EP0375542B1 - Reflektor elektromagnetischer Wellen für Antenne und Verfahren zu seiner Herstellung - Google Patents

Reflektor elektromagnetischer Wellen für Antenne und Verfahren zu seiner Herstellung Download PDF

Info

Publication number
EP0375542B1
EP0375542B1 EP89403561A EP89403561A EP0375542B1 EP 0375542 B1 EP0375542 B1 EP 0375542B1 EP 89403561 A EP89403561 A EP 89403561A EP 89403561 A EP89403561 A EP 89403561A EP 0375542 B1 EP0375542 B1 EP 0375542B1
Authority
EP
European Patent Office
Prior art keywords
reflector
support
fabric
face
rear face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89403561A
Other languages
English (en)
French (fr)
Other versions
EP0375542A1 (de
Inventor
Jean-Paul Rigollet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Group SAS
Original Assignee
Airbus Group SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Group SAS filed Critical Airbus Group SAS
Publication of EP0375542A1 publication Critical patent/EP0375542A1/de
Application granted granted Critical
Publication of EP0375542B1 publication Critical patent/EP0375542B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/141Apparatus or processes specially adapted for manufacturing reflecting surfaces
    • H01Q15/142Apparatus or processes specially adapted for manufacturing reflecting surfaces using insulating material for supporting the reflecting surface
    • H01Q15/144Apparatus or processes specially adapted for manufacturing reflecting surfaces using insulating material for supporting the reflecting surface with a honeycomb, cellular or foamed sandwich structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49016Antenna or wave energy "plumbing" making

Definitions

  • the subject of the invention is a reflector of electromagnetic waves with a convex surface and its manufacturing process.
  • This reflector more specifically constitutes the secondary reflector of a radio antenna with a configuration of the "Cassegrain" type, intended to work in a wavelength range up to 20 GHz.
  • the reflector of the invention is more particularly intended to constitute the secondary reflector of an antenna of the "Cassegrain" type, it can also be used as a reflector in a conventional monoreflector antenna or as a main reflector in a bireflector antenna.
  • a conventional configuration antenna is made up of a radiofrequency source and a parabolic reflector, the concave face of which generally constitutes the active face.
  • the source is placed at the focus of the reflector and it is intended to emit or receive electromagnetic radiation that the reflector focuses.
  • a secondary reflector antenna having a so-called “Cassegrain” configuration in order to limit the size of the antenna for the same focal distance (generally from 1 to 3 m ).
  • a “Cassegrain” type antenna is shown diagrammatically.
  • This antenna essentially comprises a main reflector or mirror 2 which is a paraboloid of focal point F1, a secondary reflector or mirror 4 whose surface is of the hyperboloid type of focal point F2 and a primary source 6 placed at the focal point F2.
  • the source 6 illuminates the secondary reflector 4 which reflects the radiation 7 on the main reflector 2, the latter ensuring the directivity of the emission of electromagnetic radiation.
  • reception the operation takes place in the opposite direction: reception of the electromagnetic waves by the main mirror 2 which reflects them towards the secondary mirror 4 where they are again reflected towards the source 6.
  • FIG. 1 The configuration shown in FIG. 1 is of the "Offset” or “offset” type.
  • the operation of a "centered" type antenna is quite similar.
  • the active face of the antenna reflectors that is to say the reflecting faces 4a and 2a respectively of the main 4 and secondary 2 mirrors, are covered with a white paint generally based on silicone.
  • the purpose of this paint is to protect the reflectors mounted on the satellites from cyclic thermal variations caused by the alternating passages of shadow zones and solar illumination zones.
  • This thermal protection makes it possible to minimize the thermoelastic deformations resulting from the reflector, by maintaining the active faces 4a and 2a in a range of profiles which retains the desired radioelectric performance of the antenna.
  • the paint layer causes a phase shift between the components of the vertical and horizontal electric field.
  • This phase shift destroys the purity of the circular polarization and the reflected radiation then has an elliptical polarization corresponding to a loss of energy.
  • This phenomenon is all the more important as the angle of incidence i (FIG. 1) made by the radiation relative to the normal to the active surface, is high.
  • the antenna reflectors must be as light as possible in order to facilitate the putting into orbit of the satellite equipped with these reflectors.
  • the antenna reflector with a convex active face has been designed very recently, shown diagrammatically in FIG. 2.
  • This antenna reflector 4 comprises a rigid support 10 whose active face 10a is completely covered with the layer of thermal insulation paint 12.
  • This insulation layer 12 is itself covered with a metallized coating 14.
  • This coating 14 is in particular a polyimide film such as Kapton R , 25 micrometers thick, covered with a layer of aluminum of 30 to 40 nm.
  • This coating 14 is relatively light and ensures the reflection of the electromagnetic waves 7, as is clear from FIG. 2, and thus prevents the electromagnetic radiation from passing through the layer of paint 12 and therefore its modification of polarization.
  • the rigid support 10 is formed of a rigid honeycomb structure 16 sandwiched between two carbon coatings 18 and 20.
  • the reflector of FIG. 2 makes it possible to remedy the preceding drawbacks.
  • a coating 14 in aluminized Kapton R has a certain number of drawbacks. Indeed, this type of material is difficult to manufacture since it must be formed with a precise mechanical tension in order to absorb the expansions of the support 10 in a temperature cycle typically from -160 ° C to + 100 ° C in the case of a satellite antenna placed in orbit, while ensuring good reflection of the waves.
  • this coating is not very deformable, which limits its use. In particular, this material cannot be used for reflectors with very high convexity.
  • the subject of the present invention is precisely an electromagnetic wave reflector constituting in particular the secondary reflector of a radio antenna with two reflectors, making it possible to remedy the drawbacks given above.
  • this reflector comprises a wave reflective material, solid usable whatever the convexity of the reflector, absorbing all thermal expansions of the reflector support while preventing the polarization of the electromagnetic radiation from being modified, when using a thermally insulating paint.
  • the reflector of the invention can be used in the space field, given its low weight.
  • the subject of the invention is therefore a convex reflector of an electromagnetic wave of wavelength ⁇ , comprising a curved rigid support, provided with a convex front face constituting the active face of the reflector and a rear face, a paint thermally insulating and dielectric coating the active face, a stretched electrically conductive knitted fabric capable of reflecting said wave and covering the insulating paint, the knitted fabrics of the knitted fabric having a diameter less than ⁇ / 8, and means for fixing the knitted fabric on the support.
  • the conductive knit, according to the invention easily adapts to non-developable shapes and high convexity, unlike the aluminized polyimide of the prior art.
  • thermal insulator such as a silicone-based paint
  • this knitted fabric completely covering the active face of the reflector, this knitted fabric, ensuring the reflection of the electromagnetic waves, prevents them from passing through the underlying paint layer and therefore their change of polarization.
  • the knitting can be made of any material which is good conductor of electricity and has a low coefficient of expansion.
  • This knit can be platinum, silver, titanium, gold, molybdenum, tungsten or a metal alloy.
  • molybdenum covered with a gold film is used; molybdenum is the metal with the best coefficient of expansion (5.10 ⁇ 6m / m ° C) and one of the lowest electrical resistivities (5.2.10 ⁇ 6 ⁇ .cm.
  • it has a low specific mass (9 g / cm3) which is very advantageous for a application in the space field: the gold film covering the molybdenum improves the metal contacts.
  • the honeycomb structure can be metallic, glass, Kevlar R or carbon. Furthermore, the coatings located on either side of the honeycomb can be made of carbon, Kevlar R or glass.
  • additional means of thermal insulation are provided on the whole of the rear face of the reflector.
  • These means may consist of a single layer of insulating paint or of a stack of metallized layers and of insulating layers.
  • a stack of metallized polyimide layers and fabric gauzes is used.
  • any means of attachment can be envisaged to make the conductive knit and the rigid support integral, preferably one or more adhesive tapes mounted integrally on the rear face, or on the edge of the support or on both at the same time are used.
  • an adhesive strip mounted integrally on the rear face of the reflector is used, consisting of a first part provided with pins or hooks and a second part intended to adhere to the first part, generally called felt part, the rim of the knitted fabric being inserted between these two parts.
  • the invention also relates to an antenna with a convex secondary reflector produced as described above.
  • This antenna is in particular a “Cassegrain” type antenna with a “centered” or “eccentric” configuration.
  • FIG. 3 schematically represents an overall view of the reflector according to the invention.
  • FIG. 4 represents an enlarged part of the reflector of the invention further showing the fixing knitting on the active side.
  • FIGS 7 and 8 schematically illustrate the mounting of the knitted fabric on the support of the reflector according to the invention.
  • the electromagnetic wave reflector of the invention comprises a rigid convex support 10, of elliptical contour, consisting of a honeycomb structure 16 of aluminum, sandwiched between a coating upper 18 and a lower carbon coating 20.
  • the support 10 has a total thickness of approximately 25 mm for an elliptical shaped reflector of 500 mm of major axis and 350 mm of minor axis.
  • the upper face 10a of the support constituting the active face of the reflector, is equipped with a layer of paint 12 based on silicone such as the paint PSG 120 FD manufactured by Astral.
  • This paint has the advantage of having thermo-optical thermal protection characteristics of the support 10 that are entirely satisfactory. Indeed, the solar absorbance (or absorption coefficient) of this paint is less than 0.2.
  • This layer of paint 12 completely covers the upper face 10a of the rigid structure; it has a thickness of about 0.1 mm, which corresponds at a weight of 260 g / m2.
  • a metallic knitted fabric 22 completely covers the insulating paint 12.
  • the stitches of this knitted fabric are a function of the frequency of the radioelectric radiation to be reflected.
  • the size or "diameter" of the stitches 23 (FIG. 5) must be ⁇ / 8. For example, one uses a mesh of 2 mm in diameter for a radio frequency ⁇ 2 GHz and a mesh of 1 mm for a radio frequency ⁇ 15 GHz.
  • This knitting is in particular made up of 25 micrometer thick son of golden molybdenum and is sold by the company Brochier (France).
  • this knitted fabric 22 ensures the reflection of the electromagnetic waves 7 coming in particular from a radiofrequency source 6.
  • the reflection of the waves on the knitted fabric 22 does not in any way modify the properties (and in particular the polarization) of the received wave.
  • the knitting 22 is fixed to the support 10 in particular by an adhesive strip 24 of the Velcro R strip type, located on the rear face 20a of the reflector and at its periphery.
  • the knitted fabric 22 must have dimensions greater than those of the surface 10a of the reflector so as to be folded down under the rear face 20a of the reflector.
  • a Velcro strip R consists in a known manner of a part 26 fitted with pins or hooks 28 and a felt part 30 intended to adhere to the pins of part 26, maintaining the knitted fabric 22 is ensured by placing the end of the latter between the two parts 26 and 30; the pins 28 ensuring the fixing of the felt part 30 pass through the knitted fabric 22.
  • the strip 24 velcro R is located in particular 10 mm from the periphery of the support 10 of the reflector.
  • the Velcro strip R used is in the form of a continuous rectilinear strip, it is necessary to cut it regularly according to the radius of curvature of the reflector (every 30 to 60 mm approximately) in order to align it as precisely as possible with respect to the periphery of the reflector.
  • thermal insulation 35 can be provided over the entire rear face 20a of the reflector, as shown in FIGS. 3, 5 and 6.
  • This thermal super-insulation consists in particular of a stack of layers aluminized or gilded polyimide and gauze of glass or nylon fabric. This insulation is extremely light. Its precise structure and its manufacture are well known to those skilled in the art. the polyimide used is in particular Kapton R.
  • strips of adhesive polyimide 34 for example made of adhesive Kapton R , maintain the thermal insulation 35.
  • These tongues are spaced 20 mm apart, for example, and have a width of 10 mm. They are glued to the knitted fabric 22 and the thermal superinsulation so as to cover the edge 33 of the reflector and the periphery of the rear face 20a.
  • the Kapton R used does not need to be stretched; the requirements of the Kapton R in the invention are not at all the same as those of the prior art since it is in no way used for the reflection of electromagnetic waves, this function being provided by knitting.
  • an adhesive banding 36 can be placed on the edge of the reflector so as to surround the entire reflector (FIG. 6).
  • This strapping is an adhesive polyimide and in particular Kapton R adhesive.
  • the knitting 22 is mounted on the support 10 after gluing the part 26 of the Velcro R , fitted with its pins, to the periphery of the lower face 20a of the support as well as the adhesive Kapton R 32 on the edge of the support.
  • the reflector is then centered on the movable board 37 of a tensioning table 38 by means of a cylindrical support 39. This positioning is carried out so that the surface tangent to the surface 10a of the reflector passes over tensioning rollers 40.
  • the knitted fabric 22 After placing the knitted fabric 22 on the painted active face 10a of the reflector, the latter is stretched by hanging masses 42 of approximately 40 g distributed over the entire periphery of the reflector (FIG. 8) every 40 mm approximately in order to obtain in the chain and width direction, noted x and y respectively, a tension of 10 Newton per meter.
  • needles 44 are arranged at the periphery of the reflector 10. As shown in FIG. 4, these needles are threaded between the edge 33 of the support 10 and the adhesive Kapton R 32. These needles only pass through knitting 22. They are arranged at a pitch of approximately 4 mm.
  • overcasting 46 of the knitting is carried out at a distance e from the periphery of the support 10 and therefore of the needles 44, which is equal to the thickness of the support 10 (in particular 25 mm).
  • the tensioning masses are then released, the needles 44 ensuring the maintenance of the knitting on the support 10 and the overcasting 46 allowing the tension of the knitting 22 to be recovered when the knitting is fixed on the Velcro R.
  • the knitting 22 is then folded down on the edge 33 of the reflector (in other words on the adhesive Kapton R 32) and then on the periphery of the lower face 20a of the reflector; the non-overcast portion of the knitted fabric is then hung on the pins 28 of the portion 26 of the Velcro strip R. Then, we apply the felt part 30 of Velcro R to part 26.
  • the assembly obtained can no longer be dismantled, the knitting being held permanently by the Velcro R band thanks to the pins 28.
  • the entire knitting is then cut flush with the Velcro R strip ( Figure 4) in order to avoid any overshooting of the knitting of the Velcro R strip.
  • the retaining needles 44 can then be removed.
  • the superinsulation 35 is then fixed on the rear face of the reflector. The reflector is then finished.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)

