EP0364554A1 - Plant protecting agent - Google Patents

Plant protecting agent

Info

Publication number
EP0364554A1
EP0364554A1 EP89904198A EP89904198A EP0364554A1 EP 0364554 A1 EP0364554 A1 EP 0364554A1 EP 89904198 A EP89904198 A EP 89904198A EP 89904198 A EP89904198 A EP 89904198A EP 0364554 A1 EP0364554 A1 EP 0364554A1
Authority
EP
European Patent Office
Prior art keywords
minute
formulation
contact angle
ulv
acid ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP89904198A
Other languages
German (de)
French (fr)
Inventor
Andràs SZEGO
László PAP
Lajos Nagy
Eva Somfai
György SZUCSANY
Istvan Szekely
Molnar Aniko Deakne
gnes HEGEDÜS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chinoin Private Co Ltd
Original Assignee
Chinoin Gyogyszer es Vegyeszeti Termekek Gyara Zrt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chinoin Gyogyszer es Vegyeszeti Termekek Gyara Zrt filed Critical Chinoin Gyogyszer es Vegyeszeti Termekek Gyara Zrt
Publication of EP0364554A1 publication Critical patent/EP0364554A1/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/24Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing ingredients to enhance the sticking of the active ingredients
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N53/00Biocides, pest repellants or attractants, or plant growth regulators containing cyclopropane carboxylic acids or derivatives thereof

