EP0367656B1 - Système d'intégration des voies somme et différence I.F.F. dans une antenne de surveillance radar - Google Patents

Système d'intégration des voies somme et différence I.F.F. dans une antenne de surveillance radar Download PDF

Info

Publication number
EP0367656B1
EP0367656B1 EP89402922A EP89402922A EP0367656B1 EP 0367656 B1 EP0367656 B1 EP 0367656B1 EP 89402922 A EP89402922 A EP 89402922A EP 89402922 A EP89402922 A EP 89402922A EP 0367656 B1 EP0367656 B1 EP 0367656B1
Authority
EP
European Patent Office
Prior art keywords
polarization direction
iff
sum
radiating elements
channel signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89402922A
Other languages
German (de)
English (en)
Other versions
EP0367656A1 (fr
Inventor
Jean Bouko
Joseph Roger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0367656A1 publication Critical patent/EP0367656A1/fr
Application granted granted Critical
Publication of EP0367656B1 publication Critical patent/EP0367656B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/02Antennas or antenna systems providing at least two radiating patterns providing sum and difference patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/45Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device

Definitions

  • the invention relates to radar surveillance antennas and, more particularly, in such antennas a system for identifying targets by coded interrogations, the antenna of which is associated with the radar surveillance antenna.
  • Radars can detect the presence of objects or targets and determine some of their characteristics such as their distance, altitude, speed. However, they do not make it possible to determine, in time of war, if the target is friendly or enemy. For such a determination, a system is used which "interrogates" the targets by sending them coded signals which are detected by the latter; the targets can then send coded signals to the interrogating system which indicate its category. A target that does not "respond" properly to coded signals is considered an enemy.
  • Such an interrogator / answering system better known by the Anglo-Saxon abbreviation I.F.F. for "Identification Friend or Foe" is widely used in peacetime because it allows a radar operator to easily identify the aircraft with which it is in radio and radar contact by asking it to transmit a specific coded signal. This coded signal appears in a particular form on the radar screen near the corresponding radar signal.
  • the antenna of the I.F.F. is carried by the radar antenna and this results in a very bulky and heavy assembly.
  • the aim of the present invention is therefore a system for integrating the sum and difference channels I.F.F. in a radar surveillance antenna which does not have the aforementioned drawbacks and which meets the standards imposed.
  • Another object of the invention is, by using radiating elements having this property in an integrated radar / IFF antenna, to take advantage of the existence of cross-polarized signals to effect compensation so as to reduce the level of the spurious signals in cross polarization.
  • the invention applies to a surveillance radar antenna which comprises a primary source and a reflector which is illuminated by the signals emitted by the primary source.
  • the reflector has the shape of a paraboloid with double curvature and the primary source is slightly displaced compared to the focal point of the paraboloid.
  • Such an antenna is often called an offset primary source or an offset reflector.
  • the primary source is produced using a horn 1 of the "tulip" type (FIG. 1) which is connected to the radar transmitter by a waveguide provided with a polarizer so as to obtain a circular polarization of the radar signal emitted.
  • This horn can also propagate TE10 mode in vertical polarization and TE01 mode in horizontal polarization.
  • the Somme I.F.F. is obtained using two identical radiating elements 3 and 4 placed in the horn 1 while the Difference I.F.F. is obtained using four radiating elements 5, 6, 7 and 8, identical to elements 3 and 4 but placed two by two on either side of the horn 1.
  • the elements 3 and 4 are arranged in the top 9 and bottom 10 walls of the horn and are inclined relative to the plane of the opening of the horn.
  • the elements 5 to 8 are arranged in a plane parallel to that of the opening of the horn 1.
  • Each radiating element 3 to 8 consists, as shown in Figures 2 and 3, of a rectangular cavity 11 of a metallic material which has a bottom 12 and four sides 13, 14, 15 and 16.
  • the cavity is closed by a cover 17 which is made of dielectric material.
  • the inner wall of the cover is coated with a metallic layer 18 of rectangular shape.
  • the cover 17 and metal layer 18 assembly constitutes a so-called guiding plate.
  • the bottom 12 of the box is coated with a dielectric layer 19 surmounted by a metallic layer 20 of rectangular shape in which four slots 21, 22, 23 and 24 are formed, arranged in a cross relation to each other.
  • the microwave signals are applied to the cavity 11 via the slit plate 20 which is connected at two points 25 and 26 to respective coaxial lines 27 and 28.
