EP0375494A1 - Procédé et dispositif de régulation automatique d'une chaudière à combustible solide à chargement discontinu et tirage forcé, en particulier d'une chaudière à bois - Google Patents

Procédé et dispositif de régulation automatique d'une chaudière à combustible solide à chargement discontinu et tirage forcé, en particulier d'une chaudière à bois Download PDF

Info

Publication number
EP0375494A1
EP0375494A1 EP89403377A EP89403377A EP0375494A1 EP 0375494 A1 EP0375494 A1 EP 0375494A1 EP 89403377 A EP89403377 A EP 89403377A EP 89403377 A EP89403377 A EP 89403377A EP 0375494 A1 EP0375494 A1 EP 0375494A1
Authority
EP
European Patent Office
Prior art keywords
temperature
speed
boiler
fan
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89403377A
Other languages
German (de)
English (en)
Other versions
EP0375494B1 (fr
Inventor
René Deruy
Bernard Lambin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LES FONDERIES FRANCO-BELGES
FONDERIES FRANCO BELGES
Original Assignee
LES FONDERIES FRANCO-BELGES
FONDERIES FRANCO BELGES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LES FONDERIES FRANCO-BELGES, FONDERIES FRANCO BELGES filed Critical LES FONDERIES FRANCO-BELGES
Priority to AT89403377T priority Critical patent/ATE103383T1/de
Publication of EP0375494A1 publication Critical patent/EP0375494A1/fr
Application granted granted Critical
Publication of EP0375494B1 publication Critical patent/EP0375494B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B50/00Combustion apparatus in which the fuel is fed into or through the combustion zone by gravity, e.g. from a fuel storage situated above the combustion zone
    • F23B50/02Combustion apparatus in which the fuel is fed into or through the combustion zone by gravity, e.g. from a fuel storage situated above the combustion zone the fuel forming a column, stack or thick layer with the combustion zone at its bottom
    • F23B50/06Combustion apparatus in which the fuel is fed into or through the combustion zone by gravity, e.g. from a fuel storage situated above the combustion zone the fuel forming a column, stack or thick layer with the combustion zone at its bottom the flue gases being removed downwards through one or more openings in the fuel-supporting surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/10Measuring temperature stack temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/18Measuring temperature feedwater temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/02Ventilators in stacks
    • F23N2233/04Ventilators in stacks with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2239/00Fuels
    • F23N2239/02Solid fuels