Definitions

  • the invention relates to plant protecting anthropodicidal ULV formulations containing interfacial tension modifying materials as further additives.
  • LV and ULV (Ultra Low Volume) spray application methods are the most advantageous and economical methods in the plant and forest protection. These formulations are applied in a very small amount (5 1/ha) without dilution or in a low aqueous dilution (5-100 1/ha) instead of the common high rate (600 1/ha) or medium rate (100-600 1/ha) dilutions (Matthews G.A.: Pest management, 1984, Longman, London and New York).
  • the advantage of said treatments is that no water is required to prepare the spray and sometimes the ULV formulations are more active than the emulsion concentrates containing the same dose of active ingredient (J. Econ. Entomol., 1986, 79:202).
  • the treatments using a preparation in an amount less than 5 1/ha can ensure the suitable coverage — which in turn ensures the effective control of the pests — only if the spraying is carried out in a correct, optimal drop size distribute.
  • the optimal drop size plays very often a more important role than the used dose (3. Econ. Entomol., 1987. 80:460) therefor generally special spray heads are used (e.g. Unirot, Autorot, Beecomist, MicroMax (DR4, Flak).
  • the formulations are generally used without dilution and the active ingredient are dissolved in vegetable and/or mineral oils.
  • mineral oil a mixture of aliphatic and aromatic hydrocarbons is used the viscosity of which does not exceed the value of 50 cP and the flash point of which is above 60 °C (e.g. paraffin oil, Risella 917, Solvesso 200, HAN, Exxsol D 60).
  • the efficiency of the contact insecticides is also influenced by the durability of the drop to be found on the surface of the plant.
  • the oils used in the ULV formulations spread gradually on the surface then penetrate into the epicuticular layer of wax of the plant. By this means the contact surfaces between the plant- and the spray drop — and so the actual surfaces for the resorption of the active ingredient into the plant — are increasing, however the specific dose "available" for the insects may decrease which may slow down the intoxication.
  • the efficiency of the permethrin used in form of oily ULV formulation can be positively incluenced by the retention time of the drop to be found on the surface of the leaf which can be followed by the change of the wetting angle (contact angle) (Pestic. Sci. 1984, 15:382).
  • the wetting angle depends on the surface tension of the solid and liquid phases, on the interfacial tension and on the surface roughness (Szant ⁇ , Ps The basis of the Collidal Chemistry, 1987, Publisher: Gondolat, Budapest.
  • the invention relates to ULV plant protecting anthropodicidal formulations suitable for application in a very small amount, comprising 0.5 - 30 g/l of synthetic pyrethroides and/or phosphoric acid esters, thiophosphoric acid esters and/or dithiophdsphoric acid esters in an amount of 0.5 - 300 g/l dissolved in a mixture comprising 2 - 300 g/l aliphatic hydrocarbons and sunflower oil in an amount necessary to 1000 ml and comprising further alkylaryl polyglycol ether in an amount of 2 - 100 g/l, preferably 15 - 60 g/l as additive enabling that the initial wetting (contact) angle of the formulation on the plant surface is greater than 13°, it is greater than 6° after 20 minutes and it is at least 2° after 120 minutes.
  • the initial wetting (contact) angle of the formulation on the plant surface is greater than 13°, it is greater than 6° after 20 minutes and it is at least 2° after 120 minutes.
  • the aim of our invention is to provide spray drops having a lengthened retention time by influencing the above mentioned factors and thereby to improve the efficacy of the ULV formulations.
  • the present invention is based on the recognition that the efficacy of certain ULV compositions in oil or in mixture of oils can be enhanced if said compositions contain suitable components for the modification of the penetration.
  • the known ULV formulations used without dilution do not contain additives (tenzides) for decreasing the interfacial tension.
  • the invention relates to ULV plant protecting anthropodicidal formulations suitable for application in a very small amount, comprising 0.5 - 30 g/l of synthetic pyrethroides and/or phosphoric acid esters, thiophosphoric acid esters and/or dithiophosphoric acid esters in an amount of 0.5 - 300 g/l dissolved in a mixture comprising 2 - 300 g/l aliphatic hydrocarbons and sunflower oil in an amount necessary to 1000 ml and comprising further alkylaryl polyglycol ether in an amount of 2 - 100 g/l, preferably 15 - 60 g/l as additive enabling that the initial wetting (contact) angle of the formulation on the plant surface is greater than 13°, it is greater than 6° after 20 minutes and it is at least 2° after 120 minutes.
  • the formulations according to the invention contain the following natural or synthetic pyrethroids: allethrin, bifenthrin, bioallethrin, bioresmethrin, chinmix, cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, fenpropethrin, fenvalerate, flycythrinate, fluvalinate, permethrin, phenothrin, resmethrin, tetramethrin, tralomethrin, and/or transmix.
  • the formulations according to the invention contain th.e following phosphoric acid esters: trichlorfon, propaphos, dicrotophos, phosphamidon, profenophos; the following thiophosphoric acid esters: acephate, parathion, methylparathion, chlorpyriphos, methamidophos, demeton, oxy-demeton-methyl, fenitrotion, EPN, triazophost, pirimiphos-ethyl, mevinphos, quinalpos, fenthion, pirimiphos-methyl and/or the following dithiophosphoric acid esters: dimethoate, azinphos-methyl, azinphos-ethyl, phosmet, malathion, phenthoate, methidathion and/or phosalon.
  • phosphoric acid esters trichlorfon, propaphos, dicrotophos, phosphamidon, profen
  • the oil used in the preparation according to the invention is preferably a contamination-free, double-filtered sunflower oil (pharmacopeia).
  • compositions are the most effective which enable — due to the modifying components — the formation of such a contact angle which can ensure the adhesion of the drops located on a vertical or horizontal plant surface or on a plant surface between said two geometrical positions and can inhibit the absorption thereof within 2 hours.
  • the contact (wetting) angle depends on the interfacial tension between the oil drop and the given plant surface further on the gravity related to the drop size (Pestic. Sci., 1987. 15:382) on the quality of the oil (Pestic. Sci., 1987. 20:241) and on different physical parameters, e.g. temperature, humidity (Pestic. Sci., 1987. 20:105). These all have an influence on the spreading of the drop and on the penetration of the active ingredient into the epicuticular layer of wax.
  • the initial contact angle determined on the plant surfaces was smaller than 16° and 0° after 20 minutes in case of lucerne and smaller than 8° in case of maize and 0° after 120 minutes in both cases.
  • the penetration time of the spray drops can significantly be increased by the use of the alkyl aryl polyglycol ethers and this results in the significant increase of the efficiency of the active ingredient contained in the formulations. Due to this enhanced efficiency the specific dose (g active ingredient/ha) may be reduced which is very advantageous from point of view of the costs of the plant protection and of the moderation of the pesticide-load.
  • the active ingredients available for a longer time as potent pesticides are further very advantageous as they may be utilized to control the resistant populations.
  • composition is prepared by using a technology generally known for preparing solutions, i.e. the sunflower oil is admixed with the Exxsol D 100 and the active ingredient is dissolved in the mixture obtained at 15 - 30 °C, thereafter the solution is stirred for 30 minutes.
  • the contact angle is determined using a microscope having a magnification of 30x and equipped with an optical cross spider. The displacement of the cross spider is determined by fine scale angular displacement indicator. Wetting time Contact angle lucerne sunflower
  • composition is prepared and the contact angle is determined as described in Example 1.
  • composition is prepared by using the techno logy generally known for preparing solutions, i.e. the sunflower oil is admixed with the Exssol D 100, thereafter the nonylphenol polyglycol ether is added, homogenized and the active ingredient is dissolved in the mixture thus obtained.
  • the contact angle is determined as described in Example 1.
  • Example 3 The composition is prepared as described in Example 3, and the contact angle is determined according to Example 1.
  • composition is prepared as described in
  • Example 3 and the contact angle is determined according to Example 1.
  • composition is prepared as described in
  • Example 3 and the contact angle is determined according to Example 1. Wetting time Contact angle lucerne sunflower
  • composition is prepared as described in Example 3 and the contact angle is determined according to Example 1.
  • composition is prepared as described in Example 3 and the contact angle is determined according to Example 1.
  • composition is prepared as described in Example 3 and the contact angle is determined according to Example 1.
  • Petri dishes ( ⁇ 9 cm) are lined with leaves of potato leaves originated from shoots which had not been treated with insecticides previously and sprayed with the compositions described above.
  • the treatment is carried out with a spraying machine (ULVA-system) modified for laboratory purpose, having a rotating disc and equipped with a speed governor. On an average 28 drops, having a diameter of 80 ⁇ m, are applied to every cm 2 . After different drying time larvae of potato beetle
  • Example 12 The treatments are carried out as described in Example 12, except that sunflower leaves are used. After the different drying times worms of fulvous clover (Heliothis maritima GRASLIN) of L 3 - L 4 larval stage, collected on field, are placed onto the treated leaves and 5 hours later the mortality is determined. The treatments are carried out in two replicates , each us ing 20 larvae. The results obtained are summarized in Table 2.
  • Example 3 The activity of the composition according to Example 3 is tested in inudstrial scale in a 10 ha plot on winter wheat against plant louses.
  • DECIS ULV A commercial composition, DECIS ULV is used as comparative composition.
  • the application was carried out from helicopter at the time of milky stage (milky ripening) (at June 22) using a special ULV head.
  • the evaluation was carried out according to the Banks scale 2 and 7 days after the treatment using 8 ⁇ 25 marked ears. On the basis of the scale values the infection was calculated, thereafter the average number of the living individuals was expressed by the aid of an empirical table. The calculation of the percentage efficacy was made by the Henderson-Tilton equation.
  • Treatment dose Number of the living efficacy in % individuals 1/ha before 2 days 7 days efficacy in % treat- after treatment (Hendersonment -Tilton)
  • the contact angle is determined as described in Example 1.
  • Example 15 the following composition is prepared:
  • Nonylphenol polyglycol ether 25 g/l Solvesso 200 100 g/l
  • composition is prepared according to Example 15 and the contact angle is determined as described in Example 1.
  • composition is prepared according to Example 1.
  • composition is prepared according to Example 15 and the contact angle is determined as described in Example 1. Wetting time Contact angle lucerne sunflower
  • composition is prepared according to Example 15 and the contact angle is determined as described in Example 1.

