(II)-sulfat und Kupfer(II)-nitrat in Betracht.
  • Die Reaktionstemperaturen können bei dem erfindungsge­mäßen Verfahren (d) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20 °C und +80 °C, vorzugsweise bei Tempera­turen zwischen 0 °C und 60 °C.
  • Verfahren (d) wird im allgemeinen bei Normaldruck durch­geführt.
  • Zur Durchführung des erfindungsgemäßen Verfahrens (d) setzt man je Mol Phenoxyphenylaminoverbindung der Formel (I) im allgemeinen zwischen 0,8 und 2,5 Mol, vorzugs­weise zwischen 1,1 und 2,0 Mol, Natriumnitrit oder Ka­liumnitrit, zwischen 2 und 50 Mol, vorzugsweise zwischen 5 und 25 Mol, Hydrogenhalogenid, und zwischen 1 und 3 Mol, vorzugsweise zwischen 1,5 und 2,5 Mol, Acrylsäure-­Derivat der Formel (VI) ein.
  • Verfahren (d) kann unter den üblichen Bedingungen der "Meerwein-Arylierung" durchgeführt werden. In einer be­vorzugten Ausführungsform von Verfahren (d) wird zu­nächst die Ausgangsverbindung der Formel (I) in einem Verdünnungsmittel, welches zumindest Wasser und ein Hy­drogenhalogenid enthält, verrührt und unter Kühlen mit einer wäßrigen Lösung von Natriumnitrit oder Kaliumni­trit diazotiert. Dann wird das Acrylsäure-Derivat der Formel (VI) und gegebenenfalls der Katalysator zum Reak­tionsgemisch gegeben. Wenn - gegebenenfalls nach leich­tem Erwärmen - die Stickstoff-Entwicklung abgeklungen ist, kann nach üblichen Methoden aufgearbeitet werden.
  • Das erfindungsgemäße Verfahren (e) zur Herstellung von Verbindungen der Formel (I) wird unter Einsatz eines De­halogenierungsmittels durchgeführt. Es können hierbei die üblichen zur Dehalogenierung geeigneten Substanzen, wie z. B. Tributylzinnhydrid, verwendet werden.
  • Verfahren (e) wird gegebenenfalls in Gegenwart eines Katalysators durchgeführt. Als Katalysatoren kommen hierbei als Radikalstarter gebräuchliche Substanzen, wie z. B. Azo-bis-isobutyronitril, in Betracht.
  • Verfahren (e) wird vorzugsweise in Gegenwart eines Ver­dünnungsmittels durchgeführt. Als Verdünnungsmittel kom­men dabei praktisch alle inerten organischen Lösungsmit­tel in Frage. Hierzu gehören vorzugsweise aliphatische und aromatische, gegebenenfalls halogenierte Kohlenwas­serstoffe, wie Pentan, Hexan, Heptan, Cyclohexan, Me­thylcyclohexan, Benzol, Toluol, Xylol, Chlorbenzol und o-Dichlorbenzol, sowie Ether, wie Diethylether, Dipro­ pylether, Diisopropylether, Dibutylether, Diisobutyl­ether, Glycoldimethylether, Diglycoldimethylether, Tetrahydrofuran und Dioxan.
  • Die Reaktionstemperaturen können bei dem erfindungsge­mäßen Verfahren (e) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0 °C und 150 °C, vorzugsweise bei Temperaturen zwischen 10 °C und 100 °C.
  • Das erfindungsgemäße Verfahren (e) wird im allgemeinen unter Normaldruck durchgeführt. Es ist jedoch auch mög­lich, unter erhöhtem oder vermindertem Druck zu arbeiten.
  • Zur Durchführung des erfindungsgemäßen Verfahrens (e) werden die jeweils benötigten Ausgangsstoffe im allge­meinen in angenähert äquimolaren Mengen eingesetzt. Es ist jedoch auch möglich, eine der beiden jeweils einge­setzten Komponenten in einem größeren Überschuß zu ver­wenden. Die Reaktionen werden im allgemeinen in einem geeigneten Verdünnungsmittel in Gegenwart eines Kataly­sators durchgeführt, und das Reaktionsgemisch wird mehrere Stunden bei der jeweils erforderlichen Tempera­tur gerührt. Die Aufarbeitung erfolgt bei dem erfin­dungsgemäßen Verfahren (e) jeweils nach üblichen Me­thoden.
  • Die erfindungsgemäßen Wirkstoffe können als Defoliants, Desiccants, Krautabtötungsmittel und insbesondere als Unkrautvernichtungsmittel verwendet werden. Unter Un­kraut im weitesten Sinne sind alle Pflanzen zu verste­ hen, die an Orten aufwachsen, wo sie unerwünscht sind. Ob die erfindungsgemäßen Stoffe als totale oder selek­tive Herbizide wirken, hängt im wesentlichen von der an­gewendeten Menge ab.
  • Die erfindungsgemäßen Wirkstoffe können z.B. bei den folgenden Pflanzen verwendet werden:
    Dikotyle Unkräuter der Gattungen: Sinapis, Lepidium, Ga­lium, Stellaria, Matricaria, Anthemis, Galinsoga, Cheno­podium, Urtica, Senecio, Amaranthus, Portulaca, Xanthi­um, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonchus, Solanum, Rorippa, Rotala, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea.
    Dikotyle Kulturen der Gattungen: Gossypium, Glycine, Beta, Daucus, Phaseolus, Pisum, Solanum, Linum, Ipomoea, Vicia, Nicotiana, Lycopersicon, Arachis, Brassica, Lac­tuca, Cucumis, Cucurbita.
    Monokotyle Unkräuter der Gattungen: Echinochloa, Seta­ria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristylis, Sagitta­ria, Eleocharis, Scirpus, Paspalum, Ischaemum, Spheno­clea, Dactyloctenium, Agrostis, Alopecurus, Apera.
