EP0356570A1 - Current mirror - Google Patents

Current mirror Download PDF

Info

Publication number
EP0356570A1
EP0356570A1 EP88114376A EP88114376A EP0356570A1 EP 0356570 A1 EP0356570 A1 EP 0356570A1 EP 88114376 A EP88114376 A EP 88114376A EP 88114376 A EP88114376 A EP 88114376A EP 0356570 A1 EP0356570 A1 EP 0356570A1
Authority
EP
European Patent Office
Prior art keywords
transistor
current
current mirror
transistors
current source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP88114376A
Other languages
German (de)
French (fr)
Inventor
Wilhelm Dipl.-Ing. König
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP88114376A priority Critical patent/EP0356570A1/en
Priority to DE19893913446 priority patent/DE3913446A1/en
Publication of EP0356570A1 publication Critical patent/EP0356570A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only

Definitions

  • the invention relates to a current mirror in integrated circuit technology with one of the emitter-collector path or from the conductive channel of a first transistor, a current mirror input and a current source series circuit in a reference circuit, with the emitter-collector path or Conductive channel of a second transistor in a circuit for a mirrored current and with a connection between the bases or gates of the first and the second transistor on the one hand and the current mirror input on the other.
  • CMOS Analog Circuit Design Allen and Holberg, Holt, Rinehart & Winston Inc., New York, 1987, pages 387 and 388 and "Analysis and Design of Integrated Circuits", Second Edition, Gray and Meyer , John Wiley & Sons, New York, 1984, pages 741 and 742.
  • Wilson or cascode current mirrors described in the literature mentioned are used instead of simple current mirrors. Because of the transistors connected in series with the emitter-collector paths or the conductive channels and the threshold voltages increased in MOS circuits due to the substrate control effect, relatively high voltage drops across the current mirror output are necessary so that the transistors do not become saturated and thereby the output resistance is greatly reduced. Since there is a standard supply voltage of 5 V for the digital functions on the block and an additional higher supply voltage for the analog function is undesirable, this solution has narrow limits.
  • the invention is based on the object of specifying a current mirror in which there are fewer errors in the current conversion, that is to say smaller differences between the input and output currents than in the known current mirrors.
  • this object is achieved according to the invention in that a third transistor as a controllable resistor or regulated current source with its emitter-collector path or its conductive channel to the emitter-collector path or to the conductive channel of the second transistor in Is connected in series and that a differential or operational amplifier is provided, the plus input of which is connected to the current mirror input, the minus input of which is connected to the connection point of the second and third transistor and the output of which is connected to the base or gate of the third transistor.
  • a third transistor as a controllable resistor or regulated current source with its emitter-collector path or its conductive channel to the emitter-collector path or to the conductive channel of the second transistor in Is connected in series and that a differential or operational amplifier is provided, the plus input of which is connected to the current mirror input, the minus input of which is connected to the connection point of the second and third transistor and the output of which is connected to the base or gate of the third transistor.
  • a simple differential amplifier standard circuit will meet the requirements for amplification and offset voltage in most cases. The additional power requirement is therefore low.
  • a multi-stage differential amplifier can also be used for higher demands on the precision of the implementation.
  • the current mirror according to the invention can advantageously be used in circuits with multiple current mirroring, such as bias potential generators.
  • the solution according to the invention is suitable for all applications in which an exact current mirroring with a small voltage drop across the current mirror output is required. It only requires little development effort and is not limited to MOS circuits.
  • FIG. 1 shows a current mirror according to the invention.
  • This contains n-channel field effect transistors T1 to T3, a differential amplifier D1, a current source Q and a connecting line L1.
  • the current mirror input is labeled E1 and the current mirror output is labeled A1.
  • the differential amplifier D1 compares the voltages at the current mirror input E1 and between the transistors T2 and T3 and keeps the differential voltage with the transistor T3 to a minimum. It can operate both in the resistance range as a regulated resistor and in the current source range as a regulated current source.
  • FIG. 2 shows an arrangement with two current mirrors according to the invention for generating bias potentials U1 and U2.
  • This arrangement contains the current mirror according to FIG. 1 for generating the bias potential U1 at the current mirror input E1.
  • the transistors T1 to T3 are n-channel field effect transistors.
  • the arrangement contains a further current mirror with - because of the different current direction - p-channel field effect transistors T4 to T6, with a differential amplifier D2 with a connecting line L2, with a current mirror input E2 and with a current mirror output A2.
  • U B denotes the operating voltage.
  • the first current mirror operates in the manner already described with reference to FIG. 1.
  • the conductive channel of the p-channel field effect transistor T4 is inserted into the circuit of the mirrored current I O1 .
  • the connection point between the transistors T3 and T4 is the current mirror input E2.
  • the current I O1 reflected in the first current mirror is simultaneously the reference current I Ref2 of the second current mirror. This works like the first and generates the bias potential U2 at the current mirror input E2.
  • the mirrored current of the second current mirror is designated imt I O2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Amplifiers (AREA)