  • the point 25 is located in alignment with the horizontal slits 22 and 24 while point 26 is located in alignment with the vertical slots 21 and 23.
  • the dielectric layer 19 and metal layer 20 assembly constitutes a so-called radiating plate.
  • Corners of the rectangular slit plate 20 are terminated by metal tabs 29 and 30 which serve to perfect the adaptation by adjusting their width and their length.
  • the whole forms a cavity which radiates energy on one side, side 17.
  • the electric field vector 31 is horizontal (horizontal polarization).
  • the electric field vector 32 is vertical (vertical polarization).
  • point 25 of the radiating elements will be referenced by the letter H associated with a numerical index.
  • point 26 of the radiating elements will be referenced by the letter V associated with a numerical index.
  • the numerical indices 1 and 2 have been assigned respectively to the radiating elements 3 and 4
  • the numerical indices 3 and 4 have been assigned respectively to the radiating elements 5 and 8
  • the numerical indices 5 and 6 have been assigned respectively to the radiating elements 6 and 7 .
  • the points V1 and V2 of the radiating elements 3 and 4 are excited using a hybrid ring circulator 33 ( Figure 4-a) so as to propagate the TE10 mode in the horn 1 vertical polarization.
  • the circulator 33 has four input / output terminals B1, B2, B3 and B4 which are respectively connected to the signal source I.F.F., at point V1, at point V2 and at a load C1.
  • an I.F.F. applied in B1 is divided into two phase signals which appear on terminals B2 and B3. This operating mode is used on transmission.
  • phase signals received at V1 and V2 have their sum S V which appears at the terminal B1. This operating mode is used at reception.
  • the points H1 and H2 are respectively connected to the terminals B2 and B3 of a hybrid ring circulator 34.
  • the signal Sum S H in horizontal polarization is then obtained on terminal B1.
  • Terminal B4 is connected to the load impedance.
  • the lateral radiating elements 5, 6, 7 and 8 are used and the following connections are made which will be described in relation with the figures 5-a and 5-b.
  • the outputs V3 and V4 of the radiating elements 5 and 8 are grouped to be connected to the terminals B2 of a hybrid ring circulator 35.
  • the outputs V5 and V6 of the radiating elements 6 and 7 are grouped to be connected to the terminal B4 of circulator 35.
  • the difference signal D V is then collected in vertical polarization on terminal B1. As for the terminal B3, it is connected to a load.
  • the outputs H3 and H4 of the radiating elements 5 and 8 are grouped to be connected to the terminal B2 of a circulator in hybrid ring 36 (figure 5-b).
  • the outputs H5 and H6 of the radiating elements 6 and 7 are grouped to be connected to the terminal B4 of the circulator 36.
  • the signal Difference D H is then collected on the terminal B1.
  • the terminal B3 is connected to a load.
  • FIGS. 1 to 5 show that it is possible, by implementing the invention, to produce an I.F.F. integrated into a radar antenna of the double curvature reflector type with offset primary source.
  • Figure 6 gives the block diagram of neutrodynage on the Somme track and Figure 7 gives the block diagram of neutrodynage on the Somme the Difference way.
  • the radiation pattern in cross polarization is even.
  • the primary diagram which is used is that of the Difference channel in horizontal polarization.
  • the terminals H3 and H4 of the radiating elements 5 and 6 are connected to the terminal B2 of the circulator 36 while the terminals H5 and H6 of the radiating elements 6 and 7 are connected to the terminal B4 of the circulator 36.
  • the difference signal D H is obtained on terminal B1 and is applied to a phase shifter 37.
  • the phase difference difference signal D ′ H is mixed with the signal of the sum channel using a coupler 38.
  • the curve 39 represents the radiation diagram of the Somme channel.
  • the radiation diagram in cross polarization is given by the curve 40.
  • the radiation diagram in cross polarization is given by the curve 41, which represents a improvement of ten decibels.
  • FIG. 7 gives the diagram of a particular embodiment in which the terminals V3 and V4 of the radiating elements 5 and 8 are connected to the terminal B2 of the circulator 35 while the terminals V5 and V6 of the radiating elements 6 and 7 are connected at terminal B4 of circulator 35.
  • the Difference signal D V is supplied by terminal B1 and is applied to a coupler 39.
  • the terminals H1 H2 of the radiating elements are connected respectively to terminals B2 and B3 of circulator 34 and the sum signal S H is supplied by the terminal B1.
  • the signal S H is phase shifted in a phase shifter 40 to obtain a signal S ′ H which is applied to the coupler 39.
  • a phase shifter 40 By modifying the phase of the signal S H , it is possible to adjust the level of the cross polarization of the Difference channel and to obtain a significant decrease of the order of ten decibels.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