    Monokotyle Kulturen der Gattungen: Oryza Zea, Triticum, Hordeum, Avena, Secale, Sorghum, Panicum, Saccharum, Ananas, Asparagus, Allium.
  • Die Verwendung der erfindungsgemäßen Wirkstoffe ist je­doch keineswegs auf diese Gattungen beschränkt, sondern erstreckt sich in gleicher Weise auch auf andere Pflan­zen.
  • Die Verbindungen eignen sich in Abhängigkeit von der Konzentration zur Totalunkrautbekämpfung z.B. auf In­dustrie- und Gleisanlagen und auf Wegen und Plätzen mit und ohne Baumbewuchs. Ebenso können die Verbindungen zur Unkrautbekämpfung in Dauerkulturen, z.B. Forst, Zierge­hölz-, Obst-, Wein-, Citrus-, Nuß-, Bananen-, Kaffee-, Tee-, Gummi-, Ölpalm-, Kakao-, Beerenfrucht- und Hopfen­anlagen und zur selektiven Unkrautbekämpfung in ein­jährigen Kulturen eingesetzt werden.
  • Die erfindungsgemäßen Verbindungen eignen sich insbe­sondere zur selektiven Bekämpfung von dikotylen Unkräu­tern in monokotylen Kulturen, vor allem im Nachlauf-Ver­fahren.
  • Die erfindungsgemäßen Wirkstoffe greifen in den Metabo­lismus der Pflanzen ein und können deshalb als Wachs­tumsregulatoren eingesetzt werden.
  • Für die Wirkungsweise von Pflanzenwachstumsregulatoren gilt nach der bisherigen Erfahrung, daß ein Wirkstoff auch mehrere verschiedenartige Wirkungen auf Pflanzen ausüben kann. Die Wirkungen der Stoffe hängen im wesent­lichen ab von dem Zeitpunkt der Anwendung bezogen auf das Entwicklungsstadium der Pflanze sowie von den auf die Pflanzen oder ihre Umgebung ausgebrachten Wirkstoff­mengen und von der Art der Applikation. In jedem Fall sollen Wachstumsregulatoren die Kulturpflanzen in be­stimmter gewünschter Weise beeinflussen.
  • Unter dem Einfluß von Wachstumsregulatoren kann der Blattbestand der Pflanzen so gesteuert werden, daß ein Entblättern der Pflanzen zu einem gewünschten Zeitpunkt erreicht wird Eine derartige Entlaubung spielt bei der mechanischen Beerntung der Baumwolle eine große Rolle ist aber auch in anderen Kulturen wie z.B. im Weinbau zur Erleichterung der Ernte von Interesse. Eine Entlau­bung der Pflanzen kann auch vorgenommen werden, um die Transpiration der Pflanzen vor dem Verpflanzen herabzu­setzen.
  • Die Wirkstoffe können in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Spritzpul­ver, Suspensionen, Pulver, Stäubemittel, Pasten, lös­liche Pulver, Granulate, Suspensions-Emulsions-Konzen­trate, Wirkstoff-imprägnierte Natur- und synthetische Stoffe sowie Feinstverkapselungen in polymeren Stoffen.
  • Diese Formulierungen werden in bekannter Weise herge­stellt, z. B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln.
  • Im Falle der Benutzung von Wasser als Streckmittel kön­nen z.B. auch organische Lösungsmittel als Hilfslösungs­mittel verwendet werden. Als flüssige Lösungsmittel kom­ men im wesentlichen in Frage: Aromaten, wie Xylol, Tolu­ol oder Alkylnaphthaline, chlorierte Aromaten und chlo­rierte aliphatische Kohlenwasserstoffe, wie Chlorbenzo­le, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alko­hole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone wie Aceton, Methylethylketon, Methylisobu­tylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser.
  • Als feste Trägerstoffe kommen in Frage:
    z.B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Ge­steinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate, als feste Trägerstoffe für Granulate kom­men in Frage: z.B. gebrochene und fraktionierte natürli­che Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolo­mit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Mate­rial wie Sägemehl, Kokosnußschalen, Maiskolben und Taba­kstengeln; als Emulgier- und/oder schaumerzeugende Mit­tel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, Poly­oxyethylen-Fettalkohol-Ether, z.B. Alkylaryl-polyglykol­ether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate; als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.
  • Es können in den Formulierungen Haftmittel wie Carboxy­ methylcellulose, natürliche und synthetische pulvrige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.
  • Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farb­stoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarb­stoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.
  • Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.
  • Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Herbiziden zur Unkrautbekämpfung Verwendung finden, wo­bei Fertigformulierungen oder Tankmischungen möglich sind.