Definitions

  • the invention relates to solid fuel boilers with batch loading of fuel and forced draft by electric fan, and more particularly to boilers of this type operating on wood and commonly called "Turbo wood”.
  • These boilers are distinguished from natural draft boilers in that they are equipped with an electric fan which, most often, blows the air necessary for combustion, or less often sucks the combustion fumes.
  • This type of boiler whose appearance on the market is relatively recent, generally has the advantage of appreciably improving the combustion efficiency and allowing the user to operate the boiler at a greater power range.
  • Numerous comparative trials conducted in particularly by the French Agency for Energy Management (AFME) have confirmed the indisputable advantages brought by the electric fan.
  • a room thermostat is used to control the temperature prevailing in the room to be heated by the more or less significant supply of fuel , the combustion air flow being then adapted to the fuel debris, so that the power of the boiler constantly follows the needs of the use.
  • the power of the boiler is determined either by the temperature of the fumes or by the temperature of the body water. heats up, so that one or the other of the two temperature sensors orders the shutdown or the start of the fan in all nothing, or according to a discrete number of regimes, and this independently of the mass of the fuel in the presence.
  • the instantaneous power of the boiler being dependent on the more or less harmonious mixture between the air which passes and the fuel present in the boiler, the All or nothing fan operation results in variations in air flow, which in turn results in changes in boiler output.
  • the object of the invention is to eliminate the above drawbacks, that is to say to control the flame power of a solid fuel boiler, and more particularly of a wood boiler, by eliminating the transient regimes and by treating in a particular way the cases of abnormal functioning which can occur and which affect the quality of combustion of this type of boiler, in order to conform the boiler to the most severe standards while ensuring a correct operation and longevity, compatible with the expectations of users concerned with a level of thermal comfort regular and constant.
  • the invention resides above all in a method of automatic regulation of a solid fuel boiler, with batch loading of fuel and forced draft by electric fan, distinguished mainly by the fact: - the fan is continuously variable speed, - that the regulation is based on the simultaneous measurement of the temperature of the water in the boiler and the temperature of the fumes leaving it, and - that the regulation includes, during a normal operating phase, the determination of a theoretical flue gas temperature substantially proportional to the difference between a set temperature and the measured water temperature, the determination of a theoretical fan speed substantially proportional to the difference between the theoretical smoke temperature and the measured smoke temperature, finally the gradual adaptation of the speed imposed on the fan by incrementing or decreasing the value imposed on this speed according to the sign of the deviation between the theoretical regime calculated and the current regime during successive cycles defined by a time delay.
  • the two proportionality coefficients can be variable over time or according to parameters measured to take account of a differential or integral action of the regulation.
  • the method according to the invention comprises several operating phases which are linked automatically, including - an ignition phase or fuel loading, initialized automatically when power is applied and after each closing of the door, the opening state of which is detected by a contact, this phase comprising a very gradual incrementation of the fan speed at from a defined initial value and during successive cycles defined by a time delay, these cycles causing the transition to said normal operating phase, either when the water temperature exceeds a defined value, or when the speed exceeds a value final defined and after another delay, - Said normal operating phase, which provides on the one hand, when the flue gas temperature reaches a very low value, to stop the fan completely, on the other hand, when the difference between the calculated theoretical speed and the current speed is positive and leads to an increase in the speed, to compare the temperature of the fumes with that stored in the previous cycle, and to cause automatic passage to an abnormal operating phase if this temperature is decreasing, and - said abnormal operating phase providing for a greater decrement of the speed and a longer time delay before returning to the
  • the boiler according to the invention comprises the necessary elements, in particular the temperature sensors for smoke and water, as well as the door closing detection contact, and also a microprocessor receiving the various data and actuating the fan control with continuous variation of the speed, this microprocessor being programmed for the implementation of the method according to the invention.
  • the boiler 1, shown in FIG. 1, conventionally comprises an inverted hearth 2 disposed inside the heating body 3 comprising a connection 4 for starting hot water and a water return 5, this hearth 2 being supplied with fuel from a loading door 6 located in the upper part and on the front of the appliance, while at the rear there is at 7 the flue evacuation pipe by forced draft under the effect of a fan 8 blowing air through an upper distribution plate 9.
  • the boiler includes both a probe 10 for measuring the temperature of the flue gases in the flue 7, a probe 11 for measuring the temperature of the water in the heating body, a contact 12 for detection of the closed state of the door 6, as well as an electric motor 13 with variable speed for driving the fan 8, this motor being controlled for example by chopped current modulated in power from a housing of control 14 placed on or near the boiler and applying the method according to the invention.
  • the boiler can advantageously include a bulb 15 controlling a dilation thermometer 16 placed on the housing 14 available to the user, a safety probe 17, a button 18 for starting and stopping, a button 19 for resetting the safety and a button 20 for setting the temperature of the water, all these elements being available to the user.
  • the box can also include various other organs at the sole disposal of the installer, for example a button 21 for adjusting the minimum smoke temperature, an inverter 22, manual / automatic, making it possible to switch to manual during an intervention. finally, on the electronic card, a multi-pin connection plug 23 to which a test box or any other control and data entry device can be connected.
  • the door contact 12 the smoke temperature probe 10, the water temperature probe 11, the safety probe 17 which controls the safety block 24, which receives at 25 the mains supply and in turn ensures the general supply 26 when it has been reset by the reset button 19, this box triggering on the contrary to cut the supply under the effect of the probe 17 when the latter ci detects the appearance of an abnormal temperature, finally the automatic / manual reverser 22.
  • the on-off button 18 and the temperature setpoint button 20 for the water are also accessible by the user. Also, inside the housing, that is to say not accessible to the user, there is the button 21 for setting the minimum temperature of the fumes.
  • control unit 14 comprises a microprocessor 28 which receives the various information via the appropriate interfaces, in particular analog / digital converters 29, 30, 31 and 32, for convert the analog values from the measurement interfaces 33 and 34 of the smoke and water temperatures to digital and the set values from 21 and 20.
  • 35 represents the time base input from the network for synchronization chopper 27, and 36 the self-test command.
  • the processor 28 is programmed for the implementation of the method according to the invention, that is to say essentially the determination of the speed Q to be imposed on the fan as a function of the various data, essentially the temperature of the fumes TF, the TE water temperature, minimum smoke temperature setpoint Cmf and CE water temperature setpoint, as well as other constant values defined by the manufacturer or set by the installer.
  • the fan speed is controlled from a numerical value Q expressing this speed in arbitrary unit, so that the value 100 corresponds to the maximum speed.
  • the program P1 in Figure 3 corresponds to ignition and fuel loading. It is initialized at the time of power-up after reset, or after loading with fuel after closing the loading door, the opening state of which is detected by contact 12. During the course of this operating phase, the TE water temperature is constantly monitored, and as soon as it exceeds 90 ° C, the fan is stopped and we go to the main program P2 of figure 4.
  • the program is divided into three successive periods: - operation at reduced speed or air flow to a low initial value defined Q1 lasting for example 3 minutes, - the progressive increase of the air flow to a final defined value Q2 corresponding to the maximum allowed for ignition, and this by successive increments of the value Q during cycles defined by a time delay of 20 seconds in the example chosen, and - operation at this constant air flow Q2 lasting for example 5 minutes, this time, as well as that previously practiced by 3 minutes, possibly being shortened as indicated above if the water temperature TE comes to exceed 90 ° C. .
  • the regulation according to the invention makes it possible to light the boiler in forced draft, and not in natural draft, which is particularly advantageous.
  • the ignition operation is done thanks to an ignition start valve that the invention saves by very gradually metering the combustion air as and as the actual evolution from the ignition to the normal operating phase P2, which in any event leads to.
  • phase P2 of normal operation corresponding to FIG. 4, the water temperature TE and the temperature of the fumes TF are continuously read.
  • the objective sought is to avoid all the transitional periods mentioned above by seeking the most regular operation possible. For this, the power of the flame is continuously adapted to the need programmed by the user.
  • the exchange surface between the flame and the boiler water being constant, the temperature of the fumes TF is taken as an indicator of the power of the flame at an instant. Furthermore, it is considered that the difference between the actual temperature of the water TE and the set temperature of the water CE set by the user expresses the calorie requirement at the same time to satisfy the user.
  • TTF K1 (CE - TE) in which K1 is a coefficient determined experimentally and which is a function of the geometry of the heating body of the boiler and of its exchange characteristics.
  • this coefficient K1 can in fact be variable over time or according to measured parameters to take account of a differential or integral action of the regulation.
  • the fixed program TTF Cmf.
  • TTF the maximum CMF smoke setpoint programmed by the manufacturer in the microprocessor
  • the calculated QT theoretical speed is not suddenly applied to the fan, but on the one hand a minimum speed Qmin and a maximum speed Qmax are fixed, and if QT is less than Qmin, it is fixed at this value, while if QT is greater than Qmax, we set it to the latter value, and on the other hand, we modify the variable Q defining the flow rate by progressive incrementation during successive cycles, with a new delay of 20 seconds and a return to the top of phase P2 to restart the measurements and calculations.
  • This phase P3 of abnormal operation where the temperature of the fumes decreases when the air flow increases, generally corresponds to the existence of an excess of air, due, either to the formation of a vault, consequently by example of a bad load which does not allow the wood to descend correctly on the hearth, that is to say a lack of fuel.
  • a variable which is the number of trials, which is constantly fixed at a determined value, for example 3 in the example chosen, each time the left branch of the organization chart of the Figure 4, that is to say for QT greater than Q, but for normal operation, that is to say when the temperature of the fumes is not decreasing.
  • the regulation can signal operating anomalies and give a complete diagnosis of its operating state, either on the control panel 14 of the boiler, or through an independent test box connected to the socket 23 , which considerably simplifies maintenance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)
  • Solid-Fuel Combustion (AREA)