  • L'invention concerne les antennes de surveillance radar et, plus particulièrement, dans de telles antennes un système d'identification des cibles par interrogations codées dont l'antenne est associée à l'antenne de surveillance radar.
  • Les radars permettent de détecter la présence d'objets ou cibles et de déterminer certaines de leurs caractéristiques telles que leur distance, leur altitude, leur vitesse. Cependant, ils ne permettent pas de déterminer, en temps de guerre, si la cible est amie ou ennemie. Pour une telle détermination, on utilise un système qui "interroge" les cibles en leur envoyant des signaux codés qui sont détectés par ces dernières; les cibles peuvent alors émettre vers le système interrogateur des signaux codés qui indiquent sa catégorie. Une cible qui ne "répond" pas convenablement aux signaux codés est considérée comme ennemie.
  • Un tel système interrogateur/répondeur, plus connu sous l'abréviation anglo-saxonne I.F.F. pour "Identification Friend or Foe", est très utilisé en temps de paix car il permet à un opérateur radar d'identifier aisément l'avion avec lequel il est en contact radio et radar en lui demandant d'émettre un signal codé déterminé. Ce signal codé apparaît sous une forme particulière sur l'écran radar à proximité du signal radar correspondant.
  • Pour des raisons évidentes, l'antenne du système I.F.F. est portée par l'antenne radar et il en résulte un ensemble très encombrant et lourd.
  • Pour remédier à ce problème, il a été proposé d'utiliser une antenne unique pour les deux fonctions radar et I.F.F. une telle antenne est par exemple réalisée à l'aide d'une source dite primaire de signaux radar qui illumine un réflecteur. A la source primaire sont associés des dipôles qui émettent des signaux I.F.F. et illuminent également le réflecteur radar. Une solution de ce type est décrite notamment dans la demande de brevet européen EP-A-0 025 739 qui concerne une antenne comprenant une source primaire radar constituée par un cornet, des éléments rayonnants disposés dans le cornet pour former le signal somme I.F.F. et des éléments rayonnants disposés de part et d'autre de l'ouverture du cornet pour former le signal différence I.F.F.. Une telle solution n'est pas entièrement satisfaisante car la voie I.F.F. ne peut pas être optimisée tandis que le niveau des signaux en polarisation croisée est trop élevé pour respecter certaines normes techniques imposées par les autorités administratives dans le domaine de l'aéronautique.
  • Le but de la présente invention est donc un système d'intégration des voies somme et différence I.F.F. dans une antenne de surveillance radar qui ne présente pas les inconvénients précités et qui réponde aux normes imposées.
  • Par ailleurs, on connaît, notamment par la demande de brevet européen EP-A-0 018 476, des éléments rayonnants pouvant être excités selon deux directions de polarisation croisées.
  • Un autre but de l'invention est, en utilisant des éléments rayonnants ayant cette propriété dans une antenne intégrée radar/I.F.F., de mettre à profit l'existence de signaux en polarisation croisée pour effectuer une compensation de manière à diminuer le niveau des signaux parasites en polarisation croisée.
  • Selon l'invention, il est donc prévu un système d'intégration des voies somme et différence I.F.F. dans une antenne de surveillance radar, tel que défini dans les revendications.
  • D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description suivante d'un exemple particulier de réalisation, ladite description étant faite en relation avec les dessins joints dans lesquels :
    • la figure 1 est une vue schématique de face de la source primaire du radar montrant, selon l'invention, la position des éléments rayonnants de la source primaire des voies I.F.F. par rapport à la source primaire du radar ;
    • la figure 2 est une vue en coupe d'un élément rayonnant de la source primaire I.F.F. suivant la ligne II-II de la figure 3 ;
    • la figure 3 est une vue en coupe de l'élément rayonnant de la source primaire I.F.F. suivant la ligne III-III de la figure 2 ;
    • les figures 4a et 4b sont des schémas indiquant les combinaisons des signaux dans la voie somme I.F.F. ;
    • les figures 5a et 5b sont des schémas indiquant les combinaisons des signaux dans la voie différence I.F.F. ;
    • la figure 6 est un schéma montrant un exemple de réalisation du neutrodynage de la voie somme I.F.F.,
    • la figure 7 est un schéma montrant un exemple de réalisation du neutrodynage de la voie différence I.F.F., et
    • la figure 8 représente des courbes de diagrammes d'antennes qui permettent de montrer les résultats obtenus par la présente invention.
  • L'invention s'applique à une antenne de radar de surveillance qui comporte une source primaire et un réflecteur qui est illuminé par les signaux émis par la source primaire. Le réflecteur a la forme d'un paraboloïde à double courbure et la source primaire est légèrement déplacée par rapport au foyer du paraboloïde.
  • Une telle antenne est souvent appelée à source primaire décalée ou à réflecteur décalé.
  • La source primaire est réalisée à l'aide d'un cornet 1 du type "tulipe" (figure 1) qui est connecté à l'émetteur radar par un guide d'onde muni d'un polariseur de manière à obtenir une polarisation circulaire du signal radar émis. Ce cornet peut aussi propager le mode TE₁₀ en polarisation verticale et le mode TE₀₁ en polarisation horizontale.
  • Selon l'invention, la voie Somme I.F.F. est obtenue à l'aide de deux éléments rayonnants identiques 3 et 4 placés dans le cornet 1 tandis que la voie Différence I.F.F. est obtenue à l'aide de quatre éléments rayonnants 5, 6, 7 et 8, identiques aux éléments 3 et 4 mais placés deux à deux de part et d'autre du cornet 1.
  • Les éléments 3 et 4 sont disposés dans les parois haute 9 et basse 10 du cornet et sont inclinés par rapport au plan de l'ouverture du cornet. Les éléments 5 à 8 sont disposés dans un plan parallèle à celui de l'ouverture du cornet 1.
  • Chaque élément rayonnant 3 à 8 est constitué, comme le montre les figures 2 et 3, d'une cavité rectangulaire 11 en un matériau métallique qui comporte un fond 12 et quatre côtés 13, 14, 15 et 16. La cavité est fermée par un couvercle 17 qui est réalisé en matériau diélectrique. La paroi interne du couvercle est revêtue d'une couche métallique 18 de forme rectangulaire.
  • L'ensemble couvercle 17 et couche métallique 18 constitue une plaque dite directrice.
  • Le fond 12 de la boîte est revêtu d'une couche diélectrique 19 surmontée d'une couche métallique 20 de forme rectangulaire dans laquelle sont pratiquées quatre fentes 21, 22, 23 et 24 disposées en croix l'une par rapport à l'autre. Les signaux hyperfréquence sont appliqués à la cavité 11 par l'intermédiaire de la plaque à fentes 20 qui est connectée en deux points 25 et 26 à des lignes coaxiales respectives 27 et 28. Le point 25 est situé dans l'alignement des fentes horizontales 22 et 24 tandis que le point 26 est situé dans l'alignement des fentes verticales 21 et 23.
  • L'ensemble couche diélectrique 19 et couche métallique 20 constitue une plaque dite rayonnante.
  • Des coins de la plaque rectangulaire à fentes 20 sont terminés par des languettes métalliques 29 et 30 qui servent à parfaire l'adaptation en ajustant leur largeur et leur longueur. L'ensemble forme une cavité qui rayonne l'énergie sur une seule face, la face 17.
  • Lorsque le signal hyperfréquence est appliqué au point 25, le vecteur champ électrique 31 est horizontal (polarisation horizontale). Par contre, lorsque le signal hyperfréquence est appliqué au point 26, le vecteur champ électrique 32 est vertical (polarisation verticale). Dans la suite de la description, le point 25 des éléments rayonnants sera référencé par la lettre H associée à un indice numérique. De manière similaire, le point 26 des éléments rayonnants sera référencé par la lettre V associée à un indice numérique. Les indices numériques 1 et 2 ont été affectés respectivement aux éléments rayonnants 3 et 4, les indices numériques 3 et 4 ont été affectés respectivement aux éléments rayonnants 5 et 8 et les indices numériques 5 et 6 ont été affectés respectivement aux éléments rayonnants 6 et 7.
  • Pour obtenir la voie Somme I.F.F. en polarisation verticale, on réalise l'excitation des points V₁ et V₂ des éléments rayonnants 3 et 4 à l'aide d'un circulateur en anneau hybride 33 (Figure 4-a) de manière à propager dans le cornet 1 le mode TE₁₀ en polarisation verticale.
  • Pour cela, le circulateur 33 comporte quatre bornes d'entrée/sortie B₁, B₂, B₃ et B₄ qui sont connectées respectivement à la source de signal I.F.F., au point V₁, au point V₂ et à une charge C₁. Ainsi, un signal I.F.F. appliqué en B₁ est divisé en deux signaux en phase qui apparaissent sur les bornes B₂ et B₃. Ce mode de fonctionnement est utilisé à l'émission.
  • Comme le circulateur a un fonctionnement réciproque, des signaux en phase reçus en V₁ et V₂, ont leur somme SV qui apparaît à la borne B₁. Ce mode de fonctionnement est utilisé à la réception.
  • Pour obtenir la voie Somme I.F.F. en polarisation horizontale, on connecte respectivement les points H₁ et H₂ aux bornes B₂ et B₃ d'un circulateur en anneau hybride 34. On obtient alors sur la borne B₁ le signal Somme SH en polarisation horizontale. La borne B₄ est connectée à l'impédance de charge.