Claims (11)

  1. Konvexer Reflektor für eine elektromagnetische Welle der Wellenlänge λ, umfassend einen gekrümmten starren Träger (10), versehen mit einer konvexen Vorderseite (10a), die die aktive Seite des Reflektors bildet, und mit einer Rückseite (20a), wobei ein thermisch und dielektrisch isolierender Anstrich (12) die aktive Seite bedeckt,
       wobei der Reflektor gekennzeichnet ist durch ein gespanntes, elektrisch leitendes Gewirke (22), das geeignet ist, genannte Welle zu reflektieren, und das den isolierenden Anstrich (12) bedeckt, wobei die Maschen (23) des Gewirkes einen Durchmesser unter λ/8 haben, und durch Einrichtungen zur Befestigung (24) des Gewirkes auf dem Träger.
  2. Reflektor nach Anspruch 1, dadurch gekennzeichnet, daß das Gewirke (22) aus mit Gold überzogenem Molybdän besteht.
  3. Reflektor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Träger (10) aus einer Bienenwabenstruktur (16) besteht, die sandwichartig zwischen einem ersten Überzug (18), der die Vorderseite (10a) bildet, und einem zweiten Überzug (20), der die Rückseite (20a) bildet, eingefaßt ist.
  4. Reflektor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zusätzliche Einrichtungen zur thermischen Isolation (35) auf der Rückseite (20a) des Trägers (10) vorgesehen sind.
  5. Reflektor nach Anspruch 4, dadurch gekennzeichnet, daß die zusätzlichen Einrichtungen (35) zur Isolation aus einer Schichtung von metallisierten Schichten und isolierenden Schichten bestehen.
  6. Reflektor nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die zusätzlichen Einrichtungen (35) zur Isolation aus einer Schichtung von metallisierten Polyimidschichten und Gewebeflor bestehen.
  7. Reflektor nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Befestigungseinrichtungen (24) ein fest auf der Rückseite (20a) angebrachtes Haftband umfassen, das einen ersten, mit kleinen Spitzen (28) versehenen Teil (26) und einen zweiten Teil (30) umfaßt, der dazu bestimmt ist, am ersten Teil zu haften, wobei der Rand (22a) des Gewirkes zwischen den ersten und den zweiten Teil eingesetzt wird.
  8. Reflektor nach Anspruch 7, dadurch gekennzeichnet, daß haftende Befestigungseinrichtungen (34) vorgesehen sind, um das Halten der zusätzlichen Einrichtungen (33) zur thermischen Isolation auf dem Träger (10) sicherzustellen.
  9. Antenne mit konvexem Sekundärreflektor, dadurch gekennzeichnet, daß der Reflektor einem der Ansprüche 1 bis 8 entspricht.
  10. Verfahren zur Herstellung eines Reflektors für elektromagnetische Wellen, der eine Rückseite (20a) und eine aktive Vorderseite (10a) besitzt, wobei die aktive Seite mit einem thermisch isolierenden Anstrich überzogen ist, entsprechend einem der Ansprüche 1 bis 8, wobei das Verfahren gekennzeichnet ist durch
    - Montage der Befestigungseinrichtungen (24) für ein elektrisch leitendes Gewirke (22), das geeignet ist, die Wellen zu reflektieren, auf einem Träger (10) auf der Rückseite (20a),
    - Legen eines Stückes Gewirke (22) von größerer Ausdehnung als die aktive Seite auf die aktive, angestrichene Seite (10a),
    - Spannen des genannten Gewirkes (22) auf die gewünschte Spannung,
    - Einsetzen von Nadeln (44) in das gespannte Gewirke (22) am Rande des Trägers (10),
    - Umstechen (46) des gespannten Gewirkes in einer bestimmten Entfernung von den Nadeln (44) und außerhalb des Trägers (10),
    - Umschlagen des nicht umgestochenen Teils des Gewirkes auf die Rückseite (20a) des Trägers,
    - Befestigen des nicht umgestochenen Teils auf der Rückseite (20a) mit Hilfe genannter Befestigungseinrichtungen (24),
    - Entfernen der Nadeln (44).
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß die Entfernung (e) zwischen der Umstechung (46) und den Nadeln (44) gleich der Dicke des angestrichenen Trägers (10) ist.
EP89403561A 1988-12-21 1989-12-19 Reflektor elektromagnetischer Wellen für Antenne und Verfahren zu seiner Herstellung Expired - Lifetime EP0375542B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8816916 1988-12-21
FR8816916A FR2640822B1 (fr) 1988-12-21 1988-12-21 Reflecteur d'ondes electromagnetiques pour antenne et son procede de fabrication

