EP0372097A1 - Dispositif pour la formation de gouttelettes d'encre dans une imprimante à gouttelettes d'encre - Google Patents

Dispositif pour la formation de gouttelettes d'encre dans une imprimante à gouttelettes d'encre Download PDF

Info

Publication number
EP0372097A1
EP0372097A1 EP88120007A EP88120007A EP0372097A1 EP 0372097 A1 EP0372097 A1 EP 0372097A1 EP 88120007 A EP88120007 A EP 88120007A EP 88120007 A EP88120007 A EP 88120007A EP 0372097 A1 EP0372097 A1 EP 0372097A1
Authority
EP
European Patent Office
Prior art keywords
ink
heat generating
generating sections
arrangement according
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP88120007A
Other languages
German (de)
English (en)
Inventor
Andreas Kappel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP88120007A priority Critical patent/EP0372097A1/fr
Publication of EP0372097A1 publication Critical patent/EP0372097A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2121Ink jet for multi-colour printing characterised by dot size, e.g. combinations of printed dots of different diameter
    • B41J2/2128Ink jet for multi-colour printing characterised by dot size, e.g. combinations of printed dots of different diameter by means of energy modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • B41J2/14088Structure of heating means
    • B41J2/14112Resistive element
    • B41J2/1412Shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/11Embodiments of or processes related to ink-jet heads characterised by specific geometrical characteristics