  • Für die Mischungen kommen bekannte Herbizide wie z.B. 1-­Amino-6-ethylthio-3-(2,2-dimethylpropyl )-1 ,3,5-triazin-­2,4(1H,3H)-dion (AMETHYDIONE) oder N-(2-Benzthiazolyl)-­N,N′-dimethyl-harnstoff (METABENZTHIAZURON) zur Unkraut­bekämpfung in Getreide; 4-Amino-3-methyl-6-phenyl-1,2,4-­triazin-5(4H)-on (METAMITRON) zur Unkrautbekämpfung in Zuckerrüben und 4-Amino-6-(1,1-dimethylethyl)-3-methyl­thio-1,2,4-triazin-5(4H)-on (METRIBUZIN) zur Unkraut­bekämpfung in Sojabohnen, in Frage; ferner auch 2,4-Di­ chlorphenoxyessigsäure (2,4-D); 4-(2,4-Dichlorphenoxy)-­buttersäure (2,4-DB); 2,4-Dichlorphenoxypropionsäure (2,4-DP); 3-Isopropyl-2,1,3-benzothiadiazin-4-on2,2-­dioxid (BENTAZON); 3,5-Dibrom-4-hydroxy-benzonitril (BROMOXYNIL); 2-Chlor-N-{[(4-methoxy-6-methyl-1,3,5-­triazin-2-yl)-amino]-carbonyl}-benzolsulfonamid (CHLOR­SULFURON); N,N-Dimethyl-N′-(3-chlor-4-methylphenyl)-­harnstoff (CHLORTOLURON); 2-[4-(2,4-Dichlorphenoxy)-­phenoxy]-propionsäure, deren Methyl- oder deren Ethyl­ester (DICLOFOP); 4-Amino-6-t-butyl-3-ethylthio-1,2,4-­triazin-5(4H)-on (ETHIOZIN); 2-{4-[(6-Chlor-2-benzox­azolyl)-oxy]-phenoxy}-propansäure, deren Methyl- oder deren Ethylester (FENOXAPROP); [(4-Amino-3,5-dichlor-6-­fluor-2-pyridinyl)-oxy]-essigsäure bzw. deren 1-Methyl­heptylester (FLUROXYPYR); N-Phosphonomethyl-glycin (GLY­PHOSATE); Methyl-2-[4,5-dihydro-4-methyl-4-(1-methyl­ethyl)-5-oxo-1H-imidazol-2-yl]-4(5)-methylbenzoat (IM­AZAMETHABENZ); 3,5-Diiod-4-hydroxybenzonitril (IOXYNIL); N,N-Dimethyl-N′-(4-isopropylphenyl)-harnstoff (ISOPROTU­RON); (2-Methyl-4-chlorphenoxy)-essigsäure (MCPA); (4-­Chlor-2-methylphenoxy)-propionsäure (MCPP); N-Methyl-2-­(1,3-benzthiazol-2-yloxy)-acetanilid (MEFENACET); 2-­{[[((4-Methoxy-6-methyl-1,3,5-triazin-2-yl)-amino)-­carbonyl]-amino]-sulfonyl}-benzoesäure oder deren Me­thylester (METSULFURON); N-(1-Ethylpropyl)-3,4-dimethyl-­2,6-dinitroanilin (PENDIMETHALIN); 4-Ethylamino-2-t-bu­tylamino-6-methylthio-s-triazin (TERBUTRYNE); 3-[[[[(4-­Methoxy-6-methyl-1,3,5-triazin-2-yl)-amino]-carbonyl]-­amino]-sulfonyl]-thiophen-2-carbonsäure-methylester (THIAMETURON); Einige Mischungen zeigen überraschender­weise auch synergistische Wirkung.
  • Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Fungiziden, Insektiziden, Akariziden, Nematiziden, Schutzstoffen gegen Vogelfraß, Pflanzennährstoffen und Bodenstrukturverbesserungsmitteln ist möglich.
  • Die Wirkstoffe können als solche, in Form ihrer Formu­lierungen oder den daraus durch weiteres Verdünnen be­reiteten Anwendungsformen, wie gebrauchsfertige Lösun­gen, Suspensionen, Emulsionen, Pulver, Pasten und Granu­late angewandt werden. Die Anwendung geschieht in üb­licher Weise, z.B. durch Gießen, Spritzen, Sprühen, Streuen.
  • Die erfindungsgemäßen Wirkstoffe können sowohl vor als auch nach dem Auflaufen der Pflanzen appliziert werden.
  • Sie können auch vor der Saat in den Boden eingearbeitet werden.
  • Die angewandte Wirkstoffmenge kann in einem größeren Be­reich schwanken. Sie hängt im wesentlichen von der Art des gewünschten Effektes ab. Im allgemeinen liegen die Aufwandmengen zwischen 0,01 und 10 kg Wirkstoff pro Hek­tar Bodenfläche, vorzugsweise zwischen 0,05 und 5 kg pro ha.
  • Die Herstellung und die Verwendung der erfindungsgemäßen Wirkstoffe geht aus den nachfolgenden Beispielen hervor.
  • Herstellungsbeispiele: Beispiel 1
  • Figure imgb0027
  • 13,4 g (0,1 Mol) 2-Amino-4-hydroxy-benzonitril werden in 200 ml Dimethylsulfoxid vorgelegt und nach Zugabe von 4,0 g (0,1 Mol) Natriumhydroxid wird das Gemisch 30 Minuten bei 50 °C gerührt. Anschließend wird eine Lösung von 24,9 g (0,1 Mol) 3,4,5-Trichlor-benzotrifluorid in 100 ml Dimethylsulfoxid bei 50 °C unter Rühren tropfen­weise dazugegeben. Dann wird das Reaktionsgemisch noch 5 Stunden bei 50 °C und weitere 2 Stunden bei 90 °C ge­rührt, nach Abkühlen in 1 l Wasser gegossen und das Pro­dukt mit Chloroform extrahiert. Die organische Phase wird mit Magnesiumsulfat getrocknet und filtriert. Vom Filtrat wird das Lösungsmittel im Wasserstrahlvakuum sorgfältig abdestilliert.
  • Man erhält 29,5 g (85 % der Theorie) 2-Amino-4-(2,6-di­chor-4-trifluormethyl-phenoxy)-benzonitril als amorphen Rückstand.
    Figure imgb0028
  • Beispiel 2
  • Figure imgb0029
  • Eine Mischung aus 3,47g (0,01 Mol) 2-Amino-4-(2,6-di­chlor-4-trifluormethyl-phenoxy)-benzonitril, 10 ml Me­thansulfonsäurechlorid und 1 g Pyridin wird 15 Stunden bei 60 °C gerührt. Dann wird die Reaktionsmischung in 50 ml Wasser gegossen und das Produkt mit Chloroform extrahiert. Die organische Phase wird mit Magnesiumsul­fat getrocknet und filtriert. Vom Filtrat wird das Lö­sungsmittel im Wasserstrahlvakuum abdestilliert und der Rückstand durch Säulenchromatographie (Kieselgel; Hexan/Essigsäureethylester 4 : 1) gereinigt. Man erhält 2,2 g (52 % der Theorie) 2-Methylsulfonylamino-4-(2,6-­ dichlor-4-trifluormethyl-phenoxy)-benzonitril als amorphes Produkt.
    Figure imgb0030
  • Beispiel 3
  • Figure imgb0031
