EP0356356A1 - Method for reducing damage during a superplastic deformation - Google Patents

Method for reducing damage during a superplastic deformation Download PDF

Info

Publication number
EP0356356A1
EP0356356A1 EP89420313A EP89420313A EP0356356A1 EP 0356356 A1 EP0356356 A1 EP 0356356A1 EP 89420313 A EP89420313 A EP 89420313A EP 89420313 A EP89420313 A EP 89420313A EP 0356356 A1 EP0356356 A1 EP 0356356A1
Authority
EP
European Patent Office
Prior art keywords
deformation
rest
superplastic
periods
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89420313A
Other languages
German (de)
French (fr)
Inventor
Daniel Ferton
Michel Suery
Alain Varloteaux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Pechiney Rhenalu SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pechiney Rhenalu SAS filed Critical Pechiney Rhenalu SAS
Publication of EP0356356A1 publication Critical patent/EP0356356A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Definitions

  • the invention relates to a method for reducing damage during superplastic deformation of metals or metal alloys.
  • Superplasticity is generally characterized by the sensitivity parameter to the strain rate formula in which ⁇ is the applied stress and ⁇ is the rational strain rate is ⁇ ⁇ t , ⁇ being the rational deformation we admit that the material is superplastic when m ⁇ 0.3
  • the known means for avoiding or at least delaying the appearance of this cavitation consists in superimposing on the forming efforts an isostatic pressure (see for example C.C. BAMPTON and R. RAJ, Acta Metallurgica, Vol. 30, 1982, p. 2043).
  • This isostatic pressure must be equivalent to half or a third of the material flow stress and is generally in the vicinity of 3 MPa.
  • the method according to the invention makes it possible to minimize the damage, without using isostatic pressure.
  • the values of t and t ′ are a function of the nature, the microstructure of the alloy considered, the total deformation undergone, the temperature and the speed of deformation.
  • t and t ′ are typically between 0.5 and 10 min and preferably between 1 and 3 m in.
  • the uniaxial stress tests were carried out continuously - curve 1, fig. 1 or according to the method claimed with the times (t, t ′) indicated in minutes; the damage was measured as a function of the deformation by the relative variation in density ( ⁇ d / d) determined by a picnometric method.
  • a blank ⁇ 330x320 mm taken from the above sheet was formed by stamping in the form of a circular stamping (biaxial stress) whose axial section is given in fig. 2 on the one hand in continuous deformation (1) and on the other hand with deformation cycles (1 min) followed by rest (1 min), etc.
  • the mechanical tensile characteristics were determined in the bottom of the stamping, in the long and long transverse direction of the initial sheet 100 mm from the center in the T76 state, according to the designation of the Aluminum Association.

Abstract

The invention relates to a method making it possible to reduce the damage during a superplastic deformation. This method consists, at a given temperature and in microstructural and rate of deformation conditions resulting in the superplastic behaviour of the alloy in question, in applying successive partial deformations ( epsilon > 0) during a time (t) which are separated by periods of rest ( epsilon = 0) during a time (t'). The value of t and t' are between 0.5 and 10 min and preferably between 1 and 3 min. This method makes it possible to obtain good tensile or fatigue mechanical characteristics without resorting to the use of a superimposed isostatic pressure. <IMAGE>

Description

L'invention concerne une méthode permettant de réduire l'endommagement lors d'une déformation superplastique de métaux ou d'alliages métalliques.The invention relates to a method for reducing damage during superplastic deformation of metals or metal alloys.

On sait que la déformation superplastique se manifeste pour certains métaux ou alliages par des allongements à la rupture en traction continue, supérieurs à 100% dans des conditions particulières de température, de microstructure et de vitesse de déformation.It is known that superplastic deformation manifests itself for certain metals or alloys by elongations at break in continuous traction, greater than 100% under particular conditions of temperature, microstructure and rate of deformation.