Definitions

  • the invention relates to an arrangement for producing ink droplets of different sizes in an ink printing device according to the preamble of patent claim 1.
  • Known ink print heads that work on the principle of thermal conversion (bubble jet) have a matrix of individual nozzles from which defined individual droplets are ejected under the action of an electronic control. Each nozzle is connected to an ink channel, in which pressure waves are generated in the ink liquid by means of an actuator. The process of building pressure in the ink liquid is based on the creation of small microbubbles.
  • An electrothermal transducer element in the form of a thin-film resistor is located under each ink channel at a certain distance from the outlet nozzle as an actuator. By briefly energizing one of these transducer elements, the ink liquid immediately above is heated in a thin layer to high excess temperatures.
  • a vapor bubble with high internal pressure is formed above the heating element, the expansion of which causes the ink liquid located in the corresponding ink channel to be expelled through the nozzle.
  • fluid mechanical influences which are given by the channel and nozzle geometry, there is also a proportionality between the ink droplet volume and the surface of the heating element, which also determines the size of the corresponding vapor bubble.
  • ink printing devices are to be used to produce fonts of different font qualities, for example fonts in a so-called draft quality (DQ) and in a so-called beautiful font (Near Letter Quality, NLQ), it is advantageous to add ink droplets of different sizes and thus different droplet volumes produce.
  • such ink printing devices are used as output devices for graphics, which requires that gray or color levels must be able to be represented.
  • the generation of ink droplets of different sizes in color printing makes it possible to avoid oversaturation of the printing paper with solvents.
  • EP-A1-0203534 To produce ink droplets of different sizes, it is known from EP-A1-0203534 to control them with an adjustable number of control pulses in an ink writing device with piezoelectric transducer elements which are each assigned to the ink channels of the writing head.
  • the repetition frequency of the drive pulses is matched to the resonance frequency of the ink channel and the drive pulses follow one another in time in such a way that an ejection of a small amount of ink from the outlet opening of the ink channel caused by subsequent drive pulses always occurs before the ink droplet caused by the first drive pulse is detached from the outlet opening occurs.
  • WO 87/03363 describes an ink printing device based on the thermal converter principle, with which eight different shades of gray or semitones can be produced.
  • three droplet generators are provided which, due to the different area of the thermal transducers, eject different droplet volumes, which are binary-weighted.
  • the eight possible grayscale or halftones are generated by sequentially spraying droplets from the differently sized nozzle openings onto one and the same pixel.
  • a droplet generator for emitting colorless ink liquid is provided, which is applied directly to an ink droplet ejected from the other nozzles, whereby soft contours of the colored ink droplets are achieved.
  • the object of the invention is to provide measures for controlling the ink droplet volumes for an ink printing device of the type mentioned at the outset, which produce halftone images or gray or color levels from individual dots of different sizes in a simple manner and without reducing the printing speed and the resolution capacity.
  • thermal transducer geometries with an inhomogeneous heat generation rate are used according to the invention, the heat generation sections contributing to the vapor bubble formation, for example, both via the amplitude and over the duration of the control pulses the effective area of the thermal converter can be controlled.
  • the thermal transducers are divided into several bubble generation sections, they can be used on the one hand to generate droplet volumes that differ according to the number of these sections, and on the other hand, in addition to the generation of grayscale levels, it is also possible in the so-called draft mode to achieve a degree of blackening that can be achieved in Schönschreib Modus (NLQ) to achieve and thus to achieve optimal color coverage without oversaturation of the recording medium with solvents in the production of color prints by reducing the droplet mass.
  • NLQ Schönschreib Modus
  • the variation of the thermal transducer geometry according to the invention for the controlled generation of different ink droplet volumes is characterized by a particularly simple technological feasibility, since additional electrical control lines on the thin film substrate can be dispensed with.
  • FIG. 1 shows top views of differently geometrically designed thermal converters 1, each of which has power supply lines 2, 3 in the form of Conductor tracks can be contacted.
  • Thermal converter 1 and conductor tracks 2, 3 can be produced, for example, by vacuum deposition of suitable electrically conductive alloys (for example hafnium diboride HfB2 for the thermal converter) or metals (for example aluminum Al for the conductor tracks) on a base oxide with subsequent photo-technical structuring.
  • suitable electrically conductive alloys for example hafnium diboride HfB2 for the thermal converter
  • metals for example aluminum Al for the conductor tracks
  • FIG. 1 a shows a conventional, rectangular thermal converter 1, which is primarily suitable for producing ink droplets of one size.
  • a thermal transducer is used to generate ink droplets of continuous size, the geometric configuration of which is explained with reference to FIG. 1b.
  • This thermal converter has a length 1 and, starting from a right power supply 2, runs conically to a left power supply 3, so that the area of the thermal converter decreases steadily in the direction of the left power supply 2.
  • the temperature T V necessary for evaporation is first reached in the vicinity of the left power supply 3 with a constant pulse duration and a relatively small amplitude of the control voltage. Small-volume ink droplets are emitted.
  • the effective area for bubble formation above the thermal converter increases in the direction of the right power supply 2, ie ink droplets with a larger volume are ejected.
  • a thermal converter of conical geometry enables the ink droplet volumes to be continuously adjusted over the amplitude and / or pulse duration of the drive voltage within certain limits given by the channel and nozzle geometry.
  • thermal transducers according to FIGS. 1c to 1e are suitable for producing two discrete, different droplet volumes.
  • the thermal converters are divided into areas of different widths with the same layer thickness (FIGS. 1c, 1d) or into areas of different thermal or electrical properties (FIG. 1e).
