EP0373028A1 - Filtre passif passe-bande - Google Patents
Filtre passif passe-bande Download PDFInfo
- Publication number
- EP0373028A1 EP0373028A1 EP89403257A EP89403257A EP0373028A1 EP 0373028 A1 EP0373028 A1 EP 0373028A1 EP 89403257 A EP89403257 A EP 89403257A EP 89403257 A EP89403257 A EP 89403257A EP 0373028 A1 EP0373028 A1 EP 0373028A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- impedance
- filter
- microstrips
- microstrip
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 claims abstract description 28
- 230000008878 coupling Effects 0.000 claims abstract description 13
- 238000010168 coupling process Methods 0.000 claims abstract description 13
- 238000005859 coupling reaction Methods 0.000 claims abstract description 13
- 238000001465 metallisation Methods 0.000 claims description 13
- 230000004044 response Effects 0.000 claims description 12
- 238000005516 engineering process Methods 0.000 claims description 5
- 230000006872 improvement Effects 0.000 abstract description 10
- 238000000576 coating method Methods 0.000 abstract 1
- 230000004048 modification Effects 0.000 abstract 1
- 238000012986 modification Methods 0.000 abstract 1
- 239000000919 ceramic Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/201—Filters for transverse electromagnetic waves
- H01P1/203—Strip line filters
- H01P1/20327—Electromagnetic interstage coupling
- H01P1/20336—Comb or interdigital filters
Definitions
- the present invention relates to a passive bandpass filter, produced using hybrid circuit technology.
- the structure of this passive filter makes it possible to adapt it, in the microwave domain, to the desired central frequency with a good rate of rejection of the lower frequencies. It is produced in the form of microstrips on a ceramic substrate.
- FIG. 1 An example is given in FIG. 1, on which two combs of interdigitated microstrips 1 and 2 are deposited on a substrate 3.
- the microstrips have a length ⁇ g / 4, ⁇ g being the wavelength guided in a microstrip, and their point common is joined to the ground plane which is on the rear face of the substrate 3.
- the signal input E is applied to a free end of the first microstrip of a first comb, and the filtered output S is collected at one end free from the last microstrip of a second comb.
- These known filters have two types of drawbacks. First, they occupy a relatively important place.
- hybrid circuit techniques are influenced by the density of integrated circuits which are reported on a hybrid circuit substrate, especially VLSIs with very high integration density, and the components reported on a hybrid circuit must also be densified, especially if they operate at microwave frequencies.
- the passive bandpass filter according to the invention eliminates these two drawbacks. It occupies only a small surface on a dielectric substrate, and its response curve is clear: outside the bandwidth, it virtually cuts the outside frequencies, especially the lower frequencies.
- microstrip line It consists of a plurality of microstrip lines, mutually parallel, all the ends of which on the same side are joined to the ground plane carried by the opposite face of the dielectric substrate.
- the signal input E is applied to the first microstrip and the output S of the filtered signal is collected on the last microstrip.
- at least two non-neighboring microstrip lines therefore not coupled by electromagnetism, are coupled by an impedance, self or capacitance, reported on the substrate.
- the distances from the ground points, to which the input, output and impedance connections are connected, allow you to adjust the input and output impedances and to modify the shape of the filter response curve. .
- This type of bandpass filter makes it possible to obtain a response curve for the passband whose flanks are relatively steep, because the coupling impedance cancels a term from the denominator of the equation of transfer through the filter.
- a first improvement to this bandpass filter consists in providing it with an additional impedance, at its input, which cancels a second term in the transfer equation, and makes the flanks of the response curve more abrupt.
- a second improvement consists in folding the band-pass filter over itself, in the same way as one closes a book. This makes it a smaller component, the dimensions of which are in accordance with its environment of integrated circuits or miniaturized components.
- the invention relates to a passive bandpass filter, produced by means of microstrips deposited on one face of a dielectric substrate, characterized in that it comprises at least three microstrips, parallel to each other, one end of which is joined by means appropriate to the ground plane carried by the second face of the substrate, at least two of the said microstrips, not neighboring on the substrate, being coupled by a coupling impedance Z, which is a self or a capacitance .
- the passive filter according to the invention is supported by a substrate 4, one face of which is metallized at 5 to form a ground plane.