Publications (2)

Publication Number Publication Date
EP0375542A1 EP0375542A1 (de) 1990-06-27
EP0375542B1 true EP0375542B1 (de) 1994-03-02

Family

ID=9373240

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89403561A Expired - Lifetime EP0375542B1 (de) 1988-12-21 1989-12-19 Reflektor elektromagnetischer Wellen für Antenne und Verfahren zu seiner Herstellung

Country Status (6)

Country Link
US (1) US5017940A (de)
EP (1) EP0375542B1 (de)
CA (1) CA2006192A1 (de)
DE (1) DE68913478T2 (de)
ES (1) ES2050836T3 (de)
FR (1) FR2640822B1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5273815A (en) * 1991-08-27 1993-12-28 Space Systems/Loral, Inc. Thermal control and electrostatic discharge laminate
EP0554486B1 (de) * 1992-02-05 1998-07-22 Texas Instruments Deutschland Gmbh Verfahren zur Herstellung einer flexibelen HF-Antenne
DE19713735C1 (de) * 1997-04-03 1998-08-20 Daimler Benz Aerospace Ag Verfahren zur Herstellung von polarisationsselektiven Reflektoren
US7805065B2 (en) * 2004-02-05 2010-09-28 Worldbest Corporation Radiator apparatus
US20060270301A1 (en) * 2005-05-25 2006-11-30 Northrop Grumman Corporation Reflective surface for deployable reflector