  • the thermal converter according to FIG. 1c has a stepped contour within its longitudinal extent, so that the surface of this thermal converter is composed of two rectangles of different widths.
  • the rectangle adjacent to the left power supply 3 has a width b 1
  • the rectangle adjacent to the right power supply 2 has a width b 2
  • the width b 1 being smaller than the width b 2.
  • Such a division of the surface of the thermal converter with the same layer thickness creates two different heat generating sections W 1, W 2.
  • the thermal converter is shown in the form of a simple rectangle which has an insulation gap 4 for generating two different droplet volumes.
  • the length of the insulation gap 4 within the thermal converter defines the two heat generating sections W1, W2 with the effective width 2 ⁇ b3 in the heat generating section W1 and the width b2 in the heat generating section W2.
  • the thermal converter consists of two heat generating sections W1, W2 different layer thickness (d i ) and / or layer materials, ie materials with different electrical (specific resistance ⁇ i ) and / or thermal properties (thermal conductivity a i ).
  • thermo converters shown with reference to FIGS. 1b to 1e have in common that the absolute droplet sizes are determined by the individual areas of the heat generating sections W 1, W 2.
  • a small heated area causes a small droplet to be ejected, the entire area is used to generate large droplets, while the crosstalk, i.e. the quality of the separation of small and large droplets is given by the ratio of the heat generation rates or the surface temperatures of the individual heat generation sections W 1, W 2.
  • thermal converter The operation of the thermal converter is shown in more detail in Figure 2 based on the time-dependent temperatures of the heat generating sections W1, W2 with various control pulses.
  • the amplitude and pulse duration ⁇ t1 of the control voltage for the thermal converter according to Figure 1 are chosen so that the temperature T V necessary for the onset of bubble formation only from the section W1 of the thermal converter, which, for example, has the higher heat generation rate due to its smaller width (Fig. 1c) is exceeded.
  • the temperature T of the section W 1 rises more strongly until the end of the heating pulse at the time t 1, since the heat flow between the section W 1 and the ink liquid is greatly reduced by the formation of bubbles.
  • the heat generating section W 2 In order to produce larger ink droplets, the heat generating section W 2 must also exceed the temperature T V necessary to initiate the evaporation. This can be achieved in a simple manner by increasing the amplitude of the control voltage and / or by extending the heating pulse duration.
  • a drive voltage is selected to generate a larger ink droplet, the pulse duration of which is identical and the amplitude of which is greater than the amplitude of the drive voltage in the previous example.
  • the evaporation Temperature T V is therefore achieved by both heat generating sections W 1, W 2, so that the entire surface of the thermal converter contributes to the formation of droplets.
  • the same effect is achieved if the amplitude of the control voltage is not increased, but the heating pulse duration compared to the heating pulse duration according to Figure 2c is extended ( ⁇ t2> ⁇ t1).
  • the bubble formation in the ink liquid which begins first in the heat generation section W 1 may initiate evaporation in the heat generation section W 2, it is advantageous to use thermal converter geometries in order to improve the crosstalk behavior, in which the bubble generation sections through colder areas, i.e. Areas with lower heat generation rates or lower thermal conductivities than the bubble generation sections are separated.
  • FIG. 3 shows exemplary embodiments of thermal converters whose heat generating sections W 1, W 2 are thermally decoupled from one another by separating areas T 1, T 2.
  • the thermal separation of the two heat generating sections W1, W2 can be achieved by a locally widened resistance geometry.
  • the two heat generating sections W1, W2 with their widths b1 and b2 do not form a boundary layer at which they meet directly (see FIG. 1c), but are widened with the aid of a heat generating section W1, W2 rectangular web 5, which has a width b3, thermally decoupled (b3> b1, b2).
  • the thermal separation of the heat generating sections W1, W2 is done by inserting a low-resistance material between the two heat generating sections W1 and W2.
  • the thermal converter is divided into two sections of rectangular shape, which have the same thermal and electrical properties (specific resistance ⁇ 1, layer thickness d1 and thermal conductivity a1), but are of different widths (b1> b2).
  • the separation area T1 is characterized by a material with a specific resistance ⁇ 2 ⁇ 1.
  • the same effect, namely a thermal separation between the heat generating sections W1, W2 can also be achieved in that the material in the separation area T1 has a greater than the heat generating sections W1, W2 layer thickness d2> d1 or a lower than the heat generating sections W1, W2 lower thermal conductivity a2 ⁇ has a1.
  • a between the individual heat generating sections W1, W2 with their different widths b1, b2 inserted separation area T2 has a length ⁇ 1 and can be realized, for example, by a material from which the power supply lines 2,3 are made (eg aluminum Al).
  • a material from which the power supply lines 2,3 are made eg aluminum Al.
  • FIG. 4 shows that the thermal transducers can also be used to produce more than two different ink droplet volumes by appropriately dividing them into bubble generation sections.
  • 4a and 4b show thermal transducer geometries which are suitable for ejecting three ink droplets of different sizes.
  • the individual heat generating sections W1, W2 and W3 are either generated analogously to the arrangement according to FIG. 1c by different widths b1, b2 and b3 with the same layer thickness d1 alone (b1 ⁇ b2 ⁇ b3) or in addition to the thermal decoupling serving locally widened resistance geometries according to FIG. 3a (b1 ⁇ b2 ⁇ b3, b4 ⁇ b5).
  • the thermal converter is subdivided into a large number of heat generation sections, all of the above-mentioned measures for improving the droplet separation and combinations thereof can be used.
  • the thermal transducers of conventional geometry with a constant layer thickness and layer width are covered and structured with a cover layer of low thermal conductivity (for example silicon dioxide SiO2) in such a way that regions of different cover layer thicknesses arise above the thermal converter or the thermal converters are partially with other poorly heat-conducting ones Layers covered.
  • the areas created in this way also correspond in their function to the heat generation sections already described and can be used in the same way for producing different droplet sizes.

