EP0359774A1 - Accelerateur d'electrons a cavite coaxiale. - Google Patents

Accelerateur d'electrons a cavite coaxiale.

Info

Publication number
EP0359774A1
EP0359774A1 EP88904976A EP88904976A EP0359774A1 EP 0359774 A1 EP0359774 A1 EP 0359774A1 EP 88904976 A EP88904976 A EP 88904976A EP 88904976 A EP88904976 A EP 88904976A EP 0359774 A1 EP0359774 A1 EP 0359774A1
Authority
EP
European Patent Office
Prior art keywords
cavity
electron
conductor
electrons
median plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88904976A
Other languages
German (de)
English (en)
Other versions
EP0359774B1 (fr
Inventor
Guyen Annick N
Jacques Pottier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0359774A1 publication Critical patent/EP0359774A1/fr
Application granted granted Critical
Publication of EP0359774B1 publication Critical patent/EP0359774B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/14Vacuum chambers
    • H05H7/18Cavities; Resonators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/10Accelerators comprising one or more linear accelerating sections and bending magnets or the like to return the charged particles in a trajectory parallel to the first accelerating section, e.g. microtrons or rhodotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H9/00Linear accelerators

Definitions

  • the present invention relates to an electron accelerator. It finds an application in the irradiation of various substances such as agro-food products, either directly by electrons, or by X-rays obtained by conversion on a heavy metal target.
  • An electron accelerator which generally comprises a resonant cavity supplied by a high frequency field source, and an electron source capable of injecting electrons into the cavity. If certain phase and speed conditions are satisfied, the electrons are accelerated by the electric field throughout their passage through the cavity.
  • the electron beam crosses the cavity several times.
  • the device then includes an electron deflector receiving the accelerated beam for the first time, deflecting it by around 180 ° and reinjecting it into the cavity for a new acceleration.
  • a second deflector can again deflect the beam which has undergone two accelerations, to make it cross a third time the cavity and thus obtain a third acceleration, and so on.
  • Such a device is described, for example, in French patent No. 1,555,723 entitled "100 MeV electron accelerator in steady state".
  • This type of accelerator has the following disadvantage.
  • the electron beam follows a path and coincides with the axis of the latter.
  • the electric field has only one component which is directed along the axis.
  • the electron beam follows a path which is no longer directed along the axis.
  • a magnetic component perpendicular to the axial component of the electric field can act on the electron beam. This action will result in a deflection of the electrons.
  • This deviation will depend on the phase of the electromagnetic field, which will produce a scattering of the beam, some of which will consequently be lost on the walls of the cavity.
  • this parasitic phenomenon is amplified during multiple crossings.
  • the electron beam is returned on itself and thus goes back and forth along the axis of the cavity.
  • the electron beam always follows, during its multiple crossings, a path for which the deflecting fields are zero (the electric field is parallel to the speed vector of the electrons, and in opposite directions).
  • these two devices are complex to implement: in the first, the various trajectories of the electrons do have a common branch merged with the axis of the cavity, but the other branches are external to the cavity, which increases the complexity and the size of the device.
  • the object of the present invention is precisely to remedy these drawbacks. To this end, it offers an electron accelerator which uses a cavity whose original shape, in this application makes it possible to benefit from the effects of multiple crossings while retaining the condition stated above on the absence of deflecting fields along the paths taken by the electrons.
  • the present invention relates to an electron accelerator of the multiple acceleration type mentioned above and which is characterized in that the resonant cavity is a coaxial cavity resonating according to the fundamental mode, with an external conductor and a inner conductor having the same axis, the electron beam being injected into this cavity in the median plane perpendicular to the axis and along a first diameter of the outer conductor, the electron deflector keeping the electrons in the median plane and reinjecting the beam in the cavity always in the median plane and along a second diameter of the external conductor, etc. the outer conductor and the inner conductor being pierced with diametrically opposite openings taken by the beam during its successive crossings of the cavity.
  • FIG. 1 shows a coaxial cavity resonating according to the fundamental mode
  • Figure 2 illustrates a property of the coaxial cavity relating to the absence of magnetic field in the median plane of the cavity
  • Figure 3 shows, in section, an electron accelerator according to the invention
  • Figure 4 illustrates geometric characteristics of the device of the invention
  • FIG. 5 shows an alternative embodiment of the invention, intended to reduce ohmic losses.
  • a coaxial cavity CC is seen, constituted by an external cylindrical conductor 10, an internal cylindrical conductor 20 and two flanges 31 and 32.
  • a cavity has an axis A and a median plane Pm, perpendicular to the axis.
  • fundamental of electric transverse type, for which the electric field E is purely radial in the median plane and decreases on both sides of this plane. to cancel on the flanges 31, 32.