  • Pour obtenir la voie Différence I.F.F., on utilise les éléments rayonnants latéraux 5, 6, 7 et 8 et on effectue les connexions suivantes qui seront décrites en relation avec les figures 5-a et 5-b. Les sorties V₃ et V₄ des éléments rayonnants 5 et 8 sont regroupées pour être connectées à la bornes B₂ d'un circulateur en anneau hybride 35. De même, les sorties V₅ et V₆ des éléments rayonnants 6 et 7 sont regroupées pour être connectées à la borne B₄ du circulateur 35. On recueille alors le signal Différence DV en polarisation verticale sur la borne B₁. Quant à la borne B₃, elle est connectée à une charge.
  • Pour obtenir le signal Différence DH en polarisation horizontale, les sorties H₃ et H₄ des éléments rayonnants 5 et 8 sont regroupées pour être connectées à la borne B₂ d'un circulateur en anneau hybride 36 (figure 5-b). De même, les sorties H₅ et H₆ des éléments rayonnants 6 et 7 sont regroupées pour être connectées à la borne B₄ du circulateur 36. Le signal Différence DH est alors recueilli sur la borne B₁. Ici aussi, la borne B₃ est connectée à une charge.
  • La description qui vient d'être faite en relation avec les figures 1 à 5 montre qu'il est possible, en mettant en oeuvre l'invention, de réaliser une antenne I.F.F. intégrée à une antenne radar du type à réflecteur double courbure avec source primaire décalée.
  • La description qui suit, en relation avec les figures 6, 7 et 8, montrera qu'il est possible en mettant en oeuvre d'autres aspects de l'invention de diminuer le niveau de polarisation croisée dans les deux voies Somme et Différence en combinant les signaux reçus sur l'antenne I.F.F. décrite ci-dessus.
  • A cet effet, on met en oeuvre un procédé de neutrodynage ou de mélange des signaux reçus sur les différentes voies Somme et Différence. La figure 6 donne le schéma fonctionnel du neutrodynage sur la voie Somme et la figure 7 donne le schéma fonctionnel du neutrodynage sur la voie Différence.
  • On rappellera qu'un réflecteur "décalé" qui est éclairé par un diagramme de rayonnement primaire du type pair donne un diagramme de rayonnement de type impair en polarisation croisée. Par contre, si le réflecteur est éclairé par un diagramme de rayonnement primaire de type impair, le diagramme de rayonnement du réflecteur sera pair en polarisation croisée.
  • Dans le cas de la voie Somme I.F.F. en polarisation verticale, le diagramme de rayonnement en polarisation croisée est pair. Pour diminuer son niveau, il est proposé de mélanger à la voie somme I.F.F. en polarisation verticale un diagramme primaire de type impair en polarisation horizontale de manière à obtenir un diagramme de rayonnement de type pair qui se soustrait au diagramme de rayonnement en polarisation croisée. On peut alors régler le niveau de polarisation croisée de la voie Somme I.F.F. en ajustant l'amplitude et la phase du diagramme primaire de type impair en polarisation verticale.
  • Dans l'exemple de réalisation particulier de la figure 6, le diagramme primaire qui est utilisé est celui de la voie Différence en polarisation horizontale. Pour cela, les bornes H₃ et H₄ des éléments rayonnants 5 et 6 sont connectées à la borne B₂ du circulateur 36 tandis que les bornes H₅ et H₆ des éléments rayonnants 6 et 7 sont connectées à la borne B₄ du circulateur 36. Le signal différence DH est obtenu sur la borne B₁ et est appliqué à un déphaseur 37. Le signal différence déphasé D′H est mélangé au signal de la voie somme à l'aide d'un coupleur 38. En choisissant convenablement la valeur du déphasage dans le déphaseur 37, on obtient une diminution sensible du niveau de la polarisation croisée dans la voie Somme I.F.F. Sur la figure 8, la courbe 39 représente le diagramme de rayonnement de la voie Somme.
  • En l'absence du neutrodynage selon l'invention, le diagramme de rayonnement en polarisation croisée est donné par la courbe 40. Avec neutrodynage selon l'invention, le diagramme de rayonnement en polarisation croisée est donné par la courbe 41, ce qui représente une amélioration de dix décibels.
  • Pour diminuer le niveau de polarisation croisée dans la voie Différence, on utilise le diagramme de la voie Somme en polarisation horizontale pour le mélanger après déphasage approprié avec le diagramme de la voie différence en polarisation verticale. La figure 7 donne le schéma d'un exemple de réalisation particulier dans lequel les bornes V₃ et V₄ des éléments rayonnants 5 et 8 sont connectées à la borne B₂ du circulateur 35 tandis que les bornes V₅ et V₆ des éléments rayonnants 6 et 7 sont connectées à la borne B₄ du circulateur 35. Le signal Différence DV est fourni par la borne B₁ et est appliqué à un coupleur 39. Par ailleurs, les bornes H₁ H₂ des éléments rayonnants sont connectées respectivement aux bornes B₂ et B₃ du circulateur 34 et le signal somme SH est fourni par la borne B₁. Le signal SH est déphasé dans un déphaseur 40 pour obtenir un signal S′H qui est appliqué au coupleur 39. En modifiant la phase du signal SH, on peut régler le niveau de la polarisation croisée de la voie Différence et en obtenir une diminution importante de l'ordre de dix décibels.