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
EP88120007A 1988-11-30 1988-11-30 Dispositif pour la formation de gouttelettes d'encre dans une imprimante à gouttelettes d'encre Withdrawn EP0372097A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP88120007A EP0372097A1 (fr) 1988-11-30 1988-11-30 Dispositif pour la formation de gouttelettes d'encre dans une imprimante à gouttelettes d'encre

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP88120007A EP0372097A1 (fr) 1988-11-30 1988-11-30 Dispositif pour la formation de gouttelettes d'encre dans une imprimante à gouttelettes d'encre

Publications (1)

Publication Number Publication Date
EP0372097A1 true EP0372097A1 (fr) 1990-06-13

Family

ID=8199619

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88120007A Withdrawn EP0372097A1 (fr) 1988-11-30 1988-11-30 Dispositif pour la formation de gouttelettes d'encre dans une imprimante à gouttelettes d'encre

Country Status (1)

Country Link
EP (1) EP0372097A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4016501A1 (de) * 1990-05-22 1990-10-04 Siemens Ag Tintendruckkopf fuer tintenstrahldrucker
EP0613781A1 (fr) * 1993-02-26 1994-09-07 Canon Kabushiki Kaisha Tête d'impression à jet d'encre, cartouche de tête à jet d'encre et appareil d'impression
DE4428807A1 (de) * 1994-08-13 1996-02-15 Eastman Kodak Co Vorrichtung und Verfahren zur Geschwindigkeits- und Tropfenmassenvariation bei thermischen Tintenschreibern
EP0719647A2 (fr) * 1994-12-29 1996-07-03 Canon Kabushiki Kaisha Tête à jet d'encre avec plusiers éléments de chauffage par buse et imprimante l'utilisant
EP0747221A2 (fr) * 1995-06-06 1996-12-11 Canon Kabushiki Kaisha Tête à jet d'encre, appareil à jet d'encre et méthode d'enregistrement par jet d'encre
EP0750991A2 (fr) * 1995-06-30 1997-01-02 Canon Kabushiki Kaisha Tête d'enregistrement à jet d'encre et appareil d'enregistrement à jet d'encre
EP0855277A2 (fr) * 1997-01-24 1998-07-29 Lexmark International, Inc. Tête d'impression à jet d'encre adaptée à la modulation de la taille des gouttes
WO2011020755A1 (fr) * 2009-08-19 2011-02-24 Theodor Hymmen Holding Gmbh Procédé et dispositif pour produire une surface imprimée sur une pièce plane
US11511318B2 (en) 2017-06-13 2022-11-29 Hymmen GmbH Maschinen- und Anlagenbau Method and apparatus for producing a decorative workpiece and workpiece
US11559824B2 (en) 2019-05-03 2023-01-24 Hymmen Gmbh Maschinen-Und Anlagenbau Method for producing a structure on a surface

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339762A (en) * 1979-04-02 1982-07-13 Canon Kabushiki Kaisha Liquid jet recording method
US4590489A (en) * 1984-03-02 1986-05-20 Hitachi, Ltd. Thermal head
DE3717294A1 (de) * 1986-06-10 1987-12-17 Seiko Epson Corp Tintenstrahlaufzeichnungsgeraet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339762A (en) * 1979-04-02 1982-07-13 Canon Kabushiki Kaisha Liquid jet recording method
US4590489A (en) * 1984-03-02 1986-05-20 Hitachi, Ltd. Thermal head
DE3717294A1 (de) * 1986-06-10 1987-12-17 Seiko Epson Corp Tintenstrahlaufzeichnungsgeraet