Abstract

The invention relates to ULV plant protecting arthropodicidal formulation comprising alkyl aryl polyglycol ether as further additives in addition to the active ingredient(s) dissolved in the mixture of alphatic hydrocarbons and sunflower oil. The formulation according to the invention has an initial contact angle on the plant surface of > 13 DEG , after 20 minutes of > 6 DEG and it is after 120 minutes still at least 2 DEG .

Description

PLANT PROTECTING AGENT
Technical field
The invention relates to plant protecting anthropodicidal ULV formulations containing interfacial tension modifying materials as further additives.
Background of the invention
It is known that the LV (Low Volume) and ULV (Ultra Low Volume) spray application methods are the most advantageous and economical methods in the plant and forest protection. These formulations are applied in a very small amount (5 1/ha) without dilution or in a low aqueous dilution (5-100 1/ha) instead of the common high rate (600 1/ha) or medium rate (100-600 1/ha) dilutions (Matthews G.A.: Pest management, 1984, Longman, London and New York). The advantage of said treatments is that no water is required to prepare the spray and sometimes the ULV formulations are more active than the emulsion concentrates containing the same dose of active ingredient (J. Econ. Entomol., 1986, 79:202).
However the treatments using a preparation in an amount less than 5 1/ha (i.e. the ULV treatments) can ensure the suitable coverage — which in turn ensures the effective control of the pests — only if the spraying is carried out in a correct, optimal drop size distribute. The optimal drop size plays very often a more important role than the used dose (3. Econ. Entomol., 1987. 80:460) therefor generally special spray heads are used (e.g. Unirot, Autorot, Beecomist, MicroMax (DR4, Flak). The formulations are generally used without dilution and the active ingredient are dissolved in vegetable and/or mineral oils.
As mineral oil a mixture of aliphatic and aromatic hydrocarbons is used the viscosity of which does not exceed the value of 50 cP and the flash point of which is above 60 °C (e.g. paraffin oil, Risella 917, Solvesso 200, HAN, Exxsol D 60).
The efficiency of the contact insecticides is also influenced by the durability of the drop to be found on the surface of the plant. The oils used in the ULV formulations spread gradually on the surface then penetrate into the epicuticular layer of wax of the plant. By this means the contact surfaces between the plant- and the spray drop — and so the actual surfaces for the resorption of the active ingredient into the plant — are increasing, however the specific dose "available" for the insects may decrease which may slow down the intoxication. It is known that the efficiency of the permethrin used in form of oily ULV formulation can be positively incluenced by the retention time of the drop to be found on the surface of the leaf which can be followed by the change of the wetting angle (contact angle) (Pestic. Sci. 1984, 15:382). The wetting angle depends on the surface tension of the solid and liquid phases, on the interfacial tension and on the surface roughness (Szantό, Ps The basis of the Collidal Chemistry, 1987, Publisher: Gondolat, Budapest.
Summary of the invention
The invention relates to ULV plant protecting anthropodicidal formulations suitable for application in a very small amount, comprising 0.5 - 30 g/l of synthetic pyrethroides and/or phosphoric acid esters, thiophosphoric acid esters and/or dithiophdsphoric acid esters in an amount of 0.5 - 300 g/l dissolved in a mixture comprising 2 - 300 g/l aliphatic hydrocarbons and sunflower oil in an amount necessary to 1000 ml and comprising further alkylaryl polyglycol ether in an amount of 2 - 100 g/l, preferably 15 - 60 g/l as additive enabling that the initial wetting (contact) angle of the formulation on the plant surface is greater than 13°, it is greater than 6° after 20 minutes and it is at least 2° after 120 minutes. Detailed description of the invention
The aim of our invention is to provide spray drops having a lengthened retention time by influencing the above mentioned factors and thereby to improve the efficacy of the ULV formulations.
The present invention is based on the recognition that the efficacy of certain ULV compositions in oil or in mixture of oils can be enhanced if said compositions contain suitable components for the modification of the penetration. The known ULV formulations used without dilution do not contain additives (tenzides) for decreasing the interfacial tension. The invention relates to ULV plant protecting anthropodicidal formulations suitable for application in a very small amount, comprising 0.5 - 30 g/l of synthetic pyrethroides and/or phosphoric acid esters, thiophosphoric acid esters and/or dithiophosphoric acid esters in an amount of 0.5 - 300 g/l dissolved in a mixture comprising 2 - 300 g/l aliphatic hydrocarbons and sunflower oil in an amount necessary to 1000 ml and comprising further alkylaryl polyglycol ether in an amount of 2 - 100 g/l, preferably 15 - 60 g/l as additive enabling that the initial wetting (contact) angle of the formulation on the plant surface is greater than 13°, it is greater than 6° after 20 minutes and it is at least 2° after 120 minutes.
The formulations according to the invention contain the following natural or synthetic pyrethroids: allethrin, bifenthrin, bioallethrin, bioresmethrin, chinmix, cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, fenpropethrin, fenvalerate, flycythrinate, fluvalinate, permethrin, phenothrin, resmethrin, tetramethrin, tralomethrin, and/or transmix.