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2742387A (en) * 1953-09-28 1956-04-17 Lavoie Lab Inc Reflector for electromagnetic radiations and method of making same
US2972743A (en) * 1957-06-19 1961-02-21 Westinghouse Electric Corp Combined infrared-radar antenna
US3483614A (en) * 1962-12-14 1969-12-16 Hexcel Products Inc Method for making dimpled honeycomb sandwich
US3716869A (en) * 1970-12-02 1973-02-13 Nasa Millimeter wave antenna system
US3694058A (en) * 1971-10-01 1972-09-26 Wesley H Vangraafeiland Modified triplets with reduced secondary spectrum
US4479131A (en) * 1980-09-25 1984-10-23 Hughes Aircraft Company Thermal protective shield for antenna reflectors
JPS59211303A (ja) * 1983-05-16 1984-11-30 Maspro Denkoh Corp 高周波の通信信号用反射器
US4710777A (en) * 1985-01-24 1987-12-01 Kaultronics, Inc. Dish antenna structure
FR2598339B1 (fr) * 1986-05-06 1990-12-14 Europ Agence Spatiale Antennes a reflecteurs paraboliques et leur procede d'obtention
US4812854A (en) * 1987-05-05 1989-03-14 Harris Corp. Mesh-configured rf antenna formed of knit graphite fibers

Also Published As

Publication number Publication date
US5017940A (en) 1991-05-21
CA2006192A1 (en) 1990-06-21
FR2640822B1 (fr) 1991-03-29
FR2640822A1 (fr) 1990-06-22
DE68913478T2 (de) 1994-09-15
EP0375542A1 (de) 1990-06-27
ES2050836T3 (es) 1994-06-01
DE68913478D1 (de) 1994-04-07

Similar Documents

Publication Publication Date Title
EP0044241B1 (de) Faltbarer Antennenreflektor
FR2550663A1 (fr) Structure de reflecteur de rayonnement electromagnetique
FR2651608A1 (fr) Antenne plane.
EP0519775A1 (de) In Betriebszeit rekonfigurierbarer Antennenreflektor
FR2709878A1 (fr) Antenne fil-plaque monopolaire.
WO2010061122A1 (fr) Dispositif de couplage et de fixation d'un element rayonnant d'antenne et procede d'assemblage d'une antenne
FR2834584A1 (fr) Dispositif concentrateur d'energie solaire pour vehicule spatial et panneau generateur solaire
FR2894391A1 (fr) Antenne de radiocommunication munie d'un radome et procede d'assemblage d'une telle antenne de radiocommunication munie d'un radome
CA2640481C (fr) Antenne a polarisation circulaire ou lineaire
FR2558991A1 (fr) Antenne a reflecteur pour le fonctionnement dans plusieurs gammes de frequence
EP0375542B1 (de) Reflektor elektromagnetischer Wellen für Antenne und Verfahren zu seiner Herstellung
EP1422763A1 (de) Solarzelle für Solargenerator-Paneel, Solargenerator-Paneel und Raumfahrzeug
FR2939970A1 (fr) Radome pour antenne parabolique large bande.
EP1408557B1 (de) Solargenerator-Paneel und Raumfahrzeug mit diesem Paneel
EP2451007B1 (de) Vorrichtung zum Aussenden von Funkwellen, Antenne und Raumschiff
FR3087425A1 (fr) Dispositif deployable a metre-rubans
EP0160594B1 (de) Piezoelektrischer Resonator
CA1314972C (fr) Antenne a reflecteur de revolution
FR2664750A1 (fr) Bireflecteur a grilles.
FR2619984A1 (fr) Procede de realisation de circuits imprimes presentant des surfaces complexes a priori non developpables
FR2472853A1 (fr) Antenne a faisceau orientable et satellite comportant une telle antenne
FR2724269A1 (fr) Porte-substrat electrostatique
EP0492022B1 (de) Breitbandige Funkantenne mit kleinem Stehwellenverhältnis
WO2013017602A1 (fr) Miroir parabolique
FR2765190A1 (fr) Satellite a rejet thermique ameliore

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT SE

17P Request for examination filed

Effective date: 19901206

17Q First examination report despatched

Effective date: 19930517

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT SE

REF Corresponds to:

Ref document number: 68913478

Country of ref document: DE

Date of ref document: 19940407

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940311

ITF It: translation for a ep patent filed

Owner name: PROPRIA PROT. PROPRIETA' IND.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2050836

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EAL Se: european patent in force in sweden

Ref document number: 89403561.7

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19951129

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19951130

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951211

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951228

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961220

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19961220

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970902

EUG Se: european patent has lapsed

Ref document number: 89403561.7

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051219