EP0064458A1 - Filtre passe-bande en guide rectangulaire, présentant une grande sélectivité en fréquence - Google Patents

Filtre passe-bande en guide rectangulaire, présentant une grande sélectivité en fréquence Download PDF

Info

Publication number
EP0064458A1
EP0064458A1 EP82400757A EP82400757A EP0064458A1 EP 0064458 A1 EP0064458 A1 EP 0064458A1 EP 82400757 A EP82400757 A EP 82400757A EP 82400757 A EP82400757 A EP 82400757A EP 0064458 A1 EP0064458 A1 EP 0064458A1
Authority
EP
European Patent Office
Prior art keywords
cavities
filter
guide
band
notch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP82400757A
Other languages
German (de)
English (en)
Inventor
Yves Le Nohaic
Marc Sauvage
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0064458A1 publication Critical patent/EP0064458A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/209Hollow waveguide filters comprising one or more branching arms or cavities wholly outside the main waveguide

Definitions

  • the present invention relates to band pass filters in rectangular guide, having a high frequency selectivity.
  • the present invention aims to avoid the drawbacks of the prior art without increasing the cost price of the filter.
  • a band pass filter in rectangular guide, with high frequency selectivity comprising a rectangular guide which will said main guide and shunt susceptances placed inside the main guide so as to delimit there n (n integer greater than 0) successive main cavities, is characterized in that it comprises m (m integer greater than 0 and less or equal to n) notch cavities respectively coupled to m of the n main cavities and whose notch effect occurs at the limit of the passband of the bandpass filter.
  • FIG. 1 is a cross-sectional view of a filter according to the invention.
  • This figure shows a rectangular waveguide 1 with its two connection flanges 10, 11.
  • the interior of this guide is divided into four cavities 2, 3, 4, 5, using shunt susceptances formed by rods such that T 1 , T 2 9 T 3 9 T 4 , T 5 ; these rods are arranged in pairs so as to delimit cavities with a length slightly less than where g is the wavelength guided in the guide corresponding to an average operating frequency of 8.1 GHz.
  • Screws with locking nuts 12, 13, 14, 15, 16 are associated with the rods to allow adjustment of the coupling between the cavities, and of the coupling between the cavities 2 and 5 and the filter ports.
  • Other screws with locking nuts, 20, 30, 40, 50, are respectively associated with the cavities 2, 3, 4, 5 into which they penetrate with an adjustable length so as to constitute a means of adjusting these cavities.
  • the filter as just described so far constitutes a conventional bandpass filter with four bandpass cavities; the following description of FIG. 1 will show how it is possible to combine these four cavities with four other cavities 6, 7, 8, 9 each having a role of band-cutting cavity.
  • Figure 1 shows that each of the cavities 2, 3, 4, 5, is pierced with an iris 60, 70, 80, 90 located on the long side of the waveguide opposite to that which is crossed by the adjustment screws 20, 30, 40, 50 and opposite these adjustment screws.
  • These irises constitute a coupling element between respectively the cavities 2, 3, 4, 5, and four band-cutting cavities 6, 7, 8, 9 constituted by sections of waveguides of the same section as the waveguide 1 arranged perpendicular to the long side of the guide d wave 1, having their short sides located in the same plane as the short sides of the waveguide 1 and whose height is substantially less than .
  • These sections of waveguides are welded at one end to the waveguide 1 and are closed at their other end by a metal plate that a screw, 61, 71, 81, 91, associated with a locking nut, cross so as to ensure the adjustment of these cavities.
  • these cavities 6, 7, 8, 9 can be considered as being in series with the band-pass cavities 2, 3, 4, 5; they therefore add their notch function to the band pass function of the cavities of the guide 1, so that the filter according to FIG. 1 is equivalent to a band pass filter associated in series with a band cut filter.
  • Figure 2 is a top view of the filter according to the invention; in this figure the band-cutting cavity 9 has been shown in section along a plane XX indicated in FIG. 1.