The formulations according to the invention contain th.e following phosphoric acid esters: trichlorfon, propaphos, dicrotophos, phosphamidon, profenophos; the following thiophosphoric acid esters: acephate, parathion, methylparathion, chlorpyriphos, methamidophos, demeton, oxy-demeton-methyl, fenitrotion, EPN, triazophost, pirimiphos-ethyl, mevinphos, quinalpos, fenthion, pirimiphos-methyl and/or the following dithiophosphoric acid esters: dimethoate, azinphos-methyl, azinphos-ethyl, phosmet, malathion, phenthoate, methidathion and/or phosalon. In the formulation according to the invention preferably nonylphenol polyglycol ether (E0 = 6 - 10) is used as alkylaryl polyglycol ether and the aliphatic hydrocarbon mixture is preferably a mixture of C10-15 hydrocarbons containing 45-50% naphtene and having .a flash point higher than 58 °C.
The oil used in the preparation according to the invention is preferably a contamination-free, double-filtered sunflower oil (pharmacopeia).
Those compositions are the most effective which enable — due to the modifying components — the formation of such a contact angle which can ensure the adhesion of the drops located on a vertical or horizontal plant surface or on a plant surface between said two geometrical positions and can inhibit the absorption thereof within 2 hours.
The experimental data presented in the following Examples prove that the efficiency of these compositions surpasses that of the comparative compositions containing no modifying compound.
The contact (wetting) angle depends on the interfacial tension between the oil drop and the given plant surface further on the gravity related to the drop size (Pestic. Sci., 1987. 15:382) on the quality of the oil (Pestic. Sci., 1987. 20:241) and on different physical parameters, e.g. temperature, humidity (Pestic. Sci., 1987. 20:105). These all have an influence on the spreading of the drop and on the penetration of the active ingredient into the epicuticular layer of wax.
In the following Examples the behaviour of drops having a diameter of 80 ,um and prepared under constant physical parameters from a preferred oil mixture was examined on different plant surfaces in the presence of different penetration modifying materials used individually or in mixture.
During our experiments the mixtures of different vegetable oil, e.g. soya, rape, palm, sunflower oil and mineral oils, e.g. different aromatic and aliphatic: hydroqarbons and the mixtures thereof were examined as solvent mixtures. As plant surface the young foliage leaves of lucerne (Medicago saliva) and sunflower (Helianthus annus) were used. The contact angle and absorption time of the plant protecting ULV formulations were determined by optical method and the retention time was followed by the change of the contact angle in time. It has been established that the contact angle of the solution obtained by the use of the mixture of sunflower oil and mixed hydrogenated aliphatic hydrocarbons is 7 - 10°, however an even lower value (7-1°) may be obtained by the use of other mixtures. Surprisingly even the penetration time of the compositions having a relatively great contact angle (10°) is only 15-20 minutes. The penetration of the ULV formulations having a contact angle below 7 takes place very quickly, in 2 - 15 minutes. Accordingly such solvent mixture was used as starting solvent which shows — in the form of the ULV formulation — a contact angle of 7º - 10º. The following composition meets e.g. this requirement:
0,5 - 30 g/l of pyrethroide and/or 0.5- 300 g/l phosphoric acid ester
2 - 300 g/l of aliphatic hydrocarbon mixture sunflower oil to 1000 ml. Using the above composition the contact angle measured on the surface of the plant model was 7° - 10° and the penetration time was 15 - 20 minutes.
As aliphatic hydrocarbon mixture Exxsol D 60 and D 100 products (mixture of C10-15 hydrocarbons, naphtene content: 45 - 50 %, flash point: 50° - 100 °C) was used. The used sunflower oil was of pharmacopeia quality, double filtered.
Several additives modifying the interfacial behaviours were examined in different concentration, and the contact angle and the change thereof in time was determined on the leaves of lucerne and sunflower plants.
The following materials were used as penetration modifying components: Xonic type materials:
- Ca salt of dodecylbenzenesulfonic acid, Non-ionic type materials:
- fatty alcohol polyglycol ethers: compounds of formula RX(CH2CH2O)yH, wherein if X = 0, then R0 = cocoanut oil alcohol, oleyl alcohol, pine oil alcohol, isotridecyl alcohol;
- alkyl-aryl polyglycol ethers, corresponding to the above general formula, wherein if R is alkyl phenol then it stands for nonylphenol or tributylphenol and y = 2-12,
- fatty amine polyglycol ethers, wherein if X = NH then RNH is cocoanut oil, stearyl, oleyl, pine oil amine and y = 2-12; - propylene oxide - ethylene oxide block polymer
(E0 = 10-12)
It has been found that the ULV formulations corresponding to the following composition: 0,5 - 30 g/l of pyrethroid and/or 0.5- 300 g/l phosphoric acid ester,
2 - 300 g/l of mixed aliphatic hydrocarbon,
15 - 60 g/l of alkyl aryl polyglycol ether (E0 = 6 - 10) and sunflower oil to 1000 ml, have an initial contact angle on the surface of a plant model of 13 - 21°, after 20 minutes of 6° - 10° and after 120 minutes of 2 - 3° and it decreases to 0° only after 180 minutes.