La superplasticité est généralement caractérisée par le paramètre de sensibilité à la vitesse de déformation

Figure imgb0001
formule dans laquelle
σ est la contrainte appliquée et
ε̇ est la vitesse de déformation rationnelle
soit ∂ε ∂t
Figure imgb0002
, ε étant la déformation rationnelle
on admet que le matériau est superplastique lorsque m ≳ 0,3Superplasticity is generally characterized by the sensitivity parameter to the strain rate
Figure imgb0001
formula in which
σ is the applied stress and
ε̇ is the rational strain rate
is ∂ε ∂t
Figure imgb0002
, ε being the rational deformation
we admit that the material is superplastic when m ≳ 0.3

Cependant la capacité d'allongement maximum est limitée par l'apparition et la coalescence de décohésions intergranulaires, qui conduisent à une rupture prématurée lors de cette déformation; cette cavitation est aussi préjudiciable aux caractéristiques de traction et surtout à la tenue en fatigue comme cela est rapporté par exemple dans "M.W. MAHONEY et C.W. HAMILTON Superplatic Aluminium evaluation, Final Report AFWAL-­TR 81-3051. Janvier 1981".However, the maximum elongation capacity is limited by the appearance and coalescence of intergranular decohesions, which lead to premature rupture during this deformation; this cavitation is also detrimental to the traction characteristics and especially to the fatigue resistance as this is reported for example in "M.W. MAHONEY and C.W. HAMILTON Superplatic Aluminum evaluation, Final Report AFWAL-TR 81-3051. January 1981".

Les moyens connus pour éviter ou du moins retarder l'apparition de cette cavitation consiste à superposer aux efforts de formage une pression isostatique (voir par exemple C.C. BAMPTON et R. RAJ, Acta Metallurgica, Vol. 30, 1982, p. 2043). Cette pression isostatique doit être équivalente à la moitié ou au tiers de la contrainte d'écoulement du matériau et se situe en général au voisinage de 3 MPa.The known means for avoiding or at least delaying the appearance of this cavitation consists in superimposing on the forming efforts an isostatic pressure (see for example C.C. BAMPTON and R. RAJ, Acta Metallurgica, Vol. 30, 1982, p. 2043). This isostatic pressure must be equivalent to half or a third of the material flow stress and is generally in the vicinity of 3 MPa.

Il en résulte que cette méthode conduit alors, pour sa mise en oeuvre, à des outillages robustes et complexes donc coûteux.As a result, this method then leads, for its implementation, to robust and complex and therefore costly tools.

Rappelons enfin que l'endommagement du matériau est généralement évalué soit par variation de densité du matériau soit par voie micrographique.Recall finally that the damage of the material is generally evaluated either by variation of density of the material or by micrographic way.

La méthode selon l'invention permet de minimiser l'endommagement, sans utiliser une pression isostatique.The method according to the invention makes it possible to minimize the damage, without using isostatic pressure.

Cette méthode consiste donc, à une température donnée et dans les condi­tions microstructurales et de vitesse de déformation entraînant le comportement superplastique de l'alliage considéré, à appliquer des déformations partielles successives (ε>0) pendant un temps (t) séparées par des périodes de repos (ε =0) pendant un temps (t′). Les valeurs de t et t′ sont fonction de la nature, de la microstructure de l'alliage considéré, de la déformation totale subie, de la température et de la vitesse de déformation.This method therefore consists, at a given temperature and under the microstructural conditions and of deformation speed causing the superplastic behavior of the alloy considered, in applying successive partial deformations (ε> 0) during a time (t) separated by periods of rest (ε = 0) for a time (t ′). The values of t and t ′ are a function of the nature, the microstructure of the alloy considered, the total deformation undergone, the temperature and the speed of deformation.

Ces valeurs doivent donc être déterminées pour chaque cas particulier, mais en général les valeurs de t et t′ sont typiquement comprises entre 0,5 et 10 min et de préférence entre 1 et 3m in.These values must therefore be determined for each particular case, but in general the values of t and t ′ are typically between 0.5 and 10 min and preferably between 1 and 3 m in.

L'invention sera mieux comprise à l'aide des exemples suivants illustrés par les fig. 1 à 6