  • FIG. 2 shows, by comparing with FIG. 1, that the bandpass cavities of the filter are produced by means of the pairs of rods T 1 -T ' 1 , T2-T' 2 , T 3 -T ' 3 , T4- T'4, T 5 -T ' 5 perpendicular to the long side of the guide.
  • Figure 2 also shows that each pair of rods and the screw for adjusting the inter-cavity coupling (12 to 16) are arranged in the same transverse plane of the guide 1. From the ends of the guide towards the center, the rods have their diameter which increases while that the spacing between the two rods of the same pair decreases.
  • FIG. 1 shows, by comparing with FIG. 1, that the bandpass cavities of the filter are produced by means of the pairs of rods T 1 -T ' 1 , T2-T' 2 , T 3 -T ' 3 , T4- T'4, T 5 -T ' 5 perpendicular to the long side of the guide.
  • Figure 2 also shows that each pair
  • the irises such as 90 used for coupling between a band-cutting cavity, such as 9, and a band-pass cavity, have an oblong shape, the major axis of which, not shown, is perpendicular to the edges of the guide 1 .
  • FIG. 3 is an end view, on the side of the flange 10, of the filter already shown in FIGS. 1 and 2.
  • the adjustment screws 12 and 20 Through the opening of the guide 1 appear the adjustment screws 12 and 20 as well as the rods T 1 and T ' l and the stems T 2, T' 2 , T 3 , T ' 3 partially hidden.
  • the band-cutting cavity 6 and the screw with locking nut, 61 allowing the adjustment of this cavity.
  • the flange 10 is a square flange pierced, in the vicinity of its four angles, with threaded holes, 101 to 104, intended to allow the mechanical connection of the filter to the other elements of the assemblies for which it is intended.
  • FIG. 4 is a graph showing, by two curves A and B, the frequency responses of the filter according to FIGS. 1 to 3 (curve A) and of this same filter without the notch qualities 6 to 9 and without the irises of coupling 60, 70, 80, 90 (curve B), that is to say of a conventional band-pass filter.
  • FIG. 4 Also shown in FIG. 4 are the reflection losses due to the filter, as a function of the frequency (curve C).
  • curve C shows that in the flat part of the response curve of the filter according to Figures 1 to 3, the reflection losses are at most of the order of 25 dB, which corresponds to a standing wave ratio (ROS ) of 1.1.
  • ROS standing wave ratio
  • notch cavities 6 and 8 had been tuned on 7.9 GHz while the notch cavities 7 and 9 had been tuned on 8.3 GHz, which explains why both the flank before the rear flank of curve A have much steeper slopes than the corresponding flanks of curve B.
  • one or more notch cavities will be coupled respectively to one or more bandpass cavities of the conventional filter; the choice of the number of notch cavities and their tuning frequency depends on the shape of the flanks to be obtained, it being understood that the tuning frequency will be one of the frequencies relating to the flanks to be obtained.
  • the invention is not limited to the example described.
  • the shunt susceptances formed of rods which separate the band pass cavities, can be replaced by shunt susceptances of the iris or flap type and the number of band cut cavities can be lower.
  • the number of bandpass cavities of the filter some of the band pass cavities are therefore not associated with a band cut cavity.
  • the band-cut cavities can be arranged differently with respect to the guide of the band-pass cavities, for example always perpendicular to one of the long sides of this guide but with the large sides of their cross section making an angle different from 90 ° with the transverse edges of the guide; experience has shown that it is also possible to arrange the band-cut cavities perpendicular to the short sides of the guide of the band-pass cavities.
  • the number and the location of the notch cavities are parameters which make it possible to intervene on the shape of the frequency response of the filter according to the invention.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Filtre passe-bande en guide rectangulaire, présentant une grande sélectivité en fréquence.
Le filtre comporte un guide d'ondes (1) à l'intérieur duquel sont disposées des susceptances shunts, par exemple du type à tiges (T1, T2, T3, T4, Ts), afin d'y délimiter des cavités passe-bande successives (2-5). Des cavités coupe-bande (6-9) extérieures au guide sont couplées aux cavités passebande par l'intermédiaire d'iris (60, 70, 80, 90) percés dans la paroi du guide.
Application au domaine des hyperfréquences.