When using any other additives in a concentration of 15 - 60 g/l or the formulation tested contains no additives, the initial contact angle determined on the plant surfaces was smaller than 16° and 0° after 20 minutes in case of lucerne and smaller than 8° in case of maize and 0° after 120 minutes in both cases.
It will be proved by the following Examples that the penetration time of the spray drops can significantly be increased by the use of the alkyl aryl polyglycol ethers and this results in the significant increase of the efficiency of the active ingredient contained in the formulations. Due to this enhanced efficiency the specific dose (g active ingredient/ha) may be reduced which is very advantageous from point of view of the costs of the plant protection and of the moderation of the pesticide-load. The active ingredients available for a longer time as potent pesticides are further very advantageous as they may be utilized to control the resistant populations.
The definitions of the abbreaviations used in the following Tables are the following:
CIP = cipermethrin = alpha-cyano-3-phenoxy-benzyl-3-(2,2¬
-dichlorovinyl)-2,2-dimethyl-cyclopropane carboxylate
CHX = "chihmix" = a mixture in a ratio of 40:60 of the following isomers of cipermethrin: (1RcisS + 1ScisR) : 1RtransS + 1Strans = = 40:60
QUI = quinalphos = 0,0-diethyl-0-chinoxalin-2-yl-phosphorothioate
DIA = diazinon = 0,0-diethyl-0-2-isopropyl-6-methyl-pirimidin-4-yl-phosphorothioate
TRIA = triazophos = 0,0-diethyl-0-1-phenyl-1H-1,2,4-triazol¬
-3-yl-phosphorothioate
MET = methidathion = S=2,3-dihydro-5-methoxy-2-oxo-1,3,4-thiadiazol-3-yl-methyl-0,0-dimethylphosphorodithioate HEPT = heptenophos = chlorobicyclo[3,2,0]hepta-2,6-dien¬
-6-yl-dimethylphosphate
PHDS = phosalone = S-6-chloro-2,3-dihydro-2-oxobenzeneoxazol-3-yl-methyl-0,0-diethyl-phosphorodithioate
SF = synergistic factor
PBO = piperonyl butoxide
The invention is illustrated by the following
Examples.
Example 1
Chinmix 7.5 g/l
Exxsol D 100 250 g/l
Sunflower oil to 1000 ml
The composition is prepared by using a technology generally known for preparing solutions, i.e. the sunflower oil is admixed with the Exxsol D 100 and the active ingredient is dissolved in the mixture obtained at 15 - 30 °C, thereafter the solution is stirred for 30 minutes. The contact angle is determined using a microscope having a magnification of 30x and equipped with an optical cross spider. The displacement of the cross spider is determined by fine scale angular displacement indicator. Wetting time Contact angle lucerne sunflower
0. minute 10° 6°
20. minute 0° 8°
120. minute 0° 0°
Example 2
Chinmix 0.75 g/l
Exxsol D 100 5 g/l sunflower oil to 1000 ml
The composition is prepared and the contact angle is determined as described in Example 1.
Wetting time Contact angle lucerne sunflower 0. minute 8° 4°
20. minute 0° 5°
120. minute
Example 3
Chinmix 7.5 g/l
Nonylphenol polyglycol ether (E0 = 8) 60 g/l Exssol D 100 250 g/l sonflower oil to 1000 ml
The composition is prepared by using the techno logy generally known for preparing solutions, i.e. the sunflower oil is admixed with the Exssol D 100, thereafter the nonylphenol polyglycol ether is added, homogenized and the active ingredient is dissolved in the mixture thus obtained. The contact angle is determined as described in Example 1.
Wetting time Contact angle lucerne sunflower
0. minute 19º 21º
20. minute 6º 15º
120. minute 3º 6º
Example 4
Transmix 0.75 g/l
Nonylphenol polyglycol ether
(E0 = 8) 30 g/l
Exxsol D 100 5 g/l
Sunflower oil to 1000 ml
The composition is prepared as described in Example 3, and the contact angle is determined according to Example 1.
Wetting time Contact angle lucerne sunflower
0. minute 19º 20º
20. minute 6º 15°
120. minute 2º 4º Example 5
Chinmix 7.5 g/l
Fatty alcohol polyglycol ether (E0 = 5) 60 g/l Exxsol D 100 250 g/l
Sunflower oil to 1000 g/l
The composition is prepared as described in
Example 3 and the contact angle is determined according to Example 1.
Wetting time Contact angle lucerne sunflower
0. minute
20. minute
120. minute
Example 6
Chinmix 7.5 g/l Alkyl aryl polyglycol ether
(E0 = 2) 30 g/l
Exxsol D 100 250 g/l
Sunflower oil to 1000 g/l
The composition is prepared as described in
Example 3 and the contact angle is determined according to Example 1. Wetting time Contact angle lucerne sunflower
0. minute 8° 6°
20. minute 3° 0°
120. minute 0° 0°
Example 7
To a measuring flask of 1000 ml 240 g quinalphos and 35 g nonylphenol polyglycol ether (E0 = 10) are added and filled up to 1000 ml with the 1:5 mixture (v/v) of Exxsol D 100 and sunflower oil. The mixture obtained is homogenized at 50 °C in the flask and after complete dissolution is cooled to 20 °C. The contact angle is determined as described in Example 1.
Wetting time Contact angle lucerne sunflower
0. minute 18' 20º
20. minute 18º
120. minute 11º
Example 8
In the mixture of 80 g piperonyl butoxide and
23 g nonylphenol polyglycol ether (E0 = 10) 10 g chinmix and thereafter 240 g quinalphos are dissolved at 45 °C.
The solution thus obtained is filled up to 1000 ml with the 1!6 mixture (v/v) of Exxsol D 60 and sunflower oil. Wetting time Contact angle lucerne sunflower
0. minute 16º 18º
20. minute 8º 12º
120. minute 4º 8º
Example 9
Tetramethrin 10 g/l
Nonylphenol polyglycol ether
(E0 = 8) 60 g/l
Exxsol D 100 250 g/l
Sunflower oil to 000 ml
The composition is prepared as described in Example 3 and the contact angle is determined according to Example 1.
Wetting time Contact angle lucerne sunflower
0. minute 17º 23º
20. minute 7º 15º
120. minute 3º 7º
Example 10
Cipermethrin 20 g/l
Nonylphenol polyglycol ether