  • the magnetic field is maximum along the flanges and is canceled in the median plane by changing direction.
  • Such a mode can be designated, according to conventional conventions, by TE 001 , the initials TE recalling that it is a mode where the electric field is transverse, where the first index "0" indicates that the field has the symmetry of revolution, the second index "0" indicates that there is no field cancellation along a radius of the cavity, and the third index of value 1 indicates that there is a half alternation of the field in a direction parallel to the axis.
  • Such a cavity can be supplied by a high frequency SHF source coupled to the cavity by a loop 34.
  • the electron beam is injected into the coaxial cavity in the median plane thereof. It is indeed in this plane that there is no parasitic field capable of deflecting the beam. As this point is essential we can stop there.
  • the cavity is seen in cross section in the median plane.
  • the electric fields E1 and E2 are equal along two distinct radii.
  • a contour 17 is defined by these two radii and by two arcs of a circle along which the electric field is radial.
  • the circulation of the electric field (that is to say the integral of this field) is zero along this contour. Consequently, the flux of magnetic induction through a surface resting on this contour is also zero. In other words, there is no magnetic component perpendicular to the median plane.
  • FIG. 3 shows, schematically, a complete accelerator according to the invention.
  • the device comprises an electron source S, a coaxial cavity CC, formed of an outer cylindrical conductor 10 and an inner cylindrical conductor 20, two electron deflectors D1 and D2.
  • the operation of this device is as follows.
  • the electron source S emits a beam of electrons Fe directed in the median plane of the coaxial cavity CC represented in section (the plane of the figure being the median plane).
  • the beam enters the cavity through an opening 11. It crosses the cavity along a first diameter d1 of the external conductor.
  • the inner conductor 20 is pierced with two diametrically opposite openings 21 and 22.
  • the electron beam is accelerated by the electric field if the phase and frequency conditions are satisfied (the electric field must remain in the opposite direction to the speed of the electrons).
  • the accelerated beam leaves the cavity through an opening 12 diametrically opposite to the opening 11. It is then deflected by a deflector D1.
  • the beam is reintroduced into the coaxial cavity through an opening 13. It then borrows a second diameter d2 and undergoes a second acceleration in the cavity. It comes out through the opening 14. On its exit, the beam is again deflected by a deflector D2 then reintroduced into the cavity by an opening 15. It borrows a third diameter d3 and undergoes a third acceleration, etc.
  • the coaxial nature of the acceleration structure means that the electric field does not have the same direction in the first and in the second half of the path taken by the electrons in the cavity, in other words along the radius which goes from the external conductor. to the inner conductor, then along the radius from the inner conductor to the outer conductor.
  • the spatial variation of the field is accompanied by a temporal variation since the field has a high frequency (a few hundred megahertz).
  • k 1
  • the radius of curvature in one of the deflectors is designated by Rc and by Ra the distance between the axis of the cavity and the inlet eD or the outlet sD of this deflector. These quantities are illustrated in FIG. 4. Furthermore, the angle between two paths is equal to ⁇ / 2n. So we have the following relationships:
  • Ra 111 cm
  • Rc 22.1 cm
  • the external radius R2 delimiting the field of the cavity must obviously be less than Rc to take account of the thickness of the wall and possibly allow it to be housed between it and the deflector of the auxiliary focusing devices.
  • the dimensions calculated above are compatible with these practical requirements.
  • the electrical quality of an accelerating cavity is conventionally characterized by its efficient shunt impedance
  • the shunt impedances obtained in practice are somewhat lower than the theoretical values, and in fact the dissipated power will be close to 350 kW.
  • the impedance-shunt, for homothetic cavities, is proportional to the root of the wavelength. A cavity operating at 700 MHz increasing the energy of the electrons
  • the radii of the cavity would differ somewhat, but the impedance-shunt would vary little, and as a first approximation the dissipated power would vary in a manner inversely proportional to the number of passages.
  • the ohmic losses due to the currents flowing in the flanges of the cavity can be reduced by modifying the shape of the internal conductor, as illustrated in FIG. 5.
  • the internal conductor 20 ends in two frustoconical parts 33 and 35.
  • the inductance of the cavity is reduced. To keep the same frequency, you need to increase the capacitance, so lengthen the cavity a little.
  • the inventors have demonstrated a considerable reduction in the transverse dimensions of the beam and a less great sensitivity to misadjustments by using deflection magnets whose faces, at the entrance and at the exit of the beam, are tangent. to a corner dihedral at the apex close to ⁇ (1- (1 / 2n)) if n is the number of beam crossings of the cavity.

Abstract

Accélérateur d'électrons. Selon l'invention, on utilise une cavité coaxiale (CC) résonnant selon le mode fondamental et on injecte les électrons dans le plan médian perpendiculaire à l'axe. Le faisceau peut être accéléré plusieurs fois le long de diamètres différents (d1, d2) par injection dans la cavité, grâce à des déflecteurs d'électrons (D1, D2). Application à l'irradiation de substances diverses.