  • La figure 1 représente des résultats d'essais en sollicitation uniaxiale comparés entre la méthode continue (1) et la méthode avec repos (2).
  • La figure 2 représente une coupe axiale d'un embouti circulaire en alliage 7475, selon la nomenclature de l'Aluminium Association.
  • La figure 3 représente la variation de la densité (d) en fonction de la déformation rationnelle (ε) pour la méthode classique (continue) avec ε = 2x10⁻⁴s⁻¹ - courbe 1 - et la méthode selon l'invention - courbe 2.
  • La figure 4 donne la comparaison des propriétés de traction (charge de rupture Rm, limite élastique Rp0,2 et allongement A% dans le sens long (L) et travers long (TL)) de la tôle initiale déterminées en A (fig. 1) correspondant aux deux méthodes 1 et 2 ci-dessus et à l'alliage non déformé (0).
  • Les figures 5 et 6 représente une coupe micrographique dans l'épaisseur du produit selon les méthodes (1) et (2) pour ε = 1,4.
The invention will be better understood with the aid of the following examples illustrated by FIGS. 1 to 6
  • FIG. 1 represents the results of tests in uniaxial stress compared between the continuous method (1) and the method with rest (2).
  • Figure 2 shows an axial section of a circular stamped alloy 7475, according to the nomenclature of the Aluminum Association.
  • FIG. 3 represents the variation of the density (d) as a function of the rational deformation (ε) for the conventional method (continuous) with ε = 2x10⁻⁴s⁻¹ - curve 1 - and the method according to the invention - curve 2 .
  • Figure 4 gives the comparison of the tensile properties (breaking load Rm, elastic limit Rp0,2 and elongation A% in the long direction (L) and long traverse (TL)) of the initial sheet determined in A (fig. 1 ) corresponding to the two methods 1 and 2 above and to the non-deformed alloy (0).
  • Figures 5 and 6 represents a micrographic section in the thickness of the product according to methods (1) and (2) for ε = 1.4.

Les essais suivants ont été effectués sur une tôle de 2 mm d'épaisseur en alliage 7475 à l'état superplastique dont la composition chimique est la suivante (% en poids): Zn Cu mg Mn Cr SI Fe Ti 5,8 1,60 2,14 <0,02 0,22 0,05 0,06 0,05 reste A1, et dont la grosseur de grains est de 13 µm;
Celle-ci a été formée à 516°C à la vitesse moyenne de ε̇ = 3.10⁻⁴ sec⁻­¹ avec (ou sans) repos en sollicitation uniaxiale et de ε̇ =2x10⁻⁴s⁻­¹ avec (ou sans) repos en sollicitation biaxiale..
The following tests were carried out on a 2 mm thick sheet in alloy 7475 in the superplastic state, the chemical composition of which is as follows (% by weight): Zn Cu mg Mn Cr IF Fe Ti 5.8 1.60 2.14 <0.02 0.22 0.05 0.06 0.05 remains A1, and whose grain size is 13 µm;
This was formed at 516 ° C at the average speed of ε̇ = 3.10⁻⁴ sec⁻¹ with (or without) rest in uniaxial loading and of ε̇ = 2x10⁻⁴s⁻¹ with (or without) rest in biaxial loading ..

EXEMPLE 1EXAMPLE 1

Les essais en sollicitation uniaxiale ont été effectués en continu - courbe 1, fig. 1 ou selon la méthode revendiquée avec les temps (t,t′) indiqués en minutes; l'endommagement a été mesuré en fonction de la déformation par la variation relative de densité (Δd/d) déterminée par une méthode de picnométrique.The uniaxial stress tests were carried out continuously - curve 1, fig. 1 or according to the method claimed with the times (t, t ′) indicated in minutes; the damage was measured as a function of the deformation by the relative variation in density (Δd / d) determined by a picnometric method.

On peut constater que pour l'ensemble des essais (1,1)- courbe 2 fig. 1 - et par rapport à la méthode continue, l'endommagement est réduit d'un facteur 10 env. pour des allongements de l'ordre de 140%; ce facteur reste encore de 3,5 env. pour des allongements voisins de 220%.We can see that for all the tests (1,1) - curve 2 fig. 1 - and compared to the continuous method, the damage is reduced by a factor of 10 approx. for extensions of the order of 140%; this factor still remains around 3.5 for elongations close to 220%.

EXEMPLE 2EXAMPLE 2

Un flan □̸ 330x320 mm prélevé dans la tôle ci-dessus a été formé par emboutissage sous forme d'un embouti circulaire (sollicitation biaxiale) dont la coupe axiale est donnée à la fig. 2 d'une part en déformation continue (1) et d'autre part avec des cycles de déformation (1 min) suivi d'un repos (1 min), etc...A blank ̸ 330x320 mm taken from the above sheet was formed by stamping in the form of a circular stamping (biaxial stress) whose axial section is given in fig. 2 on the one hand in continuous deformation (1) and on the other hand with deformation cycles (1 min) followed by rest (1 min), etc.