Description

  • La présente invention se rapporte à des filtres passe-bande en guide rectangulaire, présentant une grande sélectivité en fréquence.
  • Pour obtenir une bonne sélectivité en fréquence avec un filtre, il est connu de réaliser ce filtre de manière que sa fonction de filtrage présente des zéros de transmission.
  • Pour obtenir une fonction de filtrage présentant des zéros de transmission il est connu d'employer soit des filtres dits elliptiques utilisant des cavités bi-modes, soit des associations en cascade de filtres passe-bande et de filtres coupe-bande. Mais les filtres dits elliptiques utilisant des cavités bi-modes ont des bandes passantes étroites; quant aux associations de filtres passe-bande et coupe-bande, elles ont l'inconvénient de constituer des ensembles mécaniques encombrants.
  • Il est également connu, par le brevet US 3 882 434, d'améliorer la sélectivité en fréquence d'un filtre passe-bande à cavité en réinjectant dans une cavité B du filtre de l'énergie captée sur une cavité A du filtre mais avec une phase différente de celle de l'énergie qui va directement de A à B ; le couplage en dérivation (cross coupling dans la littérature anglo-saxonne) permettant cette réinjection, est réalisé au moyen d'un filtre passe-bande auxiliaire mis en parallèle sur le filtre passe-bande principal, entre les cavités A et B. Une telle réalisation conduit à une courbe de temps de propagation de groupe plate, ce qui n'est pas le but recherché par la présente invention et constitue donc un autre type d'application. De plus dans une telle réalisation le filtre auxiliaire amène deux zéros dans la courbe de transmission du filtre principal qui sont symétriques de la fréquence centrale du filtre auxiliaire ; il n'est donc pas possible de faire, si nécessaire, que tous les zéros aient lieu sur la même fréquence.
  • La présente invention a pour but d'éviter les inconvénients de l'art antérieur sans pour cela augmenter le prix de revient du filtre.
  • Ceci est obtenu en mélangeant, avec des éléments présentant une fonction passe-bande, des éléments présentant une fonction coupe-bande.
  • Selon l'invention un filtre passe-bande en guide rectangulaire, à grande sélectivité en fréquence, comportant un guide rectangulaire qui sera dit guide principal et des susceptances shunt placées à l'intérieur du guide principal de manière à y délimiter n (n entier supérieur à 0) cavités principales successives, est caractérisé en ce qu'il comporte m (m entier supérieur à 0 et inférieur ou égal à n) cavités coupes-bande respectivement couplées à m des n cavités principales et dont l'effet coupe-bande se produit en limite de la bande passante du filtre passe-bande.
  • La présente invention sera mieux comprise et d'autres caractéristiques apparaîtront à l'aide de la description ci-après et des figures s'y rapportant qui représentent :
    • - les figures 1 à 3, trois vues d'un même filtre selon l'invention
    • - la figure 4 un graphique avec deux courbes relatives au filtre des figures 1 à 3.
  • La figure 1 est une vue en coupe transversale d'un filtre selon l'invention. Cette figure montre un guide d'onde rectangulaire 1 avec ses deux brides de raccordement 10, 11. L'intérieur de ce guide est divisé en quatre cavités 2, 3, 4, 5, à l'aide de susceptances shunts formées de tiges telles que T1, T29 T39 T4, T5; ces tiges sont disposées par paires de manière à délimiter des cavités d'une longueur légèrement inférieure à
    Figure imgb0001
    où g est la longueur d'onde guidée dans le guide correspondant à une fréquence moyenne de fonctionnement de 8,1 GHz. Des vis avec écrous de blocage 12, 13, 14, 15, 16 sont associées aux tiges afin de permettre le réglage du couplage entre les cavités, et du couplage entre les cavités 2 et 5 et les accès du filtre.D'autres vis avec écrous de blocage, 20, 30, 40, 50, sont respectivement associées aux cavités 2, 3, 4, 5 dans lesquelles elles pénètrent d'une longueur réglage de manière à constituer un moyen de réglage de ces cavités.
  • Le filtre tel qu'il vient d'être décrit jusqu'ici constitue un filtre passe-bande classique à quatre cavités passe-bande; la suite de la description de la figure 1 va montrer comment il est possible d'associer à ces quatre cavités quatre autres cavités 6, 7, 8, 9 ayant chacune un rôle de cavité coupe-bande.
  • La figure 1 montre que chacune des cavités 2, 3, 4, 5, est percée d'un iris 60, 70, 80, 90 situé sur le grand côté du guide d'onde opposé à celui qui est traversé par les vis de réglage 20, 30, 40, 50 et en face de ces vis de réglage. Ces iris constituent un élément de couplage entre respectivement les cavités 2, 3, 4, 5, et quatre cavités coupe-bande 6, 7, 8, 9 constituées par des tronçons de guides d'onde de même section que le guide d'onde 1 disposé perpendiculairement au grand côté du guide d'onde 1, ayant leurs petits côtés situés dans le même plan que les petits côtés du guide d'onde 1 et dont la hauteur est sensiblement inférieure à
    Figure imgb0002
    . Ces tronçons de guides d'onde sont soudés à l'une de leur extrémité sur le guide d'onde 1 et sont fermés à leur autre extrémité par une plaque métallique qu'une vis, 61, 71, 81, 91, associée à un écrou de blocage, traverse de manière d'assurer le réglage de ces cavités.
  • Du point de vue électrique, ces cavités 6, 7, 8, 9 peuvent être considérées comme étant en série avec les cavités passe-bande 2, 3, 4, 5; elles ajoutent donc leur fonction coupe-bande à la fonction passe-bande des cavités du guide 1, si bien que le filtre selon la figure 1 est équivalent à un filtre passe-bande associé en série à un filtre coupe-bande.
  • La figure 2 est une vue de dessus du filtre selon l'invention; sur cette figure la cavité coupe-bande 9 a été représentée en coupe selon un plan XX indiqué sur la figure 1.
  • La figure 2 montre, en comparant avec la figure 1, que les cavités passe-bande du filtre sont réalisées au moyen des paires de tiges T1-T'1, T2-T'2,T3-T'3, T4-T'4, T5-T'5 perpendiculaires au grand côté du guide. La figure 2 montre également que chaque paire de tiges et la vis pour le réglage du couplage intercavité (12 à 16) sont disposées dans un même plan transversal du guide 1. Des extrémités du guide vers le centre les tiges ont leur diamètre qui augmente tandis que l'écartement entre les deux tiges d'une même paire diminue. Sur la figure 2 apparaît également que les iris tels que 90, servant au couplage entre une cavité coupe-bande, telle que 9, et une cavité passe-bande, ont une forme oblongue dont le grand axe non représenté esfperpendiculaire aux arêtes du guide 1.
  • La figure 3 est une vue en bout, du côté de la bride 10, du filtre déjà représenté sur les figures 1 et 2. A travers l'ouverture du guide 1 apparaissent les vis de réglage 12 et 20 ainsi que les tiges T1 et T'l et les tiges T 2, T'2, T3, T'3 partiellement cachées. Sur cette figure apparaissent également la cavité coupe-bande 6 et la vis avec écrou de blocage, 61, permettant le réglage de cette cavité. Comme le montre la figure 3, la bride 10 est une bride carrée percée, au voisinage de ses quatre angles, de trous filetés, 101 à 104, destinés à permettre le raccordement mécanique du filtre aux autres éléments des montages auquel il est destiné.
  • Le filtre qui vient d'être décrit à l'aide des figures 1 à 3 est un filtre destiné à fonctionner avec une fréquence centrale de 8,1 GHz; ce filtre présente une bande passante méplat de 300 MHz et des pertes à 8,1 GHz de 0,25 dB. Les principales dimensions mécaniques de ce filtre sont les suivantes :
    • - longeur totale du filtre 140 mm
    • - largeur intérieure des grands côtés du guide et des grands côtés des cavités coupe-bande : 28,5 mm
    • - largeur intérieure des petits côtés du guide et des petits-côtés des cavités coupe-bande : 12,5 mm
    • - intervalle séparant les vis de réglage des cavités passe-bande 20, 30, 40, 50 : 28 mm
    • - hauteur intérieure des cavités coupe-bande : 20 mm.
  • La figure 4 est un graphique montrant, par deux courbes A et B, les réponses en fréquence du filtre selon les figures 1 à 3 (courbe A) et de ce même filtre sans les qualités coupe-bande 6 à 9 et sans les iris de couplage 60, 70, 80, 90 (courbe B) c'est-à-dire d'un filtre passe-bande de type classique.
  • La comparaison des courbes A et B de la figure 4 montre que la réponse du filtre selon les figures 1 à 3 est beaucoup plus sélective en fréquence que celle du filtre passe-bande classique correspondant : chute de 0 à -47 dB sur environ 120 MHz alors que la même chute se fait sur environ 270 MHz avec le filtre classique.
  • Sur la figure 4 ont également été représentées les pertes par réflexion dues au filtre, en fonction de la fréquence (courbe C). Cette courbe montre que dans la partie du méplat de la courbe de réponse du filtre selon les figures 1 à 3, les pertes par réflexion sont au maximum de l'ordre de 25 dB, ce qui correspond à un rapport d'onde stationnaire (ROS) de 1,1.
  • Il est à noter par ailleurs que les cavités coupe-bande 6 et 8 avaient été accordées sur 7,9 GHz tandis que les cavités coupe-bande 7 et 9 avaient été accordées sur 8,3 GHz, ce qui explique qu'aussi bien le flanc avant que le flanc arrière de la courbe A ont des pentes beaucoup plus raides que les flancs correspondants de la courbe B. Pour certaines applications il peut être intéressant d'avoir un flanc à pente raide (comme dans la courbe A) et l'autre flanc avec une pente moins raide (comme dans la courbe B); dans le cas du filtre décrit et pour, par exemple, n'avoir que le flanc avant à pente raide, il suffit alors d'accorder les quatre filtres coupe-bande sur 7,9 GHz.
  • D'une manière générale, lorsque l'une au moins des pentes de la réponse en fréquence d'un filtre passe-bande à cavités, classique devra être rendue plus raide, une ou plusieurs cavités coupe-bande seront couplées respectivement à une ou plusieurs cavités passe-bande du filtre classique; le choix du nombre de cavités coupe-bande et de leur fréquence d'accord est fonction de l'allure des flancs à obtenir, étant entendu que la fréquence d'accord sera une des fréquences relatives aux flancs à obtenir.
  • L'invention n'est pas limitée à l'exemple décrit. C'est ainsi, par exemple, que les susceptances shunts, formées de tiges qui séparent les cavités passe-bande, peuvent être remplacées par des susceptances shunts du type à iris ou à volets et que le nombre des cavités coupe-bande peut être inférieur au nombre des cavités passe-bande du filtre ; certaines des cavités passe-bande ne sont, alors, pas associées à une cavité coupe-bande. De même les cavités coupe-bande peuvent être disposées différemment par rapport au guide des cavités passe-bande, par exemple toujours perpendiculairement à l'un des grands côtés de ce guide mais avec les grands .côtés de leur section transversale faisant un angle différent de 90° avec les arêtes transversales du guide; l'expérience a montré qu'il est également possible de disposer les cavités coupe-bande perpendiculairement aux petits côtés du guide des cavités passe-bande. Le nombre et l'emplacement des cavités coupe-bande sont des paramètres qui permettent d'intervenir sur la forme de la réponse en fréquence du filtre selon l'invention.

Claims (4)

1. Filtre passe-bande en guide rectangulaire, à grande sélectivité en fréquence, comportant un guide rectangulaire (1) qui sera dit guide principal et des susceptances shunt (T1, T'1...T5,T'5) placées à l'intérieur du guide principal de manière à y délimiter n (n entier supérieur à 0) cavités principales (2-5) successives, caractérisé en ce qu'il comporte m (m entier supérieur à 0 et inférieur ou égal à n) cavités coupe-bande (6-9) respectivement couplées à m des n cavités principales et dont l'effet coupe-bande se produit en limite de la bande passante du filtre passe-bande.
2. Filtre passe-bande selon la revendication 1, caractérisé en ce que les cavités coupe-bande (6-9) sont formées par des tronçons de guide rectangulaire, fermés à leurs deux extrémités par une plaque métallique, la plaque métallique de leur première extrémité étant une des parois du guide principale et étant percée d'un iris (60, 70, 80. 90).
3. Filtre passe-bande selon la revendication 2, caractérisé en ce que les tronçons ont même section transversale que le guide principal, et ont leurs petits côtés respectivement situés dans les mêmes plans que les petits côtés du guide principal.
4. Filtre passe-bande selon l'une quelconque des revendications précédentes, caractérisé en ce que k des m cavités coupe-bande ont leur fréquence d'accord comprise dans les fréquences du flanc avant de la réponse en fréquence du filtre et p des m cavités coupe-bande ont leur fréquence d'accord comprise dans les fréquences du flanc arrière de la réponse en fréquence du filtre (avec k et p entiers positifs ou nuls et k + p = m).
EP82400757A 1981-05-08 1982-04-27 Filtre passe-bande en guide rectangulaire, présentant une grande sélectivité en fréquence Withdrawn EP0064458A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8109225 1981-05-08
FR8109225A FR2505557A1 (fr) 1981-05-08 1981-05-08 Filtre passe-bande en guide rectangulaire, presentant une grande selectivite en frequence

Publications (1)

Publication Number Publication Date
EP0064458A1 true EP0064458A1 (fr) 1982-11-10

Family

ID=9258232

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82400757A Withdrawn EP0064458A1 (fr) 1981-05-08 1982-04-27 Filtre passe-bande en guide rectangulaire, présentant une grande sélectivité en fréquence

Country Status (3)

Country Link
EP (1) EP0064458A1 (fr)
JP (1) JPS57194602A (fr)
FR (1) FR2505557A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994005056A1 (fr) * 1992-08-15 1994-03-03 Filtronic Comtek Plc Filtre a micro-ondes
WO2000026985A1 (fr) * 1998-11-02 2000-05-11 Jury Vyacheslavovich Kislyakov Filtre micro-ondes
EP1250758A1 (fr) * 2000-01-26 2002-10-23 Acoustic Technologies, Inc. Filtre passe-bande a temps de propagation de groupe ameliore
CN110767969A (zh) * 2018-07-27 2020-02-07 中兴通讯股份有限公司 一种腔体滤波器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59226501A (ja) * 1983-06-08 1984-12-19 Nippon Hoso Kyokai <Nhk> マイクロ波濾波器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3882434A (en) * 1973-08-01 1975-05-06 Microwave Dev Lab Phase equalized filter
FR2431774A1 (fr) * 1978-07-19 1980-02-15 Communications Satellite Corp Filtres micro-ondes a bande etroite de fonction elliptique d'ordre impair

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3882434A (en) * 1973-08-01 1975-05-06 Microwave Dev Lab Phase equalized filter
FR2431774A1 (fr) * 1978-07-19 1980-02-15 Communications Satellite Corp Filtres micro-ondes a bande etroite de fonction elliptique d'ordre impair

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE TRANSACTIONS ON M.T.T., vol. 22, no. 1, janvier 1974, pages 1-5, New York, US *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994005056A1 (fr) * 1992-08-15 1994-03-03 Filtronic Comtek Plc Filtre a micro-ondes
WO2000026985A1 (fr) * 1998-11-02 2000-05-11 Jury Vyacheslavovich Kislyakov Filtre micro-ondes
EP1250758A1 (fr) * 2000-01-26 2002-10-23 Acoustic Technologies, Inc. Filtre passe-bande a temps de propagation de groupe ameliore
EP1250758A4 (fr) * 2000-01-26 2004-12-15 Acoustic Tech Inc Filtre passe-bande a temps de propagation de groupe ameliore
CN110767969A (zh) * 2018-07-27 2020-02-07 中兴通讯股份有限公司 一种腔体滤波器

Also Published As

Publication number Publication date
JPS57194602A (en) 1982-11-30
FR2505557A1 (fr) 1982-11-12

Similar Documents

Publication Publication Date Title
EP0047203B1 (fr) Filtre hyperfréquence à résonateur diélectrique, accordable dans une grande largeur de bande
EP0071509B1 (fr) Filtre passe-bande à résonateurs linéaires ouverts à leurs deux extrémités
EP0205151A1 (fr) Filtre passe-bande hyperfrequences en mode evanescent
FR2546340A1 (fr) Filtre hyperfrequence coupe-bande accordable, de type coaxial, a resonateurs dielectriques
WO2009030737A1 (fr) Coupleur-separateur d&#39;emission-reception multibande a large bande de type omt pour antennes de telecommunications hyperfrequences
EP0260633B1 (fr) Filtre composite à large bande type plan E
FR2535547A1 (fr) Resonateurs bi-rubans et filtres realises a partir de ces resonateurs
EP0064458A1 (fr) Filtre passe-bande en guide rectangulaire, présentant une grande sélectivité en fréquence
EP0101369B1 (fr) Filtre passe-bande à résonateurs diélectriques, présentant un couplage négatif entre résonateurs
EP0069651B1 (fr) Filtre à résonateurs, à pointe d&#39;affaiblissement infini réglable
EP0075498B1 (fr) Filtre à cavités, présentant un couplage entre cavités non adjacentes
CA1131322A (fr) Filtre hyperfrequence
EP0045242A1 (fr) Filtre passe-bande hyperfréquence réalisé en guide d&#39;ondes
CA1074878A (fr) Transition hyperfrequence
EP0649571B1 (fr) Filtre passe-bande a resonateurs couples
EP0041877B1 (fr) Coupleur hyperfréquence à guide d&#39;onde
FR2509535A1 (fr) Filtre hyperfrequence comportant des troncons de lignes couples et des moyens de reglage
EP0018261B1 (fr) Guide d&#39;onde à large bande à double polarisation
EP0738022A1 (fr) Filtre passe-bande à cavités, à structure en peigne et radioaltimètre équipé d&#39;un filtre d&#39;entrée de ce type
EP0128798B1 (fr) Dispositif sélectif accordable à ondes magnétostatiques de volume
FR2525835A1 (fr) Filtre passe-bande a resonateurs lineaires, auquel est associee une fonction coupe-bande
EP0373028A1 (fr) Filtre passif passe-bande
FR2626716A1 (fr) Filtre a resonateurs plans
CA2031076A1 (fr) Filtre eliminateur de bande pour guide d&#39;ondes hyperfrequences
EP0520919A1 (fr) Dispositif de filtrage d&#39;ondes électromagnétiques circulant dans un guide d&#39;ondes à symétrie de révolution, à tronçons de guides d&#39;ondes de filtrage rectangulaires insérés

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB NL

17P Request for examination filed

Effective date: 19830321

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19841102

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LE NOHAIC, YVES

Inventor name: SAUVAGE, MARC