Claims (5)

  1. Système d'intégration des voies somme et différence I.F.F. dans une antenne de surveillance radar, ladite antenne comportant une source primaire du type cornet (1) qui éclaire un réflecteur du type décalé, la source primaire I.F.F. comportant deux premiers éléments rayonnants (3, 4), disposés dans le cornet (1) pour former la source de la voie somme, et des seconds éléments rayonnants (5, 6, 7, 8) disposés deux à deux de part et d'autre du cornet (1) pour former la source de la voie différence, caractérisé en ce que lesdits premiers et second éléments rayonnants comprennent chacun un accès d'entrée/sortie (25) en une première direction de polarisation et un accès d'entrée/sortie (26) en une seconde direction de polarisation croisée, des premiers moyens combineurs (33, 35) connectant lesdits accès dans ladite première direction de polarisation respectivement des premiers éléments rayonnants (3, 4) pour donner un signal de voie somme dans la première direction de polarisation et des seconds éléments rayonnants (5 à 8) pour donner un signal de voie différence dans la première direction de polarisation et des seconds moyens combineurs (34, 36) connectant lesdits accès dans ladite seconde direction de polarisation respectivement des premiers éléments rayonnants (3, 4) pour donner un signal de voie somme dans la seconde direction de polarisation et des seconds éléments rayonnants (5 à 8) pour donner un signal de voie différence dans la seconde direction de polarisation, et en ce qu'il est prévu en outre des troisièmes moyens combineurs (37, 38) pour combiner ledit signal de voie somme dans la première direction de polarisation, délivré par lesdits premiers moyens combineurs, avec ledit signal de voie différence dans la seconde direction de polarisation, délivré par lesdits seconds moyens combineurs, pour fournir un signal de voie somme I.F.F. neutrodyné afin d'obtenir une diminution des signaux parasites de la voie somme I.F.F. en polarisation croisée.
  2. Système d'intégration selon la revendication 1, caractérisé en ce qu'il comprend en outre des quatrièmes moyens combineurs (39, 40) pour combiner ledit signal de voie différence dans la première direction de polarisation, délivré par lesdits premiers moyens combineurs, avec ledit signal de voie somme dans la seconde direction de polarisation, délivré par lesdits seconds moyens combineurs, pour fournir un signal de voie différence I.F.F. neutrodyné afin d'obtenir une diminution des signaux parasites de la voie différence I.F.F. en polarisation croisée.
  3. Système d'intégration selon la revendication 2, caractérisé en ce que lesdits troisièmes et quatrièmes moyens comprennent chacun un déphaseur (37 ; 40) inséré dans la voie du signal dans la seconde direction de polarisation et un coupleur (38 ; 39) pour mélanger ledit signal dans la première direction de polarisation avec ledit signal déphasé dans la seconde direction de polarisation.
  4. Système d'intégration selon la revendication 1, 2 ou 3, caractérisé en ce que chaque élément rayonnant est constitué par une cavité résonnante qui comprend une boîte rectangulaire métallique (13) dont le fond comporte une plaque conductrice rayonnante (20) reposant sur une couche diélectrique (19) et dont le couvercle est constitué par une plaque conductrice (18) qui est portée par une couche diélectrique (17) et qui fait face à la plaque conductrice rayonnante (20).
  5. Système d'intégration selon la revendication 4, caractérisé en ce que la plaque conductrice rayonnante (20) comporte des fentes (21, 22, 23, 24) disposées en croix et associées à des bornes (25, 26) d'entrée/sortie des signaux électriques.
EP89402922A 1988-10-28 1989-10-24 Système d'intégration des voies somme et différence I.F.F. dans une antenne de surveillance radar Expired - Lifetime EP0367656B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8814134 1988-10-28
FR8814134A FR2638531B1 (fr) 1988-10-28 1988-10-28 Systeme d'integration des voies somme et difference i.f.f. dans une antenne de surveillance radar

Publications (2)

Publication Number Publication Date
EP0367656A1 EP0367656A1 (fr) 1990-05-09
EP0367656B1 true EP0367656B1 (fr) 1994-03-09

Family

ID=9371395

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89402922A Expired - Lifetime EP0367656B1 (fr) 1988-10-28 1989-10-24 Système d'intégration des voies somme et différence I.F.F. dans une antenne de surveillance radar

Country Status (4)

Country Link
US (1) US5036336A (fr)
EP (1) EP0367656B1 (fr)
DE (1) DE68913656D1 (fr)
FR (1) FR2638531B1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3239435B2 (ja) * 1992-04-24 2001-12-17 ソニー株式会社 平面アンテナ
FR2697949B1 (fr) * 1992-11-06 1995-01-06 Thomson Csf Antenne pour radar notamment de désignation et de trajectographie.
US5408241A (en) * 1993-08-20 1995-04-18 Ball Corporation Apparatus and method for tuning embedded antenna
FR2725075B1 (fr) * 1994-09-23 1996-11-15 Thomson Csf Procede et dispositif d'elargissement du diagramme de rayonnement d'une antenne active
FR2762717B1 (fr) * 1997-04-29 1999-07-16 Thomson Csf Source a deux voies pour antenne a optique focalisante
CN109884633B (zh) * 2019-02-21 2021-03-05 中国科学院电子学研究所 一种时差补偿方法、装置及存储介质

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3045238A (en) * 1960-06-02 1962-07-17 Theodore C Cheston Five aperture direction finding antenna
FR1271598A (fr) * 1960-07-26 1962-01-19
US3482251A (en) * 1967-05-19 1969-12-02 Philco Ford Corp Transceive and tracking antenna horn array
US3495262A (en) * 1969-02-10 1970-02-10 T O Paine Horn feed having overlapping apertures
US3568204A (en) * 1969-04-29 1971-03-02 Sylvania Electric Prod Multimode antenna feed system having a plurality of tracking elements mounted symmetrically about the inner walls and at the aperture end of a scalar horn
DE2139216C3 (de) * 1971-08-05 1980-06-12 Siemens Ag, 1000 Berlin Und 8000 Muenchen Richtantennenanordnung, bestehend aus einem Hauptreflektorspiegel und zwei Primärstrahlersystemen und Verfahren zur Herstellung einer dielektrischen Reflektorplatte
DE2315241C3 (de) * 1973-03-27 1983-11-24 Siemens AG, 1000 Berlin und 8000 München Einrichtung in einem Mikrowellen- Funkübertragungssystem
US4047179A (en) * 1976-05-03 1977-09-06 Raytheon Company IFF antenna arrangement
US4096482A (en) * 1977-04-21 1978-06-20 Control Data Corporation Wide band monopulse antennas with control circuitry
US4242685A (en) * 1979-04-27 1980-12-30 Ball Corporation Slotted cavity antenna
FR2465328A1 (fr) * 1979-09-07 1981-03-20 Thomson Csf Aerien pour radar primaire et radar secondaire
US4835538A (en) * 1987-01-15 1989-05-30 Ball Corporation Three resonator parasitically coupled microstrip antenna array element

Also Published As

Publication number Publication date
FR2638531B1 (fr) 1992-03-20
EP0367656A1 (fr) 1990-05-09
FR2638531A1 (fr) 1990-05-04
DE68913656D1 (de) 1994-04-14
US5036336A (en) 1991-07-30

Similar Documents

Publication Publication Date Title
EP3315994B1 (fr) Radar fmcw multifaisceaux, notamment pour automobile
US11415450B2 (en) Radar antenna for a fill level measurement device
EP0012055B1 (fr) Source primaire monopulse imprimée et antenne comportant une telle source
US7786928B2 (en) Monostatic planar multi-beam radar sensor
JP2779559B2 (ja) レーダ装置
CN113281751B (zh) 雷达装置
US20130088393A1 (en) Transmit and receive phased array for automotive radar improvement
CN109478726A (zh) 包括极化旋转层的天线和雷达系统
US9086476B1 (en) Method and apparatus for rejecting intermodulation products
EP0462864B1 (fr) Dispositif d'alimentation des éléments rayonnants d'une antenne réseau, et son application à une antenne d'un système d'aide à l'atterrissage du type MLS
FR2498336A1 (fr) Dispositif de transmission d'ondes electromagnetiques en polarisation lineaire
EP0367656B1 (fr) Système d'intégration des voies somme et différence I.F.F. dans une antenne de surveillance radar
EP0143497B1 (fr) Système radar à monoimpulsion à onde continue modulée en fréquence dont on améliore la stabilité d'axe
CN113281750A (zh) 雷达装置
EP0018878A1 (fr) Système interrogateur aéroporté comprenant une antenne radar et une antenne d'interrogation
Re et al. FMCW radar with enhanced resolution and processing time by beam switching
EP3176875B1 (fr) Architecture d'antenne active a formation de faisceaux hybride reconfigurable
Subitha et al. Development of Rogers RT/Duroid 5880 Substrate‐Based MIMO Antenna Array for Automotive Radar Applications
CN109154650B (zh) 距离无关分辨率雷达
CA2035111A1 (fr) Antenne en guides d'ondes a fentes, notamment pour radars spatiaux
US7928894B1 (en) Phased array radar with mutually orthogonal coding of transmitted and received V and H components
WO2021058674A1 (fr) Procede d'imagerie radar, et radar mettant en œuvre un tel procede
EP0072316B1 (fr) Antenne à balayage électronique à accès multiples et radar comportant une telle antenne
Massen et al. A 79 GHz SiGe short-range radar sensor for automotive applications
EP1677385B1 (fr) Antenne à balayage électronique large bande

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT NL

17P Request for examination filed

Effective date: 19901008

17Q First examination report despatched

Effective date: 19921208

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940309

Ref country code: GB

Effective date: 19940309

Ref country code: DE

Effective date: 19940309

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19940309

REF Corresponds to:

Ref document number: 68913656

Country of ref document: DE

Date of ref document: 19940414

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19940309

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed