EP0357133B1 - Protection device for neutron tubes - Google Patents

Protection device for neutron tubes Download PDF

Info

Publication number
EP0357133B1
EP0357133B1 EP89202146A EP89202146A EP0357133B1 EP 0357133 B1 EP0357133 B1 EP 0357133B1 EP 89202146 A EP89202146 A EP 89202146A EP 89202146 A EP89202146 A EP 89202146A EP 0357133 B1 EP0357133 B1 EP 0357133B1
Authority
EP
European Patent Office
Prior art keywords
tube
voltage
resistor
elements
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89202146A
Other languages
German (de)
French (fr)
Other versions
EP0357133A1 (en
Inventor
Pierre Société Civile S.P.I.D. Bach
Henri Société Civile S.P.I.D. Bernardet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SODERN SA
Koninklijke Philips NV
Original Assignee
SODERN SA
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SODERN SA, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical SODERN SA
Publication of EP0357133A1 publication Critical patent/EP0357133A1/en
Application granted granted Critical
Publication of EP0357133B1 publication Critical patent/EP0357133B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H3/00Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
    • H05H3/06Generating neutron beams

Definitions

  • the invention relates to a device for protecting a neutron tube comprising an ion source whose anode is brought to a positive potential with respect to the cathode by means of a source power supply and whose accelerated ion beam strikes a target disposed on an electrical insulating support and brought to a negative potential supplied by a HV power supply, said protection device consisting of elements for electrical limitation of the tube current and / or of the target voltage.
  • neutron tubes operate under conditions compatible with the possibilities of heat dissipation, in particular of the target and its support.
  • the ion sources themselves are provided with fairly large extraction orifices in order to allow a high extraction yield to be obtained at a low operating pressure. Furthermore, they can work in an arc type discharge regime for pressure values still compatible with operation of the tube and the very high voltages applicable on these tubes can make it possible to extract large ion currents for short times.
  • the electrical limitations usually mounted on the supply circuits of the anode of the ion source and the target for the purpose of protecting the supply and the tube can be eliminated and replaced by new elements adapted to a new use.
  • the object of the invention is to provide the tube manufacturer with a means of prevention against such changes.
  • the invention is remarkable in that said limitations are made unalterable by including said elements inside the neutron tube so that any attempt to modify the electrical parameters fixing the nominal operating conditions of the tube requires the opening of said tube.
  • Said tube current limiting elements include a resistor connected between the positive terminal of the source supply and the anode of the ion source, as well as a voltage limiter at a value slightly greater than the specified value, connected between said positive terminal and the negative terminal of the source power supply connected to ground.
  • the resistor and the voltage limiter can be placed inside a sealed box supplied by sealed passages or in a sealed glass bulb. They can be produced in screen-printed technology or made up of mixed assemblies of screen-printed elements and discrete components compatible with the quality of vacuum necessary for the neutron tube.
  • the neutron tube shown in Figure 1 includes an ion source obtained from a deuterium-tritium mixture contained in the reservoir 1 and in which there is an anode 2, a cathode 3 and a permanent magnet 4 which establishes a field magnetic axial.
  • the ion beam from this source is accelerated by the acceleration electrode 5 and hits the target 6.
  • the envelope of the tube consists of a conductive part 7 grounded and an electrically insulating part 8 surrounding the target support 9 secured to the acceleration electrode.
  • the ion source is supplied by the DC voltage generator 10 of value V aa , the negative pole of which is connected to the ground of the tube and the positive pole of which is connected to the anode 2 through the resistor 11 of value R a .
  • the devices which are the subject of the invention will therefore make it possible to act on these two parameters and will include the resistor 11 of value R a compatible with the maximum instantaneous flux provided by the manufacturer and a voltage limiter 12 (spark gap, varistor, gas diode, ...) of impedance Z a , connected to the terminals of the supply 10, limiting the operating voltage to a value slightly higher than the supply voltage desired by the manufacturer and guaranteeing good reliability of the tube.
  • the instantaneous neutron emission Q n is globally related to the electrical parameters current tube I TU and target voltage V c by a relation of the type with 0.3 ⁇ k ⁇ 1 and 3 ⁇ ⁇ 4 for 80 kV ⁇ V c ⁇ 150 kV. This is valid for I TU expressed in amperes, V c in kilovolts, Q n in neutrons / second and for pressures of the mixture of hydrogenated gases less than or equal to 7.5.10 ⁇ 5 Pa (10 ⁇ 2 torr).
  • the tube current limiting elements can be mounted so as to form a single limiting assembly 16.
  • FIGS. 2a, 2b and 2c show some examples of assemblies.
  • the resistor 11 and the voltage limiter 12 are arranged in a sealed box BO supplied by sealed passages PAS1 and PAS2.
  • the resistor 11 and the voltage limiter 12 are placed in a sealed tube TU.
  • the resistor 11 and the breakdown voltage limiter 12 are produced in screen-printed technology and must be compatible with the quality of vacuum essential for the neutron tube.
  • the resistor 11 consists of a screen-printed strip B between the supply pads P1 and P2; the spark gap 12 is formed by the groove located between the pad P1 and the pad P3 or between the bar B and the pad.
  • the assembly is placed on the PL insulating plate (alumina, glass) and is compatible with tube technology (high temperature and low degassing rate).
  • FIGS 3 and 4 show two examples of arrangement of the anode current limiter assembly inside the neutron tube itself according to the invention.
  • the anode 2 is held mechanically by the electrically insulating wall 17 on the ion source side.
  • the sealed housing 16 containing the limiting elements 11 and 12 is provided with electrically isolated outputs 18 and 19 serving respectively for its voltage supply and for its connection to the anode; this connection is protected by an insulating sleeve 20.
  • the anode is mounted directly on the sealed casing 16 by means of the electrically insulating support 21 through which the connection of the limiting resistor 11 is made to the anode 2; the spark gap (or varistor) 12 is connected to the voltage supply through the insulated passage 22.
  • the box 16 is connected to the support of the reservoir 23 and to the frame of the tube 7 by a "three-lip" weld 24.
  • the limitation assembly 16 can be produced using different types of components, by direct mounting of discrete components (resistance, spark gap) assembled in parallel in the base of the tube; the technology of these components must be compatible with ultra-vacuum.
  • discrete components resistance, spark gap
  • Mixed assemblies of screen-printed elements and discrete components can also be assembled according to their compatibility with ultra-vacuum.
  • a resistor 14 is arranged on the outside of the electrically insulating cylinder 9 serving to support the target 6; the end at the base of the cylinder is connected to the negative pole of the high-voltage power supply and the end at the top of the cylinder is connected to the acceleration electrode 5.
  • This resistor 14 can consist for example of screen-printed elements deposited on the outside of the cylinder 9 in the form of a helix or resistive wire electrically insulated according to high temperature technology and wound from turn to turn or into wafer.
  • the acceleration electrode 5 is held by the electrically insulating support 26.
  • the resistor 14 is formed of resistors in series and deposited inside an alumina envelope 27 serving as a support for the acceleration electrode 5 connected to the upper end of the resistor, the target 6 being supported by the electrically insulating wall of the tube 8.
  • This current limitation by means of the resistor 14 can be supplemented by a voltage limitation by means of a spark gap (or a varistor) 28 disposed inside the alumina envelope and connected between the mass and the "three-lip" weld 29 connected to the negative pole of the target HV supply.
  • a spark gap or a varistor
  • the interior of the alumina casing 27 can be placed either in communication with the tube, or in a gas atmosphere depending on whether the orifice 30 is found to be open or closed.
  • the solution will depend on the compatibility of the varistors and resistors to the ultra-vacuum and the technology of the resistors. (temperature resistance, degassing).

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Particle Accelerators (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

L'invention concerne un dispositif de protection d'un tube neutronique comportant une source d'ions dont l'anode est portée à un potentiel positif par rapport à la cathode au moyen d'une alimentation source et dont le faisceau ionique accéléré vient frapper une cible disposée sur un support isolant électrique et portée à un potentiel négatif fourni par une alimentation HT, ledit dispositif de protection étant constitué par des éléments de limitations électriques du courant tube et/ou de la tension cible.The invention relates to a device for protecting a neutron tube comprising an ion source whose anode is brought to a positive potential with respect to the cathode by means of a source power supply and whose accelerated ion beam strikes a target disposed on an electrical insulating support and brought to a negative potential supplied by a HV power supply, said protection device consisting of elements for electrical limitation of the tube current and / or of the target voltage.

Dans leur application courante, les tubes neutroniques fonctionnent dans des conditions compatibles avec les possibilités de dissipation thermique, en particulier de la cible et de son support.In their current application, neutron tubes operate under conditions compatible with the possibilities of heat dissipation, in particular of the target and its support.

Leurs définitions sont par ailleurs prévues pour des modes de fonctionnement à large dynamique :

  • le fonctionnement en mode continu nécessite un dimensionnement en conséquence des isolements électriques et thermiques,
  • le fonctionnement en mode pulsé et à récurrence rapide conduit à des structures d'extraction permettant des courants d'ions relativement élevés.
Their definitions are also provided for operating modes with broad dynamics:
  • continuous mode operation requires sizing as a result of electrical and thermal insulation,
  • operation in pulsed mode and rapid recurrence leads to extraction structures allowing relatively high ion currents.

Les sources d'ions elles-mêmes, souvent de type Penning, sont munies d'orifices d'extraction d'assez grandes dimensions afin de permettre l'obtention d'un rendement d'extraction élevé à une pression de fonctionnement faible. Par ailleurs, elles peuvent travailler en régime de décharge de type arc pour des valeurs de pression encore compatibles avec un fonctionnement du tube et les très hautes tensions applicables sur ces tubes peuvent permettre d'extraire des courants d'ions importants pendant des temps courts.The ion sources themselves, often of the Penning type, are provided with fairly large extraction orifices in order to allow a high extraction yield to be obtained at a low operating pressure. Furthermore, they can work in an arc type discharge regime for pressure values still compatible with operation of the tube and the very high voltages applicable on these tubes can make it possible to extract large ion currents for short times.