L'évolution de l'endommagement en fonction de la déformation locale: ε= Ln (E/e), avec E épaisseur initiale et e épaisseur finale, est donnée à la figure 3.The evolution of the damage according to the local strain: ε = Ln (E / e), with E initial thickness and e final thickness, is given in figure 3.

Les caractéristiques mécaniques de traction, moyennes de 4 essais, ont été déterminées dans le fond de l'embouti, dans le sens long et travers long de la tôle initiale à 100 mm du centre à l'état T76, selon la désignation de l'Aluminium Association.The mechanical tensile characteristics, averaged over 4 tests, were determined in the bottom of the stamping, in the long and long transverse direction of the initial sheet 100 mm from the center in the T76 state, according to the designation of the Aluminum Association.

Les résultats sont reportés dans le tableau I ci-joint et représentés graphiquement à la figure 4.The results are reported in table I attached and graphically represented in FIG. 4.

Les micrographies comparées sont données aux figures 5 et 6 pour ε= 1,4 (A% 300).The compared micrographs are given in FIGS. 5 and 6 for ε = 1.4 (A% 300).

Les essais de fatigue effectués en sollicitations répétées sur des éprouvettes prélevées sens long extraites du fond des emboutis dans les états définis ci-dessus sont les suivants: Etat 0̸ R σ max (MPa) Durée de vie* (Kilocycles) 1 0,1 200 128,8 2 0,1 200 177,8 *Moyenne de 12 essais. TABLEAU I CARACTERISTIQUES MECANIQUES Rep. Vitesse de déformation Sens de prélèvement RO,2 (MPa) Rm (MPa) A (%) maxi mini écart moy. maxi mini écart moy. maxi mini écart moy. 0 Témoin L 471 457 14 463 527 512 15 520 16,6 8,1 8,5 12,3 ε=0 TL 454 445 9 449 503 501 2 502 9,6 7,2 2,4 8,6 1 2 10⁻⁴s⁻¹ L 415 392 23 404 479 439 40 453 2,7 1,4 1,3 1,9 ε= 1,4 TL 401 355 46 384 468 436 32 447 7,4 1,2 6,2 3,2 2 avec relaxation ε =1,4 L 407 335 72 373 497 459 38 480 8,9 1,5 7,4 5,6 2.10⁻⁴s⁻¹ TL 451 332 119 400 498 473 25 485 5,9 4,4 1,5 5,1 The fatigue tests carried out under repeated stresses on long-drawn samples taken from the bottom of the stamps in the states defined above are as follows: State 0̸ R σ max (MPa) Lifespan * (Kilocycles) 1 0.1 200 128.8 2 0.1 200 177.8 * Average of 12 tests. TABLE I MECHANICAL CHARACTERISTICS Rep. Deformation rate Direction of withdrawal RO, 2 (MPa) Rm (MPa) AT (%) max mini difference avg. max mini difference avg. max mini difference avg. 0 Witness L 471 457 14 463 527 512 15 520 16.6 8.1 8.5 12.3 ε = 0 TL 454 445 9 449 503 501 2 502 9.6 7.2 2.4 8.6 1 2 10⁻⁴s⁻¹ L 415 392 23 404 479 439 40 453 2.7 1.4 1.3 1.9 ε = 1.4 TL 401 355 46 384 468 436 32 447 7.4 1.2 6.2 3.2 2 with relaxation ε = 1.4 L 407 335 72 373 four hundred ninety seven 459 38 480 8.9 1.5 7.4 5.6 2.10⁻⁴s⁻¹ TL 451 332 119 400 498 473 25 485 5.9 4.4 1.5 5.1

Claims (4)