  • Eine Mischung aus 4,16 g (0,012 Mol) 2-Amino-4-(2,6-di­chlor-4-trifluormethyl-phenoxy)-benzonitril, 0,3 g Na­triumacetat, 1,03 g (0,012 Mol) Acrylsäuremethylester und 100 ml Dimethylsulfoxid wird 8 Stunden bei 100 °C gerührt und dann in 300 ml Wasser gegossen. Das Produkt wird mit Chloroform extrahiert, die organische Phase mit Magnesiumsulfat getrocknet und filtriert Vom Filtrat wird das Lösungsmittel im Wasserstrahlvakuum abdestil­liert und der Rückstand durch Säulenchromatographie (Kieselgel; Ether/Petrolether 1 : 2) gereinigt. Man er­hält 0,62 g (12 % der Theorie) 2-(2-Methoxycarbonyl­ethylamino)-4-(2,6-dichlor-4-trifluormethyl-phenoxy)-­benzonitril als amorphes Produkt.
    Figure imgb0032
  • Beispiel 4
  • Figure imgb0033
  • Zu 6,9 g (0,02 Mol) 2-Amino-4-(2,6-dichlor-4-trifluor­methyl-phenoxy)-benzonitril in 200 ml Aceton gibt man 50 ml 18%ige Salzsäure und anschließend tropfenweise un­ter Rühren und Kühlen auf 0 °C bis 5 °C eine Lösung von 2,0 g (0,03 Mol) Natriumnitrit in 10 ml Wasser. Das Reaktionsgemisch wird 30 Minuten bei 0 °C bis 5 °C ge­rührt und anschließend werden 8,6 g (0,1 Mol) Acryl­ säuremethylester und eine Lösung von 2 g (0,02 Mol) Kupfer(I)-chlorid in 5 ml konzentrierter Salzsäure dazu­gegeben. Nach 2 Stunden Rühren bei 5 °C wird mit 200 ml Wasser verdünnt, das Produkt mit Chloroform extrahiert, die organische Phase mit Magnesiumsulfat getrocknet und filtriert. Vom Filtrat wird das Lösungsmittel im Wasser­strahlvakuum abdestilliert und der Rückstand durch Säu­lenchromatographie (Kieselgel, Hexan/Essigsäureethyl­ester 4 : 1) gereinigt.
  • Man erhält 3,8 g (42 % der Theorie) 2-(2-Chlor-2-me­thoxycarbonyl-ethyl)-4-(2,6-dichlor-4-trifluormethyl­phenoxy)-benzonitril als amorphes Produkt.
    Figure imgb0034
  • Beispiel 5
  • Figure imgb0035
  • 3,0 g (0,0069 Mol) 2-(2-Chlor-2-methoxycarbonylethyl)-4-­(2,6-dichlor-4-trifluormethyl-phenoxy)-benzonitril wer­den in 50 ml Toluol gelöst und 2,0 g (0,0069 Mol) Tri­butylzinnhydrid werden dazu gegeben. Nach Zugabe von 0,5 g Azo-bis-isobutyronitril wird das Reaktionsgemisch 10 Stunden bei 60 °C gerührt. Dann wird das Lösungsmit­tel im Wasserstrahlvakuum abdestilliert und der Rück­stand durch Säulenchromatographie (Kieselgel, Methylen­chlorid) gereinigt.
  • Man erhält 1,3 g (43 % der Theorie) 2-(2-Methoxycar­bonyl-ethyl)-4-(2,6-dichlor-4-trifluormethyl-phenoxy)-­benzonitril als amorphes Produkt.
    Figure imgb0036
  • Analog zu den Beispielen 1 bis 5 und entsprechend der allgemeinen Beschreibung der erfindungsgemäßen Verfah­ren können die in der nachstehenden Tabelle 2 aufgeführ­ten Verbindungen der Formel (I) hergestellt werden.
    Figure imgb0037
    Figure imgb0038
  • Anwendungsbeispiele
  • In den folgenden Anwendungsbeispielen wird die nach­stehend aufgeführte Verbindung als Vergleichssubstanz herangezogen:
    Figure imgb0039
  • Beispiel A Post-emergence-Test
  • Lösungsmittel: 5 Gewichtsteile Aceton
  • Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
  • Zur Herstellung einer zweckmäßigen Wirkstoffzübereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebe­nen Menge Lösungsmittel, gibt die angegebene Menge Emul­gator zu und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
  • Mit der Wirkstoffzubereitung spritzt man Testpflanzen, welche eine Höhe von 5 - 15 cm haben so, daß die jeweils gewünschten Wirkstoffmengen pro Flächeneinheit ausge­bracht werden. Die Konzentration der Spritzbrühe wird so gewählt, daß in 2000 l Wasser/ha die jeweils gewünschten Wirkstoffmengen ausgebracht werden. Nach drei Wochen wird der Schädigungsgrad der Pflanzen bonitiert in % Schädigung im Vergleich zur Entwicklung der unbehandel­ten Kontrolle.
    Es bedeuten:
    0 % = keine Wirkung (wie unbehandelte Kontrolle)
    100 % = totale Vernichtung
  • In diesem Test zeigen beispielsweise die Verbindungen gemäß den Herstellungsbeispielen (2) und (4) erheblich stärkere Wirkung als die bekannte Verbindung (A) gegen Unkräuter, wie z. B. Ipomoea, Sida, Sinapis und Viola.
  • Beispiel B Entlaubung und Austrocknung der Blätter bei Baumwolle
  • Lösungsmittel: 30 Gewichtsteile Dimethylformamid
  • Emulgator: 1 Gewichtsteil Polyoxyethylen-Sorbitan-­Monolaurat
  • Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebe­nen Mengen Lösungsmittel und Emulgator und füllt mit Wasser auf die gewünschte Konzentration auf.
  • Baumwollpflanzen werden im Gewächshaus bis zur vollen Entfaltung des 5. Folgeblattes angezogen. In diesem Sta­dium werden die Pflanzen tropfnaß mit den Wirkstoffzube­reitungen besprüht. Nach 1 Woche werden der Blattfall und das Austrocknen der Blätter im Vergleich zu den Kon­trollpflanzen bonitiert.
  • In diesem Test zeigen beispielsweise die Wirkstoffe ge­mäß den Herstellungsbeispielen (3) und (4) ein sehr starkes Austrocknen der Blätter und sehr starken Blatt­fall.