- This substrate is made of ceramic, alumina or materials with a high dielectric constant (9 ⁇ ⁇ ⁇ 100), and its thickness is between 0.3 and 1 mm approximately.
- microstrip lines On the non-metallized face of this substrate 4 are deposited a plurality of microstrip lines, parallel to each other. At least three microbands 6,7,8 are necessary so that at least two of them are not neighboring. By one of their ends, but on the same side for all the microstrip lines, these are joined to the ground plane 5: in the figure, this connection is made by means of metallized holes 9, but other known means are possible.
- These microstrip lines are produced either by thick film technology, by screen printing, or by thin film technology, by vacuum evaporation.
- the input E of the signal to be filtered is applied laterally to the first strip 6 of the series by means of a metallization 10 which, generally, is oriented towards the edge of the substrate 4, or towards the signal generator if the latter is integrated on the same substrate.
- the filtered output signal S is collected on a metallization 11, lateral on the last strip in the series.
- the metallizations 10 and 11 are, respectively, at distances x1 and x2 from the ends to the mass of the two microstrip lines considered.
- two non-neighboring microstrip lines are coupled by an impedance Z 12, joined by two wires or metallizations 13 and 14 at two points, respectively, of the first strip 6 and the second band 8 not neighboring.
- the impedance Z is either a self or a capacitor, deposited on the substrate 4 in the form of a discrete component or in the form of thick layers.
- the wires or metallizations 13 and 14 are fixed on the two non-neighboring microstrip lines at distances x3 and x4, respectively, from the ends to ground of the two microstrip lines considered.
- the displacement of the input metallization 10, by varying x1, makes it possible to adapt the impedance to 75 or 100 ohms, or to some other value.
- the distance x2 makes it possible to adjust the output impedance of the passive filter.
- the central frequency of the bandpass filter is adjusted by the length L of the microstrip lines.
- the bandwidth of the filter is adjusted by the width "l" of the lines, and by the spacing "d” between lines.
- the spacing "d” plays the same role as the width "l” but more important.
- microstrips and / or narrow spacings give wide bandwidths and low TOS.
- Narrow microstrips and / or wide spacings give narrow bandwidths and high TOS.
- the distances x3 and x4 make it possible to optimize the coupling between two non-neighboring microstrips: they define the input impedance and the output impedance linked to the capacitance or self Z 12, and are calculated according to the specifications required for the filtered.
- a filter according to the invention which includes a coupling impedance Z 12 has a response curve (S 21) as a function of the frequency F: - which approximates curve 15 of FIG. 3 when the value of Z increases: this filter cuts the frequencies higher than the central frequency well - which on the contrary approaches curve 16 when the value of Z decreases: this filter has better rejection of the lower frequencies.
- a filter according to the invention of one or more uncoupled microstrips improves the rejection of frequencies outside the central frequency, and makes the response curve more "square"".
- a filter according to the invention can comprise more than three microstrips as shown in FIG. 2. Let us take the case of a filter with 4 microstrips, which will be called A, B, C, D. Different couplings can be carried out: A-D coupling or A-C and B-D coupling. The choice is made according to the specifications imposed on the filter.
- FIG. 4 A first improvement to the filter according to the invention is shown in FIG. 4. They consist in adding to the input E of the filter a double impedance Z1 and Z2.
- the impedance Z1 is provided by a microstrip 17, finer and of higher impedance than the microstrips 6,7,8 of the filter. Typically, it is about 200 micrometers wide, and a length equal to ⁇ / 4. Unlike other microstrips, it has no end joined to the ground plane 5.
- this impedance Connected in parallel on the input circuit, this impedance resonates for the rejection frequency. It cancels a second term in the filter transfer equation, which completes the action of the impedance 12 of the filter, which cancels a first term.
- Impedance 17 can also be achieved by a line and a capacity.
- Impedance Z2 corrects the deterioration of the input impedance, brought by Z1. Placed in series between the input E of the filter, and the connection point on the first microstrip 6, it can be carried out either by a line 18, or by a line and a capacitor.
- the characteristic impedances of 17 and 18 are interactive, and calculated to obtain the desired slope and rejection level, on the response curve of the filter.
- the second improvement makes it possible to produce a bandpass filter even smaller than that of the main invention.
