EP0379715B1 - Leichtbaugasgehäuse - Google Patents

Leichtbaugasgehäuse Download PDF

Info

Publication number
EP0379715B1
EP0379715B1 EP89123633A EP89123633A EP0379715B1 EP 0379715 B1 EP0379715 B1 EP 0379715B1 EP 89123633 A EP89123633 A EP 89123633A EP 89123633 A EP89123633 A EP 89123633A EP 0379715 B1 EP0379715 B1 EP 0379715B1
Authority
EP
European Patent Office
Prior art keywords
flange
gas
channels
flanges
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89123633A
Other languages
English (en)
French (fr)
Other versions
EP0379715A1 (de
Inventor
Bernd Konert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Comprex AG
Original Assignee
Comprex AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Comprex AG filed Critical Comprex AG
Priority to AT89123633T priority Critical patent/ATE79164T1/de
Publication of EP0379715A1 publication Critical patent/EP0379715A1/de
Application granted granted Critical
Publication of EP0379715B1 publication Critical patent/EP0379715B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F13/00Pressure exchangers

Definitions

  • the present invention relates to a lightweight gas housing with channels for the conduction of gaseous or liquid media and flanges for connecting lines for the supply and discharge of these media into and out of the housing.
  • Housing according to the present invention are preferably components of thermal machines see. FR-A-2 261 420, in which a hot gas is supplied as a working medium and is led out as a relaxed exhaust gas.
  • Such housings have channels for the entering hot gas at high temperature and channels in the immediate vicinity of one another for the exiting, lower temperature cooled exhaust gas after its work. Because of the larger specific volume of the exhaust gas compared to the hot gas, its channel cross section is correspondingly larger.
  • channels of different cross-sections which are flowed through by gases of different pressures at different temperatures, which have different thermal expansions in the channel walls, in webs that may be present, in material accumulations that are practically impossible to avoid with cast parts, and also in the mounting flanges.
  • the present invention has for its object to avoid the disadvantages shown above as a replacement for the cast version of such gas housings to find a construction in which not only these disadvantages are avoided, but which is also more suitable and more economical for mass production than a cast version. Furthermore, this design should also broaden the range of materials that are suitable for high-temperature gas housings, i.e. that in addition to the relatively few castable high-temperature materials, the much wider range of semi-finished products that can be deformed without cutting, especially in the form of Sheet metal comes into consideration for such gas housings.
  • Such a construction should also allow, in addition to an expensive material for the high-temperature parts, to use less expensive material for the less heat-stressed parts, which preferably relates to the massive flange parts.
  • the more expensive, highly heat-resistant material also absorbs larger, thermally induced deformations due to its high elongation at break without fear of cracking. Its disadvantage of the higher price is usually at least compensated by the fact that the channel walls can be kept much thinner compared to castings.
  • the material-related advantages of a welded structure composed of thin-walled, shell-shaped pressed parts also result in a disadvantage, namely a reduced stability compared to cast structures.
  • This is of concern if, for example, forces are exerted by the housing on the hot gas-charged apparatus caused by vibrations to be forwarded, for example to the gas supply and discharge lines, which are connected to flanges of the channels mentioned at the beginning for the hot fresh gas and the relaxed exhaust gas.
  • the vibrations, supported by the material fatigue can lead to fractures in the channel walls.
  • the object of the invention is therefore also to keep the destructive influence of vibrations on the thin-walled gas-carrying ducts away by constructive measures. These measures consist of dividing the structure of the housing into a gas-carrying and a force-absorbing part.
  • the lightweight gas housing according to the invention is characterized in that the flanges mentioned are rigidly connected to one another and form a force-absorbing part of the housing, that the channels are formed as pressed sheet metal parts, and that the end cross sections of these channels have openings in at least one of the flanges with openings in at least one other Connect the flanges in a conductive manner, which openings are the inlet and outlet cross sections of the media and on which the ends of the channels are welded to the flanges.
  • the exemplary embodiment shown is the gas housing of a pressure wave charger for internal combustion engines. With two intake ducts, it absorbs the exhaust gases of the engine, which compress the combustion air in a cell rotor and flow into the exhaust system in a relaxed and cooled manner through two exhaust ducts.
  • the channels In the case of a design as a casting, the channels have common boundary walls, the two sides of which are exposed to differently hot gas, with the aforementioned risk of warping of the entire housing due to thermal stresses, which can also result in cracks.
  • the production is by casting due to the complicated routing of the channels complex and also very expensive due to the material, since the entire housing body consists of one and the same, very expensive material, whereas according to the invention a less expensive material is sufficient for the less temperature-stressed parts.
  • 1 means the force-absorbing part of the housing, which consists of two flange plates 2 and 3 made of sheet metal that can be deformed without cutting, each with legs that are perpendicular to one another.
  • the larger legs which in the figures are vertical and essentially parallel to one another, form flanges 4 and 5, of which one, 4, for connection to the rotor housing and the other, 5, receives the outlet part of an exhaust duct onto the bottom is received, and serves as a connection flange for the exhaust system of the engine.
  • the two other, shorter legs 6 and 7 of the flange plates 2 and 3 lie one on top of the other in the manner shown in FIGS. 2, 3 and 4 and are connected to one another along their parallel side edges by weld seams 8.
  • the leg 6 has an essentially rectangular opening 9, see FIGS. 3 and 4, while the leg 7 consists of two rod-shaped parts delimiting the opening 9 laterally.
  • the hot exhaust gas coming from the engine enters the housing, as indicated by the flow arrows 10.
  • the short leg 6 thus forms a flange for the connection of an exhaust pipe (not shown) coming from the engine and is therefore described below Called exhaust flange.
  • the flange 4 there are two diametrically opposed openings 11 through which the hot exhaust gas entering at 9 exits the housing and enters the cell rotor of the pressure wave charger, not shown.
  • the shape of the hot gas channel 12, which connects the opening 9 with the openings 11, can be seen from FIGS. 1, 2 and 3. Starting from the rectangular cross-section at the opening 9, where it is welded on its circumference to the underside of the exhaust flange 6, it widens upwards and branches into two branches, which are welded to the circumference of the openings 11 in the flange 4.
  • exhaust gas The expanded and cooled gas in the cell rotor, hereinafter called exhaust gas, enters, as the flow arrows 13 indicate, through the two diametrically opposite openings 14 in the flange 4 into the housing and leaves it in the region of a circular opening 15 in the flange 5, from where it continues to flow into an exhaust system, not shown.
  • the associated exhaust duct 16 begins with two branches on the two openings 14 of the flange 4, which merge downstream and merge into a circular connection piece which penetrates the opening 15 in the flange 5 and is connected to it by a weld seam 17.
  • the hot gas duct 12 and the exhaust duct 16 have no common walls and are therefore independent of one another with regard to the thermal expansions. Because of the greater elongation at break of the metal sheets which can be deformed without cutting than is the case with cast materials, there are cracks as can occur in cast workpieces due to their uneven wall thicknesses. not to be expected in the embodiments according to the invention.
  • the channels for the hot gas and the exhaust gas which at first glance appear to be complicated, are nevertheless cheaper to manufacture in series production than castings.
  • the channels consist of deep-drawn, half-shells welded to one another, the dividing lines being provided along their axis of symmetry or along suitable lines of contact of tangential planes or envelope surfaces. If necessary, undercuts must also be mastered in terms of production technology.
  • the welds can be robotized.
  • the weight saving compared to castings is very significant, which means lower costs, which can be reduced even further with a housing with channels that are subjected to different temperatures if the material quality that is sufficient for each channel is selected. Channels with less stress can therefore be pressed from cheaper material. Because of the free, mutually independent deformability of the Channels play different material properties, such as thermal expansion numbers for durability.
  • This type of housing is of course not only advantageous for thermally stressed machines, but is also an economical alternative to cast designs for other applications, e.g. for liquids and cold gases.
  • an insulating jacket 20 which is sealed with its edges to the flanges, the contour of which is indicated by dash-dotted lines in FIG. 3 and which encapsulates all or only the hot gas channels to the outside .
  • the latter are thermally insulated even better if the space surrounding the ducts, but especially the hot gas ducts, which is enclosed by the insulating jacket, is conductively connected to the hot gas ducts 12 via a bore 21, see FIG. 3, and is therefore surrounded by hot gas.
  • the insulating jacket also reduces noise emissions from the ducts. An even better noise reduction is obtained by filling the said space with a noise and heat insulating material.

Description

  • Die vorliegende Erfindung betrifft ein Leichtbaugasgehäuse mit Kanälen für die Leitung gasförmiger oder flüssiger Medien und Flanschen zum Anschluss von Leitungen für die Zu- bzw. Abfuhr dieser Medien in das bzw. aus dem Gehäuse.
  • Technisches Gebiet
  • Gehäuse gemäss der vorliegenden Erfindung sind vorzugsweise Betandteile von thermischen Maschinen siehe. FR-A-2 261 420, bei denen ein Heissgas als Arbeitsmittel zugeführt und als entspanntes Abgas herausgeführt wird. Solche Gehäuse weisen in unmittelbarer Nachbarschaft zueinander Kanäle für das eintretende Heissgas hoher Temperatur und Kanäle für das austretende, nach seiner Arbeitsleistung abgekühlte Abgas niedrigerer Temperatur auf. Wegen des gegenüber dem Heissgas grösseren spezifischen Volumens des Abgases ist dessen Kanalquerschnitt entsprechend grösser. In einem solchen Gehäuse befinden sich also nebeneinander Kanäle verschiedenerer Querschnitte, die von unterschiedlich heissen Gasen verschiedener Drücke durchströmt sind, was unterschiedlich grosse Wärmedehnungen in den Kanalwänden, in gegebenenfalls vorhandenen Stegen, in Materialanhäufungen, wie sie bei Gussteilen praktisch kaum zu vermeiden sind, sowie auch in den Befestigungsflanschen zur Folge hat. Die für solche Gehäuse verwendeten Gusswerkstoffe weisen relativ niedrige Bruchdehnungen auf, so dass als Folge grosser Wärmedehnungen die Gefahr von Dehnungsrissen besteht. Wenn es speziell auch auf dichte Flanschverbindungen ankommt, für die aus Kostengründen kein übermässiger Aufwand getrieben werden kann, sondern nur übliche dünne Flachdichtungen verwendet werden dürfen, so sind verzugsgefährdete Flanschen für eine sichere Abdichtung nicht brauchbar. Es würde Gas entweichen, der Wirkungsgrad der Maschine wäre beeinträchtigt und das Leckgas könnte auch gesundheitsgefährdend wirken.
  • Aufgabe der Erfindung
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, zur Vermeidung der vorstehend aufgezeigten Nachteile als Ersatz für die Gussausführung solcher Gasgehäuse eine Bauweise zu finden, bei der nicht nur diese Nachteile vermieden werden, sondern die darüber hinaus für eine Massenfertigung geeigneter und wirtschaftlicher ist als eine Gussausführung. Ferner soll diese Bauweise auch eine Erweiterung des Spektrums von Werkstoffen bringen, die für hochtemperaturbelastete Gasgehäuse geeignet sind, d.h., dass neben den verhältnismässig wenigen giessbaren hochwarmfesten Materialien auch die weit grössere Palette von spanlos durch Pressen, Stanzen usw. verformbaren Walzhalbzeugen, insbesondere in Form von Blechen, für solche Gasgehäuse in Betracht kommt.
  • Eine solche Bauweise soll es auch gestatten, neben einem teuren Werksktoff für die hochtemperaturbelasteten Teile weniger teures Material für die nicht so stark hitzebeanspruchten Teile zu verwenden, was vorzugsweise die massiven Flanschparatien betrifft. Der teurere, hochhitzebeständige Werkstoff nimmt infolge seiner hohen Bruchdehnung auch grössere, thermisch bedingte Verformungen auf, ohne dass Rissbildungen zu befürchten sind. Sein Nachteil des höheren Preises wird in der Regel dadurch mindestens kompensiert, dass die Kanalwände im Vergleich zu Gussstücken wesentlich dünner gehalten werden können.
  • Für die billigeren Werkstoffe, die für die massiveren Flanschpartien geeignet sind, gilt bezüglich der Bruchdehnung und Deformationsverhalten das gleiche wie für die Materialien der gasführenden Kanäle.
  • Aus den werkstoffbezogenen Vorteilen einer aus dünnwandigen, schalenförmigen Pressteilen zusammengesetzten Schweisskonstruktion resultiert aber auch ein Nachteil, und zwar eine gegenüber Gusskonstruktionen verringerte Stabilität. Dies ist von Belang, wenn durch das Gehäuse vom heissgasbeaufschlagten Apparat Kräfte, beispielsweise von Schwingungen verursacht, weiterzuleiten sind, etwa auf die gaszu- und -abführenden Leitungen, die an Flanschen der eingangs erwähnten Kanäle für das heisse Frischgas und das entspannte Abgas angeschlossen sind. Die Schwingungen können auf die Dauer, unterstützt von der ebenfalls materialermüdenden Wärmebeanspruchung, zu Brüchen in den Kanalwandungen führen. Aufgabe der Erfindung ist es daher auch, durch konstruktive Massnahmen den zerstörenden Einfluss von Vibrationen auf die dünnwandigen gasführenden Kanäle fernzuhalten. Diese Massnahmen bestehen in einer Aufteilung der Struktur des Gehäuses in einen gasführenden und in einen kraftaufnehmenden Teil.
  • Definition der Erfindung
  • Das erfindungsgemässe Leichtbaugasgehäuse ist dadurch gekennzeichnet, dass die genannten Flanschen untereinander starr verbunden sind und einen kraftaufnehmenden Teil des Gehäuses bilden, dass die Kanäle als Blechpressteile ausgebildet sind, und dass die Endquerschnitte dieser Kanäle Durchbrüche in mindestens einem der Flanschen mit Druchbrüchen in mindestens einem anderen der Flanschen leitend verbinden, welche Durchbrüche die Ein- bzw. Austrittsquerschnitte der Medien sind und an denen die Enden der Kanäle mit den Flanschen verschweisst sind.
  • Im folgenden wird die Erfindung anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher beschrieben.
  • Kurze Beschreibung der Figuren
  • In der Zeichnung stellen dar:
    • Fig. 1 einen Aufriss eines erfindungsgemässen Gasgehäuses, die
    • Fig. 2 und 3 das Gasgehäuse in im wesentlichen der Fig. 1 zugeordneten Seitenrissen, aus denen die Führung der Gaskanäle hervorgeht, in etwas nach vorn bzw. nach hinten und seitlich gekippter Stellung, und die
    • Fig. 4 eine axonometrische Darstellung des kraftaufnehmenden Teiles der Gehäusestruktur.
    Beschreibung des Ausführungsbeispiels
  • Bei dem dargestellten Ausführungsbeispiel handelt es sich um das Gasgehäuse eines Druckwellenladers für Verbrennungsmotoren. Es nimmt mit zwei Einlasskanälen die Abgase des Motors auf, die in einem Zellenrotor die Verbrennungsluft verdichten und entspannt und abgekühlt durch zwei Auslasskanäle in die Auspuffanlage ausströmen. Bei einer Ausführung als Gussstück haben die Kanäle gemeinsame Begrenzungswände, deren beide Seiten von unterschiedlich heissem Gas beaufschlagt werden mit der eingangs erwähnten Gefahr des Verzugs des ganzen Gehäuses durch Wärmespannungen, die auch Risse zur Folge haben können. Davon abgesehen ist die Herstellung durch Giessen infolge der komplizierten Führung der Kanäle aufwendig und auch werkstoffbedingt sehr teuer, da der ganze Gehäusekörper aus ein und demselben, sehr teuren Material besteht, wogegen gemäss der Erfindung für die weniger stark temperaturbelasteten Partien ein kostengünstigeres Material genügt.
  • In den Figuren bedeutet 1 den kraftaufnehmenden Teil des Gehäuses, der aus zwei Flanschplatten 2 und 3 aus spanlos verformbarem Blech mit jeweils zueinander rechtwinkligen Schenkeln besteht. Die grösseren, in den Figuren jeweils vertikal stehenden und im wesentlichen zueinander parallelen Schenkel bilden Flanschen 4 bzw. 5, von denen der eine, 4, zum Anschluss an das Rotorgehäuse und der andere, 5, den Austrittsteil eines Auspuffkanals aufnimmt, auf den weiter unten eingegangen wird, und als Anschlussflansch für die Auspuffanlage des Motors dient.
  • Die beiden anderen, kürzeren Schenkel 6 bzw. 7 der Flanschplatten 2 und 3 liegen in der aus den Fig. 2, 3 und 4 ersichtlichen Weise aufeinander und sind längs ihrer parallelen Seitenkanten durch Schweissnähte 8 miteiander verbunden. Der Schenkel 6 weist einen im wesentlichen rechteckigen Durchbruch 9 auf, siehe Fig. 3 und 4, während der Schenkel 7 aus zwei den Durchbruch 9 seitlich begrenzenden, stabförmigen Teilen besteht.
  • Am Durchbruch 9 des kürzeren Schenkels 6 der Flanschplatte 2 tritt das aus dem Motor kommende heisse Abgas in das Gehäuse ein, wie durch die Strömungspfeile 10 angedeutet. Der kurze Schenkel 6 bildet also einen Flansch für den Anschluss eines nicht dargestellten, vom Motor kommenden Abgasrohres und wird daher im folgenden Abgasflansch genannt. Im Flansch 4 befinden sich zwei einander diametral gegenüberliegende Durchbrüche 11, durch die das bei 9 eintretende heisse Abgas aus dem Gehäuse aus- und in den nicht dargestellten Zellenrotor des Druckwellenladers eintritt. Die Form des Heissgaskanals 12, der den Durchbruch 9 mit den Durchbrüchen 11 verbindet, geht aus den Fig. 1, 2 und 3 hervor. Ausgehend vom Rechteckquerschnitt am Durchbruch 9, wo er an seinem Umfang an der Unterseite des Abgasflansches 6 verschweisst ist, erweitert er sich nach oben und verzweigt sich in zwei Aeste, die am Umfang der Durchbrüche 11 im Flansch 4 mit diesem verschweisst sind.
  • Das im Zellenrotor entspannte und abgekühlte Gas, im folgenden Auspuffgas genannt, tritt, wie die Strömungspfeile 13 andeuten, durch die zwei einander diametral gegenüberliegenden Durchbrüche 14 im Flansch 4 in das Gehäuse ein und verlassen es im Bereich eines kreisrunden Durchbruchs 15 im Flansch 5, von wo es weiter in eine nicht dargestellte Auspuffanlage strömt. Der zugehörige Auspuffkanal 16 beginnt mit zwei Aesten an den beiden Durchbrüchen 14 des Flansches 4, die sich stromabwärts vereinigen und in einen kreisrunden Stutzen übergehen, der den Durchbruch 15 im Flansch 5 durchsetzt und mit diesem durch eine Schweissnaht 17 verbunden ist.
  • Der Heissgaskanal 12 und der Auspuffkanal 16 haben keine gemeinsamen Wände, sind daher bezüglich der Wärmedehnungen unabhängig voneinander. Wegen der grösseren als bei Gusswerkstoffen üblichen Bruchdehnung der spanlos verformbaren Bleche sind Risse, wie sie in Gusswerkstücken wegen ihrer ungleichmässigen Wandstärken auftreten können, bei erfindungsgemässen Ausführungen nicht zu erwarten.
  • Neben den beschriebenen zwei Kanälen 12 und 16 könnten erforderlichenfalls natürlich noch weitere Kanäle zwischen den Flanschen oder sonstigen Elementen des kraftaufnehmenden Teiles vorgesehen sein. Im vorliegenden Falle sind die zwei kleinen, aus Fig. 4 ersichtlichen Durchbrüche 18 durch angeschweisste längliche Blechnäpfe überdeckt, die auf der freien, dem Rotor des Druckwellenladers zugewandten Flanschebene sogenannte, für einen einwandfreien Druckwellenprozess wichtige "Taschen" 19 begrenzen, siehe hiezu Fig. 1, 2 und 3.
  • Die auf den ersten Blick kompliziert aussehenden Kanäle für das Heissgas und das Auspuffgas sind in der Serienfertigung gleichwohl billiger als Gussstücke herzustellen. Die Kanäle bestehen aus tiefgezogenen, miteinander verschweissten Halbschalen, wobei die Trennlinien entlang ihrer Symmetrieachse oder entlang passender Berührungslinien von Tangentialebenen oder Hüllflächen vorgesehen werden. Auch Hinterschneidungen sind, falls unumgänglich, fertigungstechnisch zu beherrschen. Die Schweissungen lassen sich roboterisieren. Ganz erheblich ist die Gewichtsersparnis gegenüber Gusstücken, was niedrigere Kosten bedeutet, die bei einem Gehäuse mit unterschiedlich temperaturbeanspruchten Kanälen noch weiter gesenkt werden können, wenn man für jeden Kanal die für ihn jeweils ausreichende Werkstoffqualität wählt. Niedriger beanspruchte Kanäle können also aus billigerem Mateiral gepresst werden. Wegen der freien, voneinander unabhängigen Verformbarkeit der Kanäle spielen unterschiedliche Stoffeigenschaften, z.B. Wärmedehnzahlen für die Haltbarkeit keine Rolle.
  • Diese Gehäusebauart ist natürlich nicht nur für thermisch beanspruchte Maschinen vorteilhaft, sondern ist auch eine wirtschaftliche Alternative zu Gussausführungen für andere Anwendungen, z.B. für Flüssigkeiten und kalte Gase.
  • Falls es darauf ankommt, Wärmeverluste aus den Heissgaskanälen möglichst gering zu halten, ist es zweckmässig, einen mit seinen Rändern an den Flanschen abdichtend befestigten Isoliermantel 20 vorzusehen, dessen Kontur in Fig. 3 strichpunktiert angedeutet ist und der alle oder nur die Heissgaskanäle nach aussen abkapselt. Letztere werden thermisch noch besser isoliert, wenn der die Kanäle, besonders aber der die Heissgaskanäle umgebende, vom Isoliermantel umschlossene Raum über eine Bohrung 21, siehe Fig. 3, in den Heissgaskanälen 12 mit diesen leitend verbunden und daher von Heissgas umgeben ist. Der Isoliermantel reduziert auch die Lärmabstrahlung aus den Kanälen. Eine noch bessere Geräuschdämpfung wird durch Ausfüllen des besagten Raumes mit einem geräusch- und wärmedämmenden Material erhalten.

Claims (5)

1. Leichtbaugasgehäuse, mit Kanälen (12, 16) für die Leitung gasförmiger oder flüssiger Medien und Flanschen (4, 5, 6) zum Anschluss von Leitungen für die Zu- bzw. Abfuhr dieser Medien in das bzw. aus dem Gehäuse, dadurch gekennzeichnet, dass die genannten Flanschen (4, 5, 6) untereinander starr verbunden sind und einen kraftaufnehmenden Teil (1) des Gehäuses bilden, dass die Kanäle (12, 16) als Blechpressteile ausgebildet sind, und dass die Endquerschnitte dieser Kanäle (12, 16) Durchbrüche (9, 14) in mindestens einem (6, 4) der Flanschen mit Durchbrüchen (11, 15) in mindestens einem anderen (4, 5) der Flanschen leitend verbinden, welche Durchbrüche die Ein- bzw. Austrittsquerschnitte der Medien sind und an denen die Enden der Kanäle (12, 16) mit den Flanschen (4, 5, 6) verschweisst sind.
2. Leichtbaugasgehäuse nach Anspruch 1, ausgebildet als Gasgehäuse eines Druckwellenladers, mit je einem Flansch (4, 5, 6) zum Anschluss an das Rotorgehäuse des Druckwellenladers, an die Abgasleitung eines Verbrennungsmotors und an eine Auspuffleitung, sowie mit einem Heissgaskanal (12) und einem Auspuffkanal (16) zur Zufuhr des Abgases aus dem Motor in den Rotor des Druckwellenladers bzw. zur Abfuhr des entspannten und abgekühlten Abgases aus dem Rotor in die Auspuffleitung, dadurch gekennzeichnet, dass der Flansch (4) zum Anschluss an das Rotorgehäuse und der Flansch (6) zum Anschluss an die Abgasleitung zwei zueinander rechtwinklige Schenkel einer Flanschplatte (2) bilden, dass der Flansch (5) zum Anschluss an die Auspuffleitung Teil einer Flanschplatte (3) bildet, die zwei zum Flansch (5) rechtwinklige, stabförmige Schenkel (7) aufweist, dass die Flanschplatte (3) entlang der Aussenkanten dieser Schenkel (7) mit zwei Seitenkanten des Abgasflansches (6) verschweisst ist, und dass der Heissgaskanal (12) und der Auspuffkanal (16) aus je zwei tiefgezogenen Halbschalen zusammengeschweisst sind und sich jeweils von einem einteiligen Durchbruch (9, 15) im Abgasflansch (6) bzw. Auspuffflansch (5) ausgehend in zwei Aeste verzweigen, die in jeweils zwei Druchbrüchen (18, 14) des Rotorgehäuseflansches (4) enden.
3. Leichtbaugasgehäuse nach Anspruch 1, gekennzeichnet durch einen Isoliermantel (20), der mindestens heissgasführende Kanäle (12) kapselt und mit seinen Rändern an den Flanschen (4, 5, 6) abdichtend befestigt ist.
4. Leichtbaugasgehäuse nach Anspruch 3, dadurch gekennzeichnet, dass die heissgasführenden Kanäle (12) mit dem vom Isoliermantel (20) umschlossenen Raum über eine Bohrung (21) kommunizieren.
5. Leichtbaugasgehäuse nach Anspruch 3, dadurch gekennzeichnet, dass der vom Isoliermantel (20), den Flanschen (4, 5, 6) und den Kanälen (12, 16) begrenzte Raum mit einem geräusch- und wärmedämmenden Material gefüllt ist.
EP89123633A 1989-01-26 1989-12-21 Leichtbaugasgehäuse Expired - Lifetime EP0379715B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89123633T ATE79164T1 (de) 1989-01-26 1989-12-21 Leichtbaugasgehaeuse.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH250/89 1989-01-26
CH25089 1989-01-26

Publications (2)

Publication Number Publication Date
EP0379715A1 EP0379715A1 (de) 1990-08-01
EP0379715B1 true EP0379715B1 (de) 1992-08-05

Family

ID=4182722

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89123633A Expired - Lifetime EP0379715B1 (de) 1989-01-26 1989-12-21 Leichtbaugasgehäuse

Country Status (5)

Country Link
US (1) US5051064A (de)
EP (1) EP0379715B1 (de)
JP (1) JPH02230921A (de)
AT (1) ATE79164T1 (de)
DE (1) DE58901999D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008052631A1 (de) * 2008-10-22 2010-04-29 Benteler Automobiltechnik Gmbh Gasdynamische Druckwellenmaschine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO306272B1 (no) * 1997-10-01 1999-10-11 Leif J Hauge Trykkveksler
US6845620B2 (en) 2001-07-06 2005-01-25 Mohamed Razi Nalim Rotary ejector enhanced pulsed detonation system and method
DE102010008386B4 (de) * 2010-02-17 2012-07-05 Benteler Automobiltechnik Gmbh Druckwellenlader
DE102011122864B3 (de) * 2011-09-29 2017-04-20 Benteler Automobiltechnik Gmbh Druckwellenlader mit gebautem Gehäuse
DE102011054055B3 (de) * 2011-09-29 2012-09-27 Benteler Automobiltechnik Gmbh Druckwellenlader mit Hybridgehäuse

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB437078A (en) * 1934-01-24 1935-10-23 Alfred Buechi Improvements in or relating to arrangements of exhaust driven superchargers with multiple row internal combustion engines
US2759660A (en) * 1949-09-20 1956-08-21 Jendrassik Developments Ltd Pressure exchangers
DE1065866B (de) * 1957-07-25 1959-09-24 Dudley Brian Spalding, London Gasverflüssigungsanlage
GB936427A (en) * 1961-05-02 1963-09-11 Power Jets Res & Dev Ltd Improvements in or relating to pressure exchangers
GB1144262A (en) * 1966-06-28 1969-03-05 Power Jets Res & Dev Ltd Improvements in or relating to pressure exchangers
CH568476A5 (de) * 1974-02-14 1975-10-31 Bbc Brown Boveri & Cie

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008052631A1 (de) * 2008-10-22 2010-04-29 Benteler Automobiltechnik Gmbh Gasdynamische Druckwellenmaschine

Also Published As

Publication number Publication date
JPH02230921A (ja) 1990-09-13
US5051064A (en) 1991-09-24
EP0379715A1 (de) 1990-08-01
DE58901999D1 (de) 1992-09-10
ATE79164T1 (de) 1992-08-15

Similar Documents

Publication Publication Date Title
EP1979602B1 (de) Wärmetauscher
EP2662538A2 (de) Anbindung eines doppelwandigen Turboladergehäuses
EP0928885B1 (de) Abgasvorrichtung für einen Verbrennungsmotor
EP0955453A2 (de) Abgaskrümmer
DE112010002744T5 (de) Wärmetauscher mit Gussgehäuse und Verfahren zur Herstellung desselben
DE102007024630A1 (de) Wärmetauscher, insbesondere Ladeluftkühler oder Abgaskühler für eine Brennkraftmaschine eines Kraftfahrzeuges und dessen Herstellungsverfahren
DE102014006761A1 (de) Abgaskühler
EP2863157B1 (de) Wärmeübertrager
DE2733215C3 (de) Warmetauscher zur Kühlung der Auspuffgase eines Kraftfahrzeug-Verbrennungsmotors mit zwei Paaren von Metallschalen
DE2828557A1 (de) Zwischenkuehler fuer verbrennungsmotoren
DE2420308C3 (de) Abgasturbolader für Brennkraftmaschinen
EP0379715B1 (de) Leichtbaugasgehäuse
DE10328846B4 (de) Wärmetauscher
EP2684001B1 (de) Wärmetauscher für eine mobile festbrennstofffeuerungsanlage
DE10119484B4 (de) Flüssigkeitsgekühlte Brennkraftmaschine mit einem Abgasrückführsystem
EP0377797B1 (de) Heizgerät, insbesondere Fahrzeugheizgerät
DE19713963C1 (de) Fluidführungselement
DE2916030C2 (de) Thermisch beanspruchtes rohrähnliches Bauteil, insbesondere Auspuffkrümmer einer Verbrennungskraftmaschine
EP1389267A2 (de) Abgaskrümmer
EP0849445A1 (de) Abgassammler und Verfahren zu seiner Herstellung
DE4324458B4 (de) Wassergekühltes Rohrelement
DE102005017973B4 (de) Ladeluftkühler für eine Verbrennungskraftmaschine
EP1454109B1 (de) Abgaswärmeübertrager
CH626948A5 (en) Turbocharger
DE3512891A1 (de) Ladeluftkuehler fuer verbrennungskraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMPREX AG

17P Request for examination filed

Effective date: 19901229

17Q First examination report despatched

Effective date: 19920117

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19920805

Ref country code: GB

Effective date: 19920805

Ref country code: FR

Effective date: 19920805

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19920805

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19920805

Ref country code: BE

Effective date: 19920805

Ref country code: NL

Effective date: 19920805

REF Corresponds to:

Ref document number: 79164

Country of ref document: AT

Date of ref document: 19920815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58901999

Country of ref document: DE

Date of ref document: 19920910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19921221

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19921231

Ref country code: CH

Effective date: 19921231

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19920805

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960124

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970902