Claims (8)

1. Substituierte Phenoxybenzonitril-Derivate der Formel (I),
Figure imgb0040
in welcher
R¹ für Wasserstoff, Halogen, Cyano oder Trifluormethyl steht,
R² für Wasserstoff oder Halogen steht,
R³ für Halogen, Trifluormethyl, Trifluormethoxy oder Trifluormethylsulfonyl steht,
R⁴ für Wasserstoff oder Halogen steht,
R⁵ für Wasserstoff oder Halogen steht und
R⁶ für die Gruppierungen
Figure imgb0041
oder
Figure imgb0042
steht, worin
R⁷ und R⁸ gleich oder verschieden sind und unabhängig voneinander jeweils für Wasserstoff, Alkoxycarbonylethyl, die Gruppierung -CO-R⁹ oder die Gruppierung -SO₂-R¹⁰ stehen, wobei
R⁹ für jeweils gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Cyclo­alkylalkyl, Benzyl, Phenyl, Naphthyl, Pyridyl, Furyl, Thienyl, Alkoxy, Phenoxy, Alkylthio, Phenylthio, Alkylamino, Dialkylamino, Cyclo­alkylamino oder Phenylamino steht und
R¹⁰ für jeweils gegebenenfalls substituiertes Alkyl, Phenyl, Naphthyl, Pyridyl oder Thienyl steht,
R¹¹ für Wasserstoff oder Halogen steht und
R¹² für Alkyl steht.
2. Substituierte Phenoxybenzonitril-Derivate der Formel (I) gemäß Anspruch 1, in welcher
R¹ für Wasserstoff, Fluor, Chlor, Brom, Cyano oder Trifluormethyl steht,
R² für Wasserstoff, Fluor oder Chlor steht,
R³ für Fluor, Chlor, Brom, Trifluormethyl, Trifluormethoxy oder Trifluormethylsulfonyl steht,
R⁴ für Wasserstoff, Fluor oder Chlor steht,
R⁵ für Wasserstoff, Fluor oder Chlor steht und
R⁶ für die Gruppierungen
Figure imgb0043
oder
Figure imgb0044
steht, worin
R⁷ und R⁸ gleich oder verschieden sind und unabhängig voneinander jeweils für Was­serstoff, C₁-C₆-Alkoxy-carbonyl-ethyl, die Gruppierung -CO-R⁹ oder die Gruppierung -SO₂-R¹⁰ stehen, wobei
R⁹ für gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkoxy und/oder C₁-C₄-Alkoxy-carbonyl substituiertes C₁-C₆-Alkyl, für gegebenenfalls durch Fluor, Chlor und/oder Brom substitu­iertes C₂-C₄-Alkenyl, für C₂-C₄-Alkinyl, für gegebenenfalls durch Fluor, Chlor, Brom, C₁-­C₄-Alkyl und/oder C₁-C₄-Alkoxy-carbonyl substituiertes C₃-C₆-Cycloalkyl, für ge­gebenenfalls durch Fluor, Chlor, Brom und/oder C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl-­C₁-C₂-alkyl, für gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkyl und/oder C₁-C₄-Alkoxy substituiertes Benzyl, für gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, C₁-C₄-­Alkyl und/oder C₁-C₄-Alkoxy substituiertes Phenyl, für Naphthyl, für jeweils gegebenen­falls durch Fluor, Chlor, Brom, Cyano, Nitro und/oder C₁-C₄-Alkyl substituiertes Pyridyl, Furyl oder Thienyl, für C₁-C₆-Alkoxy, Phenoxy, C₁-C₆-Alkylthio, Phenylthio, C₁-C₆-Alkyl­amino, Di-(C₁-C₄)-alkylamino, C₃-C₆-Cyclo­alkylamino oder für gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, C₁-C₄-Alkyl, Trifluormethyl, C₁-C₄-Alkoxy und/oder C₁-C₄-­Alkoxy-carbonyl substituiertes Phenylamino steht und
R¹⁰ für gegebenenfalls durch Fluor und/oder Chlor substituiertes C₁-C₆-Alkyl, für gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, C₁-C₄-­Alkyl, Trifluormethyl, C₁-C₄-Alkoxy, Difluor­methoxy, Trifluormethoxy, C₁-C₄-Alkylthio, C₁-­C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, Di-(C₁-­C₂)alkylaminosulfonyl und/oder C₁-C₄-Alkoxy­carbonyl substituiertes Phenyl, für gegebenen­falls durch Chlor und/oder C₁-C₄-Alkyl substi­tuiertes Naphtyl oder für jeweils gegebenen­falls durch Fluor, Chlor, Brom, Cyano, Nitro und/oder C₁-C₄-Alkyl substituiertes Pyridyl oder Thienyl steht,
R¹¹ für Wasserstoff, Chlor oder Brom steht und
R¹² für C₁-C₆-Alkyl steht.
3. Substituierte Phenoxybenzonitril-Derivate der Formel (I) gemäß Anspruch 1, in welcher
R¹ für Wasserstoff, Fluor oder Chlor steht,
R² für Wasserstoff, Fluor oder Chlor steht,
R³ für Trifluormethyl steht,
R⁴ für Wasserstoff, Fluor oder Chlor steht,
R⁵ für Wasserstoff, Fluor oder Chlor steht,
R⁶ für die Gruppierungen
Figure imgb0045
oder
Figure imgb0046
steht, worin
R⁷ für Wasserstoff oder Acetyl steht und
R⁸ für Wasserstoff, Methoxycarbonylethyl, Eth­oxycarbonylethyl, die Gruppierung -CO-R⁹ oder die Gruppierung -SO₂-R¹⁰ steht, wobei
R⁹ für gegebenenfalls durch Chlor, Brom, Methoxy oder Ethoxy substituiertes C₁-C₄-Alkyl, für Cyclopropyl, für Benzyl, für gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Methoxy und/oder Ethoxy substituiertes Phenyl, für C₁-C₄-Alkoxy, Phenoxy, C₁-C₄-Alkylamino, Dimethylamino, Diethylamino, Cyclopentyl­amino, Cyclohexylamino oder für gegegebenen­falls durch Fluor, Chlor, Methyl, Ethyl, Tri­fluormethyl, Methoxy und/oder Ethoxy substitu­iertes Phenylamino steht und
R¹⁰ für gegebenenfalls durch Fluor und/oder Chlor substituiertes C₁-C₄-Alkyl, für gegebenen­falls durch Fluor, Chlor, Brom, Methyl, Tri­fluormethoxy, Dimethylaminosulfonyl und/oder Methoxycarbonyl substituiertes Phenyl steht,
R¹¹ für Wasserstoff, Chlor oder Brom steht und
R¹² für C₁-C₄-Alkyl steht.
4. Verfahren zur Herstellung von substituierten Phenoxybenzonitril-Derivaten der Formel (I),
Figure imgb0047
in welcher
R¹ für Wasserstoff, Halogen, Cyano oder Trifluormethyl steht,
R² für Wasserstoff oder Halogen steht,
R³ für Halogen, Trifluormethyl, Trifluor­methoxy oder Trifluormethylsulfonyl steht,
R⁴ für Wasserstoff oder Halogen steht,
R⁵ für Wasserstoff oder Halogen steht und
R⁶ für die Gruppierungen
Figure imgb0048
oder
Figure imgb0049
steht, worin