- a filter according to the invention only the substrate 4 is reported with its ground plane 5, and three microstrips 6,7,8 with an input E and an output S.
- this filter could comprise more than three bands , and the impedances 17 and 18 of the first improvement.
- the second improvement consists in cutting the filter along a line 19 which, perpendicular to the microstrips 6,7,8, separates it into two equal parts, in the direction of the length of the substrate 4. The two parts are then, as shown on the right of the figure, brazed one on the other, by their faces supporting the ground plane 5.
- microstrips 6,7,8, the halves of which are now carried by the upper and lower faces of a sandwich including in its center a ground plane 5, are reformed by means of jumpers or metallizations 20, on the side of the sandwich: the electrical continuity of each microstrip is thus ensured.
- microstrips must be slightly shorter in length than ⁇ g / 4: the length of the jumpers 20, equal to twice the thickness of the substrate 4, reduces this length to ⁇ g / 4.
- jumpers 21, or other suitable external connections are fixed to the edges of the sandwich.
- a minimum of three jumpers 21 is required, corresponding to the input E, the output S and the ground plane 5.
- These jumpers are provided with means 22 for either implanting the component in the holes of a substrate, or mounting it in SMD (surface mountable components).
- SMD surface mountable components
- This type of passive filter is used in information processing systems, for example in radio telephones, in the range 0.5 to 10 GHz, with a bandwidth of 0.9 to 1 GHz.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Filters And Equalizers (AREA)
- Networks Using Active Elements (AREA)
Abstract
Description
- La présente invention concerne un filtre passif passe-bande, réalisé selon la technologie des circuits hybrides. La structure de ce filtre passif permet de l'adapter, dans le domaine des hyperfréquences, à la fréquence centrale recherchée avec un bon taux de réjection des fréquences inférieures. Il est réalisé sous forme de microbandes sur un substrat céramique.
- Différents types de filtres passe-bande sont connus, réalisés en microbandes sur un substrat céramique, selon les technologies couche épaisse ou couche mince. Un example en est donné en figure 1, sur laquelle deux peignes de microbandes interdigités 1 et 2 sont déposés sur un substrat 3. Les microbandes ont une longueur λg/4, λg étant la longueur d'onde guidée dans une microbande, et leur point commun est réuni au plan de masse qui se trouve sur la face arrière du substrat 3. L'entrée E du signal est appliquée à une extrémité libre de la première microbande d'un premier peigne, et la sortie S filtrée est recueillie à une extrémité libre de la dernière microbande d'un second peigne. Ces filtres connus ont deux types d'inconvénients. D'abord, ils occupent une place relativement importante. Actuellement, les techniques de circuits hybrides subissent l'influence de la densité des circuits intégrés qui sont rapportés sur un substrat de circuit hybride, surtout les VLSI à très haute densité d'intégration, et les composants rapportés sur un circuit hybride doivent eux aussi être densifiés, surtout s'ils fonctionnent en hyperfréquences.
- Ensuite, ces filtres connus ont une courbe de réponse qui, pour une perte d'insertion donnée, n'est pas suffisamment carrée : c'est une courbe en cloche dont les flancs ne sont pas assez abrupts.
- Le filtre passif passe-bande selon l'invention permet de supprimer ces deux inconvénients. Il n'occupe qu'une faible surface sur un substrat diélectrique, et sa courbe de réponse est franche : en dehors de la bande passante, elle coupe franchement les fréquences extérieures, surtout les fréquences plus faibles.
- Il est constitué d'une pluralité de lignes microbandes, parallèles entre elles, dont toutes les extrémités d'un même côté sont réunies au plan de masse porté par la face opposée du substrat diélectrique. L'entrée E du signal est appliquée sur la première microbande et la sortie S du signal filtré est recueillie sur la dernière microbande. Dans cette série de microbandes, au moins deux lignes microbandes non voisines, donc non couplées par électromagnétisme, sont couplées par une impédance, self ou capacité, rapportée sur le substrat. Les distances, par rapport aux points de masse, auxquelles sont connectées l'entrée, la sortie et les connexions de l'impédance, permettent de régler les impédances d'entrée, de sortie et de modifier la forme de la courbe de réponse du filtre.