Abstract

Procédé de régulation automatique d'une chaudière (1) à combustible solide, à chargement discontinu en combustible et tirage forcé par ventilateur électrique (8,9), caractérisé par le fait que l'on utilise un ventilateur (8,13) à régime variable en continu, régulé à partir de la mesure simultanée de la température de l'eau de la chaudière et de la température des fumées, à l'aide d'une régulation appropriée.

Description

  • L'invention concerne les chaudières à combustible solide à chargement discontinu en combustible et tirage forcé par ventilateur électrique, et plus particulièrement aux chaudières de ce type fonctionnant au bois et communément appelées "Turbo bois".
  • Ces chaudières se distinguent des chaudières à tirage naturel en ce qu'elles sont équipées d'un ventilateur électrique qui, le plus souvent, souffle l'air nécessaire à la combustion, ou moins souvent aspire les fumées de combustion.
  • Ce type de chaudière, dont l'apparition sur le marché est relativement récente, présente en général l'avantage d'améliorer sensiblement le rendement de combustion et de permettre à l'utilisateur de faire fonctionner la chaudière suivant une plage de puissances plus grande. De nombreux essais comparatifs menés en particulier par l'Agence Française de la Maîtrise de l'Energie (AFME) ont confirmé les avantages incontestables apportés par le ventilateur électrique.
  • Malheureusement, on a pu constater aussi de nombreux inconvénients de ces chaudières, liés le plus souvent à la commande de ces mêmes ventilateurs qui sont entraînés par un moteur électrique à une seule vitesse, fonctionnant par conséquent en tout ou rien, ou plus rarement, à deux vitesses, en suivant soit uniquement une consigne de température eau donnée par un thermostat monté dans le circuit eau du chauffage central, soit pour d'autres types uniquement une consigne de température fumées donnée par un thermostat monté sur le circuit des fumées.
  • Dans le cas des chaudières à combustible fluide, ou à combustible granuleux ou pulvérulent à alimentation continue, on se sert d'un thermostat d'ambiance pour maîtriser la température qui règne dans le local à chauffer par l'apport plus ou moins important de combustible, le débit d'air comburant étant alors adapté au débris du combustible, de telle sorte que la puissance de la chaudière suit constamment les besoins de l'usage. Au contraire, pour les chaudières à combustible solide, telles que les chaudières à bois, dont le chargement est nécessairement discontinu, la puissance de la chaudière est déterminée, soit par la température des fumées, soit par la température de l'eau du corps de chauffe, de telle sorte que l'un ou l'autre des deux capteurs de température ordonne l'arrêt ou la mise en marche du ventilateur en tout en rien, ou selon un nombre discret de régimes, et ceci indépendamment de la masse du combustible en présence. Or, la puissance instantanée de la chaudière étant tributaire du mélange plus ou moins harmonieux entre l'air qui passe et le combustible présent dans la chaudière, les mises en marche du ventilateur en tout ou rien entraînent des variations du débit d'air, qui elles-mêmes entraînent des changements de puissance de la chaudière.
  • Il en résulte une grande instabilité de la température ambiante du local d'habitation et une mauvaise qualité de la combustion. Cela se traduit par une augmentation du taux d'oxyde de carbone dans des proportions tout à fait incompatibles avec les normes relatives à la pollution atmosphérique, ou par une combustion avec excès d'air. De plus, l'instabilité permanente de la combustion compromet la durée de la vie de la chaudière à une échéance plus ou moins rapprochée.
  • En effet, lors des périodes de refroidissement de la flamme dues ou fonctionnement avec excès d'air, on observe à l'intérieur du corps de chauffe la formation de goudrons qui proviennent de la condensation des composés issus de la combustion du bois et qui attaquent rapidement la tôle d'acier. Inversement, lorsqu'il y a manque d'air, on assiste à la formation de fumées et d'imbrûlés gazeux qui sont rejetés dans l'atmosphère ainsi qu'à la formation de molécules polyaromatiques dont on connaît tous les inconvénients.
  • Malgré toutes les précautions que prennent les installateurs pour tenter d'enrayer l'inconfort et l'instabilité de combustion, par exemple par recyclage de l'eau de retour, par suppression des entrées d'air parasites dans la chaudière et par installation d'un ballon tampon pour limiter les régimes ralentis, les litiges sont nombreux et reflètent parfaitement la difficulté actuelle de réguler convenablement une chaudière à combustible solide du type indiqué.
  • Le but de l'invention est d'éliminer les inconvénients précédents, c'est-à-dire de maîtriser la puissance de la flamme d'une chaudière à combustible solide, et plus particulièrement d'une chaudière à bois, en supprimant les régimes transitoires et en traitant d'une manière particulière les cas de fonctionnement anormaux qui peuvent se présenter et qui affectent la qualité de combustion de ce type de chaudière, afin de conformer la chaudière aux normes les plus sévères tout en lui assurant un fonctionnement et une longévité corrects, compatibles avec l'attente des utilisateurs soucieux d'un niveau de confort thermique régulier et constant.
  • L'invention réside avant tout en un procédé de régulation automatique d'une chaudière à combustible solide, à chargement discontinu en combustible et tirage forcé par ventilateur électrique, se distinguant principalement par le fait :
    - que le ventilateur est à régime variable en continu,