R⁷ und R⁸ gleich oder verschieden sind und unabhängig voneinander jeweils für Wasserstoff, Alkoxycarbonylethyl, die Gruppierung -CO-R⁹ oder die Gruppierung -SO₂-R¹⁰ stehen, wobei
R⁹ für jeweils gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Cyclo­alkylalkyl, Benzyl, Phenyl, Naphthyl, Pyridyl, Furyl, Thienyl, Alkoxy, Phenoxy, Alkylthio, Phenylthio, Alkylamino, Dialkylamino, Cyclo­alkylamino oder Phenylamino steht und
R¹⁰ für jeweils gegebenenfalls substituiertes Alkyl, Phenyl, Naphthyl, Pyridyl oder Thienyl steht,
R¹¹ für Wasserstoff oder Halogen steht und
R¹² für Alkyl steht,
dadurch gekennzeichnet, daß man
(a) für den Fall, daß in Formel (I) R⁶ für Amino steht und R¹, R², R³, R⁴ und R⁵ die oben angegebenen Bedeutungen haben,
Halogen-benzol-Derivate der allgemeinen Formel (II)
Figure imgb0050
in welcher
R¹, R², R³, R⁴ und R⁵ die oben angegebenen Bedeutungen haben und
X für Halogen steht,
mit 2-Amino-4-hydroxy-benzonitril der Formel (III)
Figure imgb0051
gegebenenfalls in Gegenwart eines Säureakzeptors und gegebenenfalls in Gegenwart eines Verdünnungs­mittels umsetzt, oder daß man
(b) für den Fall, daß in Formel (I) R⁶ für die Gruppierung
Figure imgb0052
steht, worin R⁷ und/oder R⁸ für die Gruppierung -CO-R⁹ oder die Gruppierung -SO₂-R¹⁰ stehen, und R¹, R², R³, R⁴, R⁵, R⁹ und R¹⁰ die oben angegebene Bedeutung haben,
Verbindungen der allgemeinen Formel (I), in welcher R⁶ für Amino steht und R¹, R², R³, R⁴ und R⁵ die oben angegebenen Bedeutungen haben,
mit Verbindungen der allgemeinen Formel (IV)
X¹-CO-R⁹      (IV)
in welcher
R⁹ die oben angegebene Bedeutung hat und
X¹ für Halogen steht,
oder mit Verbindungen der allgemeinen Formel (V)
X²-SO₂-R¹⁰      (V)
in welcher
R¹⁰ die oben angegebene Bedeutung hat und
X² für Halogen steht,
gegebenenfalls in Gegenwart eines Säureakzeptors und gegebenenfalls in Gegenwart eines Verdünnungs­mittels umsetzt, oder daß man
(c) für den Fall, daß in Formel (I) R⁶ für die Guppierung
Figure imgb0053
steht, worin R⁷ und/oder R⁸ für Alkoxycarbonylethyl stehen, und R¹, R², R³, R⁴ und R⁵ die oben angegebenen Bedeutungen haben,
Verbindungen der allgemeinen Formel (I), in welcher R⁶ für Amino steht und R¹, R², R³, R⁴ und R⁵ die
oben angegebenen Bedeutungen haben,
mit Acrylsäureestern der Formel (VI)
CH₂=CH-COOR¹²      (VI)
in welcher
R¹² für Alkyl steht,
gegebenenfalls in Gegenwart eines basischen Katalysators und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt, oder daß man
d) für den Fall, daß in Formel (I) R⁶ für die Gruppierung
Figure imgb0054
steht, worin R¹¹ für Halogen steht und R¹² für Alkyl steht sowie R¹, R², R³, R⁴ und R⁵ die oben angegebenen Bedeutungen haben.
Verbindungen der allgemeinen Formel (I), in welcher R⁶ für Amino steht und R¹, R², R³, R⁴ und R⁵ die oben angegebenen Bedeutungen haben,
mit Natriumnitrit oder Kaliumnitrit und mit einem Hydrogenhalogenid (HX³) in Gegenwart von Wasser und gegebenenfalls in Gegenwart eines organischen Lösungsmittels umsetzt und die hierbei gebildeten Diazoniumsalze der allge­meinen Formel (VII)
Figure imgb0055
in welcher
R¹, R², R³, R⁴ und R⁵ die oben angegebenen Bedeu­tungen haben und
X³ für Halogen steht,
mit Acrylsäureestern der Formel (VI)
CH₂=CH-COOR¹²      (VI)
in welcher
R¹² für Alkyl steht,
in Gegenwart von Hydrogenhalogeniden (HX³), gegebenenfalls in Gegenwart von Katalysatoren und gegebenenfalls in Gegenwart von Wasser und dem gegebenenfalls bei der Erzeugung der Verbindungen der Formel (VII) verwendeten organischen Lösungsmittel umsetzt, oder daß man
(e) für den Fall, daß in Formel (I) R⁶ für die Gruppierung
Figure imgb0056
steht, worin R¹¹ für Wasser­stoff steht und R¹² für Alkyl steht sowie R¹, R²,
R³, R⁴, und R⁵ die oben angegebenen Bedeutungen haben,
Verbindungen der allgemeinen Formel (I), in welcher
R⁶ für die Gruppierung
Figure imgb0057
steht, worin R¹¹ für Halogen steht und R¹² für Alkyl steht sowie R¹, R², R³, R⁴ und R⁵ die oben angegebenen Bedeu­tungen haben,
mit einem Dehalogenierungsmittel, gegebenenfalls in Gegenwart eines Katalysators und gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt.
5. Herbizide und pflanzenwuchsregulierende Mittel, gekennzeichnet durch einen Gehalt an mindestens einem substituierten Phenoxybenzonitril-Derivat der Formel (I) gemäß den Ansprüchen 1 bis 4.
6. Verfahren zur Bekämpfung von Unkräutern und zur Regulierung des Pflanzenwachstums, dadurch ge­kennzeichnet, daß man substituierte Phenoxybenzo­nitril-Derivate der Formel (I) gemäß den Ansprüchen 1 bis 4 auf die Unkräuter bzw. Pflanzen und/oder ihren Lebensraum einwirken läßt.
7. Verwendung von substituierten Phenoxybenzonitril-­Derivaten der Formel (I) gemäß den Ansprüchen 1 bis 4 zur Bekämpfung von Unkräutern und/oder als Pflanzenwachstumsregulatoren.
8. Verfahren zur Herstellung von herbiziden und/oder pflanzenwuchsregulierenden Mitteln, dadurch gekenn­zeichnet, daß man substituierte Phenoxybenzonitril-­Derivate der Formel (I) gemäß den Ansprüchen 1 bis 4 mit Streckmitteln und/oder oberflächenaktiven Substanzen vermischt.
EP90100701A 1989-01-26 1990-01-13 Substituierte Phenoxybenzonitril-Derivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide und Pflanzenwuchsregulatoren Withdrawn EP0379915A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3902288 1989-01-26
DE3902288 1989-01-26