Description

ACCELERATEUR D'ELECTRONS A CAVITE COAXIALE
DESCRIPTION
La présente invention a pour objet un accélérateur d'électrons. Elle trouve une application dans l'irradiation de substances diverses telles que produits agro-alimentaires, soit directement par les électrons, soit par des rayonx X obtenus par conversion sur une cible en métal lourd.
On connaît un accélérateur d'électrons qui comprend, de manière générale, une cavité résonnante alimentée par une source de champ haute fréquence, et une source d'électrons capable d'injecter des électrons dans la cavité. Si certaines conditions de phase et de vitesse sont satisfaites, les électrons sont accélérés par le champ électrique pendant toute leur traversée de la cavité.
Dans certains types d'accélérateurs, selon ce principe, le faisceau d'électrons traverse plusieurs fois la cavité. Le dispositif comprend alors un déflecteur d'électrons recevant le faisceau accéléré une première fois, le défléchissant d'environ 180° et le réinjectant dans la cavité pour une nouvelle accélération. Un deuxième déflecteur peut à nouveau défléchir le faisceau qui a subi deux accélérations, pour lui faire traverser une troisième fois la cavité et obtenir ainsi une troisième accélération, et ainsi de suite. Un tel dispositif est décrit par exemple dans le brevet français n° 1 555 723 intitulé "Accélérateur d'électrons de 100 MeV en régime permanent".
Ce genre d'accélérateur présente un inconvénient qui est le suivant. Lors de la première injection dans la cavité, le faisceau d'électrons emprunte un traj et confondu avec l'axe de celle-ci. Le long de ce trajet, le champ électrique n'a qu'une composante qui est dirigée suivant l'axe. Il y a donc bien accélération des électrons et il n'y a pas déviation du faisceau puisqu'il n'y a pas de composante transversale du champ magnétique. Cependant, lors de la seconde traversée de la cavité, le faisceau d'électrons emprunte un parcours qui n'est plus dirigé selon l'axe. Une composante magnétique perpendiculaire à la composante axiale du champ électrique peut agir sur le faisceau d'électrons. Cette action va se traduire par une déviation des électrons. Cette déviation dépendra de la phase du champ électromagnétique, ce qui produira une dispersion du faisceau, dont, par voie de conséquence, une partie sera perdue sur les parois de la cavité. Par ailleurs, ce phénomène parasite s'amplifie au cours des traversées multiples.
On connaît cependant des accélérateurs à passages multiples qui évitent cet écueil grâce à une structure particulière des déflecteurs. Selon cette variante, décrite par exemple dans le brevet américain 3,349,335 les électrons effectuent une boucle complète en dehors de la cavité et sont réinjectés dans l'axe de celle-ci.
Selon encore une autre variante, appelée parfois "Duotron", le faisceau d'électrons est renvoyé sur lui-même et effectue ainsi un aller et retour le long de l'axe de la cavité. Dans ces deux variantes perfectionnées, le faisceau d'électrons emprunte toujours, au cours de ses multiples traversées, un trajet pour lequel les champs déviateurs sont nuls (le champ électrique est parallèle au vecteur vitesse des électrons, et de sens opposé). Cependant, ces deux dispositifs sont complexes de mise en oeuvre : dans le premier, les diverses trajectoires des électrons ont bien une branche commune confondue avec l'axe de la cavité, mais les autres branches sont extérieures à la cavité, ce qui augmente la complexité et l'encombrement du dispositif. Dans le second, on est limité à un aller et retour du faisceau et le problème du renvoi des électrons sur eux-mêmes n'est pas simple à résoudre.
La présente invention a justement pour but de remédier à ces inconvénients. A cette fin, elle propose un accélérateur d'électrons qui utilise une cavité dont la forme originale, dans cette application, permet de bénéficier des effets des traversées multiples tout en conservant la condition énoncée plus haut sur l'absence de champs déviateurs le long des trajets empruntés par les électrons. De façon précise, la présente invention a pour objet un accélérateur d'électrons du type à accélérations multiples évoqué plus haut et qui est caractérisé par le fait que la cavité résonnante est une cavité coaxiale résonnant selon le mode fondamental, avec un conducteur extérieur et un conducteur intérieur ayant même axe, le faisceau d'électrons étant injecté dans cette cavité dans le plan médian perpendiculaire à l'axe et selon un premier diamètre du conducteur extérieur, le déflecteur d'électrons gardant les électrons dans le plan médian et réinjectant le faisceau dans la cavité toujours dans le plan médian et selon un deuxième diamètre du conducteur extérieur, etc. le conducteur extérieur et le conducteur intérieur étant percés d'ouvertures diamétralement opposées empruntées par le faisceau au cours de ses traversées successives de la cavité.
De toute façon, les caractéristiques de l'invention apparaîtront mieux à la lumière de la description qui suit. Cette description se réfère à des dessins annexés sur lesquels :
- la figure 1 montre une cavité coaxiale résonnant selon le mode fondamental,
- la figure 2 permet d'illustrer une propriété de la cavité coaxiale relative à l'absence de champ magnétique dans le plan médian de la cavité, la figure 3 montre, en coupe, un accélérateur d'électrons selon l'invention, la figure 4 illustre des caractéristiques géométriques du dispositif de l'invention, et
- la figure 5 montre une variante de réalisation de l'invention, destinée à diminuer les pertes ohmiques.
Sur la figure 1, on voit une cavité coaxiale CC constituée par un conducteur cylindrique extérieur 10, un conducteur cylindrique intérieur 20 et deux flasques 31 et 32. Une telle cavité possède un axe A et un plan médian Pm, perpendiculaire à l'axe. Parmi tous les modes de résonance possibles d'une telle cavité, il en est un, dit fondamental, de type transverse électrique, pour lequel le champ électrique E est purement radial dans le plan médian et décroit de part et d'autre de ce plan pour s'annuler sur les flasques 31, 32. Inversement, le champ magnétique est maximum le long des flasques et s'annule dans le plan médian en changeant de sens.
Un tel mode peut être désigné, selon des conventions classiques, par TE001, les initiales TE rappelant qu'il s'agit d'un mode où le champ électrique est transverse, où le premier indice "0" indique que le champ a la symétrie de révolution, le second indice "0" indique qu'il n'y a pas d'annulation du champ le long d'un rayon de la cavité, et le troisième indice de valeur 1 indique qu'il y a une demi-alternance du champ dans une direction parallèle à l'axe.
Une telle cavité peut être alimentée par une source haute fréquence SHF couplée à la cavité par une boucle 34.
Selon l'invention. le faisceau d ' é lectrons est injecté dans la cavité coaxiale dans le plan médian de celle-ci. C'est en effet dans ce plan qu'il n'existe aucun champ parasite susceptible de dévier le faisceau. Comme ce point est primordial on peut s'y arrêter. Sur la partie a de la figure 2, on voit la cavité en coupe transversale dans le plan médian. Les champs électriques E1 et E2 sont égaux le long de deux rayons distincts. Un contour 17 est défini par ces deux rayons et par deux arcs de cercle le long desquels le champ électrique est radial. La circulation du champ électrique Ce' est-à-dire l'intrégrale de ce champ) est nulle le long de ce contour. En conséquence, le flux de l'induction magnétique à travers une surface s'appuyant sur ce contour est nul lui aussi. En d'autres termes, il n'y a pas de composante magnétique perpendiculaire au plan médian.
Sur la partie b de cette même figure 2, on voit la cavité en coupe longitudinale. Le champ électrique étant symétrique par rapport au plan médian, les champs E3 et E4 le long de deux rayons infiniment proches et situés de part et d'autre de ce plan, sont égaux. La circulation du champ électrique le long d'un contour 18 constitué par ces deux rayons et par deux branches longitudinales, est nulle. En conséquence, le flux de l'induction à travers une surface s'appuyant sur ce contour est nul lui aussi. En d'autres termes, il n'y a pas de composante magnétique dans le plan médian.
Ainsi, il n'y a aucune composante magnétique dans le plan médian Pm (ce qui revient à dire, de manière imagée, que le plan médian de la cavité est une zone purement capacitive). Le faisceau d'électrons ne sera donc soumis a aucune force déviatrice.
La figure 3 montre, de façon schématique, un accélérateur complet conforme à l'invention. Le dispositif comprend une source d'électrons S, une cavité coaxiale CC, formée d'un conducteur cylindrique extérieur 10 et d'un conducteur cylindrique intérieur 20, deux déflecteurs d'électrons D1 et D2.
Le fonctionnement de ce dispositif est le suivant. La source d'électrons S émet un faisceau d'électrons Fe dirigé dans le plan médian de la cavité coaxiale CC représentée en coupe (le plan de la figure étant le plan médian). Le faisceau pénètre dans la cavité par une ouverture 11. Il traverse la cavité selon un premier diamètre d1 du conducteur extérieur. Le conducteur intérieur 20 est percé de deux ouvertures 21 et 22, diamétralement opposées. Le faisceau d'électrons est accéléré par le champ électrique si les conditions de phase et de fréquence sont satisfaites (le champ électrique doit rester de sens opposé à la vitesse des électrons).
Le faisceau accéléré sort de la cavité par une ouverture 12 diamétralement opposée à l'ouverture 11. Il est ensuite défléchi par un déflecteur D1.
Le faisceau est réintroduit dans la cavité coaxiale par une ouverture 13. Il emprunte alors un second diamètre d2 et subit dans la cavité une seconde accélération. Il ressort par l'ouverture 14. A sa sortie, le faisceau est à nouveau défléchi par un déflecteur D2 puis réintroduit dans la cavité par une ouverture 15. Il emprunte un troisième diamètre d3 et subit une troisième accélération, etc...
Le principe de l'accélérateur de l'invention ayant été exposé, quelques considérations pratiques de mise en oeuvre vont maintenant être développées en ce qui concerne notamment la condition de synchronisme à respecter et l'impédance shunt, 1. Condition de synchronisme.
Le caractère coaxial de la structure d'accélération entraîne que le champ électrique n'a pas la même direction dans la première et dans la seconde moitié du trajet emprunté par les électrons dans la cavité, autrement dit le long du rayon qui va du conducteur extérieur au conducteur intérieur, puis le long du rayon qui va du conducteur intérieur au conducteur extérieur. La variation spatiale du champ s'accompagne d'une variation temporelle puisque le champ possède une haute fréquence (quelques centaines de Mégahertz). Ces deux variations sont mises à profit en injectant le faisceau de manière telle que le champ électrique s'annule au moment où les électrons traversent le conducteur central. Le temps mis par les électrons à passer d'un conducteur à l'autre doit donc être inférieur à la demi-période du champ ; le temps mis par les électrons pour traverser la totalité de la cavité est donc inférieur à la période du champ. Comme ces électrons sont quasi relatîvistes on peut considérer que leur vitesse est voisine de la vitesse de la lumière c. On a donc : d2/c<T, condition que l'on peut écrire d2 ≤ A où λ est la longueur d'onde du champ électromagnétique.
Si l'on désigne par l la longueur du trajet emprunté par les électrons en dehors de la cavité, notamment dans le déflecteur, on doit avoir une condition supplémentaire qui est : d2 + l = k λ où k est un entier.
Il est souhaitable, pour réduire l'encombrement du dispositif, de prendre k=1. Mais dans certains cas particuliers, on pourrait être amené à choisir k=2 (par exemple, pour loger plus facilement un système de focalisation entre les aimants de déflexion et la cavité, ou pour avoir un plus grand rayon de courbure, afin d'utiliser une induction plus faible).
On supposera par la suite que la condition d2+l=λ est satisfaite.
On désigne par Rc le rayon de courbure dans l'un des déflecteurs et par Ra la distance entre l'axe de la cavité et l'entrée eD ou la sortie sD de ce déflecteur. Ces grandeurs sont illustrées sur la figure 4. Par ailleurs, l'angle entre deux trajets est égal à π/2n. On a donc les relations suivantes :
d'où
Par exemple, pour n=6 et n=8 on aura respectivement :
Pour une longueur d'onde de 3m, ce qui correspond à une fréquence de 100 MHz, on aura respectivement :
Ra = 101 cm Rc = 27 cm Ra = 111 cm Rc = 22,1 cm
Le rayon extérieur R2 délimitant le champ de la cavité doit évidemment être inférieur à Rc pour tenir compte de l'épaisseur de la paroi et permettre éventuellement de loger entre celle-ci et le déflecteur des dispositifs de focalisation auxiliaires. Les dimensions calculées ci-dessus sont compatibles avec ces exigences pratiques. 2. Impédance-shunt
La qualité électrique d'une cavité accélératrice est classiquement caractérisée par son impédance-shunt efficace,
Zseff, rapport du carré de l'énergie gagnée par l'électron au cours d'une traversée de la cavité (exprimée en électron-volt) à la puissance dissipée par effet Joule.
A titre d'exemple, pour une cavité fonctionnant à 100
MHz, en prenant R2=0,8m, on obtient un maximum assez plat de
Zseff au voisinage de (R1/R2)=1/4.
Dans ces conditions, le calcul donne Zseff ~10 MΩ et pour obtenir un gain d'énergie de 10 MeV avec six passages la puissance dissipée serait de 278 kW.
Les impédances-shunt obtenues en pratique sont quelque peu inférieures aux valeurs théoriques, et en fait la puissance dissipée sera voisine de 350 kW. L'impédance-shunt, pour des cavités homothétîques, est proportionnelle à la racine de la longueur d'onde. Une cavité fonctionnant à 700 MHz accroissant l'énergie des électrons de
5 MeV consommerait donc environ 125 kW.
Pour un nombre de passages différent, les rayons de la cavité différeraient quelque peu, mais l'impédance-shunt varierait peu, et en première approximation la puissance dissipée varierait d'une façon inversement proportionnelle au nombre de passages.
On a donc intérêt à utiliser un grand nombre de passages. On est en pratique limité dans cette voie par la diminution corrélative des rayons de courbure du faisceau dans les aimants de déviation, qui d'une part entraîne une diminution de la section de passage offerte au faisceau et d'autre part nécessite une augmentation de l'induction. Les puissances nécessaires sont compatibles avec un fonctionnement en continu, et en tout cas ne requièrent pas l'usage de générateurs d'impulsions relativement complexes et coûteux.
On peut diminuer les pertes ohmiques dues aux courants circulant dans les flasques de la cavité en modifiant la forme du conducteur intérieur, comme illustré sur la figure 5. Le conducteur intérieur 20 se termine par deux parties tronconiques 33 et 35. L'inductance de la cavité s'en trouve diminuée. Pour conserver la même fréquence, il faut augmenter la capacitance, donc allonger un peu la cavité.
Le bénéfice tiré d'une telle disposition en ce qui concerne l'impédance-shunt n'est pas très important (de l ' ordre de 10%). Toutefois, cette disposition présente l'avantage de diminuer fortement la puissance maximale dissipée par unité de surface (2 à 4 fois moins qu'avec la cavité coaxiale), ce qui peut être inté ressant pour faciliter le refroidissement et diminuer des effets gênants (flèche, tensions internes, etc) dus au gradient thermique dans les parois.
D'autre part, les inventeurs ont mis en évidence une réduction considérable des dimensions transversales du faisceau et une moins grande sensibilité aux déréglages en utilisant des ai mants de déviation dont les faces, à l'entrée et à la sortie du faisceau, sont tangentes à un dièdre d'angle au sommet voisin de π (1-(1/2n)) si n est le nombre de traversées de la cavité par le faisceau.