L'ensemble de ces considérations montre, qu'en particulier pour des tubes de faibles dimensions, il est possible d'utiliser un tube neutronique largement au-delà de son usage nominal pour, par exemple, une utilisation à flux neutronique pulsé intense. Ceci peut être obtenu par :

  • augmentation du courant tube au moyen d'un accroissement du courant de décharge de la source d'ions en régime d'arc avec une tension anode plus élevée,
  • augmentation possible de la tension cible d'un facteur voisin de 1,5.
All of these considerations show that, in particular for tubes of small dimensions, it is possible to use a neutron tube far beyond its nominal use for, for example, use with intense pulsed neutron flux. This can be achieved by:
  • increase of the tube current by means of an increase in the discharge current of the ion source in arc mode with a higher anode voltage,
  • possible increase in the target voltage by a factor close to 1.5.

Les limitations électriques habituellement montées sur les circuits d'alimentation de l'anode de la source d'ions et de la cible à des fins de protection de l'alimentation et du tube peuvent être éliminées et remplacées par de nouveaux éléments adaptés à une nouvelle utilisation.The electrical limitations usually mounted on the supply circuits of the anode of the ion source and the target for the purpose of protecting the supply and the tube can be eliminated and replaced by new elements adapted to a new use.

Un tel montage limiteur est connu notamment de la publication : PHYSICA IV no11, décembre 1937, pages 1190-1199, de l'article : "Un tube neutronique sans pompage" par F.M. PENNING et J.H.A. MOUBIS.Such limiter assembly is known in particular for the publication: PHYSICA IV No. 11, December 1937, pages 1190-1199, Article: "A neutron tube without pumping" FM Penning and JHA MOUBIS.

Le but de l'invention est de fournir au constructeur du tube, un moyen de prévention contre de tels changements.The object of the invention is to provide the tube manufacturer with a means of prevention against such changes.

A cet effet, l'invention est remarquable en ce que lesdites limitations sont rendues inaltérables en incluant lesdits éléments à l'intérieur du tube neutronique de telle sorte que toute tentative de modification des paramètres électriques fixant les conditions nominales de fonctionnement du tube nécessite l'ouverture dudit tube.To this end, the invention is remarkable in that said limitations are made unalterable by including said elements inside the neutron tube so that any attempt to modify the electrical parameters fixing the nominal operating conditions of the tube requires the opening of said tube.

Lesdits éléments de limitation du courant tube comportent une résistance connectée entre la borne positive de l'alimentation source et l'anode de la source d'ions, ainsi qu'un limiteur de tension à une valeur légèrement supérieure à la valeur spécifiée, connecté entre ladite borne positive et la borne négative de l'alimentation source reliée à la masse.Said tube current limiting elements include a resistor connected between the positive terminal of the source supply and the anode of the ion source, as well as a voltage limiter at a value slightly greater than the specified value, connected between said positive terminal and the negative terminal of the source power supply connected to ground.

La résistance et le limiteur de tension peuvent être placés à l'intérieur d'un boîtier étanche alimenté par des passages étanches ou dans une ampoule de verre scellée. Ils peuvent être réalisés en technologie sérigraphiée ou constitués par des montages mixtes d'éléments sérigraphiés et de composants discrets compatibles avec la qualité de vide nécessaire au tube neutronique.The resistor and the voltage limiter can be placed inside a sealed box supplied by sealed passages or in a sealed glass bulb. They can be produced in screen-printed technology or made up of mixed assemblies of screen-printed elements and discrete components compatible with the quality of vacuum necessary for the neutron tube.

La tension cible est limitée par une résistance connectée entre la borne négative de l'alimentation HT et la cible et un limiteur de tension connecté entre ladite borne négative et la borne positive de l'alimentation HT reliée à la masse. Ladite résistance peut être réalisée sous l'une des formes suivantes :

  • résistance sérigraphiée disposée en hélice sur la face externe d'un cylindre isolant électrique servant de support à la cible ;
  • fil résistif isolé électriquement (technologie haute température) et bobiné spire à spire ou en galette ;
  • éléments résistifs haute tension en série disposés à l'intérieur d'une enveloppe d'alumine (ou tout autre isolant électrique compatible avec la technologie tube et les contraintes THT) pouvant être soit en communication avec le tube soit sous atmosphère de gaz selon la technologie desdits éléments résistifs (tenue en température, dégazage), le mode de liaison et d'assemblage (champ électrique au nivieau des résistances et des fils de raccordement) et le niveau maximum de chute de tension accepté dans la résistance par le constructeur.
The target voltage is limited by a resistor connected between the negative terminal of the HV supply and the target and a voltage limiter connected between said negative terminal and the positive terminal of the HV supply connected to ground. Said resistance can be produced in one of the following forms:
  • screen-printed resistor arranged helically on the external face of an electrical insulating cylinder serving as support for the target;
  • resistive wire electrically insulated (high temperature technology) and wound from whorl to wafer;
  • high voltage resistive elements in series arranged inside an alumina envelope (or any other electrical insulator compatible with tube technology and THT constraints) which can either be in communication with the tube or in a gas atmosphere according to technology of said resistive elements (temperature resistance, degassing), the connection and assembly mode (electric field at the level of the resistors and the connection wires) and the maximum level of voltage drop accepted in the resistance by the manufacturer.