Publications (1)

Publication Number Publication Date
EP0379915A1 true EP0379915A1 (de) 1990-08-01

Family

ID=6372850

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90100701A Withdrawn EP0379915A1 (de) 1989-01-26 1990-01-13 Substituierte Phenoxybenzonitril-Derivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide und Pflanzenwuchsregulatoren

Country Status (2)

Country Link
EP (1) EP0379915A1 (de)
JP (1) JPH02233655A (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR910100162A (en) * 1990-04-27 1992-07-30 Fujisawa Pharmaceutical Co Method of producing alkanesulfonanilide derivatives
US5519133A (en) * 1995-06-02 1996-05-21 American Cyanamid Co. 3-(3-aryloxyphenyl)-1-(substituted methyl)-s-triazine-2,4,6-oxo or thiotrione herbicidal agents
US5604180A (en) * 1995-06-02 1997-02-18 Crews, Jr.; Alvin D. 3-(3-aryloxyphenyl)-1 (substituted methyl)-s-triazine-2,4,6-oxo or thiotrione herbicidal agents
US5654256A (en) * 1995-06-02 1997-08-05 American Cyanamid Company 3-(3-aryloxyphenyl)-1-(substituted methyl)-s-triazine-2,4,6-oxo or thiotrione herbicidal agents
US5670641A (en) * 1995-06-02 1997-09-23 American Cyanamid Company 3-(3-aryloxyphenyl)-1-(substituted methyl)-S-triazine-2,4,6-oxo or thiotrione herbicidal agents
US5763605A (en) * 1995-06-02 1998-06-09 American Cyanamid Company 3-(3-aryloxyphenyl)-1-(substituted methyl)-S-triazine-2,4,6-oxo or thiotrione herbicidal agents
US7235576B1 (en) * 2001-01-12 2007-06-26 Bayer Pharmaceuticals Corporation Omega-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
US7678811B2 (en) 2002-02-11 2010-03-16 Bayer Healthcare Llc Pyridine, quinoline, and isoquinoline N-oxides as kinase inhibitors
US7838541B2 (en) 2002-02-11 2010-11-23 Bayer Healthcare, Llc Aryl ureas with angiogenesis inhibiting activity
US7897623B2 (en) 1999-01-13 2011-03-01 Bayer Healthcare Llc ω-carboxyl aryl substituted diphenyl ureas as p38 kinase inhibitors
US8076488B2 (en) 2003-02-28 2011-12-13 Bayer Healthcare Llc Bicyclic urea derivatives useful in the treatment of cancer and other disorders
US8110587B2 (en) 2002-02-11 2012-02-07 Bayer Healthcare Llc Aryl ureas as kinase inhibitors
US8124630B2 (en) 1999-01-13 2012-02-28 Bayer Healthcare Llc ω-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
US8207166B2 (en) 2004-04-30 2012-06-26 Bayer Healthcare Llc Substituted pyrazolyl urea derivatives useful in the treatment of cancer
US8637553B2 (en) 2003-07-23 2014-01-28 Bayer Healthcare Llc Fluoro substituted omega-carboxyaryl diphenyl urea for the treatment and prevention of diseases and conditions
US8796250B2 (en) 2003-05-20 2014-08-05 Bayer Healthcare Llc Diaryl ureas for diseases mediated by PDGFR

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039289A1 (fr) * 1997-03-03 1998-09-11 Nissan Chemical Industries, Ltd. Derives d'uree, agents antibacteriens et antifongiques, algicides et antiperiphytiques, contenant ces derives et destines a un usage industriel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0034402A2 (de) * 1980-02-05 1981-08-26 Imperial Chemical Industries Plc Verfahren zur Herstellung fluor-substituierter Derivate des Diphenyläthers und fluor-substituierte Halogenbenzole zur Verwendung hierfür
US4526608A (en) * 1982-07-14 1985-07-02 Zoecon Corporation Certain 2-pyridyloxyphenyl-oximino-ether-carboxylates, herbicidal compositions containing same and their herbicidal method of use
EP0166186A2 (de) * 1984-05-28 1986-01-02 Bayer Ag Substituierte Phenoxyphenylpropionsäure-Derivate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0034402A2 (de) * 1980-02-05 1981-08-26 Imperial Chemical Industries Plc Verfahren zur Herstellung fluor-substituierter Derivate des Diphenyläthers und fluor-substituierte Halogenbenzole zur Verwendung hierfür
US4526608A (en) * 1982-07-14 1985-07-02 Zoecon Corporation Certain 2-pyridyloxyphenyl-oximino-ether-carboxylates, herbicidal compositions containing same and their herbicidal method of use
EP0166186A2 (de) * 1984-05-28 1986-01-02 Bayer Ag Substituierte Phenoxyphenylpropionsäure-Derivate