Abstract

In generators for generating several bias-voltage potentials in integrated circuits comprising current balancing circuits, relatively high voltage drops across the current source are necessary because of the series-connections of several transistors and because of the threshold voltages which are increased due to the substrate control effect in MOS circuits, so that the transistors do not move out of saturation and the output impedance is greatly reduced for this reason. A current balancing circuit is required which, with high accuracy of the current balancing, requires a low voltage drop across the current balancing circuit output. The current balancing circuit contains in the circuit for a reference current (IRef1) a constant current source (Q) and a first transistor (T1). The circuit for a balanced current (I01) contains a second transistor (T2). The bases or gates of these transistors (T1, T2) are connected to one another and to the junction of the current source (Q) and first transistor (T1) (L1). The second transistor (T2) is preceded by a third transistor (T3) as a variable resistor or controlled current source. A differential amplifier (D1) compares the potentials at the junction of the constant current source (Q) and the first transistor (T1) and at the junction between the second and third transistor (T2, T3) and, using the result, controls the third transistor (T3) via its base or via its gate, respectively. The current balancing circuit is suitable for generators for bias-voltage potentials in integrated circuits. <IMAGE>

Description

Die Erfindung bezieht sich auf eine Stromspiegel in integrier­ter Schaltkreistechnik mit einer aus der Emitter-Kollektor-­Strecke oder aus dem leitfähigen Kanal eines ersten Transi­stors, aus einem Stromspiegeleingang und aus einer Stromquelle bestehenden Reihenschaltung in einem Referenzstromkreis, mit der Emitter-Kollektor-Strecke oder dem leitfähigen Kanal eines zweiten Transistors in einem Kreis für einen gespiegelten Strom und mit einer Verbindung zwischen den Basen oder Gates des ersten und des zweiten Transistors einerseits und dem Strom­spiegeleingang andererseits.The invention relates to a current mirror in integrated circuit technology with one of the emitter-collector path or from the conductive channel of a first transistor, a current mirror input and a current source series circuit in a reference circuit, with the emitter-collector path or Conductive channel of a second transistor in a circuit for a mirrored current and with a connection between the bases or gates of the first and the second transistor on the one hand and the current mirror input on the other.

Stromspiegel sind aus der Zeitschrift "FUNK-TECHNIK", 1973, Nr. 9, Seiten 313-314 und aus dem Buch "Analysis and Design of Analog Integrated Circuits", Second Edition, Gray and Meyer, John Wiley & Sons, New York, 1984, Seiten 709 - 718 bekannt.Current mirrors are from the magazine "FUNK-TECHNIK", 1973, No. 9, pages 313-314 and from the book "Analysis and Design of Analog Integrated Circuits", Second Edition, Gray and Meyer, John Wiley & Sons, New York, 1984, pages 709-718.

Einstufige Differenzverstärker sind aus dem Buch "Bipolar and MOS Analog Integrated Circuit Design", Grebene, John Wiley & Sons, New York, 1984, Seiten 234 and 294 bekannt.Single-stage differential amplifiers are known from the book "Bipolar and MOS Analog Integrated Circuit Design", Grebene, John Wiley & Sons, New York, 1984, pages 234 and 294.