    - que la régulation est basée sur la mesure simultanée de la température de l'eau de la chaudière et de la température des fumées sortant de celle-ci, et
    - que la régulation comporte, au cours d'une phase de fonctionnement normal, la détermination d'une température théorique des fumées sensiblement proportionnelle à l'écart entre une température de consigne et la température de l'eau mesurée, la détermination d'un régime théorique du ventilateur sensiblement proportionnel à l'écart entre la température théorique des fumées et la température des fumées mesurée, enfin l'adaptation progressive du régime imposé au ventilateur par incrémentation ou décrémentation de la valeur imposée à ce régime selon le signe de l'écart entre le régime théorique calculé et le régime actuel au cours de cycles successifs définis par une temporisation.
  • En fait, les deux coefficients de proportionnalité peuvent être variables dans le temps ou selon des paramètres mesurés pour tenir compte d'une action différentielle ou intégrale de la régulation.
  • Dans un mode de mise en oeuvre préférentiel, le procédé, selon l'invention, comporte plusieurs phases de fonctionnement s'enchaînant automatiquement, dont
    - une phase d'allumage ou chargement en combustible, initialisée automatiquement à la mise sous tension et après chaque fermeture de la porte dont l'état d'ouverture est détecté par un contact, cette phase comprenant une incrémentation très progressive du régime du ventilateur à partir d'une valeur initiale définie et au cours de cycles successifs définis par une temporisation, ces cycles provoquant le passage à ladite phase de fonctionnement normal, soit lorsque la température de l'eau dépasse une valeur définie, soit lorsque le régime dépasse une valeur finale définie et après une autre temporisation,
    - ladite phase de fonctionnement normal, laquelle prévoit d'une part, lorsque la température des fumées atteint une valeur très basse, d'arrêter complètement le ventilateur, d'autre part, lorsque l'écart entre le régime théorique calculé et le régime actuel est positif et conduit à une incrémentation du régime, de comparer la température des fumées avec celle mise en mémoire au cycle précédent, et de provoquer le passage automatique à une phase de fonctionnement anormal si cette température est en décroissance, et
    - ladite phase de fonctionnement anormal prévoyant une décrémentation plus importante du régime et une temporisation plus importante avant de repasser en phase de fonctionnement normal pour un nouvel essai, le nombre d'essais étant limité à une valeur définie.
  • Naturellement, la chaudière selon l'invention comprend les éléments nécessaires, notamment les sondes de température des fumées et de l'eau, ainsi que le contact de détection de fermeture de la porte, et également un microprocesseur recevant les diverses données et actionnant la commande du ventilateur à variation continue du régime, ce microprocesseur étant programmé pour la mise en oeuvre du procédé selon l'invention.
  • D'autres particularités de l'invention apparaîtront dans la description qui va suivre d'un mode de réalisation et de mise en oeuvre pris comme exemple et représenté sur le dessin annexé, sur lequel :
    • la figure 1 est un schéma d'ensemble de la chaudière;
    • la figure 2 représente un bloc diagramme de relation des divers éléments; et
    • les figures 3, 4 et 5 représentent les organigrammes des phases principales du procédé.
  • La chaudière 1, représentée sur la figure 1, comporte d'une manière usuelle un foyer inversé 2 disposé à l'intérieur du corps de chauffe 3 comportant un raccord 4 de départ d'eau chaude et un retour d'eau 5, ce foyer 2 étant alimenté en combustible à partir d'une porte de chargement 6 située en partie supérieure et sur le devant de l'appareil, tandis qu'à l'arrière se trouve en 7 le carneau d'évacuation des fumées par tirage forcé sous l'effet d'un ventilateur 8 soufflant l'air à travers une plaque de répartition supérieure 9.
  • Conformément à l'invention, la chaudière comporte à la fois une sonde 10 de mesure de la température des fumées dans le carneau 7, une sonde 11 de mesure de la température de l'eau dans le corps de chauffe, un contact 12 de détection de l'état de fermeture de la porte 6, ainsi qu'un moteur électrique 13 à vitesse variable pour l'entraînement du ventilateur 8, ce moteur étant commandé par exemple par du courant hâché modulé en puissance à partir d'un boîtier de commande 14 placé sur ou à proximité de la chaudière et appliquant le procédé selon l'invention.
  • En plus des éléments essentiels que sont la sonde 10 de température des fumées, la sonde 11 de température de l'eau et le contact 12 d'ouverture de la porte, la chaudière peut avantageusement comporter un bulbe 15 commandant un thermomètre à dilatation 16 placé sur le boîtier 14 à la disposition de l'usager, une sonde 17 de sécurité, un bouton 18 de mise en marche et d'arrêt, un bouton 19 de réarmement de la sécurité et un bouton 20 de consigne de la température de l'eau, tous ces éléments étant à la disposition de l'usager.
  • Le boîtier peut en outre comporter divers autres organes à la seule disposition de l'installateur, par exemple un bouton 21 de réglage de la température minimale des fumées, un inverseur 22, manuel/­automatique, permettant de passer en manuel lors d'une intervention sur la carte électronique, enfin une fiche de raccordement multibroches 23 sur laquelle on peut raccorder une boîte de tests ou tout autre dispositif de contrôle et de saisie d'informations.
  • On retrouve sur le bloc diagramme de la figure 2, le contact de porte 12, la sonde 10 de température des fumées, la sonde 11 de température de l'eau, la sonde 17 de sécurité qui commande le bloc de sécurité 24, lequel reçoit en 25 l'alimentation secteur et assure à son tour l'alimentation générale 26 lorsqu'il a été réarmé par le bouton de réarmement 19, ce boîtier déclenchant au contraire pour couper l'alimentation sous l'effet de la sonde 17 lorsque celle-ci détecte l'apparition d'une température anormale, enfin l'inverseur 22 automatique/manuel.
  • Parmi les commandes accessibles par l'utilisateur, on trouve également le bouton marche-­arrêt 18 et le bouton 20 de consigne de température de l'eau. Egalement, à l'intérieur du boîtier, c'est-à-dire non accessible à l'utilisateur, on retrouve le bouton 21 de consigne de la température minimale des fumées.
  • On voit également en 27 le hâcheur de commande du moteur 13 du ventilateur 8.
  • Pour la mise en oeuvre du procédé selon l'invention, le boîtier de commande 14 comprend un microprocesseur 28 qui reçoit les diverses informations par l'intermédiaire des interfaces appropriées, en particulier des convertisseurs analogique/numérique 29, 30, 31 et 32, pour convertir en numérique les valeurs analogiques provenant des interfaces de mesure 33 et 34 des températures de fumées et de l'eau et les valeurs de consigne provenant de 21 et 20. 35 représente l'entrée de la base de temps provenant du réseau pour la synchronisation du hâcheur 27, et 36 la commande de l'autotest.
  • Naturellement, le processeur 28 est programmé pour la mise en oeuvre du procédé selon l'invention, c'est-à-dire essentiellement la détermination du régime Q à imposer au ventilateur en fonction des diverses données, essentiellement la température des fumées TF, la température de l'eau TE, la consigne de température minimale des fumées Cmf et la consigne de température de l'eau CE, ainsi que d'autres valeurs constantes définies par le constructeur ou réglées par l'installateur.
  • On suppose, dans ce qui suit, que le régime du ventilateur est commandé à partir d'une valeur numérique Q exprimant ce régime en unité arbitraire, de telle manière que la valeur 100 corresponde au régime maximum.
  • On va maintenant examiner le fonctionnement du dispositif complet en référence aux organigrammes des figures 3, 4 et 5.
  • Le programme P1 de la figure 3 correspond à l'allumage et au chargement en combustible. Il est initialisé au moment de la mise sous tension après réarmement, ou après un chargement en combustible après fermeture de la porte de chargement dont l'état d'ouverture est détecté par le contact 12. Durant le déroulement de cette phase de fonctionnement, la température de l'eau TE est constamment surveillée, et dès qu'elle dépasse 90°C, on arrête le ventilateur et on passe au programme principal P2 de la figure 4. Au contraire, tant que cette température reste inférieure à 90°C, le programme se décompose en trois périodes successives :
    - le fonctionnement à régime ou débit d'air réduit à une valeur initiale faible définie Q1 durant par exemple 3 minutes,
    - l'augmentation progressive du débit d'air jusqu'à une valeur finale dfinie Q2 correspondant au maximum permis pour l'allumage, et ceci par incrémentations successives de la valeur Q au cours de cycles définis par une temporisation de 20 secondes dans l'exemple choisi, et
    - le fonctionnement à ce débit d'air constant Q2 durant par exemple 5 minutes, ce temps, ainsi que celui pratiqué précédemment de 3 minutes, étant éventuellement raccourci comme indiqué plus haut si la température de l'eau TE vient à dépasser 90°C.
  • On voit ainsi que la régulation selon l'invention permet d'allumer la chaudière en tirage forcé, et non pas en tirage naturel, ce qui est particulièrement intéressant. On sait en effet que dans une chaudière à tirage forcé à combustion inversée, l'opération d'allumage se fait grâce à un clapet de démarrage d'allumage que l'invention permet d'économiser en dosant très progressivement l'air comburant au fur et à mesure de l'évolution effective de l'allumage vers la phase de fonctionnement normal P2 vers laquelle on aboutit en tout état de cause.
  • Après chaque chargement en combustible, on sait que l'apport de combustible a tendance à refroidir considérablement le magasin, ce qui a pour effet de dégrader la combustion par excès d'air si la régulation ne tient pas compte de ce nouvel état. On comprend donc l'intérêt que présente la régulation selon l'invention de doser l'air comburant de manière à obtenir une augmentation très progressive de la flamme jusqu'à la valeur désirée au cours du fonctionnement normal.
  • Durant la phase P2 de fonctionnement normal, correspondant à la figure 4, on effectue en permanence la lectrue de la température d'eau TE et de la température des fumées TF. L'objectif recherché est d'éviter toutes les périodes transitoires évoquées plus haut en recherchant le fonctionnement le plus régulier possible. Pour cela, on adapte en continu la puissance de la flamme au besoin programmé par l'usager.
  • La surface d'échange entre la flamme et l'eau de la chaudière étant constante, la température des fumées TF est prise comme indicateur de la puissance de la flamme à un instant. Par ailleurs, on considère que l'écart entre la température réelle de l'eau TE et la température de consigne de l'eau CE fixée par l'usager exprime le besoin en calories au même instant pour satisfaire l'usager.
  • Conformément à l'invention, on calcule une température théorique des fumées TTF par la relation suivante :
    TTF = K1 (CE - TE)
    dans laquelle K1 est un coefficient déterminé expérimentalement et qui est fonction de la géométrie du corps de chauffe de la chaudière et de ses caractéristiques d'échange.
  • Comme exposé plus haut, ce coefficient K1 peut en fait être variable dans le temps ou selon des paramètres mesurés pour tenir compte d'une action différentielle ou intégrale de la régulation.
  • Cependant, si la valeur calculée TTF est inférieure à la consigne minimale de fumées Cmf fixée par l'installateur, le programme fixe TTF = Cmf. De même, si TTF est supérieur à la consigne maxi de fumées CMF programmée par le constructeur dans le microprocesseur, le programme fixe TTF = CMF.
  • A partir de cette valeur de la température théorique des fumées TTF, on calcule le débit d'air théorique QT, c'est-à-dire le régime du ventilateur nécessaire à la combustion en fonction de la température réelle de fumées à partir de la relation suivant :
    QT = K2 (TTF - TF)
    dans laquelle K2 est un coefficient déterminé expérimentalement et qui peut lui aussi être fixe ou variable dans le temps pour tenir compte de l'importance de l'écart entre TTF et TF.
  • Cependant, on n'applique pas brutalement au ventilateur le régime théorique QT calculé, mais d'une part on fixe un régime minimum Qmin et un régime maximum Qmax, et si QT est inférieur à Qmin, on le fixe à cette valeur, tandis que si QT est supérieur à Qmax, on le fixe à cette dernière valeur, et d'autre part, on modifie la variable Q définissant le débit par incrémentation progressive au cours de cycles successifs, avec une nouvelle temporisation de 20 secondes et un retour en tête de la phase P2 pour recommencer les mesures et les calculs.
  • Il est important de remarquer que dans le milieu du déroulement de la phase P2, après avoir mesuré TF et avant de calculer QT, on teste la valeur TF, et si elle est inférieure à 40°, on produit l'arrêt total de la chaudière.
  • D'autre part, entre le test de comparaison entre QT et Q et la temporisation finale de 20 secondes, on a trois branches parallèles, l'une centrale directe correspondant à l'égalité des deux valeurs, l'autre à droite de la figure correspondant à QT inférieur à Q, et par conséquent à une décrémentation de Q, et la troisième à gauche, particulièrement intéressante, correspondant à QT supérieur à Q. Dans ce dernier cas, on incrémente Q comme il se doit, mais on compare la température des fumées TF à la température des fumées TFP mise en mémoire au cours du cycle précédent, et dans le cas où TF est inférieur à TFP, c'est-à-dire dans le cas où une augmentation du débit d'air conduit à une diminution de la température des fumées, on en conclut qu'on est en phase de fonctionnement anormal et on passe en phase P3 correspondant au diagramme de la figure 5.
  • Cette phase P3 de fonctionnement anormal, où la température des fumées baisse lorsque le débit d'air augmente, correspond en général à l'existence d'un excès d'air, dû, soit à la formation d'une voûte, par suite par exemple d'un mauvais chargement qui ne permet pas au bois de descendre correctement sur le foyer, soit encore à un manque de combustible.
  • Pour gérer cette nouvelle situation, on utilise une variable qui est le nombre d'essais, laquelle est constamment fixée à une valeur déterminée, par exemple 3 dans l'exemple choisi, à chaque passage par la branche de gauche de l'organigramme de la figure 4, c'est-à-dire pour QT supérieur à Q, mais pour le fonctionnement normal, c'est-à-dire lorsque la température des fumées n'est pas en décroissance. Lorsque cette anomalie arrive, on passe donc à la phase P3 avec la variable nombre d'essais chargée à 3. La phase P3 de la figure 5 commence donc avec une décrémentation de cette variable nombre d'essais suivie d'un test de comparaison à la valeur 0. Tant que le nombre d'essais n'a pas atteint la valeur 0, on passe par une temporisation de 20 secondes avant de recommencer la phase P2 pour un nouvel essai. Si, au cours de ces essais successifs, la voûte s'effondre, la chaudière reprend son fonctionnement normal. Ce n'est que si l'on repasse trois fois par l'embranchement P3 de la phase P2 que l'on parvient à la valeur nulle pour le nombre d'essais, ce qui conduit alors à une décrémentation plus importante de Q, par exemple de 5, en ne descendant pas au-dessous d'une valeur minimum, par exemple de 25, cette décrémentation étant suivie d'une temporisation, par exemple de 5 minutes, suivie d'une nouvelle décrémentation importante avant de repasser en phase P2.
  • De la sorte, si la phase de fonctionnement anormal se perpétue, soit parce que le voûte ne s'est pas effondrée, soit parce que le combustible s'épuise, on finit par arriver à une température des fumées inférieure à 40° au centre de l'organigramme P2, ce qui conduit, comme on l'a vu, à l'arrêt général de la chaudière.
  • Le dernier organigramme X de la figure 5 correspond à une interruption du programme pour chaque ouverture de la porte, ce qui a pour effet d'arrêter le ventilateur (Q=0) et de détecteur si le contact de fermeture de la porte est en position fermé pour repasser en phase P1. En effet, l'ouverture de la porte correspond normalement à un rechargement en combustible.
  • On a pu vérifier que l'application du procédé selon l'invention permet d'assurer une régulation très précise et très stable d'une chaudière de ce type, avec des variations de température d'eau ne dépassant pas plus ou moins 1° autour du point de consigne. Ce fonctionnement est donc très souple et très sûr.
  • En outre, la régulation peut signaler les anomalies de fonctionnement et donner un diagnostic complet de son état de marche, soit sur le tableau de commande 14 de la chaudière, soit par l'intermédiaire d'une boîte de tests indépendante raccordée sur la prise 23, ce qui simplifie considérablement la maintenance.