Claims

REVENDICATIONS
1. Accélérateur d'électrons du type comprenant une source (S) émettant un faisceau d' é lectrons (Fe), une cavité résonnante, une source haute fréquence (SHF) a limentant la cavité en champ électromagnétique à une fréquence de résonance de la cavité, le faisceau d'électrons (Fe) étant injecté dans la cavité et traversant celle-ci le long d'une ligne de champ é lectri que (E) du champ résonnant, le faisceau étant ainsi accéléré une première fois, au moins un déflecteur d'électrons (D1) placé à l'extérieur de la cavité, ce déflecteur recevant le faisceau ayant traversé la cavité, le défléchissant et le réinjectant dans la cavité, le faisceau retraversant la cavité et subissant une deuxième accélération, cet accélérateur étant caractérisé par le fait que la cavité résonnante est une cavité coaxiale (CC) avec un conducteur cylindrique extérieur (10) et un conducteur cylindrique intérieur (20) ayant même axe (A), cette cavité étant excitée à la fréquence du mode fondamental, le faisceau d'électrons étant injecté dans cette cavité dans le plan médian (Pm) perpendiculaire à l'axe (A) et selon un premier diamètre (d1) du conducteur extérieur (10), le déflecteur d'électrons (D1) gardant les électrons dans le plan médian (Pm) et réinjectant le faisceau dans la cavité toujours dans le plan médian (Pm) et selon un deuxième diamètre (d2) du conducteur extérieur (10), le conducteur extérieur (10) et le conducteur intérieur (20) étant percés d'ouvertures (11, 12, ... 21, 22) diamétralement opposées et empruntées par le faisceau au cours de ses traversées successives de la cavité.
2. Accélérateur selon la revendication 1, caractérisé par le fait que le conducteur central (20) présente des extrémités tronconiques (33, 35).
3. Accélérateur selon l'une au moins des revendications 1 et 2, comportant n traversées de la cavité par le faisceau, caractérisé en ce que l'on utilise des déflecteurs d'électrons à aimants dont les faces, à l'entrée et à lo sortie du faisceau, sont tangentes à un dièdre d'angle au sommet voisin de π(1-(1/2n)).
EP88904976A 1987-05-26 1988-05-25 Accelerateur d'electrons a cavite coaxiale Expired - Lifetime EP0359774B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8707378 1987-05-26
FR8707378A FR2616032B1 (fr) 1987-05-26 1987-05-26 Accelerateur d'electrons a cavite coaxiale

Publications (2)

Publication Number Publication Date
EP0359774A1 true EP0359774A1 (fr) 1990-03-28
EP0359774B1 EP0359774B1 (fr) 1993-04-28

Family

ID=9351457

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88904976A Expired - Lifetime EP0359774B1 (fr) 1987-05-26 1988-05-25 Accelerateur d'electrons a cavite coaxiale

Country Status (11)

Country Link
US (1) US5107221A (fr)
EP (1) EP0359774B1 (fr)
JP (1) JP2587281B2 (fr)
KR (1) KR960014439B1 (fr)
AU (1) AU613381B2 (fr)
CA (1) CA1306075C (fr)
DE (1) DE3880681T2 (fr)
ES (1) ES2007889A6 (fr)
FR (1) FR2616032B1 (fr)
IL (1) IL86448A (fr)
WO (1) WO1988009597A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2509399A1 (fr) 2011-04-08 2012-10-10 Ion Beam Applications Accélérateur d'électrons comportant une cavité coaxiale
EP2804451A1 (fr) 2013-05-17 2014-11-19 Ion Beam Applications S.A. Accélérateur d'électrons ayant une cavité coaxiale
EP3319402A1 (fr) 2016-11-07 2018-05-09 Ion Beam Applications S.A. Accélérateur d'électrons compact comprenant des aimants permanents
EP3319403A1 (fr) 2016-11-07 2018-05-09 Ion Beam Applications S.A. Accélérateur d'électrons compact comprenant une première et une seconde moitié de coquilles
EP3661335A1 (fr) 2018-11-28 2020-06-03 Ion Beam Applications Accélérateur d'électrons d'énergie variable

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2650448B1 (fr) * 1989-07-27 1994-09-02 Commissariat Energie Atomique Laser a electrons libres a accelerateur d'electrons perfectionne
BE1004879A3 (fr) * 1991-05-29 1993-02-16 Ion Beam Applic Sa Accelerateur d'electrons perfectionne a cavite coaxiale.
FR2680940B1 (fr) * 1991-08-28 1997-01-03 Commissariat Energie Atomique Accelerateur electrostatique et laser a electrons libres utilisant cet accelerateur.
FR2684512B1 (fr) * 1991-11-28 1997-04-18 Commissariat Energie Atomique Accelerateur d'electrons a cavite resonante.
US6745845B2 (en) 1998-11-16 2004-06-08 Shell Oil Company Isolation of subterranean zones
US7357188B1 (en) 1998-12-07 2008-04-15 Shell Oil Company Mono-diameter wellbore casing
US6557640B1 (en) 1998-12-07 2003-05-06 Shell Oil Company Lubrication and self-cleaning system for expansion mandrel
US6634431B2 (en) 1998-11-16 2003-10-21 Robert Lance Cook Isolation of subterranean zones
US6712154B2 (en) 1998-11-16 2004-03-30 Enventure Global Technology Isolation of subterranean zones
US6640903B1 (en) 1998-12-07 2003-11-04 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US6575240B1 (en) 1998-12-07 2003-06-10 Shell Oil Company System and method for driving pipe
US6823937B1 (en) 1998-12-07 2004-11-30 Shell Oil Company Wellhead
US6725919B2 (en) 1998-12-07 2004-04-27 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
GB2344606B (en) 1998-12-07 2003-08-13 Shell Int Research Forming a wellbore casing by expansion of a tubular member
AU770359B2 (en) 1999-02-26 2004-02-19 Shell Internationale Research Maatschappij B.V. Liner hanger
GC0000211A (en) 1999-11-15 2006-03-29 Shell Int Research Expanding a tubular element in a wellbore
WO2004094766A2 (fr) 2003-04-17 2004-11-04 Enventure Global Technology Appareil servant a etendre radialement et deformer plastiquement un element tubulaire
US7793721B2 (en) 2003-03-11 2010-09-14 Eventure Global Technology, Llc Apparatus for radially expanding and plastically deforming a tubular member
AU2003230589A1 (en) 2002-04-12 2003-10-27 Enventure Global Technology Protective sleeve for threaded connections for expandable liner hanger
AU2003233475A1 (en) 2002-04-15 2003-11-03 Enventure Global Technlogy Protective sleeve for threaded connections for expandable liner hanger
JP3712386B2 (ja) * 2002-08-29 2005-11-02 株式会社半導体理工学研究センター 陽電子を利用した欠陥評価装置
AU2003265452A1 (en) 2002-09-20 2004-04-08 Enventure Global Technology Pipe formability evaluation for expandable tubulars
US7886831B2 (en) 2003-01-22 2011-02-15 Enventure Global Technology, L.L.C. Apparatus for radially expanding and plastically deforming a tubular member
FR2852480B1 (fr) * 2003-03-10 2005-04-15 Commissariat Energie Atomique Source de positrons
FR2852481B1 (fr) * 2003-03-10 2005-05-06 Source de positons
US6818902B2 (en) * 2003-03-10 2004-11-16 Commissariat A L'energie Atomique Positron source
US20050025901A1 (en) * 2003-07-31 2005-02-03 Kerluke David R. Method of curing coatings on automotive bodies using high energy electron beam or X-ray
US7712522B2 (en) 2003-09-05 2010-05-11 Enventure Global Technology, Llc Expansion cone and system
WO2006020960A2 (fr) 2004-08-13 2006-02-23 Enventure Global Technology, Llc Organe tubulaire expansible
WO2008138998A1 (fr) * 2007-05-16 2008-11-20 Ion Beam Applications S.A. Accélérateur d'électrons et dispositif utilisant celui-ci
EP3102009A1 (fr) 2015-06-04 2016-12-07 Ion Beam Applications S.A. Accélérateur d'électrons d'énergie multiples

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1136936A (fr) * 1954-10-18 1957-05-21 Procédé et appareil pour accélérer des particules chargées d'électricité
GB1016622A (en) * 1963-09-03 1966-01-12 Ass Elect Ind Improvements relating to electron accelerators
FR1555723A (fr) * 1967-11-21 1969-01-31
FR2260253B1 (fr) * 1974-02-04 1976-11-26 Cgr Mev

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8809597A1 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2509399A1 (fr) 2011-04-08 2012-10-10 Ion Beam Applications Accélérateur d'électrons comportant une cavité coaxiale
EP2804451A1 (fr) 2013-05-17 2014-11-19 Ion Beam Applications S.A. Accélérateur d'électrons ayant une cavité coaxiale
EP3319402A1 (fr) 2016-11-07 2018-05-09 Ion Beam Applications S.A. Accélérateur d'électrons compact comprenant des aimants permanents
EP3319403A1 (fr) 2016-11-07 2018-05-09 Ion Beam Applications S.A. Accélérateur d'électrons compact comprenant une première et une seconde moitié de coquilles
EP3661335A1 (fr) 2018-11-28 2020-06-03 Ion Beam Applications Accélérateur d'électrons d'énergie variable
US10743401B2 (en) 2018-11-28 2020-08-11 Ion Beam Applications S.A. Vario-energy electron accelerator

Also Published As

Publication number Publication date
IL86448A0 (en) 1988-11-15
FR2616032A1 (fr) 1988-12-02
JP2587281B2 (ja) 1997-03-05
FR2616032B1 (fr) 1989-08-04
AU1943788A (en) 1988-12-21
CA1306075C (fr) 1992-08-04
JPH02503609A (ja) 1990-10-25
DE3880681T2 (de) 1993-10-14
AU613381B2 (en) 1991-08-01
IL86448A (en) 1991-08-16
WO1988009597A1 (fr) 1988-12-01
EP0359774B1 (fr) 1993-04-28
DE3880681D1 (de) 1993-06-03
ES2007889A6 (es) 1989-07-01
KR960014439B1 (en) 1996-10-15
KR890702416A (ko) 1989-12-23
US5107221A (en) 1992-04-21

Similar Documents

Publication Publication Date Title
EP0359774B1 (fr) Accelerateur d&#39;electrons a cavite coaxiale
FR2803715A1 (fr) Accelerateur de faisceau de particules a onde stationnaire
EP0496681A1 (fr) Dispositif de répartition d&#39;une énergie micro-onde pour l&#39;excitation d&#39;un plasma
EP0238397B1 (fr) Source d&#39;ions à résonance cyclotronique électronique à injection coaxiale d&#39;ondes électromagnétiques
EP2896278B1 (fr) Dispositif pour générer un plasma présentant une étendue importante le long d&#39;un axe par résonnance cyclotronique électronique rce à partir d&#39;un milieu gazeux.
FR2684512A1 (fr) Accelerateur d&#39;electrons a cavite resonante.
FR2596199A1 (fr) Circuit de sortie pour klystron et klystron comportant un tel circuit de sortie
EP2873306B1 (fr) Applicateur micro-onde coaxial pour la production de plasma
FR2650448A1 (fr) Laser a electrons libres a accelerateur d&#39;electrons perfectionne
EP0499514B1 (fr) Dispositif convertisseur de modes et diviseur de puissance pour tube hyperfréquence, et tube hyperfréquence comprenant un tel dispositif
EP0532411B1 (fr) Source d&#39;ions à résonance cyclotronique électronique et à injection coaxiale d&#39;ondes électromagnétiques
EP0946961B1 (fr) Systeme magnetique, en particulier pour les sources ecr, permettant la creation de surfaces fermees d&#39;equimodule b de forme et de dimensions quelconques
EP0295981B1 (fr) Accélérateur d&#39;électrons à nappe
EP0514255B1 (fr) Source d&#39;ions à résonance cyclotronique électronique
FR2629976A1 (fr) Accelerateur lineaire muni de cavites autofocalisantes a fort taux de capture electronique pour des tensions d&#39;injections moderes
FR2544128A1 (fr) Dispositif d&#39;injection d&#39;un faisceau d&#39;electrons pour generateur d&#39;ondes radioelectriques pour hyperfrequences
FR2936648A1 (fr) Tube micro-ondes compact de forte puissance
FR2691287A1 (fr) Nouveau circuit de sortie à interaction étendue pour un klystron relativiste large bande.
WO2023170116A1 (fr) Cyclotron à bi-secteurs séparés
FR2985366A1 (fr) Generateur d&#39;ondes hyperfrequences et procede de generation d&#39;une onde hyperfrequence associe
FR2766049A1 (fr) Cyclotron compact et son utilisation en proton-therapie
FR2612726A1 (fr) Dispositif accelerateur de particules comportant une cavite subharmonique
FR2588714A1 (fr) Accelerateur d&#39;ions a haute frequence
FR2621439A1 (fr) Cavite resonnante, dispositif de couplage, accelerateur de particules et tube a ondes progressives comportant de telles cavites
FR2820880A1 (fr) Source d&#39;ions multicharges

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19891013

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE GB IT LI NL SE

17Q First examination report despatched

Effective date: 19920623

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE GB IT LI NL SE

REF Corresponds to:

Ref document number: 3880681

Country of ref document: DE

Date of ref document: 19930603

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930812

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88904976.3

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20070503

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070508

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070525

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070615

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070523

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070525

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20070717

Year of fee payment: 20

BE20 Be: patent expired

Owner name: COMMISSARIAT A L'ENERGIE *ATOMIQUE

Effective date: 20080525

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20080524

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20080525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20080525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20080524