Zweistufige Operationsverstärker sind in den Büchern "CMOS Analog Circuit Design", Allen and Holberg, Holt, Rinehart & Winston Inc., New York, 1987, Seiten 387 und 388 und "Analysis and Design of Integrated Circuits", Second Edition, Gray and Meyer, John Wiley & Sons, New York, 1984, Seiten 741 und 742 beschrieben.Two-stage operational amplifiers are in the books "CMOS Analog Circuit Design", Allen and Holberg, Holt, Rinehart & Winston Inc., New York, 1987, pages 387 and 388 and "Analysis and Design of Integrated Circuits", Second Edition, Gray and Meyer , John Wiley & Sons, New York, 1984, pages 741 and 742.

Aus der Druckschrift "IEEE 1985 Custom Integrated Circuits Conference", Seiten 174 - 177, Fig. 4 ist schließlich eine An­ordnung bekannt, in der ein Generator (bias circuit) mit meh­reren Stromspiegeln für Operationsverstärker erforderliche Vorsspannungspotentiale erzeugt. Diese werden beispielsweise für Telekommunikationsanwendungen in hochintegrierten Baustei­nen benötigt, in denen analoge und digitale Funktionen zusammen in einem Chip integriert sind.Finally, from the publication "IEEE 1985 Custom Integrated Circuits Conference", pages 174-177, FIG. 4, an arrangement is known in which a bias circuit generator with multiple current mirrors generates bias potentials required for operational amplifiers. These are, for example for telecommunication applications in highly integrated modules, in which analog and digital functions are integrated together in one chip.

In derartigen Generatoren wird, je nach Anzahl der benötigten Vorspannungspotentiale, eine Mehrfachumsetzung von Strömen durch kaskadierte Stromspiegel vorgenommen. Dadurch können, bedingt durch den endlichen Ausgangswiderstand der Transisto­ren, bei einer mehrfachen Stromspiegelung beträchtliche Unter­schiede zwischen dem Eingangs- und dem Ausgangsstrom entstehen.In such generators, depending on the number of bias potentials required, currents are converted multiple times by cascaded current mirrors. Due to the finite output resistance of the transistors, this can result in considerable differences between the input and the output current in the case of multiple current mirroring.

Um den Ausgangswiderstand und damit die Toleranz der gespiegel­ten Ströme zu verbessern, werden statt einfacher Stromspiegel in der genannten Literatur beschriebene Wilson- oder Kaskoden-­Stromspiegel verwendet. Wegen der mit den Emitter-Kollektor-­Strecken oder den leitfähigen Kanälen in Reihe geschalteten Transistoren und der bei MOS-Schaltungen durch den Subtrat-­Steuereffekt erhöhten Schwellspannungen sind dabei relativ hohe Spannungsabfälle über dem Stromspiegelausgang notwendig, damit die Transistoren nicht aus der Sättigung geraten und dadurch der Ausgangswiderstand stark erniedrigt wird. Da für die digi­talen Funktionen am Baustein standardmäßig eine Versorgungs­spannung von 5 V anliegt und eine zusätzliche höhere Versor­gungsspannung für die analoge Funktion unerwünscht ist, sind dieser Lösung enge Grenzen gesetzt.In order to improve the output resistance and thus the tolerance of the mirrored currents, Wilson or cascode current mirrors described in the literature mentioned are used instead of simple current mirrors. Because of the transistors connected in series with the emitter-collector paths or the conductive channels and the threshold voltages increased in MOS circuits due to the substrate control effect, relatively high voltage drops across the current mirror output are necessary so that the transistors do not become saturated and thereby the output resistance is greatly reduced. Since there is a standard supply voltage of 5 V for the digital functions on the block and an additional higher supply voltage for the analog function is undesirable, this solution has narrow limits.