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 12, no. 55 (M-669)(2902) 19 Februar 1988, & JP-A-62 201254 (MASAHARU OKUBO) 04 September 1987, *
PATENT ABSTRACTS OF JAPAN, Band 12, Nr. 55 (M-669)[2902], 19. Februar 1988; & JP-A-62 201 254 (CANON INC.) 04-09-1987 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4016501A1 (de) * 1990-05-22 1990-10-04 Siemens Ag Tintendruckkopf fuer tintenstrahldrucker
EP0613781A1 (fr) * 1993-02-26 1994-09-07 Canon Kabushiki Kaisha Tête d'impression à jet d'encre, cartouche de tête à jet d'encre et appareil d'impression
US6412920B1 (en) 1993-02-26 2002-07-02 Canon Kabushiki Kaisha Ink jet printing head, ink jet head cartridge and printing apparatus
DE4428807A1 (de) * 1994-08-13 1996-02-15 Eastman Kodak Co Vorrichtung und Verfahren zur Geschwindigkeits- und Tropfenmassenvariation bei thermischen Tintenschreibern
US5886716A (en) * 1994-08-13 1999-03-23 Eastman Kodak Company Method and apparatus for variation of ink droplet velocity and droplet mass in thermal ink-jet print heads
US6572216B1 (en) 1994-12-29 2003-06-03 Canon Kabushiki Kaisha Ink-jet apparatus employing ink-jet head having a plurality of ink ejection heaters corresponding to each ink ejection opening
EP0719647A2 (fr) * 1994-12-29 1996-07-03 Canon Kabushiki Kaisha Tête à jet d'encre avec plusiers éléments de chauffage par buse et imprimante l'utilisant
EP0719647A3 (fr) * 1994-12-29 1996-08-07 Canon Kk
US6309051B1 (en) 1994-12-29 2001-10-30 Canon Kabushiki Kaisha Ink-jet apparatus employing ink-jet head having a plurality of ink ejection heaters corresponding to each ink ejection opening
US7425056B1 (en) 1994-12-29 2008-09-16 Canon Kabushiki Kaisha Ink-jet apparatus employing ink-jet head having a plurality of ink ejection heaters corresponding to each ink ejection opening
EP1486334A3 (fr) * 1994-12-29 2005-08-31 Canon Kabushiki Kaisha Tête à jet d'encre avec plusieurs éléments de chauffage par buse et imprimante l'utilisant
US6918656B2 (en) 1994-12-29 2005-07-19 Canon Kabushiki Kaisha Ink-jet apparatus employing ink-jet head having a plurality of ink ejection heaters corresponding to each ink ejection opening
EP0747221A3 (fr) * 1995-06-06 1997-09-17 Canon Kk Tête à jet d'encre, appareil à jet d'encre et méthode d'enregistrement par jet d'encre
US6003973A (en) * 1995-06-06 1999-12-21 Canon Kabushiki Kaisha Ink jet head, apparatus and method having individually-drivable heat generating resistors variably spaced from an electric outlet
US6382772B1 (en) 1995-06-06 2002-05-07 Canon Kabushiki Kaisha Ink jet head, apparatus and method having individually-drivable heat generating resistors variably spaced from an ejection outlet
EP0747221A2 (fr) * 1995-06-06 1996-12-11 Canon Kabushiki Kaisha Tête à jet d'encre, appareil à jet d'encre et méthode d'enregistrement par jet d'encre
EP0750991A3 (fr) * 1995-06-30 1997-08-13 Canon Kk Tête d'enregistrement à jet d'encre et appareil d'enregistrement à jet d'encre
US6042221A (en) * 1995-06-30 2000-03-28 Canon Kabushiki Kaisha Ink-jet recording head and ink-jet recording apparatus
EP0750991A2 (fr) * 1995-06-30 1997-01-02 Canon Kabushiki Kaisha Tête d'enregistrement à jet d'encre et appareil d'enregistrement à jet d'encre
US6079811A (en) * 1997-01-24 2000-06-27 Lexmark International, Inc. Ink jet printhead having a unitary actuator with a plurality of active sections
EP0855277A3 (fr) * 1997-01-24 1999-06-16 Lexmark International, Inc. Tête d'impression à jet d'encre adaptée à la modulation de la taille des gouttes
EP0855277A2 (fr) * 1997-01-24 1998-07-29 Lexmark International, Inc. Tête d'impression à jet d'encre adaptée à la modulation de la taille des gouttes
WO2011020755A1 (fr) * 2009-08-19 2011-02-24 Theodor Hymmen Holding Gmbh Procédé et dispositif pour produire une surface imprimée sur une pièce plane
US11511318B2 (en) 2017-06-13 2022-11-29 Hymmen GmbH Maschinen- und Anlagenbau Method and apparatus for producing a decorative workpiece and workpiece
US11717850B2 (en) 2017-06-13 2023-08-08 Hymmen Gmbh Maschinen-Und Anlagenbau Method and apparatus for producing a decorative workpiece and workpiece
US11717851B2 (en) 2017-06-13 2023-08-08 Hymmen GmbH Maschinen—und Anlagenbau Method and apparatus for producing a decorative workpiece and workpiece
US11883843B2 (en) 2017-06-13 2024-01-30 Hymmen Gmbh Maschinen-Und Anlagenbau Method for producing a structured surface
US12090511B2 (en) 2017-06-13 2024-09-17 Hymmen GmbH Maschinen—und Anlagenbau Method and apparatus for producing a decorative surface
US11559824B2 (en) 2019-05-03 2023-01-24 Hymmen Gmbh Maschinen-Und Anlagenbau Method for producing a structure on a surface

Similar Documents

Publication Publication Date Title
DE2945658C2 (fr)
DE4223707C2 (de) Tintenstrahl-Aufzeichnungseinrichtung
DE3787922T2 (de) Tintenstrahldrucker.
DE60018862T2 (de) Tropfenerzeugungsdruckkopf mit hoher Auflösung
DE2843064C2 (fr)
DE69835409T2 (de) Kontinuierlich arbeitender Tintenstrahldrucker mit Tropfenumlenkung durch asymmetrisches Anlegen von Wärme
DE60006198T2 (de) Tintenstrahltropfenerzeuger mit geteilten Widerständen zum Verringern der Stromverdichtung
DE69116277T2 (de) Thermischer Tintenstrahldrucker
DE2944005C2 (fr)
DE3686827T2 (de) Antriebssystem fuer ein tintenstrahlgeraet.
DE68907434T2 (de) Tintenstrahlkopf.
DE69715046T2 (de) Betrieb einer tröpfchen-niederschlagvorrichtung
DE69501801T2 (de) Abgestimmte Eingangsverzahnung für Tintenstrahldrucker
DE69409020T2 (de) System zur Reduzierung der Antriebsenergie in einem thermischen Tintenstrahlschnelldrucker
EP0530209B1 (fr) Tete d'impression a jet d'encre pour un dispositif d'impression a jet liquide travaillant selon le principe de la conversion thermique et procede pour sa fabrication
DE69818719T2 (de) Tintenstrahldruckkopf für die Modulation der Tröpfchengrösse
DE69902572T2 (de) Kontinuierlich arbeitender Tintenstrahldrucker mit segmentierten Heizelementen mit einstellbarer Stromstärke
DE69005185T2 (de) Flüssigstrahlaufzeichnungsgerät und Verfahren.
DE4400094A1 (de) Tintenstrahl-Druckkopf für Halbton- und Textdruck
DE4317944C2 (de) Tintenstrahl-Aufzeichnungskopf
DE69328288T2 (de) Aufzeichnungsgerät und Aufzeichnungsverfahren
DE60302963T2 (de) Tintenstrahldrucker und Aktuatorsteuerung und Methode zur Aktuatorsteuerung für die Verwendung in einem Tintenstrahldrucker
DE69130591T2 (de) Tintenstrahlaufzeichnungsgerät- und steuerungsverfahren
DE69221672T2 (de) Farbstrahlaufzeichnungsverfahren und Vorrichtung
EP0372097A1 (fr) Dispositif pour la formation de gouttelettes d'encre dans une imprimante à gouttelettes d'encre

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL SE

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

16A New documents despatched to applicant after publication of the search report
17P Request for examination filed

Effective date: 19900710

17Q First examination report despatched

Effective date: 19920204

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19920616