- Ce type de filtre passe-bande permet d'obtenir une courbe de réponse pour la bande passante dont les flancs sont relativement abrupts, car l'impédance de couplage annule un terme du dénominateur de l'équation de transfert à travers le filtre.
- Un premier perfectionnement à ce filtre passe-bande consiste à la munir d'une impédance supplémentaire, à son entrée, qui annule un second terme dans l'équation de transfert, et rend les flancs de la courbe de réponse plus abrupts.
- Un second perfectionnement consiste à replier le filtre passe-bande sur lui même, à la façon dont on referme un livre. Cela permet d'en faire un composant plus petit, dont les dimensions sont en accord avec son environnement de circuits intégrés ou de composants miniaturisés.
- De façon plus précise, l'invention concerne un filtre passif passe-bande, réalisé au moyen de microbandes déposées sur une face d'un substrat diélectrique, caractérisé en ce qu'il comprend au moins trois microbandes, parallèles entre elles, dont une extrémité est réunie par des moyens appropriés au plan de masse porté par la seconde face du substrat, au moins deux des dites microbandes, non voisines sur le substrat, étant couplées par une impédance Z de couplage , qui est une self ou une capacité.
- L'invention sera mieux comprise par la description d'un exemple d'application, faite en s'appuyant sur les figures jointes en annexe, qui représentent :
- - fig. 1 : schéma d'un filtre passif passe-bande selon l'art connu, déjà exposé,
- - fig. 2 : schéma d'un filtre passif passe-bande selon l'invention.
- - fig. 3 : courbe de réponse, en fonction de la fréquence, d'un filtre selon l'invention, sans ou avec impédance de couplage,
- - fig. 4 : vue en plan du filtre passe-bande, constituant un premier perfectionnement à l'invention.
- - fig. 5 : vue de 3/4 dans l'espace du filtre, avant et après pliage, constituant un second perfectionnement à l'invention.
- Le filtre passif selon l'invention, représenté en figure 2, est supporté par un substrat 4, dont une face est métallisée en 5 pour former un plan de masse. Ce substrat est en céramique, alumine ou matériaux à haute constante diélectrique (9 ≦ ε ≦ 100), et son épaisseur est comprise entre 0,3 et 1 mm environ.
- Sur la face non métallisée de ce substrat 4 sont déposées une pluralité de lignes microbandes, parallèles entre elles. Il faut au moins trois microbandes 6,7,8 pour que deux d'entre elles, au moins, ne soient pas voisines. Par l'une de leurs extrémités, mais du même côté pour toutes les lignes microbandes, celles-ci sont réunies au plan de masse 5 : sur la figure, cette liaison est opérée au moyen de trous métallisés 9, mais d'autres moyens connus sont envisageables. Ces lignes microbandes sont réalisées soit par la technologie en couche épaisse, par sérigraphie, soit par la technologie en couche mince, par évaporation sous vide.
- Les lignes microbandes ont une longueur L = λg/4, λg étant la longueur d'onde guidée, et une largeur "l"; elles sont séparées d'une distance "d".
- L'entrée E du signal à filtrer est appliquée latéralement à la première bande 6 de la série au moyen d'une métallisation 10 qui, généralement, est orientée vers le bord du substrat 4, ou vers le générateur de signal si celui-ci est intégré sur le même substrat. De la même façon le signal de sortie S, filtré, est recueilli sur une métallisation 11, latérale sur la dernière bande de la série. Les métallisations 10 et 11 sont, respectivement, à des distances x₁ et x₂ des extémités à la masse des deux lignes microbandes considérées.
- Selon l'invention, deux lignes microbandes non voisines, telles que les lignes 6 et 8 sur la figure 2, sont couplées par une impédance Z 12, réunie par deux fils ou métallisations 13 et 14 à deux points, respectivement, de la première bande 6 et de la deuxième bande 8 non voisines. L'impédance Z est soit une self, soit une capacité, déposées sur le substrat 4 sous forme de composant discret ou sous forme de couches épaisses. Les fils ou métallisations 13 et 14 sont fixés sur les deux lignes microbandes non voisines à des distances x₃ et x₄ , respectivement, des extrémités à la masse des deux lignes microbandes considérées.
- La distance x₁ est choisie pour que le taux d'onde stationnaire à l'entrée TOS = 1, pour une impédance de 50 ohms. Le déplacement de la métallisation d'entrée 10, en faisant varier x₁, permet d'adapter l'impédance à 75 ou 100 ohms, ou à quelqu'autre valeur.