L'invention sera mieux comprise à l'aide de la description suivante de quelques modes de réalisation de dispositifs donnés à titre d'exemple non limitatifs, ladite description étant accompagnée de dessins qui représentent :

  • figure 1, le schéma de principe des alimentations du tube neutronique munies des éléments de limitation de courant et de tension,
  • figures 2a, 2b et 2c, quelques modes de réalisation des éléments de limitation du courant tube,
  • figures 3 et 4 respectivement, un premier et un second exemple de disposition des éléments de limitation de courant dans le tube neutronique,
  • figure 5, un exemple de disposition des éléments de limitation de la tension cible autour du support cible,
  • figure 6, un autre exemple de disposition des éléments de limitation de la tension cible à l'intérieur d'une enveloppe électriquement isolante.
The invention will be better understood with the aid of the following description of some embodiments of devices given by way of non-limiting example, said description being accompanied by drawings which represent:
  • FIG. 1, the block diagram of the neutron tube power supplies provided with current and voltage limiting elements,
  • FIGS. 2a, 2b and 2c, some embodiments of the elements for limiting the tube current,
  • FIGS. 3 and 4 respectively, a first and a second example of arrangement of the current limiting elements in the neutron tube,
  • FIG. 5, an example of arrangement of the elements for limiting the target voltage around the target support,
  • FIG. 6, another example of arrangement of the elements for limiting the target voltage inside an electrically insulating envelope.

Les éléments qui se correspondent sur ces figures sont indiqués par les mêmes chiffres de référence.The elements which correspond in these figures are indicated by the same reference numbers.

Le tube neutronique représenté sur la figure 1 comporte une source d'ions obtenus à partir d'un mélange deutérium-tritium contenu dans le réservoir 1 et dans laquelle on retrouve une anode 2, une cathode 3 et un aimant permanent 4 qui établit un champ magnétique axial. Le faisceau ionique issu de cette source est accéléré par l'électrode d'accélération 5 et frappe la cible 6. L'enveloppe du tube est constituée d'une partie conductrice 7 mise à la masse et d'une partie électriquement isolante 8 entourant le support cible 9 solidaire de l'électrode d'accélération.The neutron tube shown in Figure 1 includes an ion source obtained from a deuterium-tritium mixture contained in the reservoir 1 and in which there is an anode 2, a cathode 3 and a permanent magnet 4 which establishes a field magnetic axial. The ion beam from this source is accelerated by the acceleration electrode 5 and hits the target 6. The envelope of the tube consists of a conductive part 7 grounded and an electrically insulating part 8 surrounding the target support 9 secured to the acceleration electrode.

La description ci-dessus porte sur un tube de type Penning, mais elle peut être aisément étendue aux autres types de tubes (confinement électrostatique, "multi-cusp", etc...).The description above relates to a Penning type tube, but it can be easily extended to other types of tubes (electrostatic confinement, "multi-cusp", etc.).

L'alimentation de la source d'ions est assurée par le générateur de tension continue 10 de valeur Vaa dont le pôle négatif est relié à la masse du tube et dont le pôle positif est relié à l'anode 2 à travers la résistance 11 de valeur Ra.The ion source is supplied by the DC voltage generator 10 of value V aa , the negative pole of which is connected to the ground of the tube and the positive pole of which is connected to the anode 2 through the resistor 11 of value R a .

Schématiquement, le courant de décharge dans le tube neutronique peut être subdivisé en deux régimes :

  • un régime basse pression pour lequel le courant de décharge Id varie en fonction de la pression PDT à l'intérieur du tube et de la tension anode-cathode Vak suivant la relation :
    Figure imgb0001
    avec γ et ν voisins de 1.Cette relation montre que l'augmentation du courant de décharge est obtenue par une augmentation de la pression PDT avec une limite supérieure correspondant au régime d'arc ou par augmentation de la tension anode-cathode Vak ; dans ce dernier cas, il est nécessaire d'augmenter le champ magnétique B de façon à garder un rapport Vak/B constant.
  • un régime fort courant correspondant au régime d'arc ; dans ce cas, le courant de décharge est pratiquement limité par le circuit d'alimentation externe et la tension aux bornes de la structure anode-cathode Vak
    Figure imgb0002
    est presque constante. On a donc :
    Figure imgb0003
    Le courant Id est alors donné par :
    Figure imgb0004
   Dans les deux régimes, le courant Id est limité par la tension d'alimentation Vaa et par la résistance Ra.Schematically, the discharge current in the neutron tube can be subdivided into two regimes:
  • a low pressure regime for which the discharge current I d varies as a function of the pressure P DT inside the tube and of the anode-cathode voltage V ak according to the relationship:
    Figure imgb0001
    with γ and ν neighbors of 1. This relationship shows that the increase in the discharge current is obtained by an increase in the pressure P DT with an upper limit corresponding to the arc regime or by increase in the anode-cathode voltage V ak ; in the latter case, it is necessary to increase the magnetic field B so as to keep a constant V ak / B ratio.
  • a very current regime corresponding to the arc regime; in this case, the discharge current is practically limited by the external supply circuit and the voltage across the anode-cathode structure V ak
    Figure imgb0002
    is almost constant. So we have :
    Figure imgb0003
    The current I d is then given by:
    Figure imgb0004
In both regimes, the current I d is limited by the supply voltage V aa and by the resistance R a .

Les dispositifs objets de l'invention permettront donc d'agir sur ces deux paramètres et comprendront la résistance 11 de valeur Ra compatible avec le flux maximum instantané prévu par le constructeur et un limiteur de tension 12 (éclateur, varistance, diode à gaz,...) d'impédance Za, connecté aux bornes de l'alimentation 10, limitant la tension de fonctionnement à une valeur légèrement supérieure à la tension d'alimentation voulue par le constructeur et garantissant une bonne fiabilité du tube.The devices which are the subject of the invention will therefore make it possible to act on these two parameters and will include the resistor 11 of value R a compatible with the maximum instantaneous flux provided by the manufacturer and a voltage limiter 12 (spark gap, varistor, gas diode, ...) of impedance Z a , connected to the terminals of the supply 10, limiting the operating voltage to a value slightly higher than the supply voltage desired by the manufacturer and guaranteeing good reliability of the tube.

Compte tenu de l'évolution rapide de l'émission neutronique en fonction de la tension cible, un système de même principe que celui utilisé sur l'anode est possible ; il comporte le générateur de tension continue 13 de valeur Vac dont le pôle positif est mis à la masse et dont le pôle négatif est connecté à l'électrode d'accélération à travers la résistance 14 de valeur Rc. Cette limitation du courant cible Ic peut être complétée par une limitation de tension au moyen d'un limiteur 15 (éclateur ou varistance) d'impédance Zc, connecté aux bornes du générateur de courant 13.Given the rapid evolution of the neutron emission as a function of the target voltage, a system of the same principle as that used on the anode is possible; it comprises the DC voltage generator 13 of value V ac whose positive pole is grounded and whose negative pole is connected to the acceleration electrode through the resistor 14 of value R c . This limitation of the target current I c can be supplemented by a voltage limitation at by means of a limiter 15 (spark gap or varistor) of impedance Z c , connected to the terminals of the current generator 13.

Les dispositifs de limitation schématisés sur la figure 1 peuvent être utilisés simultanément ou séparément ; ils sont de deux types :

  • limitation du courant tube par limitation du courant de la source d'ions,
  • limitation de la tension cible par limitation de la tension d'alimentation de la cible.
The limiting devices shown diagrammatically in FIG. 1 can be used simultaneously or separately; they are of two types:
  • limitation of the tube current by limitation of the current of the ion source,
  • limitation of the target voltage by limitation of the target supply voltage.

Les structures correspondantes sont fonction de la structure du tube et les descriptions données (types de composants, exemples de localisation) ne constituent que des illustrations non limitatives. Un point commun à l'ensemble des solutions retenues est leur compatibilité avec les contraintes en particulier thermiques résultant de la technologie de réalisation des tubes.The corresponding structures depend on the structure of the tube and the descriptions given (types of components, examples of location) are only non-limiting illustrations. A point common to all the solutions adopted is their compatibility with the stresses in particular thermal resulting from the technology for producing the tubes.

Avant de détailler quelques exemples de dispositifs de limitation des deux types on rappelle que l'émission neutronique instantanée Qn est reliée globalement aux paramètres électriques courant tube ITU et tension cible Vc par une relation du type

Figure imgb0005

avec 0,3<k<1 et 3<β<4 pour 80 kV<Vc<150 kV. Ceci est valable pour ITU exprimé en ampères, Vc en kilovolts, Qn en neutrons/seconde et pour des pressions du mélange de gaz hydrogéné inférieures ou égales à 7,5.10⁻⁵ Pa (10⁻² torr).Before detailing some examples of limitation devices of the two types, it is recalled that the instantaneous neutron emission Q n is globally related to the electrical parameters current tube I TU and target voltage V c by a relation of the type
Figure imgb0005

with 0.3 <k <1 and 3 <β <4 for 80 kV <V c <150 kV. This is valid for I TU expressed in amperes, V c in kilovolts, Q n in neutrons / second and for pressures of the mixture of hydrogenated gases less than or equal to 7.5.10⁻⁵ Pa (10⁻² torr).

Les éléments de limitation du courant tube peuvent être montés de manière à ne former qu'un seul ensemble limiteur 16. Les figures 2a, 2b et 2c montrent quelques exemples de montages.The tube current limiting elements can be mounted so as to form a single limiting assembly 16. FIGS. 2a, 2b and 2c show some examples of assemblies.

Sur la figure 2a, la résistance 11 et le limiteur de tension 12 sont disposés dans un boitier étanche BO alimenté par des passages étanches PAS1 et PAS2.In FIG. 2a, the resistor 11 and the voltage limiter 12 are arranged in a sealed box BO supplied by sealed passages PAS1 and PAS2.

Sur la figure 2b la résistance 11 et le limiteur de tension 12 sont placés dans un tube scellé TU.In FIG. 2b, the resistor 11 and the voltage limiter 12 are placed in a sealed tube TU.

Sur la figure 2c, la résistance 11 et le limiteur de tension par claquage 12 sont réalisés en technologie sérigraphié et doivent être compatibles avec la qualité de vide indispensable au tube neutronique. La résistance 11 est constituée d'une barrette sérigraphiée B entre les plots d'alimentation P₁ et P₂ ; l'éclateur 12 est constitué par le sillon situé entre le plot P₁ et le plot P₃ ou entre la barrette B et le plot. L'ensemble est déposé sur la plaquette isolante PL (alumine, verre) et est compatible avec la technologie du tube (haute température et faible taux de dégazage).In FIG. 2c, the resistor 11 and the breakdown voltage limiter 12 are produced in screen-printed technology and must be compatible with the quality of vacuum essential for the neutron tube. The resistor 11 consists of a screen-printed strip B between the supply pads P₁ and P₂; the spark gap 12 is formed by the groove located between the pad P₁ and the pad P₃ or between the bar B and the pad. The assembly is placed on the PL insulating plate (alumina, glass) and is compatible with tube technology (high temperature and low degassing rate).

Les figures 3 et 4 montrent deux exemples de disposition de l'ensemble limiteur du courant d'anode à l'intérieur même du tube neutronique conformément à l'invention.Figures 3 and 4 show two examples of arrangement of the anode current limiter assembly inside the neutron tube itself according to the invention.

Sur la figure 3, l'anode 2 est maintenue mécaniquement par la paroi électriquement isolante 17 côté source d'ions. Le boîtier étanche 16 contenant les éléments de limitation 11 et 12 est muni de sorties électriquement isolées 18 et 19 servant respectivement à son alimentation en tension et à son raccordement à l'anode ; ce raccordement est protégé par un manchon isolant 20.In FIG. 3, the anode 2 is held mechanically by the electrically insulating wall 17 on the ion source side. The sealed housing 16 containing the limiting elements 11 and 12 is provided with electrically isolated outputs 18 and 19 serving respectively for its voltage supply and for its connection to the anode; this connection is protected by an insulating sleeve 20.

Sur la figure 4, l'anode est montée directement sur le boîtier étanche 16 par l'intermédiaire du support électriquement isolant 21 à travers lequel est effectuée la liaison de la résistance de limitation 11 à l'anode 2 ; l'éclateur (ou varistance) 12 est relié à l'alimentation en tension à travers le passage isolé 22. Le boîtier 16 est raccordé au support du réservoir 23 et à l'armature du tube 7 par une soudure "trois lèvres" 24.In FIG. 4, the anode is mounted directly on the sealed casing 16 by means of the electrically insulating support 21 through which the connection of the limiting resistor 11 is made to the anode 2; the spark gap (or varistor) 12 is connected to the voltage supply through the insulated passage 22. The box 16 is connected to the support of the reservoir 23 and to the frame of the tube 7 by a "three-lip" weld 24.

L'ensemble de limitation 16 peut être réalisé en utilisant différentes natures de composants, par montage direct de composants discrets (résistance, éclateur) assemblés en parallèle dans le pied du tube ; la technologie de ces composants doit être compatible avec l'ultra-vide. Des montages mixtes d'éléments sérigraphiés et de composants discrets peuvent également être assemblés en fonction de leur compatibilité à l'ultra-vide.The limitation assembly 16 can be produced using different types of components, by direct mounting of discrete components (resistance, spark gap) assembled in parallel in the base of the tube; the technology of these components must be compatible with ultra-vacuum. Mixed assemblies of screen-printed elements and discrete components can also be assembled according to their compatibility with ultra-vacuum.

Compte tenu de l'évolution rapide de l'émission neutronique en fonction de la tension cible, un système de même principe que celui utilisé sur l'anode est mis en oeuvre au moyen d'une résistance haute tension pouvant être réalisée sous différentes formes.Given the rapid evolution of the neutron emission as a function of the target voltage, a system of the same principle as that used on the anode is implemented by means of a high voltage resistor which can be produced in different forms.

Sur la figure 5 une résistance 14 est disposée sur l'extérieur du cylindre électriquement isolant 9 servant de support à la cible 6 ; l'extrémité située à la base du cylindre est connectée au pôle négatif de l'alimentation haute tension et l'extrémité située au sommet du cylindre est connectée à l'électrode d'accélération 5.In FIG. 5, a resistor 14 is arranged on the outside of the electrically insulating cylinder 9 serving to support the target 6; the end at the base of the cylinder is connected to the negative pole of the high-voltage power supply and the end at the top of the cylinder is connected to the acceleration electrode 5.

Cette résistance 14 peut être constituée par exemple d'éléments sérigraphiés déposés sur l'extérieur du cylindre 9 sous forme d'hélice ou de fil résistif isolé électriquement suivant la technologie haute température et bobiné spire à spire ou en galette.This resistor 14 can consist for example of screen-printed elements deposited on the outside of the cylinder 9 in the form of a helix or resistive wire electrically insulated according to high temperature technology and wound from turn to turn or into wafer.

L'électrode d'accélération 5 est maintenue par le support électriquement isolant 26.The acceleration electrode 5 is held by the electrically insulating support 26.

Sur la figure 6, la résistance 14 est formée de résistances en série et déposée à l'intérieur d'une enveloppe d'alumine 27 servant de support à l'électrode d'accélération 5 reliée à l'extrémité supérieure de la résistance, la cible 6 étant supportée par la paroi électriquement isolante du tube 8.In FIG. 6, the resistor 14 is formed of resistors in series and deposited inside an alumina envelope 27 serving as a support for the acceleration electrode 5 connected to the upper end of the resistor, the target 6 being supported by the electrically insulating wall of the tube 8.

Cette limitation de courant au moyen de la résistance 14 peut être complétée par une limitation de tension au moyen d'un éclateur (ou d'une varistance) 28 disposé à l'intérieur de l'enveloppe d'alumine et connecté entre la masse et la soudure "trois lèvres" 29 reliée au pôle négatif de l'alimentation HT de cible.This current limitation by means of the resistor 14 can be supplemented by a voltage limitation by means of a spark gap (or a varistor) 28 disposed inside the alumina envelope and connected between the mass and the "three-lip" weld 29 connected to the negative pole of the target HV supply.

L'intérieur de l'enveloppe d'alumine 27 pourra être mise soit en communication avec le tube, soit en atmosphère de gaz selon que l'orifice 30 se trouvera ouvert ou fermé. La solution dépendra de la compatibilité des varistances et résistances à l'ultra-vide et de la technologie des résistances (tenue en température, dégazage). On pourrait par exemple placer les éléments de limitation de la tension cible sous gaz contrôlé de type hexafluorure de soufre sous la pression de un à quelques bars.The interior of the alumina casing 27 can be placed either in communication with the tube, or in a gas atmosphere depending on whether the orifice 30 is found to be open or closed. The solution will depend on the compatibility of the varistors and resistors to the ultra-vacuum and the technology of the resistors. (temperature resistance, degassing). One could for example place the target voltage limiting elements under controlled gas of sulfur hexafluoride type under the pressure of one to a few bars.

Claims (10)

  1. A protection device for a neutron tube, comprising a ion source whose anode (2) is brought to a positive potential relative to the cathode (3) by means of a source supply (10) and whose accelerated ion beam strikes a target (6) disposed on an electrically insulating support (9) and brought to a negative potential supplied by a high-voltage supply, said protection device being composed of electric elements for limiting the tube current (11, 12) and/or the target voltage (15), characterized in that these limiters are made unalterable by enclosing said elements inside the neutron tube, so that any attempt to modify the electrical parameters determining the nominal operating conditions of the tube necessitates the opening of said tube.
  2. A device as claimed in Claim 1, characterized in that said tube current limiter elements comprise a resistor (11) connected between the positive terminal of the source supply (10) and the anode (2) of the ion source, as well as a limiter (12) for limiting the voltage to a value slightly higher than the specified value, connected between said positive terminal and the negative terminal of the grounded source supply.
  3. A device as claimed in Claim 2, characterized in that said tube current limiter elements are placed inside a leaktight casing (16) fed through leaktight passages (PAS1, PAS2).
  4. A device as claimed in Claim 2, characterized in that said tube current limiter elements (11, 12) are placed in a sealed glass envelope (TU).
  5. A device as claimed in Claim 2, characterized in that said tube current limiter elements (11, 12) are produced by screen printing technology compatible with the quality of the vacuum required for the neutron tube, said resistor being composed of a screen printed bar (B) and said limiter being composed of a groove separating said bar (B) from another screen printed element, the whole arrangement being disposed on an insulating plate (PL) (alumina, glass, etc.).
  6. A device as claimed in Claim 2, characterized in that said tube current limiter elements (11, 12) are composed of mixed arrangements of screen printed elements and discrete components, depending on their compatibility with ultrahigh vacuum.
  7. A device as claimed in Claim 1, characterized in that said target voltage is limited by a resistor (14) connected between the negative terminal of the high-voltage supply (13) and the target (16), and by a voltage limiter (15) connected between said negative terminal and the positive terminal of the grounded high-voltage supply.
  8. A device as claimed in Claim 7, characterized in that said resistor (14) is a screen printed resistor disposed helically on the outer face of an electrically insulating cylinder serving as support for the target.
  9. A device as claimed in Claim 7, characterized in that said resistor is composed of electrically insulated resistive wire (high temperature technology) wound turn-to-turn or in the form of a pane coil.
  10. A device as claimed in Claim 7, characterized in that said resistor (14) is composed of high-voltage resistors connected in series and disposed inside an alumina envelope (27) which may either be in communication with the tube or in a gas atmosphere, depending on the technology of said resistors (temperature characteristics, degassing), the method of connection and assembly (electric field at the level of the resistors and connection wires), and the maximum level of voltage drop accepted in the resistor by the manufacturer.
EP89202146A 1988-08-26 1989-08-24 Protection device for neutron tubes Expired - Lifetime EP0357133B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8811259 1988-08-26
FR8811259A FR2636774A1 (en) 1988-08-26 1988-08-26 DEVICE FOR PROTECTING NEUTRONIC TUBES

Publications (2)

Publication Number Publication Date
EP0357133A1 EP0357133A1 (en) 1990-03-07
EP0357133B1 true EP0357133B1 (en) 1994-05-04

Family

ID=9369540

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89202146A Expired - Lifetime EP0357133B1 (en) 1988-08-26 1989-08-24 Protection device for neutron tubes

Country Status (5)

Country Link
US (1) US5013969A (en)
EP (1) EP0357133B1 (en)
JP (1) JP2825024B2 (en)
DE (1) DE68915081T2 (en)
FR (1) FR2636774A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6441569B1 (en) 1998-12-09 2002-08-27 Edward F. Janzow Particle accelerator for inducing contained particle collisions
CN103068141A (en) * 2012-12-25 2013-04-24 江苏达胜加速器制造有限公司 Accelerating pipe
JP6257994B2 (en) * 2013-10-22 2018-01-10 株式会社東芝 Neutron generator and medical accelerator system
JP7126733B2 (en) * 2018-10-24 2022-08-29 アデルファイ・テクノロジー・インコーポレイテッド Neutron source for neutron capture therapy

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE714343C (en) * 1934-01-11 1942-01-05 Mueller C H F Ag X-ray device for diagnostic purposes with a common primary winding on the high-voltage and glow current transformer
US2951945A (en) * 1954-05-26 1960-09-06 Schlumberger Well Surv Corp Renewable target
US2988671A (en) * 1958-06-30 1961-06-13 Schlumberger Well Surv Corp Particle accelerating system
DE1589699C3 (en) * 1963-02-18 1974-05-22 Dresser Industries, Inc., Dallas, Tex. (V.St.A.) Device for generating particle beam pulses, in particular neutron pulses. Eliminated from: 1464878
US3364355A (en) * 1965-07-13 1968-01-16 Atomic Energy Commission Usa Neutron generator with occluded gas ion source
US3581093A (en) * 1968-04-23 1971-05-25 Kaman Sciences Corp Dc operated positive ion accelerator and neutron generator having an externally available ground potential target
NL7000938A (en) * 1970-01-23 1971-07-27
US3836785A (en) * 1970-07-15 1974-09-17 Philips Corp Neutron generator having a target on which a beam of hydrogen ions is incident
FR2179527A1 (en) * 1972-04-11 1973-11-23 Texaco Development Corp Electrical connector - for a high voltage radioactivity borehole logging tool
US4808368A (en) * 1982-09-15 1989-02-28 The United States Of America As Represented By The United States Department Of Energy High voltage supply for neutron tubes in well logging applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Physica IV no. 11, Décembre 1937, pages 1190-1199 ; F.M. PENNING et J.H.A. MOUBIS : "Un tube neutronique sans pompage". *

Also Published As

Publication number Publication date
JP2825024B2 (en) 1998-11-18
DE68915081T2 (en) 1994-10-27
JPH02114498A (en) 1990-04-26
EP0357133A1 (en) 1990-03-07
US5013969A (en) 1991-05-07
DE68915081D1 (en) 1994-06-09
FR2636774A1 (en) 1990-03-23

Similar Documents

Publication Publication Date Title
EP0357133B1 (en) Protection device for neutron tubes
Vlastós Restrike mechanisms of exploding wire discharges
EP0340832B1 (en) Sealed, high flux neutron tube
US4267803A (en) Discharge device ignition system
US4550273A (en) Eight electrode optical readout gap
Apollonov et al. Formation of extended directional breakdown channels produced by a copper wire exploding in the atmosphere
US3654520A (en) High voltage surge diverter
FR2904893A1 (en) TWO ELECTRODES PRIMER DEVICE FOR ECLATOR AND CORRESPONDING METHODS
US5229688A (en) Method of operating a gas discharge switch and an arrangement for carrying out the method
EP0295743B1 (en) Ion source with four electrodes
FR2472830A1 (en) DEVICE FOR CONTROLLING ELECTRICAL CONDUCTION IN PLASMA CROSS-CHAMPER MODE
US4342114A (en) TEA Laser configuration
EP0678886B1 (en) Medium or high voltage circuit-breaker
FR2507401A1 (en) HIGH VOLTAGE COAXIAL SWITCH
US4178563A (en) System for generating a high-energy electrical signal through a brief time, and a laser comprising such a system
US3659225A (en) Optical pump and driver system for lasers
EP0159214B1 (en) Electron beam installation for the working of metals
US20070297479A1 (en) Triggered spark gap
US3636407A (en) Gas-discharge device with magnetic means for extinguishing the discharge
Vlastós Dwell times of thin exploding wires
US4250433A (en) Vacuo spark generator for the spectrographic analysis of samples
FR2636167A1 (en) GAS PROTECTOR CONTAINING A MINERAL ADDITIVE
Serafetinides et al. Investigation and comparison of preionisation processes in gas laser systems
JPS63502232A (en) Spark gap, pariculary for use as booster gap for a sparking plug of an internal combustion engine
US4035683A (en) High voltage electric switch with trigger electrodes integral with main discharge electrodes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19900904

17Q First examination report despatched

Effective date: 19920921

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940504

REF Corresponds to:

Ref document number: 68915081

Country of ref document: DE

Date of ref document: 19940609

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940721

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980731

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980817

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980827

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990824

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST