EP0376858B1 - Procédé d'ioduration électrochimique de composés aromatiques - Google Patents

Procédé d'ioduration électrochimique de composés aromatiques Download PDF

Info

Publication number
EP0376858B1
EP0376858B1 EP89420454A EP89420454A EP0376858B1 EP 0376858 B1 EP0376858 B1 EP 0376858B1 EP 89420454 A EP89420454 A EP 89420454A EP 89420454 A EP89420454 A EP 89420454A EP 0376858 B1 EP0376858 B1 EP 0376858B1
Authority
EP
European Patent Office
Prior art keywords
para
diiodobenzene
iodobenzene
cathode
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89420454A
Other languages
German (de)
English (en)
Other versions
EP0376858A3 (en
EP0376858A2 (fr
Inventor
Michael Roy C/O Eastman Kodak Company Cushman
Carl Michael C/O Eastman Kodak Company Lentz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Chemical Co
Original Assignee
Eastman Kodak Co
Eastman Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co, Eastman Chemical Co filed Critical Eastman Kodak Co
Priority to AT89420454T priority Critical patent/ATE101206T1/de
Publication of EP0376858A2 publication Critical patent/EP0376858A2/fr
Publication of EP0376858A3 publication Critical patent/EP0376858A3/en
Application granted granted Critical
Publication of EP0376858B1 publication Critical patent/EP0376858B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/27Halogenation