Claims (7)

1. Procédé de régulation automatique d'une chaudière (1) à combustible solide, à chargement discontinu en combustible et tirage forcé par ventilateur électrique (8,13), caractérisé par le fait
- que l'on utilise un ventilateur (8,13) à régime variable en continu,
- que la régulation est basée sur la mesure simultanée de la température de l'eau (TE) de la chaudière et de la température des fumées (TF), et
- que la régulation comporte, au cours d'une phase (P2) de fonctionnement normal, la détermination d'une température théorique des fumées (TTF) sensiblement proportionnelle (K1) à l'écart entre une température de consigne (CE) et la température de l'eau mesurée (TE), la détermination d'un régime théorique du ventilateur (QT) sensiblement proportionnel (K2) à l'écart entre la température théorique des fumées (TTF) et la température des fumées mesurée (TF), enfin l'adaptation progressive du régime du ventilateur par incrémentation ou décrémentation de la valeur (Q) imposée à ce régime selon le signe de l'écart entre le régime théorique calculé (QT) et le régime actuel (Q) au cours de cycles successifs définis par une temporisation.
2. Procédé de régulation selon la revendication 1, caractérisé par le fait qu'au cours de la phase de fonctionnement normal, lorsque l'écart entre le régime théorique calculé (QT) et le régime actuel (Q) est positif et conduit à une incrémentation du régime, on compare la température des fumées (TF) avec celle (TFP) mise en mémoire au cycle précédent, et on provoque le passage automatique à une phase de fonctionnement anormal (P3) si cette température (TF) est en décroissance, et ladite phase de fonctionnement anormal (P3) prévoit une décrémentation plus importante du régime (Q) et une temporisation plus importante avant de repasser en phase de fonctionnement normal (P2) pour un nouvel essai, le nombre d'essais étant limité à une valeur définie.
3. Procédé selon la revendication 2, caractérisé par le fait que ladite phase de fonctionnement normal (P2) prévoit, lorsque la température des fumées atteint une valeur très basse, d'arrêter complètement le ventilateur.
4. Procédé de régulation selon l'une quelconque des revendications précédentes, caractérisé par le fait qu'il comporte, en outre, une phase d'allumage ou chargement en combustible, initialisée automatiquement à la mise sous tension et après chaque fermeture de la porte de chargement (6) dont l'état d'ouverture est détecté par un contact (12), cette phase comprenant une incrémentation très progressive du régime (Q) du ventilateur à partir d'une valeur initiale (Q1) définie et au cours de cycles successifs définis par une temporisation, ces cycles provoquant le passage à ladite phase de fonctionnement normal (P2), soit lorsque la température de l'eau (TE) dépasse une valeur définie, soit lorsque le régime (Q) dépasse une valeur finale définie (Q2) et après une autre temporisation.
5. Chaudière à combustible solide à chargement intermittent et à ventilation forcée, caractérisée par le fait qu'elle comporte un moteur électrique (13) à régime variable pour l'entraînement de son ventilateur (8), une sonde (10) de mesure de la température des fumées (TF), une sonde (11) de mesure de la température de l'eau (TE), un contact (12) de détermination de l'état d'ouverture de la porte de chargement (6), un organe (20) de réglage de la température de consigne de l'eau (CE) et un microprocesseur (28) programmé pour la mise en oeuvre du procédé selon l'une quelconque des revendications précédentes.
6. Chaudière selon la revendication 5, caractérisée par le fait qu'elle comporte, en outre, une sonde (17) de sécurité, un bouton (19) de réarmement de la sécurité, un bouton (18) de mise en marche et un thermomètre (15,16) à lecture directe, tous ces organes étant à la disposition de l'usager.
7. Chaudière selon une des revendications 5 et 6, caractérisée par le fait qu'elle comporte, en outre, des organes de réglage ou de raccordement à la disposition de l'installateur, notamment un réglage (21) de la consigne minimale des fumées (Cmf), un inverseur (22) manuel automatique et une prise multibroches (23) de raccordement d'un appareil de diagnostic.
EP89403377A 1988-12-20 1989-12-06 Procédé et dispositif de régulation automatique d'une chaudière à combustible solide à chargement discontinu et tirage forcé, en particulier d'une chaudière à bois Expired - Lifetime EP0375494B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89403377T ATE103383T1 (de) 1988-12-20 1989-12-06 Automatisches regel-verfahren und einrichtung fuer einen festbrennstoff-heizkessel mit unterbrochener ladung und erzwungenem zug, insbesondere fuer holz-heizkessel.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8816850A FR2640732B1 (fr) 1988-12-20 1988-12-20 Procede et dispositif de regulation automatique d'une chaudiere a combustible solide a chargement discontinu et tirage force, en particulier d'une chaudiere a bois
FR8816850 1988-12-20

Publications (2)

Publication Number Publication Date
EP0375494A1 true EP0375494A1 (fr) 1990-06-27
EP0375494B1 EP0375494B1 (fr) 1994-03-23

Family

ID=9373197

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89403377A Expired - Lifetime EP0375494B1 (fr) 1988-12-20 1989-12-06 Procédé et dispositif de régulation automatique d'une chaudière à combustible solide à chargement discontinu et tirage forcé, en particulier d'une chaudière à bois

Country Status (4)

Country Link
EP (1) EP0375494B1 (fr)
AT (1) ATE103383T1 (fr)
DE (1) DE68914121T2 (fr)
FR (1) FR2640732B1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0563976A1 (fr) * 1992-04-03 1993-10-06 Honeywell Inc. Dispositif et procédé de surveillance des conditions de fonctionnement d'un système de brûleur
EP0624756A1 (fr) * 1993-05-14 1994-11-17 Haiko Paul Künzel Procédé pour commander une installation de chauffage équipée avec une chaudière à combustible solide
CZ302544B6 (cs) * 2009-10-05 2011-07-07 Valícek@Jan Zpusob regulace výkonu zplynovacího kotle
ITVI20120293A1 (it) * 2012-10-30 2014-05-01 Extraflame S P A Procedimento di controllo del funzionamento dei motori di aspirazione fumi in apparecchi riscaldanti a combustibile solido

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3402787A1 (de) * 1984-01-27 1986-01-02 Wilhelm & Sander GmbH, 3418 Uslar Heizkessel fuer manuelle und/oder automatische beschickung von festen brennstoffen sowie regeleinrichtung zur regelung der heizleistung des heizkessels
GB2191022A (en) * 1986-05-27 1987-12-02 Rinnai Kk A fluid heating apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2512179A1 (fr) * 1981-08-27 1983-03-04 Sdecc Chaudiere a gaz etanche a tirage force avec regulation par microprocesseur

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3402787A1 (de) * 1984-01-27 1986-01-02 Wilhelm & Sander GmbH, 3418 Uslar Heizkessel fuer manuelle und/oder automatische beschickung von festen brennstoffen sowie regeleinrichtung zur regelung der heizleistung des heizkessels
GB2191022A (en) * 1986-05-27 1987-12-02 Rinnai Kk A fluid heating apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0563976A1 (fr) * 1992-04-03 1993-10-06 Honeywell Inc. Dispositif et procédé de surveillance des conditions de fonctionnement d'un système de brûleur
EP0624756A1 (fr) * 1993-05-14 1994-11-17 Haiko Paul Künzel Procédé pour commander une installation de chauffage équipée avec une chaudière à combustible solide
CZ302544B6 (cs) * 2009-10-05 2011-07-07 Valícek@Jan Zpusob regulace výkonu zplynovacího kotle
ITVI20120293A1 (it) * 2012-10-30 2014-05-01 Extraflame S P A Procedimento di controllo del funzionamento dei motori di aspirazione fumi in apparecchi riscaldanti a combustibile solido

Also Published As

Publication number Publication date
DE68914121D1 (de) 1994-04-28
ATE103383T1 (de) 1994-04-15
DE68914121T2 (de) 1994-07-14
FR2640732B1 (fr) 1991-04-05
EP0375494B1 (fr) 1994-03-23
FR2640732A1 (fr) 1990-06-22

Similar Documents

Publication Publication Date Title
FR2605388A1 (fr) Bruleur
US5037291A (en) Method and apparatus for optimizing fuel-to-air ratio in the combustible gas supply of a radiant burner
US4676734A (en) Means and method of optimizing efficiency of furnaces, boilers, combustion ovens and stoves, and the like
EP0073717B1 (fr) Chaudière à gaz étanche à tirage forcé avec régulation par microprocesseur
FR2665941A1 (fr) Procede et dispositif pour regler le rapport combustible-air de l'alimentation en gaz inflammable d'un bruleur a rayonnement.
EP0447979B1 (fr) Procédé de cuisson pour un four à chauffage combiné par micro-ondes, convection et gril
EP0003924A1 (fr) Chauffe-eau à accumulation alimenté en fluide chauffé par panneau solaire
US20080160470A1 (en) Igniter for furnace
EP0375494B1 (fr) Procédé et dispositif de régulation automatique d'une chaudière à combustible solide à chargement discontinu et tirage forcé, en particulier d'une chaudière à bois
EP0373487B1 (fr) Dispositif de commande électronique de l'alimentation d'une résistance chauffante
FR2662751A1 (fr) Dispositif pour le controle continu d'un debit d'air variable.
FR2554938A1 (fr) Procede pour la regulation des installations de chauffage central et installations en comportant application
FR2564143A1 (fr) Generateur de gaz chauds du type auto-entretenu avec commande des etapes de fonctionnement
FR2483052A1 (fr)
FR2758385A1 (fr) Four bi-energie fonctionnant au gaz ou au fioul et a l'electricite et procede de chauffage de l'enceinte d'un tel four
EP0537796A2 (fr) Four de cuisson
JP3274626B2 (ja) 燃焼装置
BE901781A (fr) Commande automatique de poele de chauffage (bois, charbon) gerant combustion, ventillation et sortie de gaz suivant la temperature ambiante desiree.
FR2564571A1 (fr) Reglage continu du rapport air-combustible d'une source calorifique chauffee par un combustible
FR2624280A1 (fr) Systeme de securite de regulation de chauffage d'un volume par fluide gazeux caloporteur
US20240295324A1 (en) Electronic closed-loop control device for fireplaces comprising a lower combustion system
EP0539309A1 (fr) Procédé et dispositif de régulation de charge pour chaudière à grille mécanique
FR2505989A1 (fr) Module electronique regulateur pour le fonctionnement a rendement optimal d'une pompe a chaleur utilisee en releve de chaudiere
FR2885405A1 (fr) Four a gaz
FR3050012A1 (fr) Poele a bois avec six etats de controle de combustion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE LI SE

17P Request for examination filed

Effective date: 19900730

17Q First examination report despatched

Effective date: 19920910

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940323

REF Corresponds to:

Ref document number: 103383

Country of ref document: AT

Date of ref document: 19940415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68914121

Country of ref document: DE

Date of ref document: 19940428

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19951228

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960123

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960125

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960207

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19961206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19961231

Ref country code: CH

Effective date: 19961231

Ref country code: BE

Effective date: 19961231

BERE Be: lapsed

Owner name: FONDERIES FRANCO BELGES

Effective date: 19961231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970902