(E0 = 10) 15 g/l Exxsol D 100 200 g/l
Sunflower oil to 1000 ml
The composition is prepared as described in Example 3 and the contact angle is determined according to Example 1.
Wetting time Contact angle lucerne sunflower 0. minute 17° 24°
20. minute 11° 10°
120. minute 8° 8°
Example 11 Cipermethrin 2 g/l
Nonylphenol polyglycol ether
(E0 = 10) 20 g/l
Exxsol D 100 48 g/l
Sunflower oil to 00 ml
The composition is prepared as described in Example 3 and the contact angle is determined according to Example 1.
Wetting time Contact angle lucerne sunflower 0. minute 21° 23° 20 . minute
120 . minute
Biological Examples
Example 12
Activity on potato beetle
Petri dishes (∅ 9 cm) are lined with leaves of potato leaves originated from shoots which had not been treated with insecticides previously and sprayed with the compositions described above. The treatment is carried out with a spraying machine (ULVA-system) modified for laboratory purpose, having a rotating disc and equipped with a speed governor. On an average 28 drops, having a diameter of 80 μm, are applied to every cm2. After different drying time larvae of potato beetle
(Leptinotarsa decemlienata SAY) of third larval stage are placed onto the treated surfaces and 5 hours later the number of the intoxicated, ataxic larvae are determined. Four replicates, each using 15 larvae, are carried out. The results obtained and expressed in percentage are summarized in Table 1. Table 1
Drying time Compositions according to after the Control Ex 1 Ex 3 Ex 5 Ex 6 Ex 8 Ex 10 spraying k no c k do wn % (min)
0 0 70 100 70 75 100 100
20 0 20 80 35 30 100 100 120 0 0 50 5 0 85 90
Composition according to Example 1, containing no active ingredient
Example 13
Activity on the worms of fulvous clover
The treatments are carried out as described in Example 12, except that sunflower leaves are used. After the different drying times worms of fulvous clover (Heliothis maritima GRASLIN) of L3 - L4 larval stage, collected on field, are placed onto the treated leaves and 5 hours later the mortality is determined. The treatments are carried out in two replicates , each us ing 20 larvae. The results obtained are summarized in Table 2.
Table 2
Drying time Compositions according to after the Control* Ex 1 Ex 3 Ex 5 Ex 6 Ex 8 Ex 10 spraying k noc k do wn (min)
0 0 90 100 100 100 100 100
20 0 30 100 35 40 100 100
120 0 0 65 0 0 100 100
* Composition according to Example 1, containing no active ingredient
Example 14
Activity against plant-louses
The activity of the composition according to Example 3 is tested in inudstrial scale in a 10 ha plot on winter wheat against plant louses.
A commercial composition, DECIS ULV is used as comparative composition. The application was carried out from helicopter at the time of milky stage (milky ripening) (at June 22) using a special ULV head. The evaluation was carried out according to the Banks scale 2 and 7 days after the treatment using 8 × 25 marked ears. On the basis of the scale values the infection was calculated, thereafter the average number of the living individuals was expressed by the aid of an empirical table. The calculation of the percentage efficacy was made by the Henderson-Tilton equation.
Table 3
Treatment dose Number of the living efficacy in % individuals 1/ha before 2 days 7 days efficacy in % treat- after treatment (Hendersonment -Tilton)
2. day 7. day
CYPERIL-S* 1.5 30.1 0.9 0.5 97.0 80.3
DECIS ULV 1.5 30.8 1.4 1.0 95.6 62.7
Untreated control - 26.9 28.0 2.4 - -
* Composition according to Example 3
Example 15
To a measuring flask of 1000 ml 400 g of Phosalone and 25 g of nonylphenol polyglycol ether (E0=10) are added and filled up to 1000 ml with the 1:1:5 mixture (v/v) of Solvesso 200, Exxsol D 100 and sunflower oil. The mixture obtained is homogenized at 25°C.
The contact angle is determined as described in Example 1.
Wetting time Contact angle lucerne sunflower
0. minute 18° 22°
20. minute 8° 18°
120. minute 6° 7°
Example 16
According to Example 15 the following composition is prepared:
Phenitrothion 300 g/
Wetting time Contact angle lucerne sunflower
0. minute 22º 24º
20. minute 7º 15º
120. minute 4º 6º
Example 17
Malathion 300 g/l
Nonylphenol polyglycol ether 25 g/l Solvesso 200 100 g/l
Exxsol D 100 250 g/l
Sunflower oil to 1000 ml
The composition is prepared according to Example 15 and the contact angle is determined as described in Example 1.
Wetting time Contact angle lucerne sunflower 0. minute 18° 21°
20. minute 6° 15°
120. minute 3º 7º
Example 18 Phosalone 400 g/l
Chinmix 8 g/l Nonylphenol polyglycol ether (E0=10) 15 g/l
Exxsol D 100 250 g/l
Sunflower oil to 1000 ml
The composition is prepared according to Example
15 and the contact angle is determined as described in
Example 1.
Wetting angle Contact angle lucerne sunflower
0. minute 18° 20°
20. minute 7° 16°
120. minute 3° 7°
Example 19
Deltamethrin 5 g/l Nonylphenol polyglycol ether
(E0=10) 20 g/l Solvesso 200 100 g/l
Exxsol D 100 250 g/l
Sunflower oil to 1000 ml
The composition is prepared according to Example 15 and the contact angle is determined as described in Example 1. Wetting time Contact angle lucerne sunflower
0. minute 17º 18º
20. minute 7º 12º
120. minute 3º 9º
Example 20
Malathion 300 g/l
Deltamethrin 5 g/l Nonylphenol polyglycol ether
(E0=8) 20 g/l
Solvesso 200 100 g/l
Exxsol D 100 250 g/l
Sunflower oil to 1000 ml
The composition is prepared according to Example 15 and the contact angle is determined as described in Example 1.
Wetting time Contact angle lucerne sunflower 0. minute 21° 24°
20. minute 8° 15°
120. minute 4° 8°