Selbst wenn bei MOS-Schaltungen für die Feldeffekttransistoren große Kanallängen, also Ausgangswiderstände gewählt werden, können durch stark unterschiedliche Eingangs- und Ausgangsspan­nungen an den Stromspiegeln bei mehrfacher Umsetzung beträcht­liche Toleranzen entstehen.Even if long channel lengths, that is, output resistances, are selected for MOS circuits for the field-effect transistors, considerable tolerances can arise due to greatly differing input and output voltages at the current mirrors with multiple implementation.

Der Erfindung liegt die Aufgabe zugrunde, einen Stromspiegel anzugeben, bei dem sich geringere Fehler in der Stromumsetzung, also geringere Unterschiede zwischen Eingangs- und Ausgangs­strom als bei den bekannten Stromspiegeln ergeben.The invention is based on the object of specifying a current mirror in which there are fewer errors in the current conversion, that is to say smaller differences between the input and output currents than in the known current mirrors.

Ausgehend von einem Stromspiegel der einleitend geschilderten Art wird diese Aufgabe erfindungsgemäß dadurch gelöst, daß ein dritter Transistor als regelbarer Widerstand oder geregelte Stromquelle mit seiner Emitter-Kollektor-Strecke oder seinem leitfähigen Kanal zur Emitter-Kollektor-Strecke oder zum leit­fähigen Kanal des zweiten Transistors in Reihe geschaltet ist und daß ein Differenz-oder Operationsverstärker vorgesehen ist, dessen Plus-Eingang mit dem Stromspiegeleingang, dessen Minus-­Eingang mit dem Verbindungspunkt des zweiten und dritten Tran­sistors und dessen Ausgang mit der Basis oder dem Gate des dritten Transistors verbunden sind.Starting from a current mirror of the type described in the introduction, this object is achieved according to the invention in that a third transistor as a controllable resistor or regulated current source with its emitter-collector path or its conductive channel to the emitter-collector path or to the conductive channel of the second transistor in Is connected in series and that a differential or operational amplifier is provided, the plus input of which is connected to the current mirror input, the minus input of which is connected to the connection point of the second and third transistor and the output of which is connected to the base or gate of the third transistor.

Befinden sich der erste und der zweite Transistor unmittelbar benachbart auf einem Chip, dann ist anzunehmen, daß beide Tran­sistoren gleich sind. Der Restfehler der Umsetzung beträgt dann:
I = IO - IRef = Uoffset gd
Uoffset bedeutet die Offsetspannung des Differenzverstärkers und gd ist der differentielle Ausgangleitwert des zweiten Transistors.
If the first and second transistors are immediately adjacent on a chip, then it can be assumed that both transistors are the same. The remaining error in the implementation is then:
I = I O - I Ref = U offset gd
U offset means the offset voltage of the differential amplifier and gd is the differential output conductance of the second transistor.

Aufgrund der Regelung sind bei Feldeffekttransistoren große Kanallängen nicht mehr notwendig. Es kann vielmehr die in der jeweiligen Technologie minimale Kanallänge verwendet werden.Due to the regulation, large channel lengths are no longer necessary for field effect transistors. Rather, the minimum channel length in the respective technology can be used.

Eine einfache Differenzverstärker-Standardschaltung wird in den meisten Fällen die Ansprüche an Verstärkung und Offsetspannung erfüllen. Der zusätzliche Leistungsbedarf ist dadurch gering. Für höhere Ansprüche an die Präzision der Umsetzung kann auch ein mehrstufiger Differenzverstärker verwendet werden.A simple differential amplifier standard circuit will meet the requirements for amplification and offset voltage in most cases. The additional power requirement is therefore low. A multi-stage differential amplifier can also be used for higher demands on the precision of the implementation.

Der erfindungsgemäße Stromspiegel kann vorteilhafterweise in Schaltungen mit mehrfacher Stromspiegelung wie Vorspannungs­potentialgeneratoren eingesetzt werden.The current mirror according to the invention can advantageously be used in circuits with multiple current mirroring, such as bias potential generators.