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR910100162A (en) * 1990-04-27 1992-07-30 Fujisawa Pharmaceutical Co Method of producing alkanesulfonanilide derivatives
US5519133A (en) * 1995-06-02 1996-05-21 American Cyanamid Co. 3-(3-aryloxyphenyl)-1-(substituted methyl)-s-triazine-2,4,6-oxo or thiotrione herbicidal agents
US5604180A (en) * 1995-06-02 1997-02-18 Crews, Jr.; Alvin D. 3-(3-aryloxyphenyl)-1 (substituted methyl)-s-triazine-2,4,6-oxo or thiotrione herbicidal agents
US5654256A (en) * 1995-06-02 1997-08-05 American Cyanamid Company 3-(3-aryloxyphenyl)-1-(substituted methyl)-s-triazine-2,4,6-oxo or thiotrione herbicidal agents
US5670641A (en) * 1995-06-02 1997-09-23 American Cyanamid Company 3-(3-aryloxyphenyl)-1-(substituted methyl)-S-triazine-2,4,6-oxo or thiotrione herbicidal agents
US5763605A (en) * 1995-06-02 1998-06-09 American Cyanamid Company 3-(3-aryloxyphenyl)-1-(substituted methyl)-S-triazine-2,4,6-oxo or thiotrione herbicidal agents
US8841330B2 (en) 1999-01-13 2014-09-23 Bayer Healthcare Llc Omega-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
US8124630B2 (en) 1999-01-13 2012-02-28 Bayer Healthcare Llc ω-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
US7897623B2 (en) 1999-01-13 2011-03-01 Bayer Healthcare Llc ω-carboxyl aryl substituted diphenyl ureas as p38 kinase inhibitors
US7235576B1 (en) * 2001-01-12 2007-06-26 Bayer Pharmaceuticals Corporation Omega-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
US8071616B2 (en) 2002-02-11 2011-12-06 Bayer Healthcare Llc Pyridine, quinoline, and isoquinoline N-oxides as kinase inhibitors
US8110587B2 (en) 2002-02-11 2012-02-07 Bayer Healthcare Llc Aryl ureas as kinase inhibitors
US7838541B2 (en) 2002-02-11 2010-11-23 Bayer Healthcare, Llc Aryl ureas with angiogenesis inhibiting activity
US8242147B2 (en) 2002-02-11 2012-08-14 Bayer Healthcare Llc Aryl ureas with angiogenisis inhibiting activity
US8618141B2 (en) 2002-02-11 2013-12-31 Bayer Healthcare Llc Aryl ureas with angiogenesis inhibiting activity
US7678811B2 (en) 2002-02-11 2010-03-16 Bayer Healthcare Llc Pyridine, quinoline, and isoquinoline N-oxides as kinase inhibitors
US9181188B2 (en) 2002-02-11 2015-11-10 Bayer Healthcare Llc Aryl ureas as kinase inhibitors
US8076488B2 (en) 2003-02-28 2011-12-13 Bayer Healthcare Llc Bicyclic urea derivatives useful in the treatment of cancer and other disorders
US8796250B2 (en) 2003-05-20 2014-08-05 Bayer Healthcare Llc Diaryl ureas for diseases mediated by PDGFR
US8637553B2 (en) 2003-07-23 2014-01-28 Bayer Healthcare Llc Fluoro substituted omega-carboxyaryl diphenyl urea for the treatment and prevention of diseases and conditions
US8207166B2 (en) 2004-04-30 2012-06-26 Bayer Healthcare Llc Substituted pyrazolyl urea derivatives useful in the treatment of cancer

Also Published As

Publication number Publication date
JPH02233655A (ja) 1990-09-17

Similar Documents

Publication Publication Date Title
EP0354329B1 (de) (Hetero)Aryloxynaphthaline mit über Schwefel gebundenen Substituenten
EP0379915A1 (de) Substituierte Phenoxybenzonitril-Derivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide und Pflanzenwuchsregulatoren
DE3827221A1 (de) Substituierte n-phenyl-stickstoff- bzw. stickstoff-schwefel-heterocyclen, verfahren sowie entsprechende heterocyclische phenolderivate, phenyliso(thio)cyanate und -carbamate als zwischenprodukte zu ihrer herstellung, ihre verwendung in herbiziden und pflanzenwuchsregulierenden mitteln
DE3731516A1 (de) N-aryl-stickstoffheterocyclen
EP0391187B1 (de) Substituierte 4-Amino-5-alkylthio-1,2,4-triazol-3-one
DE3627411A1 (de) Triazolo-pyrimidin-2-sulfonamide
DE3836742A1 (de) Verwendung von neuen und bekannten n-phenyl-substituierten oxazindionen als herbizide sowie neue n-phenyl-substituierte oxazindione und mehrere verfahren zu deren herstellung
EP0328954A1 (de) 5-Cyano-2,4-diamino-thiazol-Derivate
DE3905006A1 (de) N-aryl-stickstoffheterocyclen mit fluorhaltigen substituenten
DE3837464A1 (de) (hetero)aryloxynaphthalinderivate, verfahren und neue (hetero)aryloxynaphthylamine zu ihrer herstellung sowie ihre verwendung als herbizide
EP0347679A1 (de) 1,7-Dioxy-naphthalin-Derivate
DE3733067A1 (de) (alpha)-(5-aryloxy-naphthalin-1-yl-oxy)-propionsaeure-derivate
EP0362606A1 (de) Substituierte Phenoxyphenylsulfonylazole, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Herbizide und Pflanzenwuchsregulatoren
EP0433749A2 (de) Pyrazolin-5-on-Derivate
EP0290902A2 (de) Anellierte (Thio)Hydantoine
EP0457140A2 (de) Phenoxyphenylsulfonylverbindungen
DE4112329A1 (de) Cyanothiazolderivate
EP0324175A1 (de) Difluorphenylharnstoffe
EP0342440A1 (de) Halogensubstituierte Phenoxybenzyl (thi)ol-Derivate
EP0467139A2 (de) Nicotinsäurederivate als Herbizide
EP0465901A1 (de) 2-Acylamino-7-chlorbenzthiazole
EP0338306A2 (de) Halogensubstituierte Phenoxybenzylverbindungen
EP0220635A1 (de) Phenoxybenzoesäure-Derivate
DE3822448A1 (de) Ureido-benzoesaeure-derivate
DE3425123A1 (de) Optisch aktive phenoxypropionsaeure-derivate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB IT LI NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19901016

R18W Application withdrawn (corrected)

Effective date: 19901016