Claims

What we claim is:
1. ULV plant protecting arthropodicidal formulation containing 0.5 - 30 g/l of natural and/or synthetic pyrethroids and/or 0.5 - 300 g/l of phosphoric acid ester, thiophosphoric acid ester and/or dithiophosphoric acid ester dissolved in the mixture containing 2 - 300 g/l of mixed aliphatic hydrocarbons and sunflower oil in an amount necessary to 1000 ml comprising 2 - 100 g/l, preferably 15 - 60 g/l of alkyl aryl polyglycol ether as further additive, whereby the initial contact angle of the formulation on the plant surface is greater than 13°, after 20 minutes it is greater than 6° and after 120 minutes it is still at least 2°.
2. ULV plant protecting formulation as claimed in Claim 1 which comprises allethrin, bifenthrin, bioallethrin, bioresmethrin, chinmix, cyfluthrin, cyhalot.hrin, cypermethrin, deltamethrin, fenpropathrin, fenvalerate, flycythrinate, fluvalinate, permethrin, phenothrin, resmethrin, tetramethrin, tralomethrin and/or transmix as synthetic pyrethroid.
3. ULV plant protecting formulation as claimed in Claim 1, which comprises trichlorforn, propaphos, dicrotophos, phosphamidon, profenophos, monocrotophos as phosphoric acid ester and acephate, parathion, methylparathion, chlorpyriphos, demeton, oxy-demethon-methyl, fenitrothion, EPN, triazophos, pirimiphos-methyl, mevinphos, quinalphos, fenthion as thiophosphoric acid ester, and/or dimethoate, azinphos-methyl, azinphos-ethyl, phosmet, malathion, phentoate, methidathion and/or phosalon as dithiophosphoric acid ester.
4. ULV plant protecting formulation as claimed in any one of Claims 1 - 3 which comprises nonylphenol polyglycol ether (E0 = 6 - 10) as a lkyl aryl pol ygl yco l ether .
5. ULV plant protecting formulation as claimed in any one of Claims 1 - 4 which comprises a C10-15 hydrocarbon mixture containing 45 - 50 % naphtene having a flash point higher than 58 °C, as aliphatic hydrocarbon mixture.
6. ULV plant protecting formulation as claimed in any one of Claims 1 - 4 which comprises contamination-free, double-filtered sunflower oil (pharmacopeia).
EP89904198A 1988-04-07 1989-04-07 Plant protecting agent Pending EP0364554A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
HU881723A HU204969B (en) 1988-04-07 1988-04-07 Plant protective composition against arthropoda suitable for letting out very slight quantity of agent
HU172388 1988-04-07

Publications (1)

Publication Number Publication Date
EP0364554A1 true EP0364554A1 (en) 1990-04-25

Family

ID=10955862

Family Applications (2)

Application Number Title Priority Date Filing Date
EP89904198A Pending EP0364554A1 (en) 1988-04-07 1989-04-07 Plant protecting agent
EP89106155A Expired - Lifetime EP0336433B1 (en) 1988-04-07 1989-04-07 Plant protecting agent

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP89106155A Expired - Lifetime EP0336433B1 (en) 1988-04-07 1989-04-07 Plant protecting agent

Country Status (18)