Die erfindungsgemäße Lösung ist für alle Anwendungen geeignet, bei denen eine genaue Stromspiegelung bei geringem Spannungsab­fall über dem Stromspiegelausgang erforderlich ist. Sie benö­tigt lediglich einen geringen Entwicklungsaufwand und ist nicht auf MOS-Schaltungen beschränkt.The solution according to the invention is suitable for all applications in which an exact current mirroring with a small voltage drop across the current mirror output is required. It only requires little development effort and is not limited to MOS circuits.

Anhand von Ausführungsbeispielen wird die Erfindung nachstehend näher erläutert:

  • Fig. 1 zeigt einen erfindungsgemäßen Stromspiegel und
  • Fig. 2 zeigt eine Anordnung mit mehrfacher Stromspiegelung zur Erzeugung verschiedener Vorspannungspotentiale.
The invention is explained in more detail below on the basis of exemplary embodiments:
  • Fig. 1 shows a current mirror and
  • Fig. 2 shows an arrangement with multiple current mirroring for generating different bias potentials.

Fig. 1 zeigt einen erfindungsgemäße Stromspiegel. Dieser ent­hält n-Kanal-Feldeffekttransistoren T1 bis T3, einen Differenz­verstärker D1, eine Stromquelle Q und eine Verbindungsleitung L1. Der Stromspiegeleingang ist mit E1 und der Stromspiegelaus­gang ist mit A1 bezeichnet.1 shows a current mirror according to the invention. This contains n-channel field effect transistors T1 to T3, a differential amplifier D1, a current source Q and a connecting line L1. The current mirror input is labeled E1 and the current mirror output is labeled A1.

Ohne den Differenzverstärker D1 und den Transistor T3 hat man den bekannten Stromspiegel, in dem der Strom IRef1 den Strom IO1 unabhängig von sonstigen Parametern wie Spannungen und Widerständen im Eingangs- und Ausgangskreis möglichst gleich groß steuert.Without the differential amplifier D1 and the transistor T3, one has the known current mirror, in which the current I Ref1 controls the current I O1 as large as possible, independently of other parameters such as voltages and resistances in the input and output circuits .

Der Differenzverstärker D1 vergleicht die Spannungen am Strom­spiegeleingang E1 und zwischen den Transistoren T2 und T3 und hält die Differenzspannung mit dem Transistor T3 minimal. Dabei kann dieser sowohl im Widerstandsbereich als geregelter Wider­stand als auch im Stromquellenbereich als geregelte Stromquelle arbeiten.The differential amplifier D1 compares the voltages at the current mirror input E1 and between the transistors T2 and T3 and keeps the differential voltage with the transistor T3 to a minimum. It can operate both in the resistance range as a regulated resistor and in the current source range as a regulated current source.

Fig. 2 zeigt eine Anordnung mit zwei erfindungsgemäßen Strom­spiegeln zur Erzeugung von Vorspannungspotentialen U1 und U2. Diese Anordnung enthält den Stromspiegel nach Fig. 1 zur Erzeu­gung des Vorspannungspotentials U1 am Stromspiegeleingang E1. Die Transistoren T1 bis T3 sind n-Kanal-Feldeffekttransistoren.FIG. 2 shows an arrangement with two current mirrors according to the invention for generating bias potentials U1 and U2. This arrangement contains the current mirror according to FIG. 1 for generating the bias potential U1 at the current mirror input E1. The transistors T1 to T3 are n-channel field effect transistors.

Die Anordnung enthält einen weiteren Stromspiegel mit - wegen der anderen Stromrichtung - p-Kanal-Feldeffekttransistoren T4 bis T6, mit einem Differenzverstärker D2 mit einer Verbindungs­leitung L2, mit einem Stromspiegeleingang E2 und mit einem Stromspiegelausgang A2. Mit UB ist die Betriebsspannung bezeichnet.The arrangement contains a further current mirror with - because of the different current direction - p-channel field effect transistors T4 to T6, with a differential amplifier D2 with a connecting line L2, with a current mirror input E2 and with a current mirror output A2. U B denotes the operating voltage.

