EP0373983A1 - Process for the simultaneous elimination of CO2 and gasoline from a gaseous hydrocarbon mixture comprising methane, C2 and higher hydrocarbons and also CO2 - Google Patents

Process for the simultaneous elimination of CO2 and gasoline from a gaseous hydrocarbon mixture comprising methane, C2 and higher hydrocarbons and also CO2 Download PDF

Info

Publication number
EP0373983A1
EP0373983A1 EP89403123A EP89403123A EP0373983A1 EP 0373983 A1 EP0373983 A1 EP 0373983A1 EP 89403123 A EP89403123 A EP 89403123A EP 89403123 A EP89403123 A EP 89403123A EP 0373983 A1 EP0373983 A1 EP 0373983A1
Authority
EP
European Patent Office
Prior art keywords
solvent
rich
hydrocarbons
gas
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89403123A
Other languages
German (de)
French (fr)
Other versions
EP0373983B1 (en
Inventor
Claude Blanc
Henri Paradowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elf Exploration Production SAS
Original Assignee
Societe National Elf Aquitaine
Societe Nationale Elf Aquitaine Production SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe National Elf Aquitaine, Societe Nationale Elf Aquitaine Production SA filed Critical Societe National Elf Aquitaine
Priority to AT89403123T priority Critical patent/ATE100852T1/en
Priority to EP93107550A priority patent/EP0556875B1/en
Publication of EP0373983A1 publication Critical patent/EP0373983A1/en
Application granted granted Critical
Publication of EP0373983B1 publication Critical patent/EP0373983B1/en
Priority to GR950402736T priority patent/GR3017623T3/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G5/00Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas
    • C10G5/04Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas with liquid absorbents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1025Natural gas

Definitions

  • the invention relates to a process for simultaneous decarbonation and degassing of a gaseous mixture consisting mainly of hydrocarbons consisting of methane and C2 and higher hydrocarbons and also containing CO2 and optionally one or more non-sulfurized compounds with low boiling point such as H2, CO, N2 and argon.
  • the method according to the invention makes it possible to directly separate a gas mixture of the aforementioned type into three components, namely: - a treated gas consisting mainly of methane and C2 hydrocarbons and whose CO2 molar content is at most equal to 2%, a section of hydrocarbons containing at least 80 mol% of C3 hydrocarbons and more present in the gas mixture to be treated, and - a stream of acid gas consisting of CO2 containing less than 10 mol% of hydrocarbons, expressed in methane equivalent, relative to CO2.
  • decarbonation and degassing operations are generally carried out separately and are part of a succession of operations carried out on the gas mixture to be treated and mainly comprising an elimination of the acid gas CO2, drying, adsorption of the water on a suitable solid such as a molecular sieve, a separation by cryogenic distillation between -30 ° C and -90 ° C associated or not with a solvent extraction in order to obtain the cut of natural gas liquid, and finally reheating the treated gas to ambient temperature in order to generally supply the commercial gas network.
  • the dehydrated and refrigerated natural gas is separated, in a first column (demethanizer) at the head of which is injected an additive consisting of a liquid fraction of C4 hydrocarbons and more, into a gas phase containing methane and lighter compounds and a liquid fraction containing C2 and higher hydrocarbons and CO2.
  • This liquid fraction is separated, in a second column (de-ethanizer) into which a certain amount of the additive is also introduced, into a top fraction consisting of CO2 and a bottom fraction containing the C en hydrocarbons and more.
  • Said tail fraction is then separated, in a third column, into an overhead fraction consisting of a liquid cut of C2 to C4 hydrocarbons and into a tail fraction consisting of a liquid cut of C4 and higher hydrocarbons, which contains the major part of the butanes and higher hydrocarbons present in the treated natural gas and from which the appropriate quantity is taken to constitute the additive injected in the first and second columns.
  • This additive avoids the crystallization of CO2 at the top of the demethanizer and ensures the rupture of the azeotrope which forms between ethane and CO2 and facilitates the separation of these compounds in the de-ethanizer.
  • the aforementioned process is therefore essentially based on serial distillation operations.
  • the invention provides a process for simultaneous decarbonation and degassing of gas mixtures, which are available under an absolute pressure greater than 0.5 MPa and consist mainly of hydrocarbons consisting of methane and C2 and higher hydrocarbons and also contain CO2 and optionally one or more low-boiling non-sulfur compounds such as H2, CO, N2 and argon, such gas mixtures being, for example, of the natural gas type, said process making it possible to achieve more easily and at lower cost, in comparison with known processes, the objective of separating the gaseous mixture into the three components, namely treated gas consisting mainly of methane, liquid fraction of hydrocarbons in majority of hydrocarbons in C3 and above and containing, as necessary, a more or less large quantity of ethane and current of CO2, which have the specifications defined above.
  • the process according to the invention is of the type of process which is described in the US-A-3770622 quotation and in which the gas mixture is brought into contact, in a washing zone, with a solvent consisting of a liquid which dissolves CO2 and hydrocarbons in C2 and above and which has on the one hand, at atmospheric pressure, a boiling temperature greater than 40 ° C and on the other hand, at - 30 ° C, a viscosity less than 0.1 Pa.
  • methane equivalent is meant according to the invention as many pseudo-molecules with a single carbon atom as there are carbon atoms in the considered hydrocarbon molecule.
  • the solvent which is generally defined above for bringing it into contact with the gaseous mixture to be treated for the purpose of absorbing CO2 and C en and higher hydrocarbons, preferably has a viscosity of less than 0.05 Pa.s.
  • the solvent according to the invention may consist in particular of one or more liquid absorbents which are selective for CO2 and used in anhydrous form or as a mixture with water, the said solvent (s) being chosen from the amides of formulas aldehydes of formula formula esters Ccan to C4 alkanols, diethers of formula CH3-O ⁇ C2H4O ⁇ CH3, diether alcohols of formula R9O- C2H4- O - C2H4 - OH, lactones of formula and carbonate of propylene, with in these formulas R1 and R2, identical or different, denoting a hydrogen atom or an alkyl radical in C1 or C2, R3 being an alkyl radical in C3 or C4, R6 being an alkyl radical in C2 to C4 or a radical ⁇ C2H4O ⁇ R8 with R8 denoting a C1 or C2 alkyl radical and n being equal to 1 or 2, R7 being a Coy or C2 alkyl radical or a
  • Nonlimiting examples of liquid organic absorbents corresponding to the above formulas are such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethoxymethane, diethoxymethane, dimethoxy-1,1 ethane, methanol, ethanol, ethylene dimethyl ether glycol, diethylene glycol dimethyl ether, ethylene glycol monomethyl ether, butyrolactone, propiolactone and propylene carbonate.
  • the contacting temperature of the gas mixture to be treated with the solvent in the washing zone is preferably between 0 ° C and -45 ° C.
  • the washing zone advantageously consists of one or more washing columns containing the appropriate number of theoretical washing stages, said columns being, for example, of the type of tray columns or even packed columns.
  • the temperature in each of the washing columns is kept substantially constant by indirect heat exchange, carried out at one or more points of the column in question, between the fluid medium contained in this column and a refrigerating fluid.
  • the demethanization treatment applied to the rich solvent is carried out, in particular, in two stages, namely a first stage in which the said rich solvent is subjected to a first expansion at an intermediate pressure capable of releasing a large fraction of the methane dissolved in said solvent to be demethanized and to produce a first gas rich in methane and a predemethanized fluid and a second step in which the predemethanized fluid is subjected to a second expansion then to a distillation so as to produce a second gas rich in methane and the demethanized rich solvent, the second methane-rich gas being compressed to the pressure of the first methane-rich gas and then mixed with the latter to form the methane-rich gas phase.
  • the methane-rich gas phase resulting from the demethization treatment applied to the rich solvent, is advantageously compressed to the pressure of the gas mixture to be treated, then it is cooled and mixed with the gas mixture to be treated before the latter is brought into contact. with the solvent in the washing area.
  • the treatment of the gaseous mixture containing CO2 and C hydrocar and higher hydrocarbons which is produced during the regeneration step of said treatment a), consists of washing said gaseous mixture by bringing this gaseous mixture into contact with a C5 and higher hydrocarbon solvent in a washing space operating at low temperature so as to produce the stream of acid gas rich in CO2 and a rich hydrocarbon solvent containing almost all of the C2 and higher hydrocarbons contained in said gaseous mixture and practically free of CO2, said washing being followed by regeneration of the rich hydrocarbon solvent to produce the cut of C2 and higher hydrocarbons and a regenerated hydrocarbon solvent which is recycles to the washing space.
  • the regeneration of the demethanized rich solvent, carried out during treatment a), is carried out by reheating said solvent to a temperature close to ambient, by dividing the reheated solvent into first and second streams, by directing the first stream directly to a regeneration area, directing the second stream to said regeneration area after having heated it by indirect heat exchange with the regenerated solvent, and subjecting the solvent to distillation in the regeneration area.
  • Said distillation can be carried out in the presence of a stream of inert gas, for example nitrogen, injected into the regeneration zone.
  • the temperature, below the temperature prevailing in the washing zone, to which said demethanized rich solvent is cooled to achieve its demixing is more particularly between -25 °. C and -80 ° C.
  • the regeneration of the purified solvent produced in one or other of the treatments b) and c), which leads to the production of the stream of acid gas rich in CO2 and having, expressed in methane equivalent, a hydrocarbon content of less than 10 % molar relative to CO2, can be carried out by any treatment making it possible to release the gaseous compounds dissolved in a liquid.
  • the regeneration of the purified solvent can be carried out by expansion of said purified solvent to a pressure greater than 100 kPa and for example between 150 kPa and 300 kPa and by stripping using an inert gas such as nitrogen. possibly associated with a heating of the purified solvent in the regeneration zone.
  • the regeneration of the purified solvent can also be carried out by heating the said purified solvent to a temperature close to ambient, by dividing the heated solvent into first and second streams, directing the first stream directly to a regeneration zone, by directing the second stream to this regeneration zone after having heated it by indirect heat exchange with the regenerated purified solvent, and by subjecting the solvent to distillation in the regeneration zone in order to produce the regenerated solvent and the regeneration current.
  • acid gas rich in CO2 supplied by the process by dividing the heated solvent into first and second streams, directing the first stream directly to a regeneration zone, by directing the second stream to this regeneration zone after having heated it by indirect heat exchange with the regenerated purified solvent, and by subjecting the solvent to distillation in the regeneration zone in order to produce the regenerated solvent and the regeneration current.
  • the gaseous mixture to be treated contains water and / or C5 and higher hydrocarbons
  • a pretreatment intended to remove all or part of these compounds before being brought into contact with the solvent in the zone of washing.
  • This pretreatment can consist of a distillation possibly carried out in the presence of solvent, taken from the solvent injected into the washing zone, to produce the pretreated gas mixture having a C6 hydrocarbon content and more than 0.1% by weight, a fraction of so-called heavy hydrocarbons containing almost all of the C6 and more hydrocarbons and all or part of the C5 hydrocarbons and, optionally, a liquid consisting of a mixture of solvent and water.
  • Said distillation of the gas mixture is carried out at a temperature at least equal to the temperature prevailing in the washing zone.
  • the gas mixture to be treated arriving via line 1 is introduced into the lower part of a distillation column 2, in which said gas mixture is optionally distilled in the presence of solvent removed, through line 41 emerging in the upper part of column 2, on the regenerated solvent 38 brought to the washing column 5, before passage of said solvent in a refrigeration zone 39 mounted on the conduit 6 for injecting the regenerated solvent in said washing column 5 , so as to produce on the one hand a dried gaseous mixture, evacuated from column 2 by a line 3 and whose hydrocarbon content in C6 and more is less than 0.1% by weight, and on the other hand a cut hydrocarbon containing almost all of the C6 hydrocarbons and more and possibly all or part of the C5 hydrocarbons, drawn off from column 2 by a pipe 4 and optionally a liquid drawn off column 2 through a conduit 54 and consisting of a mixture of solvent and water.
  • the dried gaseous mixture leaving column 2 through line 3 is introduced into the lower part of a washing column 5, for example of the plate column type, in which it is brought into contact, against the current, with regenerated cold solvent injected into the upper part of the column 5 via the line 6, after passing through the coolant 39, this contacting being carried out at a temperature of, for example, between 0 ° C. and -45 ° C., said temperature being controlled by passage of the liquid medium contained in column 5 in refrigerants 7.
  • a treated gas consisting mainly of methane and depleted in CO2 is removed, said treated gas being heated in a heating system 9 then directed, via a conduit 10, to a zone of use, while at the bottom of said column 5 is drawn off, via a conduit 11, a liquid phase consisting of the solvent enriched in CO2 and other compounds absorbed and called rich solvent.
  • the dried gas mixture is brought into contact with the solvent in the washing column 5 at an appropriate temperature in the range 0 ° C. to -45 ° C. and with a ratio of the flow rates of the gas mixture to be treated and of solvent such that on the one hand the treated gas collected, through line 8, at the head of column 5 has a molar CO2 content of at most equal to 2% and that on the other hand the rich solvent, flowing through line 11 , contains at least 80 mol% of C3 and higher hydrocarbons present in the dried gas mixture introduced in column 5.
  • the rich solvent circulating in the conduit 11 is introduced, after passage through the expansion valve 12, into the upper part of an expansion tank 13 in which a first methane-rich gas separates, which is removed at the head of the flask 13 by a conduit 14, and a predemethanized rich solvent, which is withdrawn from the bottom of the flask 13 by a conduit 15.
  • Said predemethanized rich solvent is subjected to a second expansion through an expansion valve 16 followed by a distillation in a distillation column 17 provided with a reboiler 18, so as to produce a second gas rich in methane, which is evacuated at the top of the column 17 by a conduit 19, and a liquid phase depleted in methane, called demethanized rich solvent, which is drawn off at the bottom of the column 17 by a pipe 27.
  • the second methane-rich gas circulating in the pipe 19 is caused to pass into a compressor 20 from which it leaves, via a pipe 21, to a pressure substantially equal to that of the first methane-rich gas passing through line 14, then these two methane-rich gases are mixed in line 22 and the gas phase resulting from this mixture is recycled, by means of a compressor 23 whose the outlet is extended by a line 24, a cooler 25 and a line 26, in the line 3 for supplying the dried gas mixture to the washing column 5.
  • the regeneration can be carried out in the presence of a stream of inert gas, in particular a stream of nitrogen, injected into the lower part of the column 33 through a conduit 43.
  • Said regeneration produces, on the one hand, a regenerated solvent drawn off at the bottom of the column 33, through a pipe 34, and used in the heat exchanger 35, to heat the second stream 31 of solvent rich in methanis to be regenerated, before being recycled, by the pump 37 and the pipe 38, to the washing column 5, and on the other hand a gaseous mixture discharged at the top of the column 33, by a pipe 42, and containing the CO2 as well as C2 and more hydrocarbons present in the demethanized rich solvent.
  • the gaseous mixture passing through the conduit 42 is washed against the current, in a washing tower 47 provided with a condenser 46 at the head and a reboiler 70 at the bottom and operating at low temperature, using a hydrocarbon solvent in C5 and no longer brought to the washing tower 47 via a pipe 53, said washing producing, on the one hand, a stream 44 of acid gas rich in CO2, which contains almost all of the CO2 present in the rich solvent demethanized and has, expressed in methane equivalent, a hydrocarbon content of less than 10 mol% relative to CO2, and, on the other hand, a rich hydrocarbon solvent 45 practically free of CO2 and containing almost all of the hydrocarbons C2 and more present in the gas mixture arriving via line 42.
  • the rich hydrocarbon solvent 45 is brought to a regeneration column 49 in which said solvent 45 is subjected to distillation to produce, on the one hand, a fraction of hydrocarbons 48 constituting the cut of C2 hydrocarbons and more containing at least 80 mol% of the C3 hydrocarbons and more contained in the gas to be treated brought to the washing column 5 by the line 3, and, on the other hand, a regenerated hydrocarbon solvent 50, which is recycled, by the pump 51, to the regeneration column 47 after refrigeration in the system 52 and passage in the conduit 53.
  • the embodiment of the method according to the invention differs from the embodiment illustrated in FIG. 1 only by the treatment of the demethanized rich solvent available at the outlet of the expansion valve 29 mounted on the line 27 through which the demethanized rich solvent is withdrawn from the demethanization column 17.
  • the operations carried out in column 2, as well as the operations for bringing the gas to be treated into contact with the solvent in column 5 for washing and demethanization of the rich solvent are therefore identical to those described with reference to FIG. 1.
  • the demethanized rich solvent, expanded by passage through the expansion valve 29, is refrigerated in the refrigerating system 40 with the result of the demixing of said solvent into two liquid phases, namely an upper hydrocarbon phase and a lower phase consisting of the solvent containing the majority CO2 and a certain amount of hydrocarbons.
  • the assembly is introduced into an extraction tower 56, in which it is brought into contact, against the current, with a refrigerated hydrocarbon solvent injected, through a conduit 57, into the lower part of the extraction tower and with a stream of regenerated solvent introduced into the tower 56 through a conduit 63, so as to produce, on the one hand, a purified solvent containing almost all of the CO2 present in the demethanized rich solvent, said purified solvent being drawn off at the bottom of the extraction tower 56 by a conduit 58 on which is mounted an expansion valve 60, and, on the other hand, a hydrocarbon solvent enriched in C2 hydrocarbons and more containing little CO2, said solvent being removed at the head of the extraction tower 56 by a conduit 59.
  • the enriched hydrocarbon solvent 59 is introduced into a regeneration column 49 in which said solvent is fractionated by distillation into a fraction of C2 and higher hydrocarbons, which is evacuated at the top of said column 49 by a conduit 48 and constitutes the cut d hydrocarbons C2 and more containing at least 80 mol% of hydrocarbons C3 and more contained in the gas to be treated brought to the washing column 5 by line 3, and in a regenerated hydrocarbon solvent withdrawn from column 49 by a line 50, which regenerated hydrocarbon solvent is recycled by the pump 51, through the refrigerant system 61 and the conduit 57, to the extraction tower 56.
  • the purified solvent circulating in the conduit 58 is introduced into the upper part of a regeneration column 62 provided with a heater 69, in which said purified solvent is subjected to a regeneration comprising a stripping using a stream of inert gas, for example a stream of nitrogen, injected into the lower part of the column 62 through a conduit 43.
  • a stream of inert gas for example a stream of nitrogen
  • Said regeneration produces, on the one hand, a regenerated solvent 34, which is recycled by means of a pump 37 and a pipe 38 to the washing column 5 through the heat exchanger 39 and the pipe 6, and, on the other hand, a stream 44 of acid gas rich in CO2 , which contains almost all of the CO2 present in the demethanized rich solvent and has, expressed in methane equivalent, a hydrocarbon content of less than 10 mol% relative to CO2.
  • Part of the cold regenerated solvent passing through line 38 is diverted through line 63 to be injected into the extraction tower 56 at a point in this tower located above the injection point of the demethanized rich solvent circulating in the line 27.
  • the gaseous mixture to be treated arriving via a pipe 1, is introduced into the lower part of a washing column 5, for example of the type column with plates, in which it is brought into contact, against the current, with a solvent injected into the upper part of the column 5 through a conduit 6, this bringing into contact being carried out at a temperature of, for example, between 0 ° C and -45 ° C.
  • a treated gas consisting mainly of methane and depleted in CO2 is collected, via a line 8, while at the bottom of said column, a liquid phase is drawn off, via line 11, formed of the solvent enriched in CO2 and other compounds absorbed and called rich solvent.
  • the gas mixture to be treated is brought into contact with the solvent in column 5 at an appropriate temperature in the range 0 ° C to -45 ° C and with a ratio of the flow rates of the gas mixture to be treated and of solvent such as on the one hand, the treated gas collected, via line 8, at the head of column 5 has a molar CO2 content of at most equal to 2% and, on the other hand, the rich solvent passing through line 11 contains at least 80 molar% of C3 and higher hydrocarbons present in the gas mixture to be treated.
  • the treated gas, collected by line 8 at the temperature prevailing in the washing column 5, can be delivered to a distribution network after reheating or undergo beforehand, if necessary, one or more additional treatments to perfect its purification.
  • the temperature profile in column 5 is checked by means of the refrigerants 7 through which the liquid medium contained in column 5 passes.
  • the rich solvent circulating in the conduit 11 is introduced, after passing through an expansion valve 12, into the upper part of the demethanization column 17, consisting of a reboiling distillation column 18 and in which the rich solvent is divided into a gaseous phase rich in methane, which is removed at the top of column 17 by a conduit 22, and in a liquid phase depleted in methane, called demethanized rich solvent, which is drawn off at the bottom of column 17 by a conduit 27 .
  • the demethanized rich solvent is brought into a refrigeration zone 64, in which it is cooled to a temperature of, for example, between -25 ° C and -80 ° C and sufficiently lower than the temperature prevailing in the washing zone for cause a demixing of said rich solvent demethanized into two fractions, which separate, in a separator 65, into a lower liquid fraction withdrawn from the separator by a conduit 66, said fraction being called purified solvent and consisting of the solvent containing almost all of the CO2 present in the demethanized rich solvent and having a hydrocarbon content, expressed in methane equivalent, of less than 10 mol% relative to CO2, and in a higher liquid fraction, called C2 and more hydrocarbon fraction and containing at least 80 molar% of C3 and higher hydrocarbons present in the gaseous mixture to be treated arriving via line 1, said hydroc cut arbours being evacuated from the separator 65 by a conduit 48.
  • the purified solvent circulating in the conduit 66 is introduced, after passage through an expansion valve 67, into the upper part of a regeneration column 68 provided with a heater 69, in which the said purified solvent is subjected to regeneration by stripping using a stream of inert gas, for example a stream of nitrogen, injected into the lower part of the column 68 through a pipe 43.
  • a stream of inert gas for example a stream of nitrogen
  • Said regeneration produces, on the one hand, a regenerated solvent 34, which is recycled by means of a pump 37 and a conduit 38 to the washing column 5 through a heat exchanger 39 and the conduit 6, and, on the other hand, a stream 44 of acid gas rich in CO2, which contains almost all of the CO2 present in the demethanized rich solvent and has a hydrocarbon content, expressed in methane equivalent, of less than 10 mol% relative to CO2 .
  • FIG. 3 could also be adapted to include the steps of pretreatment of the gaseous mixture to be treated and demethanization in two stages, which include the embodiments illustrated in FIGS. 1 and 2.
  • the gaseous mixture to be treated arriving via line 1 with a flow rate of 10,000 kmol / h, a temperature of 30 ° C and a pressure of 5,000 kPa was introduced into column 2 for removal of C en and higher hydrocarbons.
  • the gas mixture to be treated being dry, no addition of solvent was carried out via line 41.
  • the pretreated gas mixture was brought into contact with 6000 kmol / h of solvent consisting of a mixture of methanol and water in a molar ratio equal to 95: 5 and having a pressure of 5000 kPa and a temperature equal to -30 ° C. , said contacting being carried out in a washing column 5 comprising 14 plates and operating at -30 ° C under a pressure of 4900 kPa.
  • the refrigerants 7 fitted to the washing column 5 made it possible to maintain the temperature in said column at the desired value.
  • the heated treated gas is directed through line 10 to an expedition pipeline.
  • the demethanization of the rich solvent firstly involved a first expansion of said solvent at a pressure of 3000 kPa, the expanded relaxed solvent supplying the expansion tank 13 in which 362 kmol / h of a first gas containing 68 mol% of methane were produced. , which was discharged at the head of the flask 13 through line 14, and a predemethanized rich solvent withdrawn from said flask through line 15 and whose molar methane content was reduced from 6.11% to 3.57%.
  • the premethanized rich solvent the temperature of which was equal to -33.6 ° C., was expanded in valve 16 and then fed to the distillation column 17 comprising 10 plates and operating at 1800 kPa.
  • the demethanized rich solvent had the following molar composition: . CO2 : 20.16% . Methane : 0.03% . Ethane : 3.37% . Propane : 1.98% . Butane : 1.67% . Methanol : 69.13% . Water : 3.64%
  • the second methane-rich gas was compressed in compressor 20 to the pressure of the first methane-rich gas, namely 3000 kPa.
  • the compressed gas leaving the compressor 20, via the conduit 21, was mixed with the first methane-rich gas to form the methane-rich gas phase 22, which was then compressed, in the compressor 23, until the pressure of the gaseous mixture at treating, namely 5000 kPa, said compressed gas phase being added through line 24, the refrigerant 25 and line 26, to the pretreated gas mixture circulating in line 3.
  • the compressed methane-rich gaseous phase passing through line 26 had a temperature of -20 ° C, a pressure of 5,000 kPa and a flow rate of 938 kmol / h.
  • the molar composition of said methane-rich gas phase flowing in line 26 was as follows: . CO2 : 29.80% . Methane : 59.50% . Ethane : 9.45% . Propane : 0.97% . Butane : 0.26% . Methanol : 0.02%
  • the demethanized rich solvent after expansion in the valve 29 and reheating in the reheating system 28, had a temperature of 10 ° C and a pressure of 800 kPa. Said heated solvent was then divided into a first stream 30 having a flow rate of 4533 kmol / h, which was directed directly to the regeneration column 33, and into a second stream 31, which was heated to 70 ° C. in the heat exchanger. heat 35 before being conveyed to the regeneration column 33.
  • This column operated under a pressure of 700 kPa and included 18 plates, the currents 30 and 31 being injected respectively at the plates 8 and 12, counted from the top of the column.
  • the regeneration column 33 produced at the head a gaseous mixture containing CO2 and the hydrocarbons in C2 and more, which was evacuated via line 42 with a temperature of -14 ° C, a pressure of 700 kPa and a flow rate of 2244 kmol / h and at the bottom a regenerated solvent withdrawn from the regeneration column 33 through the pipe 34.
  • the gas mixture passing through line 42 had the following molar composition: . CO2 : 74.07% . Methane : 0.12% . Ethane : 12.36% . Propane : 7.28% . Butane : 6.13% . Hexane : 0.04%
  • the regenerated solvent is cooled by passage through the heat exchanger 35, then recompressed to a pressure of 5000 kPa by the pump 37, and it is then directed through the conduit 38 on the one hand in a major quantity to the washing column 5 , through the refrigerant 39 and the conduit 6.
  • the gas mixture passing through line 42 was washed against the current in washing tower 47 using a hydrocarbon solvent consisting mainly of hexane.
  • Tower 47 had 35 trays and operated under a pressure of 700 kPa with a temperature of -30 ° C at the head at the level of refrigerant 46.
  • the supply of tower 47 with solvent, via line 53, and in gaseous mixture, through line 42, was carried out respectively on the first plate and on plate 21 of said tower.
  • the washing tower 47 produced at the head a stream of acid gas 44 rich in CO2 and having a hydrocarbon content, expressed in methane equivalent, of less than 10 mol% relative to CO2, said stream of acid gas having a temperature of -30 ° C, a pressure of 650 kPa and a flow rate of 1685 kmol / h, and in the background a hydrocarbon solvent 45 with reduced CO2 content having a temperature of 95.8 ° C, a pressure of 730 kPa and a flow rate of 5059 kmol / h.
  • the molar composition of the acid gas stream 44 was as follows: . CO2 : 98.65% . Methane : 0.15% . Ethane : 0.98% . Butane : 0.05% . Hexane : 0.17%
  • the rich hydrocarbon solvent 45 had the following molar composition: . Ethane : 5.16% . Propane : 3.23% . Butane : 3.69% . Hexane : 87.91%
  • the fractionation of the rich hydrocarbon solvent 45 in column 49 provided with 28 trays and operating under a pressure of 600 kPa produced at the head 561 kmol / h of a cut of hydrocarbons 48 in C2 and more having a temperature of 18 ° C and a pressure of 600 kPa and at the bottom 4500 kmol / h of regenerated hydrocarbon solvent having a temperature of 142.7 ° C and a pressure of 670 kPa, said solvent containing, in mole, 98.89% of hexane and 1.11 % butane.
  • the molar composition of the C2 and higher hydrocarbon cut 48 was as follows: . CO2 : 0.02% . Ethane : 46.49% . Propane : 29.10% . Butane : 24.37% . Hexane : 0.02%
  • Example 2 The pretreatment of said gaseous mixture, in column 2, in order to remove the C6 and higher hydrocarbons therefrom was carried out under the conditions of Example 1 and said column 2 was removed on the one hand, via line 3, a pretreated gas mixture and on the other hand, via line 4, a heavy hydrocarbon fraction having the same composition, temperature, pressure and flow rate characteristics as those of the pretreated gas mixture and of the heavy hydrocarbon fraction obtained in Example 1.
  • the pretreated gas mixture was brought into contact with 11,500 kmol / h of solvent having a temperature of -20 ° C. and a pressure of 5000 kPa and containing, by mole, 82.34% of methanol, 14.67% of water and 2.88 hexane, said contacting being carried out in a washing column 5 comprising 14 plates and operating at -20 ° C under a pressure of 4900 kPa.
  • the refrigerants 7 fitted to the washing column 5 made it possible to maintain the temperature in said column at the desired value.
  • the treated gas, discharged through line 8, was warmed up to ambient temperature in the heat exchanger system 9, the heated treated gas being directed, through line 10, to a shipping pipeline.
  • the demethanization of the rich solvent firstly involved a first expansion of said solvent at a pressure of 3000 kPa, the expanded rich solvent supplying the expansion tank 13 in which 401 kmol / h of a first gas containing 64 mol% of methane, which was removed at the head of the flask 13 via the line 14, and a predemethanized rich solvent withdrawn from the said flask through the line 15 and whose molar methane content has been reduced from 3.70 to 2.01%.
  • the premethanized rich solvent the temperature of which was equal to -22.5 ° C., was expanded in valve 16 and then fed to the distillation column 17 comprising 10 plates and operating at 1800 kPa.
  • the demethanized rich solvent passing through line 27 had the following molar composition: . CO2 : 12.11% . Methane : 0.03% . Ethane : 1.53% . Propane : 1.20% . Butane : 1.01% . Hexane : 2.39% . Methanol : 69.37% . Water : 12.36%
  • the second methane-rich gas was compressed in compressor 20 to the pressure of the first methane-rich gas, namely 3000 kPa.
  • the compressed gas leaving the compressor 20, via the conduit 21, was mixed with the first methane-rich gas to form the methane-rich gas phase 22, which was then compressed, in the compressor 23, until the pressure of the gaseous mixture at treating, namely 5000 kPa, said compressed gas phase being added through line 24, the refrigerant 25 and line 26, to the pretreated gas mixture circulating in line 3.
  • the compressed methane-rich gas phase passing through line 26 had a temperature of -20 ° C, a pressure of 5000 kPa and a flow rate of 1006 kmol / h.
  • the molar composition of said methane-rich gas phase flowing in line 26 was as follows: . CO2 : 34.31% . Methane : 53.50% . Ethane : 9.84% . Propane : 1.70% . Butane : 0.53% . Hexane : 0.09% . Methanol : 0.03%
  • the extraction tower 56 included 31 trays and was supplied on the first tray with 5000 kmol / h of regenerated solvent supplied by line 63 with a temperature of -40 ° C, on tray 21 by the rich demethanized solvent from the system refrigeration 40 and on the plate 31 by the refrigerated hydrocarbon solvent based on hexane supplied by line 57 with a flow rate of 1600 kmol / h.
  • This extraction produced 2079 kmol / h of a rich hydrocarbon solvent having a temperature of -40 ° C and a pressure of 1200 kPa, said rich hydrocarbon solvent being evacuated at the top of tower 56 via line 59, and 18069 kmol / h purified solvent withdrawn from the bottom of said tower, via line 58, at a temperature of -40 ° C. and under a pressure of 1200 kPa.
  • the molar composition of the rich hydrocarbon solvent passing through line 59 was as follows: . CO2 : 0.14% . Methane : 0.13% . Ethane : 9.19% . Propane : 7.79% . Butane : 6.62% . Hexane : 73.72% . Methanol : 2.40%
  • the molar composition of the purified solvent passing through line 58 was as follows: . CO2 : 9.16% . Methane : 0.01% . Ethane : 0.10% . Propane : 0.01% . Hexane : 2.42% . Methanol : 74.91% . Water : 13.40%
  • the C2 and higher hydrocarbon section evacuated via line 48, had the following molar composition: . CO2 : 0.59% . Methane : 0.54% . Ethane : 38.40% . Propane : 32.58% . Butane : 27.67% . Hexane : 0.20% . Methanol : 0.02%.
  • the regenerated hydrocarbon solvent passing through line 50 contained, by mole, 95.77% hexane, 1.11% butane and 3.12% methanol. Said solvent was brought, in the pump 51, to a pressure of 1200 kPa, then refrigerated at -40 ° C in the refrigerant system 61 before being recycled, via the conduit 57, to the extraction tower 56.
  • the purified solvent coming from line 58 of the extraction tower 56 is expanded to a pressure of 200 kPa in the expansion valve 60, then it is introduced into the regeneration column 62 for the purpose of regeneration.
  • Said column 62 comprising 14 plates and operating under a pressure of 200 kPa, is supplied on the first plate with the purified solvent to be regenerated and on the last plate by a stream of nitrogen supplied, via line 43, with a flow rate of 650 kmol / h.
  • the heater 69 which is provided with said column 62, was located on the seventh plate.
  • the stream of CO2-rich acid gas discharged through line 44 had a pressure of 200 kPa and a temperature of -47.5 ° C and it had the following molar composition: . CO2 : 71.64% . Methane : 0.05% . Ethane : 0.77% . Propane : 0.04% . Hexane : 0.40% . Methanol : 0.06% . Nitrogen : 27.04%.
  • the regenerated solvent circulating in the conduit 34 was brought to the pressure of 5000 kPa by passage through the pump 37, then divided into two parts, namely a major part recycled to the washing column 5 after passage through the heat exchanger system 39 and the conduit 6 and a part brought into the extraction tower 56 by the conduit 63.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Gas Separation By Absorption (AREA)
  • Physical Water Treatments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

The gas mixture to be treated (1) is washed (5) between 0 DEG C and -45 DEG C by means of a solvent (6) for CO2 and C3 and higher hydrocarbons to produce a methane stream (8) containing not more than 2 mol% of CO2 and a CO2-rich liquid phase (11) containing at least 80 mol% of C3 and higher hydrocarbons from the gas mixture (1). The liquid phase (11) is subjected to a demethanization (12, 17) producing a demethanized rich solvent (27) and a methane-rich gas phase (22), and then the rich solvent (27) is subjected to a regeneration producing a regenerated solvent (34) which is recycled into the washing zone (5), and a gas mixture (42) containing the CO2 and the C2 and higher hydrocarbons which are present in the methanized rich solvent, the said gas mixture being separated by regenerative washing with a C5 and higher hydrocarbon solvent, into a CO2-rich acidic gas stream containing, expressed as methane equivalent, less than 10 mol% of hydrocarbons, and into a C2 and higher hydrocarbon cut (48) containing at least 80 mol% of the C3 and higher hydrocarbons present in the gas to be treated (1).

Description

L'invention concerne un procédé de décarbonata­tion et de dégazolinage simultanés d'un mélange gazeux constitué principalement d'hydrocarbures consistant en méthane et hydrocarbures en C₂ et plus et renfermant également CO₂ et éventuellement un ou plusieurs composés non sulfurés à bas point d'ébullition tels que H₂, CO,N₂ et argon.The invention relates to a process for simultaneous decarbonation and degassing of a gaseous mixture consisting mainly of hydrocarbons consisting of methane and C₂ and higher hydrocarbons and also containing CO₂ and optionally one or more non-sulfurized compounds with low boiling point such as H₂, CO, N₂ and argon.

Le procédé selon l'invention permet de séparer directement un mélange gazeux du type précité en trois composantes, à savoir :
- un gaz traité consistant principalement en méthane et hydrocarbures en C₂ et dont la teneur molaire en CO₂ est au plus égale à 2 %,
- une coupe d'hydrocarbures contenant au moins 80 % molaire des hydrocarbures en C₃ et plus présents dans le mélange gazeux à traiter, et
- un courant de gaz acide consistant en CO₂ renfer­mant moins de 10 % molaire d'hydrocarbures, exprimés en équivalent méthane, par rapport au CO₂.
The method according to the invention makes it possible to directly separate a gas mixture of the aforementioned type into three components, namely:
- a treated gas consisting mainly of methane and C₂ hydrocarbons and whose CO₂ molar content is at most equal to 2%,
a section of hydrocarbons containing at least 80 mol% of C₃ hydrocarbons and more present in the gas mixture to be treated, and
- a stream of acid gas consisting of CO₂ containing less than 10 mol% of hydrocarbons, expressed in methane equivalent, relative to CO₂.

On connaît plusieurs procédés, utilisés indus­triellement, pour le traitement de mélanges gazeux tels que définis plus haut et dont les principaux exemples sont représentés par les divers gaz naturels, qui comportent une opération de décarbonatation, c'est-à-dire une élimi­nation du CO₂, et une opération de dégazolinage, c'est-à-dire une séparation des hydrocarbures lourds par exemple en C₃ et plus, du mélange gazeux et permettent de réaliser le fractionnement dudit mélange gazeux en les trois composantes mentionnées ci-dessus.
Ces opérations de décarbonatation et de dégazolinage sont généralement mises en oeuvre de manière séparée et font partie d'une succession d'opérations réalisées sur le mélange gazeux à traiter et comportant principalement une élimination du gaz acide CO₂,un séchage, une adsorption de l'eau sur un solide approprié tel qu'un tamis moléculaire, une séparation par distillation cryogénique entre -30°C et -90°C associée ou non à une extraction par un solvant afin d'obtenir la coupe de liquide de gaz naturel, et enfin un réchauffage du gaz traité jusqu'à la température ambiante pour, généralement, alimenter le réseau de gaz commercial.
Several processes are known, used industrially, for the treatment of gas mixtures as defined above and the main examples of which are represented by the various natural gases, which include a decarbonation operation, that is to say removal of CO₂ , and a degassing operation, that is to say a separation of heavy hydrocarbons for example in C₃ and above, from the gas mixture and make it possible to carry out the fractionation of said gas mixture into the three components mentioned above.
These decarbonation and degassing operations are generally carried out separately and are part of a succession of operations carried out on the gas mixture to be treated and mainly comprising an elimination of the acid gas CO₂, drying, adsorption of the water on a suitable solid such as a molecular sieve, a separation by cryogenic distillation between -30 ° C and -90 ° C associated or not with a solvent extraction in order to obtain the cut of natural gas liquid, and finally reheating the treated gas to ambient temperature in order to generally supply the commercial gas network.

Dans un tel schéma de traitement d'un mélange gazeux du type gaz naturel renfernant les constituants précités, l'abaissement de la température du mélange gazeux est imposé par la seule production de la coupe de liquide de gaz naturel, aucune autre opération n'étant effectuée à ce niveau de température.In such a treatment scheme for a gas mixture of the natural gas type containing the above-mentioned constituents, the lowering of the temperature of the gas mixture is imposed by the sole production of the cut of natural gas liquid, no other operation being performed at this temperature level.

Dans ce type de schéma de traitement, la réali­sation en série d'opérations, qui s'appuient sur des principes très différents et sont conduites à des niveaux de température divers, présente de sérieux inconvénients. Il n'y a que peu de possibilité d'intégration thermique, ce qui rend ledit schéma de traitement extrêmement onéreux au plan énergétique et au plan des investissements.In this type of treatment scheme, carrying out series of operations, which are based on very different principles and are carried out at different temperature levels, has serious drawbacks. There is little possibility of thermal integration, which makes said treatment scheme extremely costly from an energy and investment point of view.

On connaît également des procédés de traitement de mélanges gazeux du type des gaz naturels, qui permet­tent de réaliser simultanément l'élimination du CO₂ contenu dans le mélange gazeux et la production d'hydro­carbures gazeux et d'hydrocarbures liquides et dont le type est le procédé connu sous le nom de procédé RYAN-HOLMES et décrit, notamment, par J. RYAN et F. SCHAFFERT dans la revue CHEMICAL ENGINEERING PROGRESS, Octobre 1984, pages 53 à 56. Dans un tel procédé, le gaz naturel à traiter, après avoir été déshydraté de manière conventionnelle puis réfrigéré, est soumis à une distilla­tion à basse température mise en oeuvre en trois ou quatre étapes successives.
Dans le mode de réalisation en trois étapes, le gaz naturel déshydraté et réfrigéré est séparé, dans une première colonne (déméthaniseur) en tête de laquelle est injecté un additif consistant en une fraction liquide d'hydrocarbures en C₄ et plus, en une phase gazeuse renfermant le méthane et les composés plus légers et une fraction liquide contenant les hydrocarbures en C₂ et plus et le CO₂. Cette fraction liquide est séparée, dans une deuxième colonne (dé-éthaniseur) dans laquelle on introduit également une certaine quantité de l'additif, en une fraction de tête consistant en CO₂ et en une fraction de queue renfermant les hydrocarbures en C₂ et plus. Ladite fraction de queue est ensuite séparée, dans une troisième colonne, en une fraction de tête consistant en une coupe liquide d'hydrocarbures en C₂ à C₄ et en une fraction de queue consistant en une coupe liquide d'hydro­carbures en C₄ et plus, qui contient la majeure partie des butanes et des hydrocarbures supérieurs présents dans le gaz naturel traité et dont on prélève la quantité appro­priée pour constituer l'additif injecté dans les première et seconde colonnes. L'utilisation de cet additif évite la cristallisation de CO₂ en tête du déméthaniseur et assure la rupture de l'azéotrope qui se forme entre l'éthane et CO₂ et facilite la séparation de ces composés dans le dé-éthaniseur. Le procédé précité repose donc pour l'essen­tiel sur des opérations de distillation en série.
Also known are processes for treating gaseous mixtures of the natural gas type, which make it possible to simultaneously carry out the elimination of CO₂ contained in the gaseous mixture and the production of gaseous hydrocarbons and liquid hydrocarbons, the type of which is the process. known as the RYAN-HOLMES process and described, in particular, by J. RYAN and F. SCHAFFERT in the journal CHEMICAL ENGINEERING PROGRESS, October 1984, pages 53 to 56. In such a process, the natural gas to be treated, after having been dehydrated in a conventional manner and then refrigerated, is subjected to a low temperature distillation carried out in three or four successive stages.
In the three-stage embodiment, the dehydrated and refrigerated natural gas is separated, in a first column (demethanizer) at the head of which is injected an additive consisting of a liquid fraction of C₄ hydrocarbons and more, into a gas phase containing methane and lighter compounds and a liquid fraction containing C₂ and higher hydrocarbons and CO₂. This liquid fraction is separated, in a second column (de-ethanizer) into which a certain amount of the additive is also introduced, into a top fraction consisting of CO₂ and a bottom fraction containing the C en hydrocarbons and more. Said tail fraction is then separated, in a third column, into an overhead fraction consisting of a liquid cut of C₂ to C₄ hydrocarbons and into a tail fraction consisting of a liquid cut of C₄ and higher hydrocarbons, which contains the major part of the butanes and higher hydrocarbons present in the treated natural gas and from which the appropriate quantity is taken to constitute the additive injected in the first and second columns. The use of this additive avoids the crystallization of CO₂ at the top of the demethanizer and ensures the rupture of the azeotrope which forms between ethane and CO₂ and facilitates the separation of these compounds in the de-ethanizer. The aforementioned process is therefore essentially based on serial distillation operations.

L'invention propose un procédé de décarbona­tation et de dégazolinage simultanés de mélanges gazeux, qui sont disponibles sous une pression absolue supérieure à 0,5 MPa et sont constitués principalement d'hydrocar­bures consistant en méthane et hydrocarbures en C₂ et plus et renferment également CO₂ et éventuellement un ou plusieurs composés non sulfurés à bas point d'ébullition tels que H₂, CO, N₂ et argon, de tels mélanges gazeux étant par exemple du type des gaz naturels,
ledit procédé permettant d'atteindre plus facilement et à moindre coût, en comparaison aux procédés connus, l'objectif d'une séparation du mélange gazeux en les trois composantes, à savoir gaz traité consistant principalement en méthane, coupe liquide d'hydrocarbures à majorité d'hydrocarbures en C₃ et plus et renfermant selon les besoins une quantité plus au moins importante d'éthane et courant de CO₂, qui ont les spécifications définies plus haut.
The invention provides a process for simultaneous decarbonation and degassing of gas mixtures, which are available under an absolute pressure greater than 0.5 MPa and consist mainly of hydrocarbons consisting of methane and C₂ and higher hydrocarbons and also contain CO₂ and optionally one or more low-boiling non-sulfur compounds such as H₂, CO, N₂ and argon, such gas mixtures being, for example, of the natural gas type,
said process making it possible to achieve more easily and at lower cost, in comparison with known processes, the objective of separating the gaseous mixture into the three components, namely treated gas consisting mainly of methane, liquid fraction of hydrocarbons in majority of hydrocarbons in C₃ and above and containing, as necessary, a more or less large quantity of ethane and current of CO₂, which have the specifications defined above.

Le procédé selon l'invention est du type du procédé qui est décrit dans la citation US-A-3770622 et dans lequel on met le mélange gazeux en contact, dans une zone de lavage, avec un solvant consistant en un liquide qui dissout CO₂ et les hydrocarbures en C₂ et plus et qui possède d'une part, à la pression atmosphérique, une température d'ébullition supérieure à 40°C et d'autre part, à - 30°C, une viscosité inférieure à 0,1 Pa.s, en opérant à une température suffisamment basse et avec un rapport des débits de mélange gazeux à traiter et de solvant tel que l'on produise, d'une part, un gaz traité consistant principalement en méthane et présentant une teneur molaire en CO₂ au plus égale à 2 % et, d'autre part, une phase liquide appelée solvant riche et formée du solvant enrichi en CO₂ et en une fraction d'hydrocarbures en C₂ et plus renfermant au moins 80 % molaire des hydro­carbures en C₃ et plus présents dans le mélange gazeux à traiter, on soumet le solvant riche à un traitement de déméthanisation au moins partielle pour produire une phase liquide appauvrie en méthane et appelée solvant riche déméthanisé et une phase gazeuse riche en méthane, qui peut être éventuellement réunie au mélange gazeux à traiter avant la mise en contact de ce dernier avec le solvant, on soumet le solvant riche déméthanisé à un traitement produisant un courant de gaz acide, qui ren­ferme la quasi-totalité du CO₂ présent dans le solvant riche déméthanisé, produisant également un mélange d'hy­drocarbures appelé coupe d'hydrocarbures et produisant enfin un solvant régénéré, qui est recyclé vers la zone de lavage.The process according to the invention is of the type of process which is described in the US-A-3770622 quotation and in which the gas mixture is brought into contact, in a washing zone, with a solvent consisting of a liquid which dissolves CO₂ and hydrocarbons in C₂ and above and which has on the one hand, at atmospheric pressure, a boiling temperature greater than 40 ° C and on the other hand, at - 30 ° C, a viscosity less than 0.1 Pa. s, by operating at a sufficiently low temperature and with a ratio of the flow rates of the gaseous mixture to be treated and of the solvent such that a treated gas consisting mainly of methane and having a molar CO₂ content of more equal to 2% and, on the other hand, a liquid phase called rich solvent and formed of the solvent enriched in CO₂ and in a fraction of hydrocarbons in C₂ and more containing at least 80 mol% of the hydrocarbons in C₃ and more present in the gas mixture to be treated, we subjects the rich solvent to at least partial demethanization treatment to produce a methane-depleted liquid phase called demethanized rich solvent and a methane-rich gas phase, which can optionally be combined with the gaseous mixture to be treated before bringing this into contact last with the solvent, the demethanized rich solvent is subjected to a treatment producing an acid gas stream, which contains almost all of the CO₂ present in the demethanized rich solvent, also producing a mixture of hydrocarbons called hydrocarbon cut and producing finally a regenerated solvent, which is recycled to the washing zone.

Le procédé selon l'invention se distingue du procédé de la citation US-A-3770622, et se caractérise donc, en ce que le traitement du solvant riche déméthanisé est réalisé de telle sorte que le courant de gaz acide qu'il produit contienne, exprimé en équivalent méthane, moins de 10% molaire d'hydrocarbures par rapport au CO₂ et que la coupe d'hydrocarbures obtenue consiste en un mélange d'hydrocarbures en C₂ et plus renfermant au moins 80% molaire des hydrocarbures en C₃ et plus présents dans le mélange gazeux à traiter, ledit traitement du solvant riche déméthanisé consistant en l'un ou l'autre des traitements a), b), c) suivants :

  • a) régénération du solvant riche déméthanisé produisant le solvant régénéré et un mélange gazeux contenant le CO₂ ainsi que les hydrocarbures en C₂ et plus présents dans le solvant riche déméthanisé et traitement dudit mélange gazeux pour produire le courant de gaz acide riche en CO₂ et la coupe d'hydrocarbures,
  • b) - extraction sous forme liquide des hydrocarbures en C₂ et plus par mise en contact, dans une zone d'extraction, du solvant riche déméthanisé, soumis préalablement à une réfrigération, avec un solvant hydrocarboné, de manière à produire un solvant purifié renfermant la quasi-totalité du CO₂ présent dans le solvant riche déméthanisé et ayant une teneur en hydrocarbure, exprimée en équivalent méthane, inférieure à 10% molaire par rapport au CO₂ ainsi qu'un solvant hydrocarboné enrichi en hydrocarbures en C₂ et plus, puis régénération du solvant purifié pour produire d'une part le solvant régénéré et d'autre part le courant de gaz acide riche en CO₂ et fractionnement du solvant hydrocarboné enrichi par distillation en une fraction d'hydrocarbures en C₂ et plus constituant la coupe d'hydrocarbures et en le solvant hydrocarboné régénéré, qui est recyclé, après réfrigération, vers la zone d'extraction, et
  • c) - refroidissement du solvant riche déméthanisé à une température suffisamment inférieure à la température régnant dans la zone de lavage pour provoquer une démixtion dudit solvant riche déméthanisé en deux fractions, à savoir une fraction liquide inférieure, qui renferme la quasi-totalité du CO₂ présent dans le solvant riche déméthanisé et possède une teneur en hydrocarbure, exprimée en équivalent méthane, inférieure à 10% molaire par rapport au CO₂ et qui constitue un solvant purifié, et une fraction liquide supérieure, qui constitue la coupe d'hydrocarbures en C₂ et plus, et régénération du solvant purifié pour produire d'une part le solvant régénéré et d'autre part le courant de gaz acide riche en CO₂.
The process according to the invention differs from the process of the US-A-3770622 citation, and is therefore characterized in that the treatment of the demethanized rich solvent is carried out so that the stream of acid gas which it produces contains, expressed in methane equivalent, less than 10 mol% of hydrocarbons relative to CO₂ and that the cut of hydrocarbons obtained consists of a mixture of hydrocarbons in C₂ and more containing at least 80 mol% of hydrocarbons in C₃ and more present in the gaseous mixture to be treated, said treatment of the demethanized rich solvent consisting of one or other of the following treatments a), b), c):
  • a) regeneration of the demethanized rich solvent producing the regenerated solvent and a gaseous mixture containing CO₂ as well as the C₂ hydrocarbons and more present in the demethanized rich solvent and treatment of said gaseous mixture to produce the stream of acid gas rich in CO₂ and cutting hydrocarbons,
  • b) - extraction in liquid form of C₂ and higher hydrocarbons by bringing into contact, in an extraction zone, the demethanized rich solvent, subjected beforehand to refrigeration, with a hydrocarbon solvent, so as to produce a purified solvent containing the almost all of the CO₂ present in the demethanized rich solvent and having a hydrocarbon content, expressed in methane equivalent, of less than 10 mol% relative to CO₂ as well as a hydrocarbon solvent enriched in C₂ hydrocarbons and more, then regeneration of the solvent purified to produce on the one hand the regenerated solvent and on the other hand the stream of acid gas rich in CO₂ and fractionation of the hydrocarbon solvent enriched by distillation into a fraction of hydrocarbons in C₂ and more constituting the cut of hydrocarbons and in regenerated hydrocarbon solvent, which is recycled, after refrigeration, to the extraction zone, and
  • c) - cooling the demethanized rich solvent to a temperature sufficiently lower than the temperature prevailing in the washing zone to cause demixing of said demethanized rich solvent in two fractions, namely a lower liquid fraction, which contains almost all of the CO₂ present in the demethanized rich solvent and has a hydrocarbon content, expressed in methane equivalent, of less than 10 mol% relative to the CO₂ and which constitutes a purified solvent , and a higher liquid fraction, which constitutes the cut of hydrocarbons in C₂ and more, and regeneration of the purified solvent to produce on the one hand the regenerated solvent and on the other hand the stream of acid gas rich in CO₂.

Par "équivalent méthane", on désigne suivant l'invention autant de pseudo-molécules à un seul atome de carbone qu'il y a d'atomes de carbone dans la molécule considérée d'hydrocarbure.By "methane equivalent" is meant according to the invention as many pseudo-molecules with a single carbon atom as there are carbon atoms in the considered hydrocarbon molecule.

Le solvant, qui est défini généralement ci-­dessus pour la mise en contact avec le mélange gazeux à traiter aux fins d'absorption du CO₂ et des hydrocarbures en C₂ et plus, possède de préférence une viscosité infé­rieure à 0,05 Pa.s.The solvent, which is generally defined above for bringing it into contact with the gaseous mixture to be treated for the purpose of absorbing CO₂ and C en and higher hydrocarbons, preferably has a viscosity of less than 0.05 Pa.s.

Le solvant suivant l'invention peut consister en particulier en un ou plusieurs absorbants liquides sélectifs du CO₂ et utilisés sous forme anhydre ou en mélange avec de l'eau, le ou lesdits solvants étant choisis parmi les amides de formules

Figure imgb0001
les aldéhydes de formule
Figure imgb0002
les esters de formules
Figure imgb0003
les alcanols en C₁ à C₄, les diéthers de formule CH₃-O⁅C₂H₄O⁆
Figure imgb0004
CH₃, les diéthers alcools de formule R₉O- C₂H₄- O - C₂H₄ - OH, les lactones de formule
Figure imgb0005
et le carbonate de propylène, avec dans ces formules R₁ et R2, identiques ou différents, désignant un atome d'hydrogène ou un radical alcoyle en C₁ ou C₂, R₃ étant un radical alcoyle en C₃ ou C₄, R₆ étant un radical alcoyle en C₂ à C₄ ou un radical ⁅C₂H₄O⁆
Figure imgb0006
R₈ avec R₈ désignant un radical alcoyle en C₁ ou C₂ et n étant égal à 1 ou 2, R₇ étant un radical alcoyle en C₁ ou C₂ ou un radical ⁅C₂H₄O⁆
Figure imgb0007
R₈, R₉ désignant un radical alcoyle en C₁ à C₄ et p étant un nombre entier allant de 2 à 4.The solvent according to the invention may consist in particular of one or more liquid absorbents which are selective for CO₂ and used in anhydrous form or as a mixture with water, the said solvent (s) being chosen from the amides of formulas
Figure imgb0001
aldehydes of formula
Figure imgb0002
formula esters
Figure imgb0003
Ccan to C₄ alkanols, diethers of formula CH₃-O⁅C₂H₄O⁆
Figure imgb0004
CH₃, diether alcohols of formula R₉O- C₂H₄- O - C₂H₄ - OH, lactones of formula
Figure imgb0005
and carbonate of propylene, with in these formulas R₁ and R2, identical or different, denoting a hydrogen atom or an alkyl radical in C₁ or C₂, R₃ being an alkyl radical in C₃ or C₄, R₆ being an alkyl radical in C₂ to C₄ or a radical ⁅C₂H₄O⁆
Figure imgb0006
R₈ with R₈ denoting a C₁ or C₂ alkyl radical and n being equal to 1 or 2, R₇ being a Coy or C₂ alkyl radical or a ⁅C₂H₄O⁆ radical
Figure imgb0007
R₈, R₉ denoting a C₁ to C₄ alkyl radical and p being an integer ranging from 2 to 4.

Des exemples non limitatifs d'absorbants orga­niques liquides répondant aux formules ci-dessus sont tels que N,N-diméthylformamide, N,N-diméthylacétamide, dimé­thoxyméthane, diéthoxyméthane, diméthoxy-1,1 éthane, méthanol, éthanol, diméthyléther de l'éthylène glycol, diméthyléther du diéthylèneglycol, monométhyléther de l'éthylèneglycol, butyrolactone, propiolactone et carbo­nate de propylène.Nonlimiting examples of liquid organic absorbents corresponding to the above formulas are such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethoxymethane, diethoxymethane, dimethoxy-1,1 ethane, methanol, ethanol, ethylene dimethyl ether glycol, diethylene glycol dimethyl ether, ethylene glycol monomethyl ether, butyrolactone, propiolactone and propylene carbonate.

La température de mise en contact du mélange gazeux à traiter avec le solvant, dans la zone de lavage, est de préférence comprise entre 0°C et -45°C.The contacting temperature of the gas mixture to be treated with the solvent in the washing zone is preferably between 0 ° C and -45 ° C.

La zone de lavage consiste avantageusement en une ou plusieurs colonnes de lavage renfermant le nombre approprié d'étages théoriques de lavage, lesdites colonnes étant, par exemple, du type des colonnes à plateaux ou encore des colonnes à garnissage. Avantageusement on maintient substantiellement constante la température dans chacune des colonnes de lavage par échange indirect de chaleur, effectué en un ou plusieurs points de la colonne considérée, entre le milieu fluide contenu dans cette colonne et un fluide réfrigérant.The washing zone advantageously consists of one or more washing columns containing the appropriate number of theoretical washing stages, said columns being, for example, of the type of tray columns or even packed columns. Advantageously, the temperature in each of the washing columns is kept substantially constant by indirect heat exchange, carried out at one or more points of the column in question, between the fluid medium contained in this column and a refrigerating fluid.

Le traitement de déméthanisation appliqué au solvant riche est réalisé, en particulier, en deux étapes, à savoir une première étape dans laquelle ledit solvant riche est soumis à une première détente à une pression intermédiaire propre à libérer une fraction importante du méthane dissous dans ledit solvant à déméthaniser et à produire un premier gaz riche en méthane et un fluide prédéméthanisé et une seconde étape dans laquelle le fluide prédéméthanisé est soumis à une seconde détente puis à une distillation de manière à produire un second gaz riche en méthane et le solvant riche déméthanisé, le second gaz riche en méthane étant comprimé jusqu'à la pression du premier gaz riche en méthane puis mélangé à ce dernier pour constituer la phase gazeuse riche en méthane.The demethanization treatment applied to the rich solvent is carried out, in particular, in two stages, namely a first stage in which the said rich solvent is subjected to a first expansion at an intermediate pressure capable of releasing a large fraction of the methane dissolved in said solvent to be demethanized and to produce a first gas rich in methane and a predemethanized fluid and a second step in which the predemethanized fluid is subjected to a second expansion then to a distillation so as to produce a second gas rich in methane and the demethanized rich solvent, the second methane-rich gas being compressed to the pressure of the first methane-rich gas and then mixed with the latter to form the methane-rich gas phase.

La phase gazeuse riche en méthane, résultant du traitement de déméthisation appliqué au solvant riche, est avantageusement comprimée jusqu'à la pression du mélange gazeux à traiter, puis elle est refroidie et mélangée au mélange gazeux à traiter avant la mise en contact de ce dernier avec le solvant dans la zone de lavage.The methane-rich gas phase, resulting from the demethization treatment applied to the rich solvent, is advantageously compressed to the pressure of the gas mixture to be treated, then it is cooled and mixed with the gas mixture to be treated before the latter is brought into contact. with the solvent in the washing area.

En particulier, lorsque l'on applique le traitement a) au solvant riche déméthanisé, le traitement du mélange gazeux contenant le CO₂ et les hydrocarbures en C₂ et plus, qui est produit lors de l'étape de régénéra­tion dudit traitement a), consiste en un lavage dudit mélange gazeux par mise en contact de ce mélange gazeux avec un solvant hydrocarboné en C₅ et plus dans un espace de lavage opérant à basse température de manière à produire le courant de gaz acide riche en CO₂ et un solvant hydrocarboné riche contenant la presque totalité des hydrocarbures en C₂ et plus contenu dans ledit mélange gazeux et pratiquement exempt de CO₂, ledit lavage étant suivi d'une régénération du solvant hydrocarboné riche pour produire la coupe d'hydrocarbures en C₂ et plus et un solvant hydrocarboné régénéré que l'on recycle vers l'espace de lavage.In particular, when treatment a) is applied to the rich demethanized solvent, the treatment of the gaseous mixture containing CO₂ and C hydrocar and higher hydrocarbons, which is produced during the regeneration step of said treatment a), consists of washing said gaseous mixture by bringing this gaseous mixture into contact with a C₅ and higher hydrocarbon solvent in a washing space operating at low temperature so as to produce the stream of acid gas rich in CO₂ and a rich hydrocarbon solvent containing almost all of the C₂ and higher hydrocarbons contained in said gaseous mixture and practically free of CO₂, said washing being followed by regeneration of the rich hydrocarbon solvent to produce the cut of C₂ and higher hydrocarbons and a regenerated hydrocarbon solvent which is recycles to the washing space.

Avantageusement la régénération du solvant riche déméthanisé, réalisée au cours du traitement a), est mise en oeuvre en réchauffant ledit solvant jusqu'à une tempé­rature proche de l'ambiante, en partageant le solvant réchauffé en un premier et un second courants, en dirigeant le premier courant directement vers une zone de régénération, en dirigeant le second courant vers ladite zone de régénération après l'avoir réchauffé par échange indirect de chaleur avec le solvant régénéré, et en soumettant le solvant à une distillation dans la zone de régénération. La dite distillation peut être effectuée en présence d'un courant de gaz inerte, par exemple azote, injecté dans la zone de régénération.Advantageously, the regeneration of the demethanized rich solvent, carried out during treatment a), is carried out by reheating said solvent to a temperature close to ambient, by dividing the reheated solvent into first and second streams, by directing the first stream directly to a regeneration area, directing the second stream to said regeneration area after having heated it by indirect heat exchange with the regenerated solvent, and subjecting the solvent to distillation in the regeneration area. Said distillation can be carried out in the presence of a stream of inert gas, for example nitrogen, injected into the regeneration zone.

Avantageusement, lorsque l'on applique le traitement c) au solvant riche déméthanisé, la tempéra­ture, inférieure à la température régnant dans la zone de lavage, à laquelle on refroidit ledit solvant riche déméthanisé pour réaliser sa démixtion est plus particu­lièrement comprise entre -25°C et -80°C.Advantageously, when treatment c) is applied to the demethanized rich solvent, the temperature, below the temperature prevailing in the washing zone, to which said demethanized rich solvent is cooled to achieve its demixing is more particularly between -25 °. C and -80 ° C.

La régénération du solvant purifié produit dans l'un ou l'autre des traitements b) et c), qui conduit à la production du courant de gaz acide riche en CO₂ et présen­tant, exprimée en équivalent méthane, une teneur en hydrocarbures inférieure à 10 % molaire par rapport au CO₂, peut être réalisée par tout traitement permettant de libérer les composés gazeux dissous dans un liquide. En particulier, la régénération du solvant purifié peut être effectuée par détente dudit solvant purifié jusqu'à une pression supérieure à 100 kPa et par exemple comprise entre 150 kPa et 300 kPa et par stripage au moyen d'un gaz inerte tel que l'azote associé éventuellement à un réchauf­fage du solvant purifié dans la zone de régénération.
La régénération du solvant purifié peut encore être réalisée en réchauffant ledit solvant purifié jusqu'à une température proche de l'ambiante, en partageant le solvant réchauffé en un premier et un second courants, en diri­geant le premier courant directement vers une zone de régénération, en dirigeant le second courant vers cette zone de régénération après l'avoir réchauffé par échange indirect de chaleur avec le solvant purifié régénéré, et en soumettant le solvant à une distillation dans la zone de régénération aux fins de produire le solvant régénéré et le courant de gaz acide riche en CO₂ fourni par le procédé.
The regeneration of the purified solvent produced in one or other of the treatments b) and c), which leads to the production of the stream of acid gas rich in CO₂ and having, expressed in methane equivalent, a hydrocarbon content of less than 10 % molar relative to CO₂, can be carried out by any treatment making it possible to release the gaseous compounds dissolved in a liquid. In particular, the regeneration of the purified solvent can be carried out by expansion of said purified solvent to a pressure greater than 100 kPa and for example between 150 kPa and 300 kPa and by stripping using an inert gas such as nitrogen. possibly associated with a heating of the purified solvent in the regeneration zone.
The regeneration of the purified solvent can also be carried out by heating the said purified solvent to a temperature close to ambient, by dividing the heated solvent into first and second streams, directing the first stream directly to a regeneration zone, by directing the second stream to this regeneration zone after having heated it by indirect heat exchange with the regenerated purified solvent, and by subjecting the solvent to distillation in the regeneration zone in order to produce the regenerated solvent and the regeneration current. acid gas rich in CO₂ supplied by the process.

Lorsque le mélange gazeux à traiter renferme de l'eau et/ou des hydrocarbures en C₅ et plus, il est avantageusement soumis à un prétraitement destiné à éliminer tout ou partie de ces composés avant d'être mis en contact avec le solvant dans la zone de lavage.
Ce prétraitement peut consister en une distillation réalisée éventuellement en présence de solvant, prélevé sur le solvant injecté dans la zone de lavage, pour produire le mélange gazeux prétraité présentant une teneur en hydrocarbures en C₆ et plus inférieure à 0,1 % en poids, une fraction d'hydrocarbures dits lourds renfermant la quasi-totalité des hydrocarbures en C₆ et plus et tout ou partie des hydrocarbures en C₅ et, éventuellement, un liquide consistant en un mélange de solvant et d'eau. Ladite distillation du mélange gazeux est effectuée à une température au moins égale à la température régnant dans la zone de lavage.
When the gaseous mixture to be treated contains water and / or C₅ and higher hydrocarbons, it is advantageously subjected to a pretreatment intended to remove all or part of these compounds before being brought into contact with the solvent in the zone of washing.
This pretreatment can consist of a distillation possibly carried out in the presence of solvent, taken from the solvent injected into the washing zone, to produce the pretreated gas mixture having a C₆ hydrocarbon content and more than 0.1% by weight, a fraction of so-called heavy hydrocarbons containing almost all of the C₆ and more hydrocarbons and all or part of the C₅ hydrocarbons and, optionally, a liquid consisting of a mixture of solvent and water. Said distillation of the gas mixture is carried out at a temperature at least equal to the temperature prevailing in the washing zone.

L'invention sera mieux comprise à la lecture de la description donnée ci-après de plusieurs de ses formes de mise en oeuvre faisant appel aux installations schéma­tisées sur les figures 1 à 3 du dessin annexé.The invention will be better understood on reading the description given below of several of its embodiments using the facilities shown schematically in Figures 1 to 3 of the accompanying drawing.

En se référant à la figure 1, le mélange gazeux à traiter arrivant par le conduit 1 est introduit dans la partie inférieure d'une colonne 2 de distillation, dans laquelle ledit mélange gazeux est distillé éventuellement en présence de solvant prélevé, par un conduit 41 débou­chant dans la partie supérieure de la colonne 2, sur le solvant régénéré 38 amené à la colonne 5 de lavage, avant passage dudit solvant dans une zone 39 de réfrigération montée sur le conduit 6 d'injection du solvant régénéré dans ladite colonne 5 de lavage, de manière à produire d'une part un mélange gazeux séché, évacué de la colonne 2 par un conduit 3 et dont la teneur en hydrocarbures en C₆ et plus est inférieure à 0,1 % en poids, et d'autre part une coupe hydrocarbonée renfermant la quasi-totalité des hydrocarbures en C₆ et plus et éventuellement tout ou partie des hydrocarbures en C₅, soutirée de la colonne 2 par un conduit 4 et éventuellement un liquide soutiré de la colonne 2 par un conduit 54 et consistant en un mélange de solvant et d'eau.Referring to FIG. 1, the gas mixture to be treated arriving via line 1 is introduced into the lower part of a distillation column 2, in which said gas mixture is optionally distilled in the presence of solvent removed, through line 41 emerging in the upper part of column 2, on the regenerated solvent 38 brought to the washing column 5, before passage of said solvent in a refrigeration zone 39 mounted on the conduit 6 for injecting the regenerated solvent in said washing column 5 , so as to produce on the one hand a dried gaseous mixture, evacuated from column 2 by a line 3 and whose hydrocarbon content in C₆ and more is less than 0.1% by weight, and on the other hand a cut hydrocarbon containing almost all of the C₆ hydrocarbons and more and possibly all or part of the C₅ hydrocarbons, drawn off from column 2 by a pipe 4 and optionally a liquid drawn off column 2 through a conduit 54 and consisting of a mixture of solvent and water.

Le mélange gazeux séché sortant de la colonne 2 par le conduit 3 est introduit dans la partie inférieure d'une colonne 5 de lavage, par exemple du type colonne à plateaux, dans laquelle il est mis en contact, à contre-­courant, avec du solvant froid régénéré injecté dans la partie supérieure de la colonne 5 par le conduit 6, après passage dans le réfrigérant 39, cette mise en contact étant effectuée à une température comprise, par exemple, entre 0°C et -45°C, ladite température étant contrôlée par passage du milieu liquide contenu dans la colonne 5 dans des réfrigérants 7. En tête de la colonne 5 on évacue, par un conduit 8, un gaz traité consistant principalement en méthane et appauvri en CO₂, ledit gaz traité étant réchauffé dans un système 9 de réchauffage puis dirigé, par un conduit 10, vers une zone d'utilisation, tandis qu'en fond de ladite colonne 5 on soutire, par un conduit 11, une phase liquide constituée du solvant enrichi en CO₂ et autres composés absorbés et appelée solvant riche.The dried gaseous mixture leaving column 2 through line 3 is introduced into the lower part of a washing column 5, for example of the plate column type, in which it is brought into contact, against the current, with regenerated cold solvent injected into the upper part of the column 5 via the line 6, after passing through the coolant 39, this contacting being carried out at a temperature of, for example, between 0 ° C. and -45 ° C., said temperature being controlled by passage of the liquid medium contained in column 5 in refrigerants 7. At the head of column 5, a treated gas consisting mainly of methane and depleted in CO₂ is removed, said treated gas being heated in a heating system 9 then directed, via a conduit 10, to a zone of use, while at the bottom of said column 5 is drawn off, via a conduit 11, a liquid phase consisting of the solvent enriched in CO₂ and other compounds absorbed and called rich solvent.

On réalise la mise en contact du mélange gazeux séché avec le solvant dans la colonne 5 de lavage à une température appropriée dans l'intervalle 0°C à -45°C et avec un rapport des débits de mélange gazeux à traiter et de solvant tel que d'une part le gaz traité recueilli, par le conduit 8, en tête de la colonne 5 ait une teneur molaire en CO₂ au plus égale à 2 % et que d'autre part le solvant riche, s'écoulant par le conduit 11, renferme au moins 80 % molaire des hydrocarbures en C₃ et plus présents dans le mélange gazeux séché introduit dans la colonne 5.The dried gas mixture is brought into contact with the solvent in the washing column 5 at an appropriate temperature in the range 0 ° C. to -45 ° C. and with a ratio of the flow rates of the gas mixture to be treated and of solvent such that on the one hand the treated gas collected, through line 8, at the head of column 5 has a molar CO₂ content of at most equal to 2% and that on the other hand the rich solvent, flowing through line 11 , contains at least 80 mol% of C₃ and higher hydrocarbons present in the dried gas mixture introduced in column 5.

Le solvant riche circulant dans le conduit 11 est introduit, après passage à travers la vanne 12 de détente, dans la partie supérieure d'un ballon de détente 13 dans lequel se sépare un premier gaz riche en méthane, que l'on évacue en tête du ballon 13 par un conduit 14, et un solvant riche prédéméthanisé, que l'on soutire en fond du ballon 13 par un conduit 15. Ledit solvant riche prédéméthanisé est soumis à une seconde détente à travers une vanne de détente 16 suivie d'une distillation dans une colonne 17 de distillation pourvue d'un rebouilleur 18, de manière à produire un second gaz riche en méthane, que l'on évacue en tête de la colonne 17 par un conduit 19, et une phase liquide appauvrie en méthane, appelée solvant riche déméthanisé, qui est soutirée en fond de la colonne 17 par un conduit 27. Le second gaz riche en méthane circulant dans le conduit 19 est amené à passer dans un compresseur 20 d'où il sort, par un conduit 21, à une pression sensiblement égale à celle du premier gaz riche en méthane passant dans le conduit 14, puis ces deux gaz riches en méthane sont mélangés dans le conduit 22 et la phase gazeuse résultant de ce mélange est recyclée, par l'intermédiaire d'un compresseur 23 dont la sortie est prolongée par un conduit 24, un réfrigérant 25 et un conduit 26, dans le conduit 3 d'amenée du mélange gazeux séché à la colonne 5 de lavage.The rich solvent circulating in the conduit 11 is introduced, after passage through the expansion valve 12, into the upper part of an expansion tank 13 in which a first methane-rich gas separates, which is removed at the head of the flask 13 by a conduit 14, and a predemethanized rich solvent, which is withdrawn from the bottom of the flask 13 by a conduit 15. Said predemethanized rich solvent is subjected to a second expansion through an expansion valve 16 followed by a distillation in a distillation column 17 provided with a reboiler 18, so as to produce a second gas rich in methane, which is evacuated at the top of the column 17 by a conduit 19, and a liquid phase depleted in methane, called demethanized rich solvent, which is drawn off at the bottom of the column 17 by a pipe 27. The second methane-rich gas circulating in the pipe 19 is caused to pass into a compressor 20 from which it leaves, via a pipe 21, to a pressure substantially equal to that of the first methane-rich gas passing through line 14, then these two methane-rich gases are mixed in line 22 and the gas phase resulting from this mixture is recycled, by means of a compressor 23 whose the outlet is extended by a line 24, a cooler 25 and a line 26, in the line 3 for supplying the dried gas mixture to the washing column 5.

Le solvant riche déméthanisé, soutiré de la colonne 17 par le conduit 27, traverse une vanne de détente 29 puis un système 28 de réchauffage, dans lequel il est amené à une température proche de l'ambiante, puis il est amené à une colonne 33 de régénération pourvue d'un rebouilleur 40 après avoir été partagé en un premier courant 30, qui est introduit directement dans la colonne 33 de régénération, et un second courant 31, qui est introduit dans ladite colonne de régénération après avoir été réchauffé dans un échangeur indirect de chaleur 35. La régénération peut être réalisée en présence d'un courant de gaz inerte, notamment un courant d'azote, injecté dans la partie inférieure de la colonne 33 par un conduit 43. Ladite régénération produit, d'une part, un solvant régénéré soutiré en fond de la colonne 33, par un conduit 34, et utilisé dans l'échangeur de chaleur 35, pour réchauffer le second courant 31 de solvant riche demé­thanisé à régénérer, avant d'être recyclé, par la pompe 37 et le conduit 38, vers la colonne 5 de lavage, et d'autre part un mélange gazeux évacué en tête de la colonne 33, par un conduit 42, et contenant le CO₂ ainsi que les hydrocarbures en C₂ et plus présents dans le solvant riche déméthanisé.The demethanized rich solvent, withdrawn from the column 17 by the conduit 27, passes through an expansion valve 29 then a heating system 28, in which it is brought to a temperature close to ambient, then it is brought to a column 33 regeneration provided with a reboiler 40 after being divided into a first stream 30, which is introduced directly into the regeneration column 33, and a second stream 31, which is introduced into said regeneration column after having been reheated in an exchanger indirect heat 35. The regeneration can be carried out in the presence of a stream of inert gas, in particular a stream of nitrogen, injected into the lower part of the column 33 through a conduit 43. Said regeneration produces, on the one hand, a regenerated solvent drawn off at the bottom of the column 33, through a pipe 34, and used in the heat exchanger 35, to heat the second stream 31 of solvent rich in methanis to be regenerated, before being recycled, by the pump 37 and the pipe 38, to the washing column 5, and on the other hand a gaseous mixture discharged at the top of the column 33, by a pipe 42, and containing the CO₂ as well as C₂ and more hydrocarbons present in the demethanized rich solvent.

Le mélange gazeux passant dans le conduit 42 est lavé à contre-courant, dans une tour de lavage 47 munie d'un réfrigérant 46 en tête et d'un rebouilleur 70 en fond et opérant à basse température, au moyen d'un solvant hydrocarboné en C₅ et plus amené à la tour de lavage 47 par un conduit 53, ledit lavage produisant, d'une part, un courant 44 de gaz acide riche en CO₂, qui renferme la quasi-totalité du CO₂ présent dans le solvant riche déméthanisé et possède, exprimée en équivalent méthane, une teneur en hydrocarbures inférieure à 10 % molaire par rapport au CO₂, et, d'autre part, un solvant hydrocarboné riche 45 pratiquement exempt de CO₂ et contenant la presque totalité des hydrocarbures en C₂ et plus présents dans le mélange gazeux arrivant par le conduit 42.The gaseous mixture passing through the conduit 42 is washed against the current, in a washing tower 47 provided with a condenser 46 at the head and a reboiler 70 at the bottom and operating at low temperature, using a hydrocarbon solvent in C₅ and no longer brought to the washing tower 47 via a pipe 53, said washing producing, on the one hand, a stream 44 of acid gas rich in CO₂, which contains almost all of the CO₂ present in the rich solvent demethanized and has, expressed in methane equivalent, a hydrocarbon content of less than 10 mol% relative to CO₂, and, on the other hand, a rich hydrocarbon solvent 45 practically free of CO₂ and containing almost all of the hydrocarbons C₂ and more present in the gas mixture arriving via line 42.

Le solvant hydrocarboné riche 45 est amené à une colonne 49 de régénération dans laquelle ledit solvant 45 est soumis à une distillation pour produire, d'une part, une fraction d'hydrocarbures 48 constituant la coupe d'hydrocarbures en C₂ et plus renfermant au moins 80 % molaire des hydrocarbures en C₃ et plus contenus dans le gaz à traiter amené à la colonne 5 de lavage par le conduit 3, et, d'autre part, un solvant hydrocarboné 50 régénéré, qui est recyclé, par la pompe 51, à la colonne 47 de régénération après réfrigération dans le système 52 et passage dans le conduit 53.The rich hydrocarbon solvent 45 is brought to a regeneration column 49 in which said solvent 45 is subjected to distillation to produce, on the one hand, a fraction of hydrocarbons 48 constituting the cut of C₂ hydrocarbons and more containing at least 80 mol% of the C₃ hydrocarbons and more contained in the gas to be treated brought to the washing column 5 by the line 3, and, on the other hand, a regenerated hydrocarbon solvent 50, which is recycled, by the pump 51, to the regeneration column 47 after refrigeration in the system 52 and passage in the conduit 53.

Le mode de réalisation du procédé selon l'inven­tion, qui est illustré par la figure 2, diffère du mode de réalisation illustré par la figure 1 uniquement par le traitement du solvant riche déméthanisé disponible à la sortie de la vanne de détente 29 montée sur le conduit 27 par lequel le solvant riche déméthanisé est soutiré de la colonne 17 de déméthanisation. Les opérations réalisées dans la colonne 2, de même que les opérations de mise en contact du gaz à traiter avec le solvant dans la colonne 5 de lavage et de déméthanisation du solvant riche sont donc identiques à celles décrites en référence à la figure 1.The embodiment of the method according to the invention, which is illustrated in FIG. 2, differs from the embodiment illustrated in FIG. 1 only by the treatment of the demethanized rich solvent available at the outlet of the expansion valve 29 mounted on the line 27 through which the demethanized rich solvent is withdrawn from the demethanization column 17. The operations carried out in column 2, as well as the operations for bringing the gas to be treated into contact with the solvent in column 5 for washing and demethanization of the rich solvent are therefore identical to those described with reference to FIG. 1.

Le solvant riche déméthanisé, détendu par passage dans la vanne 29 de détente, est réfrigéré dans le système réfrigérant 40 avec comme résultat la démixtion dudit solvant en deux phases liquides, à savoir une phase supérieure hydrocarbonée et une phase inférieure consti­tuée du solvant renfermant la majorité du CO₂ et une certaine quantité d'hydrocarbures. L'ensemble est intro­duit dans une tour d'extraction 56, dans laquelle il est mis en contact, à contre-courant, avec un solvant hydro­carboné réfrigéré injecté, par un conduit 57, dans la partie inférieure de la tour d'extraction et avec un courant de solvant régénéré introduit dans la tour 56 par un conduit 63, de manière à produire, d'une part, un solvant purifié renfermant la quasi-totalité du CO₂ présent dans le solvant riche déméthanisé, ledit solvant purifié étant soutiré en fond de la tour d'extraction 56 par un conduit 58 sur lequel est monté une vanne de détente 60, et, d'autre part, un solvant hydrocarboné enrichi en hydrocarbures en C₂ et plus renfermant peu de CO₂, ledit solvant étant évacué en tête de la tour d'ex­traction 56 par un conduit 59.The demethanized rich solvent, expanded by passage through the expansion valve 29, is refrigerated in the refrigerating system 40 with the result of the demixing of said solvent into two liquid phases, namely an upper hydrocarbon phase and a lower phase consisting of the solvent containing the majority CO₂ and a certain amount of hydrocarbons. The assembly is introduced into an extraction tower 56, in which it is brought into contact, against the current, with a refrigerated hydrocarbon solvent injected, through a conduit 57, into the lower part of the extraction tower and with a stream of regenerated solvent introduced into the tower 56 through a conduit 63, so as to produce, on the one hand, a purified solvent containing almost all of the CO₂ present in the demethanized rich solvent, said purified solvent being drawn off at the bottom of the extraction tower 56 by a conduit 58 on which is mounted an expansion valve 60, and, on the other hand, a hydrocarbon solvent enriched in C₂ hydrocarbons and more containing little CO₂, said solvent being removed at the head of the extraction tower 56 by a conduit 59.

Le solvant hydrocarboné enrichi 59 est introduit dans un colonne 49 de régénération dans laquelle ledit solvant est fractionné par distillation en une fraction d'hydrocarbures en C₂ et plus, qui est évacuée en tête de ladite colonne 49 par un conduit 48 et constitue la coupe d'hydrocarbures en C₂ et plus renfermant au moins 80 % molaire des hydrocarbures en C₃ et plus contenus dans le gaz à traiter amené à la colonne 5 de lavage par le conduit 3, et en un solvant hydrocarboné régénéré soutiré de la colonne 49 par un conduit 50, lequel solvant hydro­carboné régénéré est recyclé par la pompe 51, à travers le système réfrigérant 61 et le conduit 57, à la tour d'ex­traction 56.The enriched hydrocarbon solvent 59 is introduced into a regeneration column 49 in which said solvent is fractionated by distillation into a fraction of C₂ and higher hydrocarbons, which is evacuated at the top of said column 49 by a conduit 48 and constitutes the cut d hydrocarbons C₂ and more containing at least 80 mol% of hydrocarbons C₃ and more contained in the gas to be treated brought to the washing column 5 by line 3, and in a regenerated hydrocarbon solvent withdrawn from column 49 by a line 50, which regenerated hydrocarbon solvent is recycled by the pump 51, through the refrigerant system 61 and the conduit 57, to the extraction tower 56.

A la sortie de la vanne de détente 60, le solvant purifié circulant dans le conduit 58 est introduit à la partie supérieure d'une colonne 62 de régénération pourvue d'un réchauffeur 69, dans laquelle ledit solvant purifié est soumis à une régénération comportant un stripage à l'aide d'un courant de gaz inerte, par exemple un courant d'azote, injecté à la partie inférieure de la colonne 62 par un conduit 43. Ladite régénération produit, d'une part, un solvant régénéré 34, qui est recyclé au moyen d'une pompe 37 et d'un conduit 38 à la colonne de lavage 5 à travers l'échangeur de chaleur 39 et le conduit 6, et, d'autre part, un courant 44 de gaz acide riche en CO₂, qui renferme la quasi-totalité du CO₂ présent dans le solvant riche déméthanisé et possède, exprimée en équiva­lent méthane, une teneur en hydrocarbures inférieure à 10 % molaire par rapport au CO₂.
Une partie du solvant régénéré froid passant dans le conduit 38 est dérivée par un conduit 63 pour être injectée dans la tour d'extraction 56 en un point de cette tour situé au-dessus du point d'injection du solvant riche déméthanisé circulant dans le conduit 27.
At the outlet of the expansion valve 60, the purified solvent circulating in the conduit 58 is introduced into the upper part of a regeneration column 62 provided with a heater 69, in which said purified solvent is subjected to a regeneration comprising a stripping using a stream of inert gas, for example a stream of nitrogen, injected into the lower part of the column 62 through a conduit 43. Said regeneration produces, on the one hand, a regenerated solvent 34, which is recycled by means of a pump 37 and a pipe 38 to the washing column 5 through the heat exchanger 39 and the pipe 6, and, on the other hand, a stream 44 of acid gas rich in CO₂ , which contains almost all of the CO₂ present in the demethanized rich solvent and has, expressed in methane equivalent, a hydrocarbon content of less than 10 mol% relative to CO₂.
Part of the cold regenerated solvent passing through line 38 is diverted through line 63 to be injected into the extraction tower 56 at a point in this tower located above the injection point of the demethanized rich solvent circulating in the line 27.

Dans le mode de réalisation du procédé selon l'invention, qui est illustré par la figure 3, le mélange gazeux à traiter, arrivant par un conduit 1, est introduit à la partie inférieure d'une colonne 5 de lavage, par exemple du type colonne à plateaux, dans laquelle il est mis en contact, à contre-courant, avec un solvant injecté dans la partie supérieure de la colonne 5 par un conduit 6, cette mise en contact étant effectuée à une température comprise, par exemple, entre 0°C et -45°C. En tête de la colonne 5 on recueille, par un conduit 8, un gaz traité consistant principalement en méthane et appauvri en CO₂, tandis qu'en fond de ladite colonne on soutire, par un conduit 11, une phase liquide formée du solvant enrichi en CO₂ et autres composés absorbés et appelée solvant riche. On réalise la mise en contact du mélange gazeux à traiter avec le solvant dans la colonne 5 à une température appropriée dans l'intervalle 0°C à -45°C et avec un rapport des débits de mélange gazeux à traiter et de solvant tel que d'une part le gaz traité recueilli, par le conduit 8, en tête de la colonne 5 ait une teneur molaire en CO₂ au plus égale à 2% et que d'autre le solvant riche, passant dans le conduit 11 renferme au moins 80 % molaire des hydrocarbures en C₃ et plus présents dans le mélange gazeux à traiter.In the embodiment of the process according to the invention, which is illustrated in FIG. 3, the gaseous mixture to be treated, arriving via a pipe 1, is introduced into the lower part of a washing column 5, for example of the type column with plates, in which it is brought into contact, against the current, with a solvent injected into the upper part of the column 5 through a conduit 6, this bringing into contact being carried out at a temperature of, for example, between 0 ° C and -45 ° C. At the top of column 5, a treated gas consisting mainly of methane and depleted in CO₂ is collected, via a line 8, while at the bottom of said column, a liquid phase is drawn off, via line 11, formed of the solvent enriched in CO₂ and other compounds absorbed and called rich solvent. The gas mixture to be treated is brought into contact with the solvent in column 5 at an appropriate temperature in the range 0 ° C to -45 ° C and with a ratio of the flow rates of the gas mixture to be treated and of solvent such as on the one hand, the treated gas collected, via line 8, at the head of column 5 has a molar CO₂ content of at most equal to 2% and, on the other hand, the rich solvent passing through line 11 contains at least 80 molar% of C₃ and higher hydrocarbons present in the gas mixture to be treated.

Le gaz traité, recueilli par le conduit 8 à la température régnant dans la colonne de lavage 5, peut être livré à un réseau de distribution après réchauffage ou subir au préalable, le cas échéant, un ou plusieurs traitements additionnels pour parfaire sa purification. Le contrôle du profil de température dans la colonne 5 est réalisé par l'intermédiaire des réfrigérants 7 parcourus par le milieu liquide contenu dans la colonne 5.The treated gas, collected by line 8 at the temperature prevailing in the washing column 5, can be delivered to a distribution network after reheating or undergo beforehand, if necessary, one or more additional treatments to perfect its purification. The temperature profile in column 5 is checked by means of the refrigerants 7 through which the liquid medium contained in column 5 passes.

Le solvant riche circulant dans le conduit 11 est introduit, après passage à travers une vanne 12 de détente, dans la partie supérieure de la colonne 17 de déméthanisation, consistant en une colonne de distillation à rebouillage 18 et dans laquelle le solvant riche est fractionné en une phase gazeuse riche en méthane, que l'on évacue en tête de la colonne 17 par un conduit 22, et en une phase liquide appauvrie en méthane, appelée solvant riche déméthanisé, qui est soutirée en fond de la colonne 17 par un conduit 27.The rich solvent circulating in the conduit 11 is introduced, after passing through an expansion valve 12, into the upper part of the demethanization column 17, consisting of a reboiling distillation column 18 and in which the rich solvent is divided into a gaseous phase rich in methane, which is removed at the top of column 17 by a conduit 22, and in a liquid phase depleted in methane, called demethanized rich solvent, which is drawn off at the bottom of column 17 by a conduit 27 .

Le solvant riche déméthanisé est amené dans une zone 64 de réfrigération, dans laquelle il est refroidi à une température comprise, par exemple, entre -25°C et -80°C et suffisamment inférieure à la température régnant dans la zone 5 de lavage pour provoquer une démixtion dudit solvant riche déméthanisé en deux fractions, qui se séparent, dans un séparateur 65, en une fraction liquide inférieure soutirée du séparateur par un conduit 66, ladite fraction étant appelée solvant purifié et consis­tant en le solvant renfermant la quasi-totalité du CO₂ présent dans le solvant riche déméthanisé et ayant une teneur en hydrocarbures, exprimée en équivalent méthane, inférieure à 10 % molaire par rapport au CO₂, et en une fraction liquide supérieure, appelée coupe d'hydrocarbures en C₂ et plus et renfermant au moins 80 % molaire des hydrocarbures en C₃ et plus présents dans le mélange gazeux à traiter arrivant par le conduit 1, ladite coupe d'hydrocarbures étant évacuée du séparateur 65 par un conduit 48.The demethanized rich solvent is brought into a refrigeration zone 64, in which it is cooled to a temperature of, for example, between -25 ° C and -80 ° C and sufficiently lower than the temperature prevailing in the washing zone for cause a demixing of said rich solvent demethanized into two fractions, which separate, in a separator 65, into a lower liquid fraction withdrawn from the separator by a conduit 66, said fraction being called purified solvent and consisting of the solvent containing almost all of the CO₂ present in the demethanized rich solvent and having a hydrocarbon content, expressed in methane equivalent, of less than 10 mol% relative to CO₂, and in a higher liquid fraction, called C₂ and more hydrocarbon fraction and containing at least 80 molar% of C₃ and higher hydrocarbons present in the gaseous mixture to be treated arriving via line 1, said hydroc cut arbours being evacuated from the separator 65 by a conduit 48.

Le solvant purifié circulant dans le conduit 66 est introduit, après passage dans une vanne de détente 67, dans la partie supérieure d'une colonne 68 de régénération pourvue d'un réchauffeur 69, dans laquelle ledit solvant purifié est soumis à une régénération par stripage à l'aide d'un courant de gaz inerte, par exemple un courant d'azote, injecté à la partie inférieure de la colonne 68 par un conduit 43.
Ladite régénération produit, d'une part, un solvant régénéré 34, qui est recyclé au moyen d'une pompe 37 et d'un conduit 38 à la colonne de lavage 5 à travers un échangeur de chaleur 39 et le conduit 6, et, d'autre part, un courant 44 de gaz acide riche en CO₂, qui renferme la quasi-totalité du CO₂ présent dans le solvant riche déméthanisé et possède une teneur en hydrocarbures, exprimée en équivalent méthane, inférieure à 10 % molaire par rapport au CO₂.
The purified solvent circulating in the conduit 66 is introduced, after passage through an expansion valve 67, into the upper part of a regeneration column 68 provided with a heater 69, in which the said purified solvent is subjected to regeneration by stripping using a stream of inert gas, for example a stream of nitrogen, injected into the lower part of the column 68 through a pipe 43.
Said regeneration produces, on the one hand, a regenerated solvent 34, which is recycled by means of a pump 37 and a conduit 38 to the washing column 5 through a heat exchanger 39 and the conduit 6, and, on the other hand, a stream 44 of acid gas rich in CO₂, which contains almost all of the CO₂ present in the demethanized rich solvent and has a hydrocarbon content, expressed in methane equivalent, of less than 10 mol% relative to CO₂ .

Le mode de réalisation illustré par la figure 3 pourrait être également adapté pour inclure les étapes de prétraitement du mélange gazeux à traiter et de déméthani­sation en deux stades, que comportent les modes de réali­sation illustrés par les figures 1 et 2.The embodiment illustrated by FIG. 3 could also be adapted to include the steps of pretreatment of the gaseous mixture to be treated and demethanization in two stages, which include the embodiments illustrated in FIGS. 1 and 2.

Pour compléter la description qui précède, on donne ci-après, à titre non limitatif, deux exemples de mise en oeuvre du procédé selon l'invention.To complete the above description, two examples of implementation of the method according to the invention are given below, without implied limitation.

EXEMPLE 1 : EXAMPLE 1 :

En faisant appel à une installation analogue à celle schématisée sur la figure 1 du dessin annexé et fonctionnant comme décrit précédemment, on traitait un mélange gazeux ayant la composition molaire suivante : . CO₂ : 18 % . Méthane : 71,5 % . Ethane : 5,1 % . Propane : 1,8 % . Butane : 1,8 % . Hexane : 1,8 % Using an installation similar to that shown diagrammatically in FIG. 1 of the appended drawing and operating as described above, a gas mixture having the following molar composition was treated: . CO₂ : 18% . Methane : 71.5% . Ethane : 5.1% . Propane : 1.8% . Butane : 1.8% . Hexane : 1.8%

Le mélange gazeux à traiter, arrivant par le conduit 1 avec un débit de 10 000 kmoles/h, une tempéra­ture de 30°C et une pression de 5 000 kPa était introduit dans la colonne 2 d'élimination des hydrocarbures en C₆ et plus. Dans cet exemple, le mélange gazeux à traiter étant sec, aucune addition de solvant n'était réalisée par le conduit 41.The gaseous mixture to be treated, arriving via line 1 with a flow rate of 10,000 kmol / h, a temperature of 30 ° C and a pressure of 5,000 kPa was introduced into column 2 for removal of C en and higher hydrocarbons. In this example, the gas mixture to be treated being dry, no addition of solvent was carried out via line 41.

Par le conduit 4 de la colonne 2, on évacuait 352 kmoles/h d'une coupe hydrocarbonée lourde ayant une pression de 5 000 kPa et une température égale à 30°C, ladite coupe ayant la composition suivante : . CO₂ : 9,26 % . Méthane : 18 % . Ethane : 5,01 % . Propane : 4,71 % . Butane : 12,05 % . Hexane : 50,97 % Via line 4 of column 2, 352 kmol / h of a heavy hydrocarbon fraction having a pressure of 5,000 kPa and a temperature equal to 30 ° C. was discharged, said fraction having the following composition: . CO₂ : 9.26% . Methane : 18% . Ethane : 5.01% . Propane : 4.71% . Butane : 12.05% . Hexane : 50.97%

Par le conduit 3 en tête de la colonne 2 on évacuait 9648 kmoles/h d'un mélange gazeux prétraité ayant une températeur de -20°C et une pression de 4950 kPa, ledit mélange gazeux prétraité ayant la composition molaire suivante : . CO₂ : 18,32 % . Méthane : 73,45 % . Ethane : 5,10 % . Propane : 1,69 % . Butane : 1,43 % . Hexane : 0,01 % Via line 3 at the head of column 2, 9648 kmol / h of a pretreated gas mixture having a temperature of -20 ° C. and a pressure of 4950 kPa were discharged, said pretreated gas mixture having the following molar composition: . CO₂ : 18.32% . Methane : 73.45% . Ethane : 5.10% . Propane : 1.69% . Butane : 1.43% . Hexane : 0.01%

Le mélange gazeux prétraité était mis en contact avec 6000 kmoles/h de solvant consistant en un mélange de méthanol et d'eau dans un rapport molaire égal à 95:5 et présentant une pression de 5000 kPa et une température égale à -30°C, ladite mise en contact étant réalisée dans une colonne 5 de lavage comportant 14 plateaux et opérant à -30°C sous une pression de 4900 kPa. Les réfrigérants 7 équipant la colonne 5 de lavage permettaient de maintenir la température dans ladite colonne à la valeur désirée.The pretreated gas mixture was brought into contact with 6000 kmol / h of solvent consisting of a mixture of methanol and water in a molar ratio equal to 95: 5 and having a pressure of 5000 kPa and a temperature equal to -30 ° C. , said contacting being carried out in a washing column 5 comprising 14 plates and operating at -30 ° C under a pressure of 4900 kPa. The refrigerants 7 fitted to the washing column 5 made it possible to maintain the temperature in said column at the desired value.

En tête de la colonne 5, on évacuait, par le conduit 8, 7405 kmoles/h d'un gaz traité ayant une pression de 4900 kPa et une température de -30°C, ledit gaz traité ayant la composition molaire suivante : . CO₂ : 1,42 % . Méthane : 95,67 % . Ethane : 2,90 % . Méthanol : 0,01 % At the head of column 5, 7,405 kmol / h were evacuated through line 8 of a treated gas having a pressure of 4,900 kPa and a temperature of -30 ° C, said treated gas having the following molar composition: . CO₂ : 1.42% . Methane : 95.67% . Ethane : 2.90% . Methanol : 0.01%

En fond de la colonne 5 de lavage, on soutirait, par le conduit 11, 9182 kmoles/h de solvant riche ayant une température de -30°C et une pression de 4900 kPa, ledit solvant riche ayant la composition molaire ci-après: . CO₂ : 21,15 % . Méthane : 6,11 % . Ethane : 3,99 % . Propane : 1,88 % . Butane : 1,52 % . Méthanol : 62,07 % . Eau : 3,27 % At the bottom of the washing column 5, 9,182 kmol / h of rich solvent having a temperature of -30 ° C. and a pressure of 4,900 kPa were withdrawn through line 11, said rich solvent having the following molar composition: . CO₂ : 21.15% . Methane : 6.11% . Ethane : 3.99% . Propane : 1.88% . Butane : 1.52% . Methanol : 62.07% . Water : 3.27%

Le gaz traité, évacué par le conduit 8, était réchauffé jusqu'à température ambiante dans le système échangeur de chaleur 9, ce qui permet d'assurer la réfrigé­ration du solvant dans le réfrigérant 39. Le gaz traité réchauffé est dirigé par le conduit 10 vers un gazoduc d'expédition.The treated gas, discharged through line 8, was warmed up to ambient temperature in the heat exchanger system 9, which makes it possible to ensure the refrigeration of the solvent in the refrigerant 39. The heated treated gas is directed through line 10 to an expedition pipeline.

La déméthanisation du solvant riche comportait tout d'abord une première détente dudit solvant à une pression de 3000 kPa, le solvant riche détendu alimentant le ballon 13 de détente dans lequel on produisait 362kmoles/h d'un premier gaz renfermant 68 % molaire de méthane, que l'on évacuait en tête du ballon 13 par le conduit 14, et un solvant riche prédéméthanisé soutiré dudit ballon par le conduit 15 et dont la teneur molaire en méthane a été réduite de 6,11 % à 3,57 %. Le solvant riche prédéméthanisé, dont la température était égale à -33,6°C, était détendu dans la vanne 16 et alimentait ensuite la colonne 17 de distillation comportant 10 plateaux et opérant à 1800 kPa. La colonne 17 produisait 577 kmoles/h d'un second gaz riche en méthane, évacué par le conduit 19 sous une pression de 1800 kPa et une tempéra­ture de -37°C, et un solvant riche déméthanisé soutiré de la colonne 17 par le conduit 27 avec un débit de 8243 kmoles/h, une pression de 1800 kPa et une température de -8,2°C.The demethanization of the rich solvent firstly involved a first expansion of said solvent at a pressure of 3000 kPa, the expanded relaxed solvent supplying the expansion tank 13 in which 362 kmol / h of a first gas containing 68 mol% of methane were produced. , which was discharged at the head of the flask 13 through line 14, and a predemethanized rich solvent withdrawn from said flask through line 15 and whose molar methane content was reduced from 6.11% to 3.57%. The premethanized rich solvent, the temperature of which was equal to -33.6 ° C., was expanded in valve 16 and then fed to the distillation column 17 comprising 10 plates and operating at 1800 kPa. Column 17 produced 577 kmol / h of a second methane-rich gas, evacuated through line 19 under a pressure of 1800 kPa and a temperature of -37 ° C, and a demethanized rich solvent withdrawn from column 17 through line 27 with a flow rate of 8243 kmol / h, a pressure of 1800 kPa and a temperature of -8.2 ° C.