- Pour raison de symétrie, et pour le même motif, la distance x₂ permet d'ajuster l'impédance de sortie du filtre passif.
- La fréquence centrale du filtre passe-bande est réglée par la longueur L des lignes microbandes.
- La bande passante du filtre est réglée par la largeur "l" des lignes, et par l'écartement "d" entre lignes. Plus une microbande est large, meilleur est le filtrage, mais moins bon est le rendement. L'écartement "d" joue le même rôle que la largeur "l" mais plus important.
- Des microbandes larges et/ou des écartements étroits donnent des bandes passantes larges et des TOS faibles. Des microbandes étroites et/ou des écartements larges donnent des bandes passantes étroites et des TOS importants.
- Les distances x₃ et x₄ permettent d'optimiser le couplage entre deux microbandes non voisines : elles définissent l'impédance d'entrée et l'impédance de sortie liées à la capacité ou self Z 12, et sont calculées en fonction des spécifications requises pour le filtre.
- En effet, un filtre dans lequel des microbandes 6 et 8 ne seraient pas couplées a une courbe de réponse en fréquence qui est une courbe de Gauss, bien symétrique, et dont les flancs sont aplatis : le filtrage n'est pas sélectif.
- Au contraire, un filtre selon l'invention qui comporte une impédance de couplage Z 12 a une courbe de réponse (S 21) en fonction de la fréquence F :
- qui se rapproche de la courbe 15 de la figure 3 lorsque la valeur de Z augmente : ce filtre coupe bien les fréquences supérieures à la fréquence centrale
- qui au contraire se rapproche de la courbe 16 lorsque la valeur de Z diminue : ce filtre a une meilleure réjection des fréquences inférieures. - Par conséquent, le calcul et le choix des valeurs de x₃, x₄ et Z permet d'obtenir un filtre passif qui
- soit a une forte réjection des fréquences supérieures,
- soit a une forte réjection des fréquences inférieures
- soit a une courbe de réponse symétrique avec de bonnes réjections hors de la fréquence centrale. - Par ailleurs, on a constaté que la présence sur un filtre selon l'invention d'une ou plusieurs microbandes non couplées telle que la microbande 7 centrale améliore la réjection des fréquences extérieures à la fréquence centrale, et rend la courbe de réponse plus "carrée". Plus il y a de microbandes non couplées, plus la bande passante est étroite, mais plus est importante la perte d'insertion du filtre.
- De façon plus générale, un filtre selon l'invention peut comporter plus de trois microbandes telles que représentées en figure 2. Prenons le cas d'un filtre à 4 microbandes, qu'on appellera A,B,C,D. Différents couplages peuvent être effectués : couplage A-D ou couplage A-C et B-D. Le choix est effectué en fonction des spécifications imposées au filtre.
- Un premier perfectionnement au filtre selon l'invention est représenté en figure 4. Ils consiste à ajouter à l'entrée E du filtre une double impédance Z1 et Z2.
- L'impédance Z1 est apportée par une microbande 17, plus fine et d'impédance plus élevée que les microbandes 6,7,8 du filtre. Typiquement, elle a environ 200 micromètres de largeur, et une longueur égale à λ/4. Contrairement aux autres microbandes, elle n'a pas d'extrémité réunie au plan de masse 5.
- Connectée en parallèle sur le circuit d'entrée, cette impédance résonne pour la fréquence de réjection. Elle annule un second terme dans l'équation de transfert du filtre, ce qui vient compléter l'action de l'impédance 12 du filtre, qui annule un premier terme.
- L'impédance 17 peut aussi être réalisée par une ligne et une capacité.
- L'impédance Z2 corrige la détérioration de l'impédance d'entrée, apportée par Z1. Placée en série entre l'entrée E du filtre, et le point de connexion sur la première microbande 6, elle peut être réalisée soit par une ligne 18, soit par une ligne et une capacité.
- Les impédances caractéristiques de 17 et 18 sont inter-actives, et calculées pour obtenir la pente et le niveau de réjection souhaités, sur la courbe de réponse du filtre.
- Le second perfectionnement permet de réaliser un filtre passe-bande encore plus petit que celui de l'invention principale.