Der erste Stromspiegel arbeitet so, wie es anhand der Fig. 1 bereits beschrieben wurde. In den Kreis des gespiegelten Stro­mes IO1 ist der leitfähige Kanal des p-Kanal-Feldeffekttransi­stors T4 eingefügt. Der Verbindungspunkt zwischen den Transi­storen T3 und T4 ist der Stromspiegeleingang E2. Der im ersten Stromspiegel gespiegelte Strom IO1 ist gleichzeitig der Refe­renzstrom IRef2 des zweiten Stromspiegels. Dieser arbeitet wie der erste und erzeugt am Stromspiegeleingang E2 das Vorspan­nungspotential U2. Der gespiegelte Strom des zweiten Strom­spiegels ist imt IO2 bezeichnet.The first current mirror operates in the manner already described with reference to FIG. 1. The conductive channel of the p-channel field effect transistor T4 is inserted into the circuit of the mirrored current I O1 . The connection point between the transistors T3 and T4 is the current mirror input E2. The current I O1 reflected in the first current mirror is simultaneously the reference current I Ref2 of the second current mirror. This works like the first and generates the bias potential U2 at the current mirror input E2. The mirrored current of the second current mirror is designated imt I O2 .

Als Differenzverstärker werden Anordnungen eingesetzt, wie sie beispielsweise aus den eingangs dazu genannten Literaturstellen bekannt sind.Arrangements are used as differential amplifiers as are known, for example, from the literature references mentioned at the beginning.

Claims (4)

1. Stromspiegel in integrierter Schaltkreistechnik mit einer aus der Emitter-Kollektor-Strecke oder aus dem leit­fähigen Kanal eines ersten Transistors (T1), aus einem Strom­spiegeleingang (E1) und aus einer Stromquelle (Q) bestehenden Reihenschaltung in einem Referenzstromkreis,
mit der Emitter-Kollektor-Strecke oder dem leitfähigen Kanal eines zweiten Transistors (T2) in einem Kreis für einen gespiegelten Strom (IO1) und
mit einer Verbindung (V) zwischen den Basen oder Gates des ersten (T1) und des zweiten (T2) Transistors einerseits und dem Stromspiegeleingang (E1) andererseits,
dadurch gekennzeichnet,
daß ein dritter Transistor (T3) als regelbarer Widerstand oder geregelte Stromquelle mit seiner Emitter-Kollektor-Strecke oder seinem leitfähigen Kanal zur Emitter-Kollektor-Strecke oder zum leitfähigen Kanal des zweiten Transistors (T2) in Reihe geschaltet ist und
daß ein Differenz- oder Operationsverstärker (D1) vorgesehen ist, dessen Plus-Eingang mit dem Stromspiegeleingang (E1), des­sen Minus-Eingang mit dem Verbindungspunkt des zweiten (T2) und dritten (T3) Transistors und dessen Ausgang mit der Basis oder dem Gate des dritten Transistors (T3) verbunden sind.
1. current mirror in integrated circuit technology with a series connection in a reference circuit consisting of the emitter-collector path or the conductive channel of a first transistor (T1), a current mirror input (E1) and a current source (Q),
with the emitter-collector path or the conductive channel of a second transistor (T2) in a circuit for a mirrored current (I O1 ) and
with a connection (V) between the bases or gates of the first (T1) and the second (T2) transistor on the one hand and the current mirror input (E1) on the other hand,
characterized,
that a third transistor (T3) is connected in series as a controllable resistor or regulated current source with its emitter-collector path or its conductive channel to the emitter-collector path or to the conductive channel of the second transistor (T2) and
that a differential or operational amplifier (D1) is provided, its plus input with the current mirror input (E1), its minus input with the connection point of the second (T2) and third (T3) transistor and its output with the base or the gate of the third transistor (T3) are connected.
2. Stromspiegel nach Anspruch 1,
dadurch gekennzeichnet,
daß ein mehrstufiger Differenz- oder Operationsverstärker vor­gesehen ist.
2. current mirror according to claim 1,
characterized,
that a multi-stage differential or operational amplifier is provided.
3. Stromspiegel nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß als Transistoren (T1-T11) CMOS-Feldeffekttransistoren vor­gesehen sind.
3. current mirror according to claim 1 or 2,
characterized,
that CMOS field-effect transistors are provided as transistors (T1-T11).
4. Stromspiegel nach Anspruch 1, 2 oder 3,
gekennzeichnet durch
eine mehrfache Verwendung in Schaltungen mit mehrfacher Strom­spiegelung.
4. current mirror according to claim 1, 2 or 3,
marked by
multiple use in circuits with multiple current mirroring.
EP88114376A 1988-09-02 1988-09-02 Current mirror Withdrawn EP0356570A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP88114376A EP0356570A1 (en) 1988-09-02 1988-09-02 Current mirror
DE19893913446 DE3913446A1 (en) 1988-09-02 1989-04-24 POWER MIRROR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP88114376A EP0356570A1 (en) 1988-09-02 1988-09-02 Current mirror