Le solvant riche déméthanisé avait la composi­tion molaire suivante : . CO₂ : 20,16 % . Méthane : 0,03 % . Ethane : 3,37 % . Propane : 1,98 % . Butane : 1,67 % . Méthanol : 69,13 % . Eau : 3,64 % The demethanized rich solvent had the following molar composition: . CO₂ : 20.16% . Methane : 0.03% . Ethane : 3.37% . Propane : 1.98% . Butane : 1.67% . Methanol : 69.13% . Water : 3.64%

Le second gaz riche en méthane était comprimé, dans le compresseur 20, jusqu'à la pression du premier gaz riche en méthane, à savoir 3000 kPa. Le gaz comprimé sortant du compresseur 20, par le conduit 21, était mélangé au premier gaz riche en méthane pour constituer la phase gazeuse riche en méthane 22, qui était ensuite comprimée, dans le compresseur 23, jusqu'à la pression du mélange gazeux à traiter, à savoir 5000 kPa, ladite phase gazeuse comprimée étant ajoutée à travers le conduit 24, le réfrigérant 25 et le conduit 26, au mélange gazeux prétraité circulant dans le conduit 3.The second methane-rich gas was compressed in compressor 20 to the pressure of the first methane-rich gas, namely 3000 kPa. The compressed gas leaving the compressor 20, via the conduit 21, was mixed with the first methane-rich gas to form the methane-rich gas phase 22, which was then compressed, in the compressor 23, until the pressure of the gaseous mixture at treating, namely 5000 kPa, said compressed gas phase being added through line 24, the refrigerant 25 and line 26, to the pretreated gas mixture circulating in line 3.

La phase gazeuse comprimée riche en méthane passant dans le conduit 26 avait une température de -20°C, une pression de 5 000 kPa et un débit de 938 kmoles/h.The compressed methane-rich gaseous phase passing through line 26 had a temperature of -20 ° C, a pressure of 5,000 kPa and a flow rate of 938 kmol / h.

La composition molaire de ladite phase gazeuse riche en méthane circulant dans le conduit 26 était la suivante : . CO₂ : 29,80 % . Méthane : 59,50 % . Ethane : 9,45 % . Propane : 0,97 % . Butane : 0,26 % . Méthanol : 0,02 % The molar composition of said methane-rich gas phase flowing in line 26 was as follows: . CO₂ : 29.80% . Methane : 59.50% . Ethane : 9.45% . Propane : 0.97% . Butane : 0.26% . Methanol : 0.02%

Le solvant riche déméthanisé, après détente dans la vanne 29 et réchauffage dans le système 28 de réchauf­fage, avait une température de 10°C et une pression de 800 kPa. Ledit solvant réchauffé était alors partagé en un premier courant 30 ayant un débit de 4533 kmoles/h, qui était dirigé directement vers la colonne 33 de régénéra­tion, et en un second courant 31, qui était réchauffé à 70°C dans l'échangeur de chaleur 35 avant d'être acheminé vers la colonne de régénération 33. Cette colonne opérait sous une pression de 700 kPa et comportait 18 plateaux, les courants 30 et 31 étant injectés respectivement au niveau des plateaux 8 et 12, comptés à partir du sommet de la colonne.The demethanized rich solvent, after expansion in the valve 29 and reheating in the reheating system 28, had a temperature of 10 ° C and a pressure of 800 kPa. Said heated solvent was then divided into a first stream 30 having a flow rate of 4533 kmol / h, which was directed directly to the regeneration column 33, and into a second stream 31, which was heated to 70 ° C. in the heat exchanger. heat 35 before being conveyed to the regeneration column 33. This column operated under a pressure of 700 kPa and included 18 plates, the currents 30 and 31 being injected respectively at the plates 8 and 12, counted from the top of the column.

La colonne de régénération 33 produisait en tête un mélange gazeux renfermant CO₂ et les hydrocarbures en C₂ et plus, qui était évacué par le conduit 42 avec une température de -14°C, une pression de 700 kPa et un débit de 2244 kmoles/h et en fond un solvant régénéré soutiré de la colonne de régénération 33 par le conduit 34.The regeneration column 33 produced at the head a gaseous mixture containing CO₂ and the hydrocarbons in C₂ and more, which was evacuated via line 42 with a temperature of -14 ° C, a pressure of 700 kPa and a flow rate of 2244 kmol / h and at the bottom a regenerated solvent withdrawn from the regeneration column 33 through the pipe 34.

Le mélange gazeux passant dans le conduit 42 avait la composition molaire suivante : . CO₂ : 74,07 % . Méthane : 0,12 % . Ethane : 12,36 % . Propane : 7,28 % . Butane : 6,13 % . Hexane : 0,04 % The gas mixture passing through line 42 had the following molar composition: . CO₂ : 74.07% . Methane : 0.12% . Ethane : 12.36% . Propane : 7.28% . Butane : 6.13% . Hexane : 0.04%

Le solvant régénéré est refroidi par passage dans l'échangeur de chaleur 35, puis recomprimé à une pression de 5000 kPa par la pompe 37, et il est ensuite dirigé par le conduit 38 d'une part en quantité majeure vers la colonne 5 de lavage, à travers le réfrigérant 39 et le conduit 6.The regenerated solvent is cooled by passage through the heat exchanger 35, then recompressed to a pressure of 5000 kPa by the pump 37, and it is then directed through the conduit 38 on the one hand in a major quantity to the washing column 5 , through the refrigerant 39 and the conduit 6.

Le mélange gazeux passant dans le conduit 42 était lavé à contre courant dans la tour de lavage 47 à l'aide d'un solvant hydrocarboné consistant en majorité en hexane. La tour 47 comportait 35 plateaux et opérait sous une pression de 700 kPa avec une température de -30°C en tête au niveau du réfrigérant 46.
L'alimentation de la tour 47 en solvant, par le conduit 53, et en mélange gazeux, par le conduit 42, était effectuée respectivement sur le premier plateau et sur le plateau 21 de ladite tour. La tour de lavage 47 produisait en tête un courant de gaz acide 44 riche en CO₂ et ayant une teneur en hydrocarbures, exprimée en équivalent méthane, inférieure à 10 % molaire par rapport au CO₂, ledit courant de gaz acide ayant une température de -30°C, une pression de 650 kPa et un débit de 1685 kmoles/h, et en fond un solvant hydrocarboné 45 à teneur réduite en CO₂ ayant une température de 95,8°C, une pression de 730 kPa et un débit de 5059 kmoles/h.
The gas mixture passing through line 42 was washed against the current in washing tower 47 using a hydrocarbon solvent consisting mainly of hexane. Tower 47 had 35 trays and operated under a pressure of 700 kPa with a temperature of -30 ° C at the head at the level of refrigerant 46.
The supply of tower 47 with solvent, via line 53, and in gaseous mixture, through line 42, was carried out respectively on the first plate and on plate 21 of said tower. The washing tower 47 produced at the head a stream of acid gas 44 rich in CO₂ and having a hydrocarbon content, expressed in methane equivalent, of less than 10 mol% relative to CO₂, said stream of acid gas having a temperature of -30 ° C, a pressure of 650 kPa and a flow rate of 1685 kmol / h, and in the background a hydrocarbon solvent 45 with reduced CO₂ content having a temperature of 95.8 ° C, a pressure of 730 kPa and a flow rate of 5059 kmol / h.

La composition molaire du courant de gaz acide 44 était la suivante : . CO₂ : 98,65 % . Méthane : 0,15 % . Ethane : 0,98 % . Butane : 0,05 % . Hexane : 0,17 % The molar composition of the acid gas stream 44 was as follows: . CO₂ : 98.65% . Methane : 0.15% . Ethane : 0.98% . Butane : 0.05% . Hexane : 0.17%

Le solvant riche hydrocarboné 45 avait la composition molaire suivante : . Ethane : 5,16 % . Propane : 3,23 % . Butane : 3,69 % . Hexane : 87,91 % The rich hydrocarbon solvent 45 had the following molar composition: . Ethane : 5.16% . Propane : 3.23% . Butane : 3.69% . Hexane : 87.91%

Le fractionnement du solvant riche hydrocarboné 45 dans la colonne 49 pourvue de 28 plateaux et opérant sous une pression de 600 kPa produisait en tête 561 kmoles/h d'une coupe d'hydrocarbures 48 en C₂ et plus ayant une température de 18°C et une pression de 600 kPa et en fond 4500 kmoles/h de solvant hydrocarboné régénéré ayant une température de 142,7°C et une pression de 670 kPa, ledit solvant renfermant, en mole, 98,89 % d'hexane et 1,11 % de butane.The fractionation of the rich hydrocarbon solvent 45 in column 49 provided with 28 trays and operating under a pressure of 600 kPa produced at the head 561 kmol / h of a cut of hydrocarbons 48 in C₂ and more having a temperature of 18 ° C and a pressure of 600 kPa and at the bottom 4500 kmol / h of regenerated hydrocarbon solvent having a temperature of 142.7 ° C and a pressure of 670 kPa, said solvent containing, in mole, 98.89% of hexane and 1.11 % butane.

La composition molaire de la coupe d'hydrocar­bures 48 en C₂ et plus était la suivante : . CO₂ : 0,02 % . Ethane : 46,49 % . Propane : 29,10 % . Butane : 24,37 % . Hexane : 0,02 % The molar composition of the C₂ and higher hydrocarbon cut 48 was as follows: . CO₂ : 0.02% . Ethane : 46.49% . Propane : 29.10% . Butane : 24.37% . Hexane : 0.02%

EXEMPLE 2 : EXAMPLE 2 :

En faisant appel à une installation analogue à celle schématisée sur la figure 2 du dessin annexé et fonctionnant comme décrit précédemment, on traitait un mélange gazeux ayant les mêmes composition, température, pression et débit que le mélange gazeux de l'exemple 1.Using an installation similar to that shown diagrammatically in FIG. 2 of the appended drawing and operating as described above, a gas mixture having the same composition, temperature, pressure and flow rate as the gas mixture of Example 1 was treated.

Le prétraitement dudit mélange gazeux, dans la colonne 2, pour en éliminer les hydrocarbures en C₆ et plus était réalisé dans les conditions de l'exemple 1 et l'on évacuait de ladite colonne 2 d'une part, par le conduit 3, un mélange gazeux prétraité et d'autre part, par le conduit 4, une coupe hydrocarbonée lourde présen­tant les mêmes caractéristiques de composition, tempéra­ture, pression et débit que celles du mélange gazeux prétraité et de la coupe hydrocarbonée lourde obtenus dans l'exemple 1.The pretreatment of said gaseous mixture, in column 2, in order to remove the C₆ and higher hydrocarbons therefrom was carried out under the conditions of Example 1 and said column 2 was removed on the one hand, via line 3, a pretreated gas mixture and on the other hand, via line 4, a heavy hydrocarbon fraction having the same composition, temperature, pressure and flow rate characteristics as those of the pretreated gas mixture and of the heavy hydrocarbon fraction obtained in Example 1.

Le mélange gazeux prétraité était mis en contact avec 11500 kmoles/h de solvant ayant une température de -20°C et une pression de 5000 kPa et renfermant, en mole, 82,34 % de méthanol, 14,67 % d'eau et 2,88 d'hexane, ladite mise en contact étant réalisée dans une colonne 5 de lavage comportant 14 plateaux et opérant à -20°C sous une pression de 4900 kPa. Les réfrigérants 7 équipant la colonne 5 de lavage permettaient de maintenir la tempéra­ture dans la dite colonne à la valeur désirée.The pretreated gas mixture was brought into contact with 11,500 kmol / h of solvent having a temperature of -20 ° C. and a pressure of 5000 kPa and containing, by mole, 82.34% of methanol, 14.67% of water and 2.88 hexane, said contacting being carried out in a washing column 5 comprising 14 plates and operating at -20 ° C under a pressure of 4900 kPa. The refrigerants 7 fitted to the washing column 5 made it possible to maintain the temperature in said column at the desired value.

En tête de la colonne 5, on évacuait, par le conduit 8, 7499 kmoles/h d'un gaz traité ayant une pression de 4900 kPa et une température de -20°C, ledit gaz traité ayant la composition molaire suivante : . CO₂ : 1,68 % . Méthane : 94,44 % . Ethane : 3,78 % . Méthanol : 0,02 % At the head of column 5, 7,499 kmol / h of a treated gas having a pressure of 4,900 kPa and a temperature of -20 ° C. were discharged via line 8, said treated gas having the following molar composition: . CO₂ : 1.68% . Methane : 94.44% . Ethane : 3.78% . Methanol : 0.02%

Le gaz traité, évacué par le conduit 8, était réchauffé jusqu'à température ambiante dans le système échangeur de chaleur 9, le gaz traité réchauffé étant dirigé, par le conduit 10, vers un gazoduc d'expédition.The treated gas, discharged through line 8, was warmed up to ambient temperature in the heat exchanger system 9, the heated treated gas being directed, through line 10, to a shipping pipeline.

En fond de la colonne de lavage, on soutirait, par le conduit 11, 14655 kmoles/h de solvant riche ayant une température de -20°C et une pression de 4900 kPa, ledit solvant riche ayant la composition molaire ci-après: . CO₂ : 13,64 % . Méthane : 3,70 % . Ethane : 2,10 % . Propane : 1,23 % . Butane : 0,98 % . Hexane : 2,24 % . Méthanol : 64,61 % . Eau : 11,51 % At the bottom of the washing column, 14655 kmol / h of rich solvent having a temperature of -20 ° C. and a pressure of 4900 kPa were withdrawn via line 11, said rich solvent having the following molar composition: . CO₂ : 13.64% . Methane : 3.70% . Ethane : 2.10% . Propane : 1.23% . Butane : 0.98% . Hexane : 2.24% . Methanol : 64.61% . Water : 11.51%

La déméthanisation du solvant riche comportait tout d'abord une première détente dudit solvant à une pression de 3000 kPa, le solvant riche détendu alimentant le ballon 13 de détente dans lequel on produisait 401 kmoles/h d'un premier gaz renfermant 64 % molaire de méthane, que l'on évacuait en tête du ballon 13 par le conduit 14, et un solvant riche prédéméthanisé soutiré dudit ballon par le conduit 15 et dont la teneur molaire en méthane a été réduite de 3,70 à 2,01 %. Le solvant riche prédéméthanisé, dont la température était égale à -22,5°C, était détendu dans la vanne 16 et alimentait ensuite la colonne 17 de distillation comportant 10 plateaux et opérant à 1800 kPa.
La colonne 17 produisait 604 kmoles/h d'un second gaz riche en méthane, évacué par le conduit 19 sous une pression de 1800 kPa et à une température de -25°C, et un solvant déméthanisé soutiré de la colonne 17, par le conduit 27, avec un débit de 13649 kmoles/h, une température de 1°C et une préssion de 1800 kPa.
The demethanization of the rich solvent firstly involved a first expansion of said solvent at a pressure of 3000 kPa, the expanded rich solvent supplying the expansion tank 13 in which 401 kmol / h of a first gas containing 64 mol% of methane, which was removed at the head of the flask 13 via the line 14, and a predemethanized rich solvent withdrawn from the said flask through the line 15 and whose molar methane content has been reduced from 3.70 to 2.01%. The premethanized rich solvent, the temperature of which was equal to -22.5 ° C., was expanded in valve 16 and then fed to the distillation column 17 comprising 10 plates and operating at 1800 kPa.
Column 17 produced 604 kmol / h of a second methane-rich gas, evacuated via line 19 under a pressure of 1800 kPa and at a temperature of -25 ° C, and a demethanized solvent withdrawn from column 17, through conduit 27, with a flow rate of 13,649 kmol / h, a temperature of 1 ° C and a pressure of 1,800 kPa.

Le solvant riche déméthanisé passant dans le conduit 27 avait la composition molaire suivante : . CO₂ : 12,11 % . Méthane : 0,03 % . Ethane : 1,53 % . Propane : 1,20 % . Butane : 1,01 % . Hexane : 2,39 % . Méthanol : 69,37 % . Eau : 12,36 % The demethanized rich solvent passing through line 27 had the following molar composition: . CO₂ : 12.11% . Methane : 0.03% . Ethane : 1.53% . Propane : 1.20% . Butane : 1.01% . Hexane : 2.39% . Methanol : 69.37% . Water : 12.36%

Le second gaz riche en méthane était comprimé, dans le compresseur 20, jusqu'à la pression du premier gaz riche en méthane, à savoir 3000 kPa. Le gaz comprimé sortant du compresseur 20, par le conduit 21, était mélangé au premier gaz riche en méthane pour constituer la phase gazeuse riche en méthane 22, qui était ensuite comprimée, dans le compresseur 23, jusqu'à la pression du mélange gazeux à traiter, à savoir 5000 kPa, ladite phase gazeuse comprimée étant ajoutée à travers le conduit 24, le réfrigérant 25 et le conduit 26, au mélange gazeux prétraité circulant dans le conduit 3.The second methane-rich gas was compressed in compressor 20 to the pressure of the first methane-rich gas, namely 3000 kPa. The compressed gas leaving the compressor 20, via the conduit 21, was mixed with the first methane-rich gas to form the methane-rich gas phase 22, which was then compressed, in the compressor 23, until the pressure of the gaseous mixture at treating, namely 5000 kPa, said compressed gas phase being added through line 24, the refrigerant 25 and line 26, to the pretreated gas mixture circulating in line 3.

La phase gazeuse comprimée riche en méthane passant dans le conduit 26 avait une température de -20°C, une pression de 5000 kPa et un débit de 1006 kmoles/h. La composition molaire de ladite phase gazeuse riche en méthane circulant dans le conduit 26 était la suivante : . CO₂ : 34,31 % . Méthane : 53,50 % . Ethane : 9,84 % . Propane : 1,70 % . Butane : 0,53 % . Hexane : 0,09 % . Méthanol : 0,03 % The compressed methane-rich gas phase passing through line 26 had a temperature of -20 ° C, a pressure of 5000 kPa and a flow rate of 1006 kmol / h. The molar composition of said methane-rich gas phase flowing in line 26 was as follows: . CO₂ : 34.31% . Methane : 53.50% . Ethane : 9.84% . Propane : 1.70% . Butane : 0.53% . Hexane : 0.09% . Methanol : 0.03%

Le solvant riche déméthanisé, détendu dans la vanne 29 et réfrigéré à -40°C dans le système réfrigérant 40, était mis en contact, à contre-courant, dans la tour 56 d'extraction liquide/liquide avec un solvant hydro­carboné réfrigéré à teneur majoritaire en hexane, ledit solvant hydrocarboné étant constitué, en mole, de 95,77 % d'hexane, 1,11 % de butane et 3,12 % de méthanol. La tour 56 d'extraction comportait 31 plateaux et était alimentée sur le premier plateau par 5000 kmoles/h de solvant régénéré amené par le conduit 63 avec une température de -40°C, sur le plateau 21 par le solvant riche déméthanisé issu du système de réfrigération 40 et sur le plateau 31 par le solvant hydrocarboné réfrigéré à base d'hexane amené par le conduit 57 avec un débit de 1600 kmoles/h. Cette extraction produisait 2079 kmoles/h d'un solvant hydrocarboné riche ayant une température de -40°C et une pression de 1200 kPa, ledit solvant hydrocarboné riche étant évacué en tête de la tour 56 par le conduit 59, et 18069 kmoles/h de solvant épuré soutiré en fond de ladite tour, par le conduit 58, à une température de -40°C et sous une pression de 1200 kPa.The demethanized rich solvent, expanded in the valve 29 and refrigerated at -40 ° C in the refrigerant system 40, was brought into contact, against the current, in the liquid / liquid extraction tower 56 with a refrigerated hydrocarbon solvent with content predominantly hexane, said hydrocarbon solvent consisting, in mole, of 95.77% hexane, 1.11% butane and 3.12% methanol. The extraction tower 56 included 31 trays and was supplied on the first tray with 5000 kmol / h of regenerated solvent supplied by line 63 with a temperature of -40 ° C, on tray 21 by the rich demethanized solvent from the system refrigeration 40 and on the plate 31 by the refrigerated hydrocarbon solvent based on hexane supplied by line 57 with a flow rate of 1600 kmol / h. This extraction produced 2079 kmol / h of a rich hydrocarbon solvent having a temperature of -40 ° C and a pressure of 1200 kPa, said rich hydrocarbon solvent being evacuated at the top of tower 56 via line 59, and 18069 kmol / h purified solvent withdrawn from the bottom of said tower, via line 58, at a temperature of -40 ° C. and under a pressure of 1200 kPa.

La composition molaire du solvant hydrocarboné riche passant dans le conduit 59 était la suivante : . CO₂ : 0,14 % . Méthane : 0,13 % . Ethane : 9,19 % . Propane : 7,79 % . Butane : 6,62 % . Hexane : 73,72 % . Méthanol : 2,40 % The molar composition of the rich hydrocarbon solvent passing through line 59 was as follows: . CO₂ : 0.14% . Methane : 0.13% . Ethane : 9.19% . Propane : 7.79% . Butane : 6.62% . Hexane : 73.72% . Methanol : 2.40%

La composition molaire du solvant purifié passant dans le conduit 58 était la suivante : . CO₂ : 9,16 % . Méthane : 0,01 % . Ethane : 0,10 % . Propane : 0,01 % . Hexane : 2,42 % . Méthanol : 74,91 % . Eau : 13,40 % The molar composition of the purified solvent passing through line 58 was as follows: . CO₂ : 9.16% . Methane : 0.01% . Ethane : 0.10% . Propane : 0.01% . Hexane : 2.42% . Methanol : 74.91% . Water : 13.40%

Par fractionnement du solvant hydrocarboné enrichi 59 dans la colonne 49 de régénération comportant 28 plateaux et opérant à 700 kPa, on produisait d'une part, en tête de la colonne 49, 497 kmoles/h d'une coupe d'hydrocarbures en C₂ et plus ayant une température de 28°C et une pression de 700 kPa, que l'on évacuait par le conduit 48, et d'autre part, en fond de ladite colonne, 1600 kmoles/h de solvant hydrocarboné régénéré ayant une température de 142,7°C et une pression de 670 kPa, que l'on soutirait par le conduit 50.By fractionation of the enriched hydrocarbon solvent 59 in the regeneration column 49 comprising 28 plates and operating at 700 kPa, there was produced on the one hand, at the top of column 49, 497 kmol / h of a C coupe hydrocarbon fraction and plus having a temperature of 28 ° C and a pressure of 700 kPa, which was evacuated via line 48, and on the other hand, at the bottom of said column, 1600 kmol / h of regenerated hydrocarbon solvent having a temperature of 142 , 7 ° C and a pressure of 670 kPa, which is drawn off through line 50.

La coupe d'hydrocarbures en C₂ et plus, évacuée par le conduit 48, avait la composition molaire suivante : . CO₂ : 0,59 % . Méthane : 0,54 % . Ethane : 38,40 % . Propane : 32,58 % . Butane : 27,67 % . Hexane : 0,20 % . Méthanol : 0,02 %. The C₂ and higher hydrocarbon section, evacuated via line 48, had the following molar composition: . CO₂ : 0.59% . Methane : 0.54% . Ethane : 38.40% . Propane : 32.58% . Butane : 27.67% . Hexane : 0.20% . Methanol : 0.02%.

Le solvant hydrocarboné régénéré passant dans le conduit 50 renfermait, en mole, 95,77 % d'hexane, 1,11 % de butane et 3,12 % de méthanol. Ledit solvant était amené, dans la pompe 51, jusqu'à une pression de 1200 kPa, puis réfrigéré à -40°C dans le système réfrigérant 61 avant d'être recyclé, par le conduit 57, à la tour 56 d'extraction.The regenerated hydrocarbon solvent passing through line 50 contained, by mole, 95.77% hexane, 1.11% butane and 3.12% methanol. Said solvent was brought, in the pump 51, to a pressure of 1200 kPa, then refrigerated at -40 ° C in the refrigerant system 61 before being recycled, via the conduit 57, to the extraction tower 56.

Le solvant purifié issu, par le conduit 58, de la tour 56 d'extraction est détendu à une pression de 200kPa dans la vanne de détente 60, puis il est introduit dans la colonne de régénération 62 aux fins de régéné­ration. Ladite colonne 62, comportant 14 plateaux et opérant sous une pression de 200 kPa, est alimentée sur le premier plateau par le solvant purifié à régénérer et sur le dernier plateau par un courant d'azote amené, par le conduit 43, avec un débit de 650 kmoles/h. Le réchauffeur 69, dont est munie ladite colonne 62, était situé sur le septième plateau.The purified solvent coming from line 58 of the extraction tower 56 is expanded to a pressure of 200 kPa in the expansion valve 60, then it is introduced into the regeneration column 62 for the purpose of regeneration. Said column 62, comprising 14 plates and operating under a pressure of 200 kPa, is supplied on the first plate with the purified solvent to be regenerated and on the last plate by a stream of nitrogen supplied, via line 43, with a flow rate of 650 kmol / h. The heater 69, which is provided with said column 62, was located on the seventh plate.

La régénération du solvant purifié produisait, d'une part, 2289 kmoles/h d'un courant de gaz acide riche en CO₂, ledit courant étant évacué par le conduit 44 en tête de la colonne 62 et, d'autre part, un solvant régé­néré soutiré en fond de la colonne 62 par le conduit 34.The regeneration of the purified solvent produced, on the one hand, 2289 kmol / h of a stream of acid gas rich in CO₂, said stream being discharged through line 44 at the head of column 62 and, on the other hand, a solvent regenerated withdrawn from the bottom of the column 62 through the conduit 34.

Le courant de gaz acide riche en CO₂ évacué par le conduit 44 avait une pression de 200 kPa et une tempéra­ture de -47,5°C et il présentait la composition molaire suivante: . CO₂ : 71,64 % . Méthane : 0,05 % . Ethane : 0,77 % . Propane : 0,04 % . Hexane : 0,40 % . Méthanol : 0,06 % . Azote : 27,04 %. The stream of CO₂-rich acid gas discharged through line 44 had a pressure of 200 kPa and a temperature of -47.5 ° C and it had the following molar composition: . CO₂ : 71.64% . Methane : 0.05% . Ethane : 0.77% . Propane : 0.04% . Hexane : 0.40% . Methanol : 0.06% . Nitrogen : 27.04%.

Le solvant régénéré circulant dans le conduit 34 était porté à la pression de 5000 kPa par passage dans la pompe 37, puis partagé en deux parties, savoir une majeure partie recyclée vers la colonne de lavage 5 après passage dans le système échangeur de chaleur 39 et le conduit 6 et une partie amenée dans la tour 56 d'extrac­tion par le conduit 63.The regenerated solvent circulating in the conduit 34 was brought to the pressure of 5000 kPa by passage through the pump 37, then divided into two parts, namely a major part recycled to the washing column 5 after passage through the heat exchanger system 39 and the conduit 6 and a part brought into the extraction tower 56 by the conduit 63.

Claims (13)

1 - Procédé de décarbonatation et de dégazolinage simul­tanés d'un mélange gazeux, qui possède une pression absolue supérieure à 0,5 MPa et renferme principa­lement des hydrocarbures consistant en méthane et hydrocarbures en C₂ et plus et comporte également CO₂ et éventuellement un ou plusieurs composés non sulfurés à bas point d'ébullition tels que H₂, CO, N₂ et Ar, dans lequel on met le mélange gazeux en contact, dans une zone de lavage (5),avec un solvant (6) consistant en un liquide, qui dissout préféren­tiellement CO₂ et les hydrocarbures en C₂ et plus et qui possède d'une part, à la pression atmosphérique, une température d'ébullition supérieure à 40°C et d'autre part, à -30°C, une viscosité inférieure à 0,1 Pa.s, en opérant à une température suffisamment basse et avec un rapport des débits de mélange gazeux à traiter et de solvant tel que l'on produise, d'une part, un gaz traité (8) consistant principalement en méthane et présentant une teneur molaire en CO₂ au plus égale à 2 % et, d'autre part, une phase liquide appelée solvant riche (11) et formée du solvant enrichi en CO₂ et en une fraction d'hydrocarbures en C₂ et plus renfermant au moins 80 % molaire des hydrocarbures en C₃ et plus présents dans le mélange gazeux à traiter, on soumet le solvant riche à un traitenent de déméthanisation au moins partielle (12, 17) pour produire une phase liquide appauvrie en méthane et appelée solvant riche déméthanisé (27) et une phase gazeuse riche en méthane (22) et on soumet le solvant riche déméthanisé à un traitement (55) produisant un courant de gaz acide (44), qui renferme le CO₂ présent dans le solvant riche déméthanisé, produisant également un mélange d'hydrocarbures appelé coupe d'hydrocarbures (48) et produisant enfin un solvant régénéré (34), qui est recyclé vers la zone (5) de lavage, ledit procédé se caractérisant en ce que le traitement du solvant riche déméthanisé est réalisé de telle sorte que le courant de gaz acide qu'il produit contienne, exprimé en équivalent méthane, moins de 10 % molaire d'hydrocarbures par rapport au CO₂ et que la coupe d'hydrocarbures obtenue consiste en un mélange d'hydrocarbures en C₂ et plus renfermant au moins 80 % molaire des hydrocarbures en C₃ et plus présents dans le mélange gazeux à traiter, ledit traitement auquel on soumet le solvant riche déméthanisé consistant en l'un ou l'autre des traitements a), b), c) suivants : a) - régénération (33) du solvant riche déméthanisé produisant le solvant régénéré (34) et un mélange gazeux (42) contenant le CO₂ ainsi que les hydrocar­bures en C₂ et plus présents dans le solvant riche déméthanisé (27) et traitement (47,49) dudit mélange gazeux (42) pour produire le courant de gaz acide (44) riche en CO₂ et la coupe d'hydrocarbures (48), b) - extraction sous forme liquide des hydrocarbures en C₂ et plus par mise en contact, dans une zone d'extraction (56), du solvant riche déméthanisé (27), soumis préalablement à une réfrigération (40), avec un solvant hydrocarboné (57), de manière à produire un solvant purifié (58) renfermant la quasi-totalité du CO₂ présent dans le solvant riche déméthanisé et ayant une teneur en hydrocarbures, exprimée en équivalent méthane, inférieure à 10 % molaire par rapport au CO₂ ainsi qu'un solvant hydrocarboné enrichi (59) en hydrocarbures en C₂ et plus, puis régénération (62) du solvant purifié pour produire d'une part le solvant régénéré (34) et d'autre part le courant de gaz acide (44) riche en CO₂ et fractionnement du solvant hydrocarboné enrichi (59) par distillation (49) en une fraction d'hydrocarbures en C₂ et plus constituant la coupe d'hydrocarbures (48) et en le solvant hydrocarboné régénéré (50), qui est recyclé, après réfrigération (61), vers la zone (56) d'extraction, et c) refroidissement du solvant riche déméthanisé à une température suffisamment inférieure à la tempéra­ture régnant dans la zone de lavage (5) pour provo­quer une démixtion (64,65) dudit solvant riche déméthanisé en deux fractions, à savoir une fraction liquide inférieure (66), qui renferme la quasi-­totalité du CO₂ présent dans le solvant riche démé­thanisé et possède une teneur en hydrocarbure, exprimée en équivalent méthane, inférieure à 10 % molaire par rapport au CO₂ et qui constitue un solvant purifié, et une fraction liquide supérieure, qui constitue la coupe d'hydrocarbures (48) en C₂ et plus, et régénération (68) du solvant purifié (66) pour produire d'une part le solvant régénéré (34) et d'autre part le courant de gaz acide (44) riche en CO₂. 1 - Process for the simultaneous decarbonation and degassing of a gas mixture, which has an absolute pressure greater than 0.5 MPa and mainly contains hydrocarbons consisting of methane and C₂ hydrocarbons and above and also includes CO comporte and possibly one or more compounds unsulphides with low boiling point such as H₂, CO, N₂ and Ar, in which the gas mixture is brought into contact, in a washing zone (5), with a solvent (6) consisting of a liquid, which dissolves preferably CO₂ and hydrocarbons C₂ and above and which has on the one hand, at atmospheric pressure, a boiling temperature greater than 40 ° C and on the other hand, at -30 ° C, a viscosity less than 0, 1 Pa.s, operating at a sufficiently low temperature and with a ratio of the flow rates of the gaseous mixture to be treated and of the solvent such that a treated gas (8) consisting mainly of methane and present is produced ant a molar CO₂ content at most equal to 2% and, on the other hand, a liquid phase called rich solvent (11) and formed of the solvent enriched in CO₂ and in a fraction of hydrocarbons in C₂ and more containing at least 80 molar% of C₃ and higher hydrocarbons present in the gas mixture to be treated, the rich solvent is subjected to an at least partial demethanization treatment (12, 17) to produce a methane-depleted liquid phase called demethanized rich solvent (27) and a methane-rich gas phase (22) and the demethanized rich solvent is subjected to a treatment (55) producing an acid gas stream (44), which contains the CO₂ present in the demethanized rich solvent, also producing a mixture of hydrocarbons called hydrocarbon cut (48) and finally producing a regenerated solvent (34), which is recycled to the washing zone (5), said process being characterized in that the treatment of the demethan rich solvent isé est produced in such a way that the stream of acid gas which it produces contains, expressed in methane equivalent, less than 10 mol% of hydrocarbons relative to CO₂ and that the resulting cut of hydrocarbons consists of a mixture of C₂ hydrocarbons and more containing at least 80 mol% of C₃ hydrocarbons and more present in the gas mixture to be treated, said treatment to which the demethanized rich solvent is subjected consisting of one or other of the treatments a), b), c) following: a) - regeneration (33) of the demethanized rich solvent producing the regenerated solvent (34) and a gaseous mixture (42) containing the CO₂ as well as the C₂ hydrocarbons and more present in the demethanized rich solvent (27) and treatment (47, 49) of said gaseous mixture (42) to produce the stream of acid gas (44) rich in CO₂ and the cut of hydrocarbons (48), b) - extraction in liquid form of C₂ and higher hydrocarbons by bringing into contact, in an extraction zone (56), the demethanized rich solvent (27), subjected beforehand to refrigeration (40), with a hydrocarbon solvent ( 57), so as to produce a purified solvent (58) containing almost all of the CO₂ present in the demethanized rich solvent and having a hydrocarbon content, expressed in methane equivalent, of less than 10 mol% relative to the CO₂ as well as a hydrocarbon solvent enriched (59) with C₂ hydrocarbons and more, then regeneration (62) of the purified solvent to produce on the one hand the regenerated solvent (34) and on the other hand the stream of acid gas (44) rich in CO₂ and fractionation of the enriched hydrocarbon solvent (59) by distillation (49) into a fraction of C₂ hydrocarbons and more constituting the hydrocarbon fraction (48) and in the regenerated hydrocarbon solvent (50), which is recycled, after refrigeration (61), to the extraction zone (56), and c) cooling the demethanized rich solvent to a temperature sufficiently lower than the temperature prevailing in the washing zone (5) to cause a demixing (64,65) of said demethanized rich solvent into two fractions, namely a lower liquid fraction (66) , which contains almost all of the CO₂ present in the demethanized rich solvent and has a hydrocarbon content, expressed in methane equivalent, of less than 10 mol% relative to CO₂ and which constitutes a purified solvent, and a higher liquid fraction, which constitutes the cut of hydrocarbons (48) in C₂ and above, and regeneration (68) of the purified solvent (66) to produce on the one hand the regenerated solvent (34) and on the other hand the stream of acid gas (44) rich in CO₂. 2 - Procédé selon la revendication 1, caractérisé en ce que le solvant mis en contact avec le mélange gazeux à traiter a une viscosité, à -30°C, inférieure à 0,05 Pa.s.2 - Process according to claim 1, characterized in that the solvent brought into contact with the gaseous mixture to be treated has a viscosity, at -30 ° C, less than 0.05 Pa.s. 3 - Procédé selon la revendication 1 ou 2 caractérisé en ce que le solvant mis en contact avec le mélange gazeux à traiter dans la zone (5) de lavage consiste en un ou plusieurs absorbants organiques liquides, utilisés sous forme anhydre ou en mélange avec l'eau, le ou lesdits absorbants étant choisis parmi les amides de formules
Figure imgb0008
les aldéhydes de formule
Figure imgb0009
les esters de formules
Figure imgb0010
les alcanols en C₁ à C₄, les diéthers de formule CH₃ O⁅C₂ H₄O ⁆
Figure imgb0011
CH₃, les diéthers alcools de formule R₉O - C₂H₄ - O - C₂H₄-OH, les lactones de formule
Figure imgb0012
et le carbonate de propylène, avec dans ces formules R₁ et R₂, identiques ou différents, désignant un atome d'hydrogène ou un radical alcoyle en C₁ ou C₂, R₃ étant un radical alcoyle en C₃ ou C₄, R₆ étant un radical alcoyle en C₂ à C₄ ou un radical ⁅C₂H₄O⁆
Figure imgb0013
R₈ avec R₈ désignant un radical alcoyle en C₁ ou C₂ et n représentant 1 ou 2, R₇ étant un radical alcoyle en C₁ ou C₂ ou un radical ⁅C₂H₄O⁆
Figure imgb0014
R₈, R₉ désignant un radical alcoyle en C₁ à C₄ et p étant un nombre entier allant de 2 à 4.
3 - Process according to claim 1 or 2 characterized in that the solvent brought into contact with the gaseous mixture to be treated in the washing zone (5) consists of one or more liquid organic absorbents, used in anhydrous form or in mixture with water, the said absorbent (s) being chosen from the amides of formulas
Figure imgb0008
aldehydes of formula
Figure imgb0009
formula esters
Figure imgb0010
Ccan to C₄ alkanols, diethers of formula CH₃ O⁅C₂ H₄O ⁆
Figure imgb0011
CH₃, the alcohol diethers of formula R₉O - C₂H₄ - O - C₂H₄-OH, the lactones of formula
Figure imgb0012
and propylene carbonate, with in these formulas R₁ and R₂, identical or different, designating a hydrogen atom or a C₁ or C₂ alkyl radical, R₃ being a C₃ or C₄ alkyl radical, R₆ being a C₂ alkyl radical to C₄ or a radical ⁅C₂H₄O⁆
Figure imgb0013
R₈ with R₈ denoting a C₁ or C₂ alkyl radical and n representing 1 or 2, R₇ being a C₁ or C₂ alkyl radical or a ⁅C₂H₄O⁆ radical
Figure imgb0014
R₈, R₉ denoting a C₁ to C₄ alkyl radical and p being an integer ranging from 2 to 4.
4 - Procédé selon l'une des revendications 1 à 3, carac­térisé en ce que la température de mise en contact du mélange gazeux à traiter avec le solvant, dans la zone (5) de lavage, est comprise entre 0°C et -45°C.4 - Method according to one of claims 1 to 3, characterized in that the contacting temperature of the gas mixture to be treated with the solvent, in the washing zone (5), is between 0 ° C and -45 ° C. 5 - Procédé selon l'une des revendications 1 à 4, carac­térisé en ce que le traitement de déméthanisation appliqué au solvant riche (11) est réalisé en deux étapes, à savoir une première étape dans laquelle ledit solvant riche est soumis à une première détente (12, 13) propre à libérer une fraction importante du méthane dissous dans ledit solvant et à produire un premier gaz riche en méthane (14) et un fluide prédéméthanisé (15) et une seconde étape dans laquelle le fluide prédéméthanisé est soumis à une seconde détente (16) puis à une distillation (17) de manière à produire un second gaz riche en méthane (19) et le solvant riche déméthanisé (27), le second gaz riche en méthane étant comprimé jusqu'à la pression du premier gaz riche en méthane puis mélangé à ce dernier pour constituer la phase gazeuse (22) riche en méthane.5 - Method according to one of claims 1 to 4, characterized in that the demethanization treatment applied to the rich solvent (11) is carried out in two stages, namely a first step in which said rich solvent is subjected to a first expansion (12, 13) capable of releasing a large fraction of the methane dissolved in said solvent and of producing a first gas rich in methane (14) and a premethanized fluid (15) and a second step in which the premethanized fluid is subjected to a second expansion (16) then distillation (17) so as to produce a second methane-rich gas (19) and the demethanized rich solvent (27), the second methane-rich gas being compressed to the pressure of the first rich gas in methane and then mixed with the latter to constitute the gas phase (22) rich in methane. 6 - Procédé selon l'une des revendications 1 à 5, carac­térisé en ce que la phase gazeuse (22) riche en méthane est comprimée jusqu'à la pression du mélange gazeux à traiter, puis elle est refroidie (25) et mélangée au mélange gazeux à traiter avant la mise en contact de ce dernier avec le solvant dans la zone de lavage (5).6 - Method according to one of claims 1 to 5, characterized in that the gas phase (22) rich in methane is compressed to the pressure of the gas mixture to be treated, then it is cooled (25) and mixed with the mixture gaseous to be treated before the latter is brought into contact with the solvent in the washing zone (5). 7 - Procédé selon l'une des revendications 1 à 6, carac­térisé en ce que l'on applique le traitement a) au solvant riche déméthanisé (27) et l'on soumet le mélange gazeux (42) résultant de l'étape de régéné­ration dudit traitement a) à un lavage par mise en contact de ce mélange gazeux avec un solvant hydro­carboné en C₅ et plus dans un espace de lavage (47) opérant à basse température de manière à produire le courant de gaz acide (44) riche en CO₂ et un solvant hydrocarboné riche (45) contenant la presque totalité des hydrocarbures en C₂ et plus contenu dans le mélange gazeux (42), ledit lavage étant suivi d'une régénération (49) du solvant hydrocarboné riche pour produire la coupe d'hydrocarbures (48) en C₂ et plus et un solvant hydrocarboné régénéré (50) que l'on recycle vers l'espace de lavage après l'avoir réfri­géré (52).7 - Method according to one of claims 1 to 6, characterized in that one applies the treatment a) to the demethanized rich solvent (27) and the gaseous mixture (42) is subjected resulting from the regeneration step of said treatment a) washing by bringing this gaseous mixture into contact with a C₅ hydrocarbon solvent and more in a washing space (47) operating at low temperature so as to produce the stream of acid gas (44) rich in CO₂ and a rich hydrocarbon solvent (45) containing almost all hydrocarbons C₂ and more contained in the gas mixture (42), said washing being followed by a regeneration (49) of the rich hydrocarbon solvent to produce the cut of hydrocarbons (48) in C₂ and more and a regenerated hydrocarbon solvent ( 50) which is recycled to the washing space after having refrigerated it (52). 8 - Procédé selon l'une des revendications 1 à 7, caractérisé en ce que l'on applique le traitement a) au solvant riche déméthanisé (27) et l'on effectue la régénération dudit solvant riche déméthanisé, constituant la première étape de ce traitement, en réchauffant (28) ledit solvant jusqu'à une tempéra­ture proche de l'ambiante, puis en partageant le solvant réchauffé en un premier (30) et un second (31) courants, en dirigeant le premier courant (30) directement vers une zone de régénération (33), en dirigeant le second courant (31) vers ladite zone de régénération après l'avoir réchauffé par échange indirect de chaleur (35) avec le solvant régénéré (34) et en soumettant le solvant à une distillation dans la zone (33) de régénération.8 - Method according to one of claims 1 to 7, characterized in that the treatment is applied a) to the demethanized rich solvent (27) and the regeneration of said demethanized rich solvent is carried out, constituting the first step of this treatment, by heating (28) said solvent to a temperature close to ambient, then dividing the heated solvent into a first (30) and a second (31) streams, directing the first stream (30) directly to a regeneration zone (33), by directing the second stream (31) towards said regeneration zone after having heated it by indirect heat exchange (35) with the regenerated solvent (34) and by subjecting the solvent to distillation in the regeneration zone (33). 9 - Procédé selon la revendication 8, caractérisé en ce que la distillation du solvant dans la zone (33) de régénération s'effectue en présence d'un courant de gaz inerte (43), par exemple azote, injecté dans ladite zone.9 - Process according to claim 8, characterized in that the distillation of the solvent in the regeneration zone (33) is carried out in the presence of a stream of inert gas (43), for example nitrogen, injected into said zone. 10 - Procédé selon l'une des revendications 1 à 6, carac­térisé en ce que l'on applique le traitement c) au solvant riche déméthanisé (27) et en ce que la température, inférieure à la température régnant dans la zone de lavage, à laquelle on refroidit le solvant riche déméthanisé pour provoquer sa démixtion est comprise entre -25°C et -80°C.10 - Method according to one of claims 1 to 6, characterized in that treatment c) is applied to the demethanized rich solvent (27) and in that the temperature, lower than the temperature prevailing in the washing zone, to which the demethanized rich solvent is cooled to cause its demixing is between -25 ° C and -80 ° C. 11 - Procédé selon l'une des revendications 1 à 6, carac­terisé en ce que l'on applique le traitement b) ou c) au solvant riche déméthanisé et en ce que la régéné­ration du solvant purifié est réalisée par détente dudit solvant jusqu'à une pression supérieure à 100kPa, en particulier entre 150 kPa et 300 kPa et par stripage (43) au moyen d'un gaz inerte tel que l'azote associé éventuellement à un réchauffage (69) du solvant purifié dans la colonne de régénération.11 - Method according to one of claims 1 to 6, characterized in that treatment b) or c) is applied to the demethanized rich solvent and in that the regeneration of the purified solvent is carried out by expansion of said solvent until a pressure greater than 100 kPa, in particular between 150 kPa and 300 kPa and by stripping (43) by means of an inert gas such as nitrogen possibly associated with a heating (69) of the purified solvent in the regeneration column. 12 - Procédé selon l'une des revendications 1 à 6, carac­térisé en ce que l'on applique le traitement b) ou c) au solvant riche déméthanisé et en ce que la régénération du solvant purifié (58) consiste à réchauffer (28) ledit solvant jusqu'à une température proche de l'ambiante, à partager le solvant réchauffé en un premier (30) et un second (31) courants, à diriger le premier courant (30) directement vers une zone de régénération (33), diriger le second courant (31) vers cette zone de régénération après l'avoir réchauffé par échange indirect de chaleur (35) avec le solvant purifié régénéré (34) et à soumettre le solvant purifié à une distillation dans la zone de régénération (33) aux fins de produire le courant de gaz acide (44) riche en CO₂ et le solvant régénéré (34).12 - Method according to one of claims 1 to 6, characterized in that one applies the treatment b) or c) to the demethanized rich solvent and in that the regeneration of the purified solvent (58) consists in reheating (28) said solvent up to a temperature close to ambient, dividing the heated solvent into first (30) and second (31) streams, directing the first stream (30) directly to a regeneration zone (33), direct the second stream (31) to this regeneration zone after having heated it by indirect heat exchange (35) with the regenerated purified solvent (34) and to subject the purified solvent to distillation in the regeneration zone (33) for the purpose of producing the stream of acid gas (44) rich in CO₂ and the regenerated solvent (34). 13 - Procédé selon l'une des revendications 1 à 12, caractérisé en ce que, le mélange gazeux à traiter renfermant de l'eau et/ou des hydrocarbures en C₅ et plus, ledit mélange gazeux est soumis à un prétrai­tement consistant en une distillation (2) effectuée à une température au moins égale à celle régnant dans la zone (5) de lavage et, éventuellement, en présence de solvant, prélevé sur le solvant amené à la zone (5) de lavage, pour produire une fraction (4) d'hy­drocarbures dits lourds et renfermant la quasi-­totalité des hydrocarbures en C₆ et plus et éventuel­lement tout ou partie des hydrocarbures en C₅, un mélange gazeux prétraité (3) présentant une teneur en hydrocarbures en C₆ et plus inférieure à 0,1 % en poids et, éventuellement, un liquide (54) consistant en un mélange de solvant et d'eau.13 - Method according to one of claims 1 to 12, characterized in that, the gas mixture to be treated containing water and / or C₅ hydrocarbons and more, said gas mixture is subjected to a pretreatment consisting of a distillation (2) carried out at a temperature at least equal to that prevailing in the washing zone (5) and, optionally, in the presence of solvent, taken from the solvent brought to the washing zone (5), to produce a fraction (4 ) of so-called heavy hydrocarbons and containing almost all of the C₆ hydrocarbons and more and possibly all or part of the C₅ hydrocarbons, a pretreated gas mixture (3) having a C₆ hydrocarbon content and more than 0.1% by weight and, optionally, a liquid (54) consisting of a mixture of solvent and water.
EP89403123A 1988-11-15 1989-11-14 Process for the simultaneous elimination of CO2 and gasoline from a gaseous hydrocarbon mixture comprising methane, C2 and higher hydrocarbons and also CO2 Expired - Lifetime EP0373983B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT89403123T ATE100852T1 (en) 1988-11-15 1989-11-14 PROCESS FOR THE SIMULTANEOUS REMOVAL OF CO2 AND BEARIN FROM METHANE, C2 AND HIGHER HYDROCARBONS AND CO2-CONTAINING GASEOUS HYDROCARBONS.
EP93107550A EP0556875B1 (en) 1988-11-15 1989-11-14 Process for the simultaneous elimination of CO2 and gasoline from a gaseous hydrocarbon mixture comprising methane, C2 and higher hydrocarbons and also CO2
GR950402736T GR3017623T3 (en) 1988-11-15 1995-10-04 Process for the simultaneous elimination of CO2 and gasoline from a gaseous hydrocarbon mixture comprising methane, C2 and higher hydrocarbons and also CO2.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR888814784A FR2641542B1 (en) 1988-11-15 1988-11-15 PROCESS FOR SIMULTANEOUS DECARBONATION AND DEGAZOLINATION OF A GASEOUS MIXTURE MAINLY CONSISTING OF METHANE AND HYDROCARBONS OF C2 AND MORE AND INCLUDING CO2
FR8814784 1988-11-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP93107550.1 Division-Into 1989-11-14

Publications (2)

Publication Number Publication Date
EP0373983A1 true EP0373983A1 (en) 1990-06-20
EP0373983B1 EP0373983B1 (en) 1994-01-26

Family

ID=9371828

Family Applications (2)

Application Number Title Priority Date Filing Date
EP89403123A Expired - Lifetime EP0373983B1 (en) 1988-11-15 1989-11-14 Process for the simultaneous elimination of CO2 and gasoline from a gaseous hydrocarbon mixture comprising methane, C2 and higher hydrocarbons and also CO2
EP93107550A Expired - Lifetime EP0556875B1 (en) 1988-11-15 1989-11-14 Process for the simultaneous elimination of CO2 and gasoline from a gaseous hydrocarbon mixture comprising methane, C2 and higher hydrocarbons and also CO2

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP93107550A Expired - Lifetime EP0556875B1 (en) 1988-11-15 1989-11-14 Process for the simultaneous elimination of CO2 and gasoline from a gaseous hydrocarbon mixture comprising methane, C2 and higher hydrocarbons and also CO2

Country Status (14)

Country Link
US (1) US5298156A (en)
EP (2) EP0373983B1 (en)
JP (1) JP2742328B2 (en)
AT (1) ATE124987T1 (en)
AU (1) AU627250B2 (en)
BR (1) BR8907193A (en)
CA (1) CA2002826C (en)
DE (2) DE68912746T2 (en)
ES (2) ES2050833T3 (en)
FR (1) FR2641542B1 (en)
NO (1) NO180687C (en)
RU (1) RU1836407C (en)
UA (1) UA26318A (en)
WO (1) WO1990005766A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO302567B1 (en) * 1994-02-14 1998-03-23 Norsk Hydro As Feeding device
FR2743083B1 (en) * 1995-12-28 1998-01-30 Inst Francais Du Petrole METHOD FOR DEHYDRATION, DEACIDIFICATION AND DEGAZOLINATION OF A NATURAL GAS, USING A MIXTURE OF SOLVENTS
JP5383338B2 (en) * 2009-06-17 2014-01-08 三菱重工業株式会社 CO2 recovery device and CO2 recovery method
GB201520405D0 (en) * 2015-11-19 2016-01-06 Isis Innovation Ltd And King Abdulaziz City For Science And Technology Hydrocarbon separation process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702296A (en) * 1970-12-23 1972-11-07 Atlantic Richfield Co Oil and gas treatment
US3770622A (en) * 1970-12-28 1973-11-06 Fluor Corp Treatment of wet natural gas mixtures to recover liquid hydrocarbons
EP0062789A2 (en) * 1981-03-31 1982-10-20 BASF Aktiengesellschaft Process for separating condensable aliphatic hydrocarbons and acid gases from natural gas
GB2142041A (en) * 1983-06-24 1985-01-09 El Paso Hydrocarbons Extracting natural gas streams with physical solvents

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1838444A (en) * 1930-04-03 1931-12-29 Wehrle Co Towel bar
US1898579A (en) * 1930-05-30 1933-02-21 Union Oil Co Method and apparatus for absorption of constituents from gases and vaporous mixtures
US1953043A (en) * 1930-10-24 1934-03-27 Texas Co Recovery of gasoline from natural gas
US1972060A (en) * 1930-10-24 1934-08-28 Texas Co Recovery of gasoline from natural gas
US2487576A (en) * 1945-11-13 1949-11-08 Phillips Petroleum Co Process for the removal of acidic material from a gaseous mixture
US2930752A (en) * 1952-06-12 1960-03-29 Socony Mobil Oil Co Inc Process for stripping of absorption liquids
US3210270A (en) * 1961-12-01 1965-10-05 Phillips Petroleum Co Fluid separation and gas dehydration process
US3247649A (en) * 1963-04-29 1966-04-26 Union Oil Co Absorption process for separating components of gaseous mixtures
US3347621A (en) * 1964-11-02 1967-10-17 Shell Oil Co Method of separating acidic gases from gaseous mixtures
US3829521A (en) * 1972-07-03 1974-08-13 Stone & Webster Eng Corp Process for removing acid gases from a gas stream
JPS562985B2 (en) * 1975-03-20 1981-01-22
DE2909335A1 (en) * 1979-03-09 1980-09-18 Linde Ag METHOD AND DEVICE FOR DISASSEMBLING NATURAL GAS
US4293322A (en) * 1980-04-23 1981-10-06 Helix Technology Corporation Distillative separation of carbon dioxide from hydrogen sulfide
JPS5710378A (en) * 1980-06-19 1982-01-19 Satake Eng Co Ltd Wind supplying and discharging device for cereal grain selector
DE3148475A1 (en) * 1981-02-23 1982-09-23 Gebrüder Bühler AG, 9240 Uzwil "SEPARATING DEVICE FOR CEREALS AND SIMILAR GRAIN GOODS"
US4568452A (en) * 1984-06-15 1986-02-04 Exxon Research And Engineering Co. Process for upgrading a contaminated absorbent oil
US4654062A (en) * 1986-07-11 1987-03-31 Air Products And Chemicals, Inc. Hydrocarbon recovery from carbon dioxide-rich gases
US4747858A (en) * 1987-09-18 1988-05-31 Air Products And Chemicals, Inc. Process for removal of carbon dioxide from mixtures containing carbon dioxide and methane
US4775396A (en) * 1987-11-05 1988-10-04 Union Carbide Corporation Selective adsorption of CO2 on zeolites
DE3829878A1 (en) * 1988-09-02 1990-03-08 Metallgesellschaft Ag METHOD FOR THE TREATMENT OF HYDROCARBONS AND H (ARROW ABBEERTS) 2 (ARROW DOWN) S INGREDIENT NATURAL GAS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702296A (en) * 1970-12-23 1972-11-07 Atlantic Richfield Co Oil and gas treatment
US3770622A (en) * 1970-12-28 1973-11-06 Fluor Corp Treatment of wet natural gas mixtures to recover liquid hydrocarbons
EP0062789A2 (en) * 1981-03-31 1982-10-20 BASF Aktiengesellschaft Process for separating condensable aliphatic hydrocarbons and acid gases from natural gas
GB2142041A (en) * 1983-06-24 1985-01-09 El Paso Hydrocarbons Extracting natural gas streams with physical solvents

Also Published As

Publication number Publication date
NO180687C (en) 1997-05-28
DE68923459T2 (en) 1996-04-04
DE68912746D1 (en) 1994-03-10
ATE124987T1 (en) 1995-07-15
AU627250B2 (en) 1992-08-20
EP0373983B1 (en) 1994-01-26
NO903128L (en) 1990-09-11
JP2742328B2 (en) 1998-04-22
BR8907193A (en) 1991-03-05
AU4637589A (en) 1990-06-12
CA2002826A1 (en) 1990-05-15
FR2641542B1 (en) 1994-06-24
EP0556875A3 (en) 1993-11-10
CA2002826C (en) 1999-06-29
NO903128D0 (en) 1990-07-13
US5298156A (en) 1994-03-29
UA26318A (en) 1999-08-30
DE68923459D1 (en) 1995-08-17
WO1990005766A1 (en) 1990-05-31
RU1836407C (en) 1993-08-23
JPH03503779A (en) 1991-08-22
NO180687B (en) 1997-02-17
ES2077452T3 (en) 1995-11-16
ES2050833T3 (en) 1994-06-01
EP0556875A2 (en) 1993-08-25
DE68912746T2 (en) 1994-08-11
EP0556875B1 (en) 1995-07-12
FR2641542A1 (en) 1990-07-13

Similar Documents

Publication Publication Date Title
EP0291401B1 (en) Cryogenic process for the simultaneous selective desulfurization and degasolination of a gaseous mixture principally consisting of methane and also h2s and c2+ hydrocarbons
US4563202A (en) Method and apparatus for purification of high CO2 content gas
US4370156A (en) Process for separating relatively pure fractions of methane and carbon dioxide from gas mixtures
CA2364354C (en) Recovery and purification process and installation of ethylene manufactured through hydrocarbon pyrolysis, and gases obtained from this process
CA2357860C (en) Process of gas deacidification by absorption in a solvent with temperature control
EP2452140B1 (en) Method for producing methane-rich stream and c2+ hydrocarbon-rich stream, and related facility
KR100441039B1 (en) Method and apparatus for liquefying and processing natural gas
EP0848982B1 (en) Method and apparatus for treating a gas by refrigeration and contacting with a solvent
US4623371A (en) Utilizing the Mehra process for processing and BTU upgrading of nitrogen-rich natural gas streams
EP0393029A1 (en) Processing nitrogen-rich, hydrogen-rich, and olefin-rich gases with physical solvents.
EP0395490A1 (en) Process for the recovery of liquid hydrocarbons from a gaseous feed stream, and apparatus for carrying out this process
FR2873710A1 (en) PROCESS FOR TREATING A HYDROCARBONATED LOAD
US4576615A (en) Carbon dioxide hydrocarbons separation process
CA2378677C (en) Improved process for dehydration and stripping of wet natural gas
EP3013924B1 (en) Method for recovering an ethylene stream from a carbon monoxide rich feed stream
EP0373983B1 (en) Process for the simultaneous elimination of CO2 and gasoline from a gaseous hydrocarbon mixture comprising methane, C2 and higher hydrocarbons and also CO2
US4556404A (en) Split-column extractive distillation
US4601738A (en) Process for freeze protection and purification of natural gas liquid product streams produced by the Mehra process
NZ201064A (en) A cryogenic process for removing acidic gases from natural or synthesized gases using low molecular weight esters and ethers
EP0768106B1 (en) Process for fractionating a fluid containing separable multi-components, e.g. a natural gas
US4401560A (en) Process for the separation of aromatic hydrocarbons from petroleum fractions with heat recovery
EP0129704A1 (en) Separation of methane rich-gas, carbon dioxide and hydrogen sulfide from mixtures with light hydrocarbons
FR2467627A1 (en) PROCESS FOR RECOVERY OF A VOLATILE LIQUID PRESENT IN THE FORM OF VAPOR IN A GAS SHEET
US3267028A (en) Separation of wet pyrolysis gases by sorbent treating and fractionation
EP0186555A1 (en) Self-refrigerating process for the extraction of heavy hydrocarbon fractions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19891117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FR GB GR IT NL

17Q First examination report despatched

Effective date: 19910111

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ELF AQUITAINE PRODUCTION

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR GB GR IT NL

REF Corresponds to:

Ref document number: 100852

Country of ref document: AT

Date of ref document: 19940215

Kind code of ref document: T

XX Miscellaneous (additional remarks)

Free format text: TEILANMELDUNG 93107550.1 EINGEREICHT AM 14/11/89.

REF Corresponds to:

Ref document number: 68912746

Country of ref document: DE

Date of ref document: 19940310

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940418

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2050833

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3011487

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: ELF EXPLORATION PRODUCTION

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20021023

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20021029

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021104

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20021113

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021126

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20031028

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031029

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041114

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041114

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051114