- Sur la partie gauche de la figure 5 est très sommairement représenté un filtre selon l'invention : ne sont rapportés que le substrat 4 avec son plan de masse 5, et trois microbandes 6,7,8 avec une entrée E et une sortie S. Bien entendu, ce filtre pourrait comporter plus de trois bandes, et les impédances 17 et 18 du premier perfectionnement.
- Bien qu'un tel filtre constitue un progrès en miniaturisation par rapport à l'art connu, il est encore encombrant si on le compare aux puces de circuits intégrés, ou aux puces de composants discrets montables en surface auxquelles il est associée sur un circuit hybride.
- Le second perfectionnement consiste à couper le filtre selon une ligne 19 qui, perpendiculaire aux microbandes 6,7,8, le sépare en deux parties égales, dans le sens de la longueur du substrat 4. Les deux parties sont alors, comme montré sur la droite de la figure, brasées l'une sur l'autre, par leurs faces supportant le plan de masse 5.
- Les microbandes 6,7,8 dont les moitiés sont désormais portées par les faces supérieure et inférieure d'un sandwich incluant en son centre un plan de masse 5, sont reformées au moyen de cavaliers ou de métallisations 20, sur le flanc du sandwich : la continuité électrique de chaque microbande est ainsi assurée.
- Les microbandes doivent être de longueur légèrement plus petite que λg/4 : la longueur des cavaliers 20, égale à deux fois l'épaisseur du substrat 4, ramène cette longueur à λg/4.
- Pour monter ce composant miniaturisé sur un substrat, des cavaliers 21, ou autres connexions extérieures adéquates, sont fixés sur les bords du sandwich. Il faut un minimum de trois cavaliers 21, correspondant à l'entrée E, la sortie S et le plan de masse 5. Ces cavaliers sont munis de moyens 22 pour soit implanter le composant dans les trous d'un substrat, soit le monter en CMS (composants montables en surface). L'avantage d'un composant de type DIL, par rapport à un composant en plaquette, est manifeste : gain de place et facilité de fixation d'un filtre qui, replié sur lui-même, a des dimensions proches de celles d'un boîtier de circuit intégré.
- Ce type de filtre passif est utilisé dans les systèmes de traitement de l'information, par exemple dans les radio-téléphones, dans la gamme 0,5 à 10 GHz, avec une bande passante de 0,9 à 1 GHz.
Claims (9)
- la longueur L règle la fréquence centrale du filtre,
- la largeur l et l'écartement d règlent la bande passante et le taux d'ondes stationnaires du filtre, la bande passante étant proportionnelle à la largeur l, et le taux d'ondes stationnaires étant inversement proportionnel à l'écartement d.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8815664 | 1988-11-30 | ||
FR8815664A FR2639776B1 (fr) | 1988-11-30 | 1988-11-30 | Filtre passif passe-bande |
FR8908017 | 1989-06-16 | ||
FR898908017A FR2648641B2 (fr) | 1988-11-30 | 1989-06-16 | Filtre passif passe-bande |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0373028A1 true EP0373028A1 (fr) | 1990-06-13 |
EP0373028B1 EP0373028B1 (fr) | 1994-05-18 |
Family
ID=26227020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89403257A Expired - Lifetime EP0373028B1 (fr) | 1988-11-30 | 1989-11-24 | Filtre passif passe-bande |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0373028B1 (fr) |
AT (1) | ATE105976T1 (fr) |
CA (1) | CA2004184A1 (fr) |
DE (1) | DE68915408T2 (fr) |
FI (1) | FI895714A0 (fr) |
FR (1) | FR2648641B2 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2669476A1 (fr) * | 1990-11-21 | 1992-05-22 | Valtronic France | Filtre passif passe-bande. |
WO1998027607A1 (fr) * | 1996-12-18 | 1998-06-25 | Siemens Aktiengesellschaft | Filtre hyperfrequence |
ES2143964A1 (es) * | 1998-09-15 | 2000-05-16 | Univ Catalunya Politecnica | Diplexor dual para telefonia celular gsm y dcs. |
EP1235297A2 (fr) * | 2001-02-26 | 2002-08-28 | Samsung Electronics Co., Ltd. | Filtre en forme de peigne |