Country Link
EP (2) EP0364554A1 (en)
JP (1) JPH0816045B2 (en)
KR (1) KR930007405B1 (en)
CN (1) CN1027569C (en)
AT (1) ATE100997T1 (en)
AU (1) AU621605B2 (en)
BR (1) BR8906641A (en)
CA (1) CA1339062C (en)
DE (1) DE68912805T2 (en)
EG (1) EG18703A (en)
ES (1) ES2061758T3 (en)
HK (1) HK1003967A1 (en)
HU (1) HU204969B (en)
IL (1) IL89801A (en)
PT (1) PT90215B (en)
TR (1) TR24224A (en)
WO (1) WO1989009541A1 (en)
ZA (1) ZA892363B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0538246B1 (en) * 1989-01-30 1995-02-22 Zeneca Inc. Pyrethroid formulations of reduced paresthesia
US5130135A (en) * 1989-08-18 1992-07-14 Smithkline Beecham Plc Pesticidal formulations
CN1043178C (en) * 1993-08-11 1999-05-05 北京市农林科学院作物研究所 Production method of pollen plant growth regulator
ES2164518B1 (en) * 1999-03-10 2003-06-16 Ramos Rafael Rodriguez INSECTICIATED COMPOSITION
WO2011083485A1 (en) * 2010-01-08 2011-07-14 Tagros Chemicals India Limited Insect management compositions for use on natural and synthetic materials and surfaces
CN102273444A (en) * 2011-09-13 2011-12-14 广西田园生化股份有限公司 Ultralow volume liquid containing thiamethoxam
CN102273443B (en) * 2011-09-13 2014-04-16 广西田园生化股份有限公司 Superlow-capacity liquid reagent containing ethofenprox
CN102626080A (en) * 2012-04-12 2012-08-08 广西田园生化股份有限公司 Ultralow-volume liquid containing cyprodinil
CN103688990A (en) * 2013-12-06 2014-04-02 济南凯因生物科技有限公司 Theta-cypermethrin and methidathion containing suspoemulsion and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1125654A (en) * 1978-08-28 1982-06-15 Kozo Tsuji Fenitrothion concentrate for ulv spraying
IT1123122B (en) * 1979-09-12 1986-04-30 Montedison Spa INSECTICIDE LIQUID COMPOSITIONS CONTAINING SYNTHETIC PYRETROIDS
US4617318A (en) * 1981-09-25 1986-10-14 American Cyanamid Company Non-irritating pyrethroid formulations in vegetable oils and tall oils
CA1219526A (en) * 1982-11-29 1987-03-24 Keith G. Seymour Increasing the effectiveness of synthetic, organic, oil-soluble insecticides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8909541A1 *

Also Published As

Publication number Publication date
AU621605B2 (en) 1992-03-19
EP0336433A3 (en) 1990-10-17
JPH0816045B2 (en) 1996-02-21
DE68912805D1 (en) 1994-03-17
ZA892363B (en) 1989-12-27
KR900700007A (en) 1990-08-11
DE68912805T2 (en) 1994-05-19
WO1989009541A1 (en) 1989-10-19
HUT50580A (en) 1990-03-28
BR8906641A (en) 1990-09-04
ATE100997T1 (en) 1994-02-15
JPH02503804A (en) 1990-11-08
EP0336433A2 (en) 1989-10-11
CN1037821A (en) 1989-12-13
ES2061758T3 (en) 1994-12-16
AU3360889A (en) 1989-11-03
IL89801A (en) 1992-09-06
PT90215A (en) 1989-11-10
PT90215B (en) 1994-07-29
HU204969B (en) 1992-03-30
CA1339062C (en) 1997-07-29
EG18703A (en) 1993-12-30
EP0336433B1 (en) 1994-02-02
KR930007405B1 (en) 1993-08-10
CN1027569C (en) 1995-02-08
TR24224A (en) 1991-07-02
HK1003967A1 (en) 1998-11-13

Similar Documents

Publication Publication Date Title
JP5053290B2 (en) Insecticidal and acaricidal mixtures of bifenthrin and cyanopyretroid
ZA200402556B (en) Multi-layer adjuvants for controlled delivery of agro-materials into plant tissues
AU738283B2 (en) Aqueous herbicide/surfactant compositions for basal or dormant stem brush control
CN102123590A (en) A method for modulating the release rate of microencapsulated actives
CA2378269A1 (en) Composition containing an active substance, production and use thereof
EP0336433B1 (en) Plant protecting agent
CZ283649B6 (en) Multicomponent insecticidal agent against arthropodes
WO2004077945A1 (en) Pesticides formulations
JPH02188506A (en) Cock roach-killing composition, preparation thereof and protection and removing of cock roach
KR100659420B1 (en) Microencapsulation formulations of cadusafos
EP0521957B1 (en) Sprayable agricultural compositions
CN1953659A (en) Insect pest control agent, insecticidal powdery formulation and isopod behavior disruptive agent
US5189062A (en) Plant protecting agent
CN1042640A (en) Insecticides
JP2813993B2 (en) Acaricide composition
RU2024225C1 (en) Insecticidal composition for control of arthropod
KR830001830B1 (en) Process for preparing oil-in-water pesticide emulsion
KR20010023226A (en) Synergistic herbicidal combination
KR20010023225A (en) Synergistic herbicidal combination
JPS58192810A (en) Oil-in-water type suspending insecticide and acaricide composition
JPH02142708A (en) Indoor dust and stabilization thereof
Mulla¹ THE ROLE OF SOME PHYSICO-CHEMICAL FACTORS IN THE PERFORMANCE OF GRANULAR MOSQUITO LARVICIDES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900226

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL SE

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CHINOIN GYOGYSZER ES VEGYESZETI TERMEKEK GYARA RT.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 19911104

XX Miscellaneous (additional remarks)

Free format text: VERFAHREN ABGESCHLOSSEN INFOLGE VERBINDUNG MIT 89106155.8/0336433 (EUROPAEISCHE ANMELDENUMMER/VEROEFFENTLICHUNGSNUMMER) VOM 13.05.92.