Publications (1)

Publication Number Publication Date
EP0356570A1 true EP0356570A1 (en) 1990-03-07

Family

ID=8199265

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88114376A Withdrawn EP0356570A1 (en) 1988-09-02 1988-09-02 Current mirror

Country Status (2)

Country Link
EP (1) EP0356570A1 (en)
DE (1) DE3913446A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0403195A1 (en) * 1989-06-12 1990-12-19 Inmos Limited Current mirror circuit
US5103123A (en) * 1990-09-17 1992-04-07 Motorola, Inc. Phase detector having all NPN transistors
EP0485973A2 (en) * 1990-11-16 1992-05-20 Kabushiki Kaisha Toshiba Switching constant current source circuit
EP0715239A1 (en) * 1994-11-30 1996-06-05 STMicroelectronics S.r.l. High precision current mirror for low voltage supply
WO1997001283A1 (en) * 1995-06-27 1997-01-16 British Technology Group Limited Constant current apparatus
WO1998032062A1 (en) * 1997-01-17 1998-07-23 Telefonaktiebolaget Lm Ericsson (Publ) Device and method for determining the size of a current
US5954572A (en) * 1995-06-27 1999-09-21 Btg International Limited Constant current apparatus
EP1160642A1 (en) * 2000-05-31 2001-12-05 Zentrum Mikroelektronik Dresden GmbH Current limiting circuit
EP1315063A1 (en) * 2001-11-14 2003-05-28 Dialog Semiconductor GmbH A threshold voltage-independent MOS current reference
CN113282130A (en) * 2021-06-08 2021-08-20 西安中颖电子有限公司 High-precision LED constant current driving circuit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0523266B1 (en) * 1991-07-17 1996-11-06 Siemens Aktiengesellschaft Integratable current mirror
DE102017208187A1 (en) * 2017-05-16 2018-11-22 Continental Automotive Gmbh An electronic module and motor vehicle and method for limiting an input current during a power-on of the module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3611171A (en) * 1969-12-11 1971-10-05 Ibm Integrated circuit video amplifier
US3904976A (en) * 1974-04-15 1975-09-09 Rca Corp Current amplifier
EP0262480A1 (en) * 1986-09-24 1988-04-06 Siemens Aktiengesellschaft Current mirror circuit arrangement

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4283673A (en) * 1979-12-19 1981-08-11 Signetics Corporation Means for reducing current-gain modulation due to differences in collector-base voltages on a transistor pair
US4677323A (en) * 1985-07-22 1987-06-30 American Telephone & Telegraph Co., At&T Bell Laboratories Field-effect transistor current switching circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3611171A (en) * 1969-12-11 1971-10-05 Ibm Integrated circuit video amplifier
US3904976A (en) * 1974-04-15 1975-09-09 Rca Corp Current amplifier
EP0262480A1 (en) * 1986-09-24 1988-04-06 Siemens Aktiengesellschaft Current mirror circuit arrangement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ELECTRONICS LETTERS vol. 13, no. 11, 26 Mai 1977, Herts Seite 311 - 312; W.J. BARKER: "Negative Current-Mirror using NPN transistors" *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0403195A1 (en) * 1989-06-12 1990-12-19 Inmos Limited Current mirror circuit
US5087891A (en) * 1989-06-12 1992-02-11 Inmos Limited Current mirror circuit
US5103123A (en) * 1990-09-17 1992-04-07 Motorola, Inc. Phase detector having all NPN transistors
EP0485973A2 (en) * 1990-11-16 1992-05-20 Kabushiki Kaisha Toshiba Switching constant current source circuit
EP0485973A3 (en) * 1990-11-16 1992-07-08 Kabushiki Kaisha Toshiba Switching constant current source circuit
US5235218A (en) * 1990-11-16 1993-08-10 Kabushiki Kaisha Toshiba Switching constant current source circuit
EP0715239A1 (en) * 1994-11-30 1996-06-05 STMicroelectronics S.r.l. High precision current mirror for low voltage supply
WO1997001283A1 (en) * 1995-06-27 1997-01-16 British Technology Group Limited Constant current apparatus
US5954572A (en) * 1995-06-27 1999-09-21 Btg International Limited Constant current apparatus
WO1998032062A1 (en) * 1997-01-17 1998-07-23 Telefonaktiebolaget Lm Ericsson (Publ) Device and method for determining the size of a current
US6011385A (en) * 1997-01-17 2000-01-04 Telefonaktiebolaget Lm Ericsson Method and apparatus for measuring and regulating current to a load
EP1160642A1 (en) * 2000-05-31 2001-12-05 Zentrum Mikroelektronik Dresden GmbH Current limiting circuit
EP1315063A1 (en) * 2001-11-14 2003-05-28 Dialog Semiconductor GmbH A threshold voltage-independent MOS current reference
CN113282130A (en) * 2021-06-08 2021-08-20 西安中颖电子有限公司 High-precision LED constant current driving circuit

Also Published As

Publication number Publication date
DE3913446A1 (en) 1990-03-15

Similar Documents

Publication Publication Date Title
US5517134A (en) Offset comparator with common mode voltage stability
WO1998006169A1 (en) Voltage to current converter for high frequency applications
EP0356570A1 (en) Current mirror
KR100241202B1 (en) Current mirror circuit
DE102005022337A1 (en) Voltage controlled current source
DE3241364A1 (en) DIGITALLY CONTROLLED PRECISION POWER SOURCE WITH AN OPEN COMPENSATION CIRCUIT
EP0080567A2 (en) Semiconducter integrated current source
DE102005039335A1 (en) CMOS band gap reference circuit for supplying output reference voltage, has current mirror with feedback field effect transistors that form feedback path to provide potential in current paths
WO1997033365A1 (en) Operational amplifier
EP0217223B1 (en) Digital-to-analog converter with temperature compensation
GB2184623A (en) Voltage repeater circuit
EP0360888B1 (en) CMOS pulse width modulator
EP1784701A1 (en) Current mirror arrangement
DE19533768C1 (en) Current sourcing circuit with cross current regulation esp. for CMOS circuit
EP1101279B1 (en) Amplifier output stage
EP0237086B1 (en) Current mirror circuit
DE10047620B4 (en) Circuit for generating a reference voltage on a semiconductor chip
EP0421016A1 (en) ECL-TTL signal level converter
DE4224584C2 (en) Highly accurate reference voltage source
EP0115352A2 (en) Integratable digital-analog converter
DE10156048C1 (en) Reference voltage source uses Schottky diode connected across base and collector of bipolar transistor
EP0715239B1 (en) High precision current mirror for low voltage supply
EP0681368B1 (en) Operational amplifier with high common-mode rejection
DE19508027B4 (en) Integrated circuit
EP0719474B1 (en) BiCMOS OPERATIONAL AMPLIFIER FOR SWITCH-CAPACITOR CIRCUITS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI NL SE

RBV Designated contracting states (corrected)

Designated state(s): DE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19900908

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950131

Year of fee payment: 11