Definitions

  • the present invention relates to the electrochemical iodination of aromatic compounds to selectively and efficiently form a para-substituted iodobenzene derivative.
  • Iodoaromatics are desirable materials because of the wide variety of transformations they can undergo. For example, they can be catalytically carbonylated to form aromatic carboxylic acids and esters. Iodoaromatics are therefore possible starting materials for polycarbonates, polyamides, polysulfides, and polyesters.
  • the halogenation with molecular halogen is one of the classic reactions of aromatic substitution and has been thoroughly investigated owing to its theoretical as well as synthetic value (H. P. Braendlin and E. T. McBee in Friedel-Crafts and Related Reactions ed. G. A. Olan, Wiley, New York, 1964, Volume 3, Ch.
  • the present process is an electrolytic process that provides selective and efficient formation of a para-substituted iodobenzene derivative.
  • This process makes use of a graphitic carbon anode.
  • the present invention is directed to an electrolytic process for the formation of a para-substituted iodobenzene derivative comprising contacting: an anolyte solution of a divided electrolytic cell, wherein said divided electrolytic cell comprises: an anode compartment comprising a graphitic carbon anode and said anolyte solution which comprises solvent and an electrolyte; and a cathode compartment comprising a cathode and a catholyte solution which comprises solvent and an electrolyte; wherein said anode compartment and cathode compartment are separated by a separator, with an iodine source, and a mono-substituted compound of the formula: wherein R is alkyl, halo, unsubstituted aryl, or aryl
  • benzene is used as a starting material to form iodobenzene followed by the further iodination of the iodobenzene, e.g. an electrolytic process for preparing iodobenzene comprising contacting: an anolyte solution of a divided electrolytic cell, wherein said divided electrolytic cell comprises: an anode compartment comprising a graphitic carbon anode and said anolyte solution which comprises a solvent and an electrolyte; and a cathode compartment comprising a cathode and a catholyte solution which comprises a solvent and an electrolyte; wherein said anode compartment and cathode compartment are separated by a separator, with an iodine source, and benzene, and applying to the anode and the cathode an electric potential; the proportion of materials, electric potential, and other conditions being effective to form iodobenzene.
  • Such a process for preparing iodobenzene is known from SU-A-535271 where the anolyte solution contains acetic acid and the electrolysis is carried out at 35-45°C with an anode current density of 0.15-0.2 A/cm2.
  • the yield of product is as high as 91.7 % with respect to benzene.
  • Process II This process for preparing iodobenzene shall be referred to herein as "Process II.”
  • a diiodobenzene could conveniently be deiodinated cathodically, in the presence of a palladium on carbon catalyst, to iodobenzene, which facilitates a continuously run operation, e.g.
  • an electrolytic process for preparing iodobenzene comprising contacting a catholyte solution of a divided electrolytic cell wherein said divided electrolytic cell comprises an anode compartment comprising an anode and an anolyte solution which comprises a solvent and an electrolyte; and a cathode compartment comprising a cathode and a catholyte solution which comprises a solvent and an electrolyte; wherein said anode compartment and cathode compartment are separated by a separator, with a diiodobenzene compound of the formula in the presence of a catalytic amount of palladium on carbon, and applying to the anode and cathode an electric potential; the proportion of materials, electric potential, and other conditions being sufficient to form iodobenzene.
  • Process III This cathodic deiodination process shall be referred to herein as "Process III.”
  • halo refers to chloro, bromo, fluoro or iodo
  • alkyl refers to C1 to C16 straight, branched or cyclic alkyls
  • aryl refers to aryls containing six to 14 carbon atoms.
  • Process I Any of Process I, Process II, or Process III can be carried out batchwise; however, for most industrial applications, it is preferred to perform these processes continuously. Therefore, it is preferred to couple Process I with Process II and/or Process III.
  • a preferred process of the present invention is a continuous process in which Process I is performed simultaneously with Process III. This preferred process can be described as a continuous electrolytic process for the formation of para-diiodobenzene comprising:
  • Process I When Process I is coupled with Process II, it is preferred that such process be performed consecutively in the same electrolytic cell. As a result, the iodobenzene formed from Process II is used as a starting material for Process I.
  • the electric potential applied to the anode and cathode is about 1.5 to about 2.5 volts, more preferred is about 2 volts.
  • the processes of the present invention are performed at a temperature of about 25° to about 100°C, more preferred is about 25° to about 50°C; and at a pressure of about 1 atmosphere (atm) to about 10 atm, more preferred is about 1-2 atms.
  • one or more processes of the present invention is run as a batch process, typically the electric potential is applied for a period of time of about 1 to about 25 hours, preferred is about 2 to about 8 hours.
  • additives such as CF3CO2H, (Et)4NBF4, or trisbromophenyl amine can be added to the reaction medium in the processes of the present invention; however, the presence of such additives are not necessary. If one or more additives are used, they are typically present in a concentration of up to about 10 percent, based on solvent weight.
  • the cathode compartment and anode compartment are separated by a separator such as a membrane, fritted glass, and the like.
  • a separator such as a membrane, fritted glass, and the like.
  • this separator is a membrane.
  • a preferred membrane is a NafionTM membrane.
  • the nature of the anode is important. It has been found that the anode must be comprised of graphitic carbon in order for the iodination process to be sufficiently effective.
  • the graphitic anode can be comprised of spectral grade graphite or can be any other suitable graphite electrode.
  • the nature of the, cathode for any of the processes of the invention, is not particularly critical.
  • the cathode can be comprised of platinum, carbon, copper, lead, tin, palladium, stainless steel, or combinations thereof.
  • Process III since Process III must proceed in the presence of palladium or carbon, it is convenient for the cathode in Process III to be comprised of palladium on carbon.
  • the solvents and electrolyte in the cathode and anode compartments for any of the processes of the present invention can be the same or different; however, it is usually more convenient for the electrolyte and solvents to be the same in each compartment.
  • Preferred solvents are polar organic aprotic or protic solvents. Examples include methanol, ethanol, acetonitrile, tetrahydrofuran, dimethylformamide, dimethylsulfoxide, dimethyl ether, diethyl ether, acetic acid (HOAc), or a mixture thereof. The most preferred solvent is acetonitrile.
  • the electrolyte is present in a concentration sufficient to give the total reaction medium sufficient conductivity at reaction conditions in order for the desired process to proceed satisfactorily.
  • a preferred electrolyte is a tetrafluoroborate. Examples include substituted tetrafluoroborates such as, HBF4, NaBF4, (Me)4NBF4, (Et)4NBF4, (Pr)4NBF4, or (Bu)4NBF4 wherein Me is methyl, Et is ethyl, Pr is propyl and Bu is butyl. The most preferred electrolyte is HBF4, (Me)4NBF4 or (Bu)4NBF4.
  • Process I in addition to the formation of said para-substituted iodobenzene derivative, typically minor amounts of the other isomers are also formed, especially an ortho-substituted iodobenzene derivative. It is an advantage of the present invention that the yield of the para-substituted compound is greater than the yield of the ortho-substituted compound. Preferably the mole ratio of para-substituted iodobenzene derivative to ortho-substituted iodobenzene derivative after reaction is greater than about 1:1 to about 100:1.
  • the weight ratio of the iodine source to the mono-substituted compound to the anolyte solution is about 2.5:3.0:100 to about 1.0:15.0:100, and the weight ratio of electrolyte to solent of the anolyte solution is about 1:1 to about 1:100; said electron-donating group is alkyl, hydroxyl, thiol, -OR′, or -SR′;
  • the iodine source is iodine (I2) or an iodine salt such as HI, NaI, KI, or an alkyl ammonium iodide.
  • R is I and the iodine source is most preferably I2.
  • the purity of the para-substituted iodobenzene derivative is typically greater than about 98 weight percent, preferably greater than about 99 weight percent, after isolation by standard techniques.
  • this compound can be isolated simply by cooling the electrolysis mixture until the desired compound becomes a solid, typically less than about 15°C, followed by filtering. By this simple isolation procedure, typically greater than about 80 weight percent of the available para-isomer can be obtained.
  • the yield of para plus ortho derivatives is greater than about 60 percent preferably greater than about 90 percent, based on the weight of consumed iodine source. Typical by-products formed include iodonium salts.
  • the weight ratio of the iodine source to benzene to the anolyte solution is about 1.25:2.0:100 to about 2.5:1.0:100, the weight ratio of electrolyte to solvent in the anolyte and catholyte solutions is about 1:10 to about 1:100, and that the iodine source is iodine.
  • the weight ratio of the diiodobenzene compound:catholyte solution is about 1:10 to about 1:100; the weight ratio of electrolyte: solvent in the anolyte and catholyte solutions is about 1:10 to about 1:100; and that the diiodobenzene starting material is ortho-diiodobenzene.
  • Process III must be performed in a catalytic amount of palladium on carbon catalyst.
  • a catalytic amount is typically at least about 0.001%, based on the weight of diiodobenzene starting material, preferably about 0.01%.
  • Electrolysis was performed in an H-type cell where the anode and cathode were separated by a Nafion membrane.
  • the cathode was a spectroscopic (UltraCarbon, U50) carbon rod. All reactions were run at the indicated constant potential by way of an ESC Model 410 potentiostatic controller.
  • the electrochemical apparatus was fitted with an ESC Model 630 digital coulometer and, in each case, the theoretical number of coulombs was collected.
  • the cell temperature was not controlled and usually rose to about 28°C in the course of an experiment.
  • the potential is set at 2.00 volts versus SCE (saturated calomel electrode), and current is passed through the electrolysis solution. The electrolysis is stopped after 1930 coulombs are passed.
  • the product is isolated by pouring the anode solution into 500 mL of water and extracting three times with 50 mL of methylene chloride each time. The extracts are combined and washed with 100 mL of water. The organic layer is dried over magnesium sulfate and the solvent is removed in vacuo to afford 4.3 g of a light color oil.
  • the product is analyzed by capillary gas chromatograph versus authentic samples to establish the yield and ortho-para ratio.
  • the electrolysis apparatus employed is as previously described.
  • the catholyte and anolyte solutions are prepared as described for the electrolysis of toluene.
  • To the anode compartment is added 1.26 g of iodine (5 mmols) and 2.04 g of iodobenzene (10 mmols).
  • the system is electrolyzed at a constant potential of 1.7 volts versus SCE. After passing 965 coulombs, the electrolysis is stopped.
  • the anode mixture is cooled to 15°C and the resulting solid isolated by filtration. After water wash and air drying, the solid weighs 2.1 g (64% isolated yield) and is shown by capillary gas chromatography to be 100% p -diiodobenzene.
  • the electrolysis apparatus is as previously described.
  • the catholyte and anolyte solutions are prepared as described for the electrolysis of toluene.
  • To the anode compartment is added 2.54 g (0.01 mole) iodine and 2.42 g (0.031 mole) benzene.
  • the system is electrolyzed at a constant potential of 2.0 volts vs SCE.
  • the electrolysis is stopped after 1950 coulombs are passed.
  • the product is isolated by pouring the anode solution into 500 mL water and extracting three times with 50 mL of methylene chloride. The extracts are combined and washed with 100 mL water.
  • the organic layer is dried over magnesium sulfate and the solvent removed in vacuo to afford 4.1 g of a light yellow oil.
  • the product is analyzed by capillary gas chromatography to afford iodobenzene chemical yield of 95% based on iodine.
  • Example 2 The procedure of Example 1 is substantially repeated except that the working potential is varied.
  • the para selectivity versus working potential is shown in Table 3.
  • TABLE 3 Para Selectivity of Toluene Iodination Versus Working Potential1 Working Potential2 % Para Iodotoluene 1.7 v 62% 1.8 v 61% 1.9 v 66% 2.0 v 65% 2.1 v 62% 1At carbon anode in a divided cell. 2Potential versus SCE.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Claims (22)

  1. Procédé électrolytique pour la formation d'un dérivé para-substitué de l'iodobenzène, comprenant la mise en contact :
       d'une solution d'anolyte d'une cellule électrolytique divisée, ladite cellule électrolytique divisée comprenant :
       un compartiment anodique comprenant une anode en carbone graphitique et ladite solution d'anolyte qui comprend un solvant et un électrolyte, et un compartiment cathodique comprenant une cathode et une solution de catholyte qui comprend un solvant et un électrolyte, ledit compartiment anodique et ledit compartiment cathodique étant séparés par un séparateur,
    avec
       une source d'iode et un composé monosubstitué de formule :
    Figure imgb0010
    dans laquelle R est un alkyle, un halogène, un aryle non substitué ou un aryle substitué avec jusqu'à 5 groupes donneurs d'électrons, et
    l'application à l'anode et à la cathode d'un potentiel électrique, les proportions des substances, le potentiel électrique et les autres conditions permettant la formation d'un dérivé para-substitué de l'iodobenzène dans ledit compartiment anodique.
  2. Procédé selon la revendication 1, dans lequel ledit potentiel électrique appliqué est d'environ 1,5 à environ 2,5 V.
  3. Procédé selon la revendication 1, dans lequel ledit potentiel électrique est appliqué pendant une durée d'environ 1 à environ 25 h à une température d'environ 25°C à environ 100°C et sous une pression d'environ 1 atm à environ 10 atm.
  4. Procédé selon la revendication 1, dans lequel le rapport pondéral de la source d'iode au composé monosubstitué et à la solution d'anolyte est d'environ 2,5 : 3,0 : 100 à environ 1,0 : 15,0 : 100, et le rapport pondéral de l'électrolyte au solvant de la solution d'anolyte est d'environ 1 : 1 à environ 1 : 100.
  5. Procédé selon la revendication 1, dans lequel la solution d'anolyte et la solution de catholyte sont identiques.
  6. Procédé selon la revendication 5, dans lequel le solvant est constitué par un solvant organique polaire aprotique ou protique et l'électrolyte est présent en une concentration suffisante pour communiquer au milieu réactionnel total une conductivité suffisante dans les conditions de la réaction.
  7. Procédé selon la revendication 6, dans lequel ladite source d'iode est l'iode ou un sel iodé et ledit électrolyte est un tétrafluoroborate.
  8. Procédé selon la revendication 1, dans lequel R est I.
  9. Procédé selon la revendication 6, dans lequel ledit électrolyte est HBF₄, (Me)₄NBF₄, (Et)₄NBF₄, (Pr)₄NBF₄ ou (Bu)₄NBF₄ et ledit solvant est le méthanol, l'éthanol, l'acétonitrile, le tétrahydrofuranne, le diméthylformamide, le diméthylsulfoxyde, le diméthyléther, le diéthyléther ou l'acide acétique.
  10. Procédé selon la revendication 1, dans lequel lesdits groupes donneurs d'électrons sont des groupes alkyle, hydroxyle, thiol, -OR', -SR', où R' est un alkyle en C₁-C₆ ou un phényle, ledit séparateur est une membrane et ladite cathode est constituée par du platine, du carbone, du cuivre, du plomb, de l'étain, du palladium ou de l'acier inoxydable.
  11. Procédé selon la revendication 1, dans lequel le rendement en ledit dérivé parasubstitué de l'iodobenzène est supérieur au rendement en un dérivé orthosubstitué de l'iodobenzène.
  12. Procédé selon la revendication 11, dans lequel le rapport molaire du dérivé parasubstitué de l'iodobenzène au dérivé orthosubstitué de l'iodobenzène après la réaction est compris entre une valeur supérieure à environ 1 : 1 et environ 100 : 1.
  13. Procédé selon la revendication 1 mis en oeuvre en continu.
  14. Procédé électrolytique pour la formation du para-diiodobenzène selon la revendication 1, dans lequel le composé monosubstitué est l'iodobenzène et les proportions des substances, le potentiel électrique et les autres conditions permettent la formation du para-diiodobenzène.
  15. Procédé selon la revendication 14, dans lequel ledit potentiel électrique appliqué est d'environ 1,5 à environ 2,5 V pendant une durée d'environ 1 à environ 25 h, à une température d'environ 25°C à environ 100°C et sous une pression d'environ 1 atm à environ 10 atm.
  16. Procédé selon la revendication 14, dans lequel le rapport pondéral de la source d'iode à l'iodobenzène et à la solution d'anolyte est d'environ 1,25 : 2,0 : 100 à environ 2,5 : 1 : 100 et le rapport pondéral du tétrafluoroborate à l'acétonitrile est d'environ 1 : 10 à environ 1 : 100.
  17. Procédé selon la revendication 16, dans lequel ladite source d'iode est l'iode et ledit électrolyte est HBF₄, (Me)₄NBF₄, (Et)₄NBF₄, (Pr)₄NBF₄ ou (Bu)₄NBF₄.
  18. Procédé selon la revendication 16, dans lequel ledit séparateur est une membrane et ladite cathode est constituée par du platine, du carbone, du cuivre, du plomb, de l'étain, du palladium ou de l'acier inoxydable.
  19. Procédé selon la revendication 16, dans lequel le rendement en para-diiodobenzène est supérieur au rendement en ortho-diiodobenzène.
  20. Procédé selon la revendication 19, dans lequel le rapport molaire du para-diiodobenzène à l'ortho-diiodobenzène après la réaction et d'environ 1 : 1 à environ 10 : 1.
  21. Procédé selon la revendication 14, dans lequel la pureté du para-diiodobenzène est supérieure à environ 98 % après isolement par des techniques standard.
  22. Procédé électrolytique continu pour la formation du para-diiodobenzène, comprenant :
    (A) l'obtention du para-diiodobenzène par le procédé de la revendication 14,
    (B) la filtration de la solution d'anolyte contenant le para-diiodobenzène formé à l'étape (A) pour obtenir un solide qui comprend du para-diiodobenzène et un filtrat qui comprend un électrolyte, un solvant et au moins un composé diiodobenzénique de formule :
    Figure imgb0011
    (C) l'addition du filtrat de l'étape (B) audit compartiment cathodique,
    (D) la désiodation du composé diiodobenzénique dans le compartiment cathodique de l'étape (C) pour former de l'iodobenzène par application à l'anode et à la cathode d'un potentiel électrique, dans lequel la solution de catholyte et le composé diiodobenzénique sont en présence d'une quantité catalytique de palladium sur carbone, les proportions des substances, le potentiel électrique et les autres conditions étant suffisants pour former de l'iodobenzène, et
    (E) le recyclage comme matière première pour l'étape (A) de l'iodobenzène obtenu à l'étape (D).
EP89420454A 1988-11-25 1989-11-21 Procédé d'ioduration électrochimique de composés aromatiques Expired - Lifetime EP0376858B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89420454T ATE101206T1 (de) 1988-11-25 1989-11-21 Verfahren zur elektrochemischen jodierung von aromatischen verbindungen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US27584788A 1988-11-25 1988-11-25
US275847 1988-11-25

Publications (3)

Publication Number Publication Date
EP0376858A2 EP0376858A2 (fr) 1990-07-04
EP0376858A3 EP0376858A3 (en) 1990-11-28
EP0376858B1 true EP0376858B1 (fr) 1994-02-02

Family

ID=23054063

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89420454A Expired - Lifetime EP0376858B1 (fr) 1988-11-25 1989-11-21 Procédé d'ioduration électrochimique de composés aromatiques

Country Status (5)

Country Link
EP (1) EP0376858B1 (fr)
AT (1) ATE101206T1 (fr)
CA (1) CA2002599A1 (fr)
DE (1) DE68912920T2 (fr)
ES (1) ES2062081T3 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111521A1 (fr) 2007-03-09 2008-09-18 Japan Science And Technology Agency Procédé de production d'un agent d'iodation et procédé de production d'un composé d'iode aromatique

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5575905A (en) * 1995-05-24 1996-11-19 Nycomed Imaging As Iodination process
JP4726806B2 (ja) 2005-01-06 2011-07-20 日宝化学株式会社 芳香族ヨウ素化合物の製造方法
EP2093206A1 (fr) 2008-02-20 2009-08-26 BRACCO IMAGING S.p.A. Procédé d'iodation de composés aromatiques
KR101699065B1 (ko) 2009-07-07 2017-01-23 브라코 이미징 에스.피.에이. 요오드화제의 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU535271A1 (ru) * 1974-10-22 1976-11-15 Предприятие П/Я В-8046 Способ получени иодбензола
US4495036A (en) * 1983-07-11 1985-01-22 The Dow Chemical Company Electrochemical chlorination process
US4707230A (en) * 1985-09-23 1987-11-17 Tracer Technologies, Inc. Electrochemical dehalogenation of organic compounds

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111521A1 (fr) 2007-03-09 2008-09-18 Japan Science And Technology Agency Procédé de production d'un agent d'iodation et procédé de production d'un composé d'iode aromatique
EP2319959A1 (fr) 2007-03-09 2011-05-11 Japan Science And Technology Agency Procédé de production d'un composé d'iode aromatique

Also Published As

Publication number Publication date
EP0376858A3 (en) 1990-11-28
CA2002599A1 (fr) 1990-05-25
EP0376858A2 (fr) 1990-07-04
ATE101206T1 (de) 1994-02-15
DE68912920D1 (de) 1994-03-17
DE68912920T2 (de) 1994-08-18
ES2062081T3 (es) 1994-12-16

Similar Documents

Publication Publication Date Title
Fuchigami et al. Electrolytic partial fluorination of organic compounds. 14. The first electrosynthesis of hypervalent iodobenzene difluoride derivatives and its application to indirect anodic gem-difluorination
Webb et al. Cyclopropanes. XXVI. Electrolytic reduction of optically active 1-halo-1-methyl-2, 2-diphenylcyclopropanes
US4072583A (en) Electrolytic carboxylation of carbon acids via electrogenerated bases
US4936966A (en) Process for the electrochemical synthesis of alpha-saturated ketones
NO128490B (fr)
JP5535215B2 (ja) 置換アリールアルコールのアノード脱水素二量化のための方法
US4402804A (en) Electrolytic synthesis of aryl alcohols, aryl aldehydes, and aryl acids
Fujimoto et al. Selective and one-pot formation of phenols by anodic oxidation
US4601797A (en) Electrochemical carboxylation of p-isobutylacetophenone and other aryl ketones
GB2230782A (en) Process for the electrosynthesis of beta, gamma-unsaturated esters
EP0376858B1 (fr) Procédé d'ioduration électrochimique de composés aromatiques
CA1271484A (fr) Oxydation de composes organiques a l'aide de methanesulfonate cerique dans une solution organique aqueuse
Yoshida et al. Anodic oxidations. III. Controlled potential cyanomethoxylation of 2, 5-dimethylfuran
US4794172A (en) Ceric oxidant
US4132611A (en) Addition of organic electrophiles to carbon acids via catalysis by electrogenerated bases
US4582577A (en) Electrochemical carboxylation of p-isobutylacetophenone
SU612620A3 (ru) Способ электрохимического получени эфиров с1-с3 карбоновых кислот
Ungureanu et al. Electrochemical chlorination of azulene derivatives: Insight into the mechanism of anodic oxidative chlorination
US4076601A (en) Electrolytic process for the preparation of ethane-1,1,2,2-tetracarboxylate esters and related cyclic tetracarboxylate esters
CN111809195B (zh) α-二硫醚二羧酸类化合物的电化学催化氧化偶联合成方法
Kweon et al. Organic electrochemical synthesis utilizing mg electrodes (1)-Facile reductive coupling reactions of aromatic halides
Tien et al. Anodic chlorination and bromination of 3-substituted sydnone compounds
Minato et al. Electrophilic reaction of allyl acetates with electrogenerated carbanions in the presence of Pd (0)-catalyst.
CN114395770B (zh) 一种电化学合成5-三氟甲基尿嘧啶化合物的方法
Wille et al. Electrosynthesis of sulphones: coupled cathodic-anodic process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19910419

17Q First examination report despatched

Effective date: 19921104

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 101206

Country of ref document: AT

Date of ref document: 19940215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68912920

Country of ref document: DE

Date of ref document: 19940317

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3011332

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: EASTMAN CHEMICAL COMPANY

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: EASTMAN CHEMICAL COMPANY TE KINGSPORT, TENNESSEE,

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: EASTMAN CHEMICAL COMPANY

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19941006

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19941101

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19941115

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19941116

Year of fee payment: 6

Ref country code: ES

Payment date: 19941116

Year of fee payment: 6

Ref country code: AT

Payment date: 19941116

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19941125

Year of fee payment: 6

Ref country code: DE

Payment date: 19941125

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19941128

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19941129

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19941130

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2062081

Country of ref document: ES

Kind code of ref document: T3

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89420454.4

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

NLS Nl: assignments of ep-patents

Owner name: EASTMAN CHEMICAL COMPANY TE KINGSPORT, TENNESSEE,

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19951121

Ref country code: GB

Effective date: 19951121

Ref country code: AT

Effective date: 19951121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19951122

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19951122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19951130

Ref country code: CH

Effective date: 19951130

Ref country code: BE

Effective date: 19951130

BERE Be: lapsed

Owner name: EASTMAN CHEMICAL CY

Effective date: 19951130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19960531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960731

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3011332

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960801

EUG Se: european patent has lapsed

Ref document number: 89420454.4

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051121