US10862185B2 (en) | 2017-12-01 | 2020-12-08 | Semiconductor Components Industries, Llc | Integrated circuit with capacitor in different layer than transmission line |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1906059A1 (de) * | 1969-02-07 | 1970-08-13 | Licentia Gmbh | Kammfilter |
FR2222767A1 (fr) * | 1973-03-19 | 1974-10-18 | Fujitsu Ltd | |
DE2407313A1 (de) * | 1974-02-15 | 1975-08-21 | Kathrein Werke Kg | Resonatoranordnung |
US4253073A (en) * | 1978-08-17 | 1981-02-24 | Communications Satellite Corporation | Single ground plane interdigital band-pass filter apparatus and method |
FR2570884A1 (fr) * | 1984-09-22 | 1986-03-28 | Smiths Industries Plc | Procede pour accorder un dispositif a microlame, notamment une antenne |
EP0193162A1 (fr) * | 1985-02-27 | 1986-09-03 | Alcatel Transmission Par Faisceaux Hertziens A.T.F.H. | Filtre passe-bande pour hyperfréquences |
US4721931A (en) * | 1986-05-02 | 1988-01-26 | Murata Manufacturing Co., Ltd. | Stripline filter |
US4740765A (en) * | 1985-09-30 | 1988-04-26 | Murata Manufacturing Co., Ltd. | Dielectric filter |
EP0285503A1 (fr) * | 1987-03-31 | 1988-10-05 | Thomson-Csf | Filtre comportant des éléments à constantes réparties associant deux types de couplage |
-
1989
- 1989-06-16 FR FR898908017A patent/FR2648641B2/fr not_active Expired - Lifetime
- 1989-11-24 EP EP89403257A patent/EP0373028B1/fr not_active Expired - Lifetime
- 1989-11-24 AT AT89403257T patent/ATE105976T1/de active
- 1989-11-24 DE DE68915408T patent/DE68915408T2/de not_active Expired - Fee Related
- 1989-11-29 CA CA002004184A patent/CA2004184A1/fr not_active Abandoned
- 1989-11-29 FI FI895714A patent/FI895714A0/fi not_active Application Discontinuation
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1906059A1 (de) * | 1969-02-07 | 1970-08-13 | Licentia Gmbh | Kammfilter |
FR2222767A1 (fr) * | 1973-03-19 | 1974-10-18 | Fujitsu Ltd | |
DE2407313A1 (de) * | 1974-02-15 | 1975-08-21 | Kathrein Werke Kg | Resonatoranordnung |
US4253073A (en) * | 1978-08-17 | 1981-02-24 | Communications Satellite Corporation | Single ground plane interdigital band-pass filter apparatus and method |
FR2570884A1 (fr) * | 1984-09-22 | 1986-03-28 | Smiths Industries Plc | Procede pour accorder un dispositif a microlame, notamment une antenne |
EP0193162A1 (fr) * | 1985-02-27 | 1986-09-03 | Alcatel Transmission Par Faisceaux Hertziens A.T.F.H. | Filtre passe-bande pour hyperfréquences |
US4740765A (en) * | 1985-09-30 | 1988-04-26 | Murata Manufacturing Co., Ltd. | Dielectric filter |
US4721931A (en) * | 1986-05-02 | 1988-01-26 | Murata Manufacturing Co., Ltd. | Stripline filter |
EP0285503A1 (fr) * | 1987-03-31 | 1988-10-05 | Thomson-Csf | Filtre comportant des éléments à constantes réparties associant deux types de couplage |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN, vol. 7, no. 182 (E-192)[1327], 11 août 1983; & JP-A-58 85 601 (NIPPON DENKI K.K.) 23-05-1983 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2669476A1 (fr) * | 1990-11-21 | 1992-05-22 | Valtronic France | Filtre passif passe-bande. |
EP0487396A1 (fr) * | 1990-11-21 | 1992-05-27 | Valtronic France | Filtre passif passe-bande |
WO1998027607A1 (fr) * | 1996-12-18 | 1998-06-25 | Siemens Aktiengesellschaft | Filtre hyperfrequence |
DE19652799A1 (de) * | 1996-12-18 | 1998-06-25 | Siemens Ag | Mikrowellenfilter |
DE19652799C2 (de) * | 1996-12-18 | 1999-05-20 | Siemens Ag | Mikrowellenfilter |
ES2143964A1 (es) * | 1998-09-15 | 2000-05-16 | Univ Catalunya Politecnica | Diplexor dual para telefonia celular gsm y dcs. |
EP1235297A2 (fr) * | 2001-02-26 | 2002-08-28 | Samsung Electronics Co., Ltd. | Filtre en forme de peigne |
EP1235297A3 (fr) * | 2001-02-26 | 2003-10-08 | Samsung Electronics Co., Ltd. | Filtre en forme de peigne |
US10862185B2 (en) | 2017-12-01 | 2020-12-08 | Semiconductor Components Industries, Llc | Integrated circuit with capacitor in different layer than transmission line |
Also Published As
Publication number | Publication date |
---|---|
FR2648641B2 (fr) | 1994-09-09 |
DE68915408D1 (de) | 1994-06-23 |
FI895714A0 (fi) | 1989-11-29 |
DE68915408T2 (de) | 1994-09-08 |
FR2648641A2 (fr) | 1990-12-21 |
EP0373028B1 (fr) | 1994-05-18 |
CA2004184A1 (fr) | 1990-05-31 |
ATE105976T1 (de) | 1994-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0285503B1 (fr) | Filtre comportant des éléments à constantes réparties associant deux types de couplage | |
EP2345104B1 (fr) | Systeme d'antenne dipole differentielle a structure rayonnante coplanaire et dispositif d'emission/reception | |
EP2184803B1 (fr) | Ligne à retard bi-ruban différentielle coplanaire, filtre différentiel d'ordre supérieur et antenne filtrante munis d'une telle ligne | |
FR2578104A1 (fr) | Filtre passe-bande pour hyperfrequences | |
EP1368895A1 (fr) | Filtre a ondes acoustiques de surface | |
EP0373028B1 (fr) | Filtre passif passe-bande | |
FR2535547A1 (fr) | Resonateurs bi-rubans et filtres realises a partir de ces resonateurs | |
FR2510325A1 (fr) | Filtre hyperfrequence de petites dimensions, a resonateurs lineaires | |
EP0424255B1 (fr) | Cellule de filtrage et filtre correspondant | |
EP0649571B1 (fr) | Filtre passe-bande a resonateurs couples | |
EP0487396A1 (fr) | Filtre passif passe-bande | |
EP2688137B1 (fr) | Résonateur hyperfréquence a saut d'impédance, notamment pour filtres hyperfréquence coupe-bande ou passe-bande | |
EP0337825B1 (fr) | Filtre coupe-bande hyperfréquence en technologie micro-bande | |
FR2639776A1 (fr) | Filtre passif passe-bande | |
EP0983616B1 (fr) | Procede et dispositif pour connecter deux elements millimetriques | |
FR2675638A1 (fr) | Dispositif resonateur dielectrique. | |
EP0064458A1 (fr) | Filtre passe-bande en guide rectangulaire, présentant une grande sélectivité en fréquence | |
FR2626716A1 (fr) | Filtre a resonateurs plans | |
EP0576340B1 (fr) | Filtre à ondes de surface à réseaux réfléchissants | |
EP0780973B1 (fr) | Filtre réjecteur de bande à composants passifs | |
EP1568098B1 (fr) | Dispositif separateur de bandes hyperfrequences a large bande | |
FR2539933A1 (fr) | Filtre commutable pour micro-ondes | |
FR2704984A1 (fr) | Filtre passe-bande à lignes couplées dissymétriques. | |
FR2820885A1 (fr) | Filtre dielectrique, duplexeur dielectrique et dispositif de telecommunications | |
FR2680281A1 (fr) | Element de circuit pour hyperfrequences. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19900618 |
|
17Q | First examination report despatched |
Effective date: 19920805 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 105976 Country of ref document: AT Date of ref document: 19940615 Kind code of ref document: T |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 68915408 Country of ref document: DE Date of ref document: 19940623 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19940609 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 89403257.2 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19961129 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19971013 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19971014 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19971016 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19971017 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19971028 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19971031 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981130 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981130 |
|
BERE | Be: lapsed |
Owner name: THOMSON HYBRIDES Effective date: 19981130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990601 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19981124 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed |
Ref document number: 89403257.2 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19990601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051124 |