1. Méthode de déformation d'un métal ou alliage dans des conditions superplastiques en vue de diminuer l'endommagement, caractérisé en ce qu'à une température donnée, le matériau subit une succession de déformations partielles ( ε >0) pendant le temps (t) séparées par des intervalles de repos (ε =0) pendant le temps (t′).1. Method of deformation of a metal or alloy under superplastic conditions with a view to reducing damage, characterized in that at a given temperature, the material undergoes a succession of partial deformations (ε> 0) over time ( t) separated by rest intervals (ε = 0) during time (t ′). 2. Méthode selon la revendication 1 caractérisée en ce que t et t′ sont compris entre 0,5 et 10 min.2. Method according to claim 1 characterized in that t and t ′ are between 0.5 and 10 min. 3. Méthode selon l'une des revendications 1 ou 2 caractérisée en ce que pour l'alliage 7475 déformé vers 516°C avec une vitesse voisine de ε = 2.10⁴ sec⁻¹, les périodes de déformations partielles (t) durent 1 à 3 min et les périodes de repos (t′) de 1 à 3 min.3. Method according to one of claims 1 or 2 characterized in that for the alloy 7475 deformed around 516 ° C with a speed close to ε = 2.10⁴ sec⁻¹, the periods of partial deformation (t) last 1 to 3 min and rest periods (t ′) from 1 to 3 min. 4. Méthode selon la revendication 3 caractérisé en ce que les périodes de déformation et de repos sont voisines de 1 min.4. Method according to claim 3 characterized in that the periods of deformation and rest are close to 1 min.
EP89420313A 1988-08-25 1989-08-24 Method for reducing damage during a superplastic deformation Withdrawn EP0356356A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8811422 1988-08-25
FR8811422A FR2635790B1 (en) 1988-08-25 1988-08-25 METHOD FOR REDUCING DAMAGE DURING SUPERPLASTIC DEFORMATION ESPECIALLY FOR ALUMINUM ALLOYS

Publications (1)

Publication Number Publication Date
EP0356356A1 true EP0356356A1 (en) 1990-02-28

Family

ID=9369632

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89420313A Withdrawn EP0356356A1 (en) 1988-08-25 1989-08-24 Method for reducing damage during a superplastic deformation

Country Status (2)

Country Link
EP (1) EP0356356A1 (en)
FR (1) FR2635790B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2543578A1 (en) * 1983-03-31 1984-10-05 Alcan Int Ltd PRODUCTION OF METALLIC ARTICLES BY SUPERPLASTIC DEFORMATION

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2543578A1 (en) * 1983-03-31 1984-10-05 Alcan Int Ltd PRODUCTION OF METALLIC ARTICLES BY SUPERPLASTIC DEFORMATION

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
N.E. PATON et al.: "Superplastic forming of structural alloys", Proceedings of a Symposium, San Diego, CA, 21-24 juin 1982, pages 173-189, The Metallurgical Society of AIME, Warrendale, PA, US; C.H. HAMILTON et al.: "Superplasticity in high strength alumium alloys" *
N.E. PATON et al.: "Superplastic forming of structural alloys", Proceedings of a Symposium, San Diego, CA, 21-24 juin 1982, pages 321-336, The Metallurgical Society of AIME, Warrendale, PA, US; M.J. STOWELL: "Cavitation in superplasticity" *

Also Published As

Publication number Publication date
FR2635790B1 (en) 1990-10-12
FR2635790A1 (en) 1990-03-02

Similar Documents

Publication Publication Date Title
Horita et al. A two-step processing route for achieving a superplastic forming capability in dilute magnesium alloys
EP2157200A1 (en) Al-Mg-Si aluminum alloy extruded product exhibiting excellent fatigue strength and impact fracture resistance
US7211161B2 (en) Al-Mg alloy products suitable for welded construction
EP1338664B1 (en) Aluminum alloy pipe having multistage formability
EP1170118A9 (en) Aluminium alloy plated sheets for structural aircraft elements
US10900108B2 (en) Method for manufacturing bent article using aluminum alloy
Lee et al. Microstructural evolution and deformation of cryomilled nanocrystalline Al-Ti-Cu alloy
JP2001200325A (en) Aluminum alloy casting subjected to plastic working, method for producing aluminum alloy casting and joining method utilizing plastic deformation
CA1177679A (en) Cast bar of an aluminum alloy for wrought products, having improved mechanical properties and workability, as well as process for producing the same
Jiang et al. Deformation behavior of two Mg alloys during ring hoop tension testing
WO1998024940A1 (en) A1 alloy and method
EP3411508A1 (en) Thick plates made of al-cu-li alloy with improved fatigue properties
EP0356356A1 (en) Method for reducing damage during a superplastic deformation
EP2113576A1 (en) Method for producing a structural material made of magnesium-containing aluminium-based alloy
Iwasaki et al. The development of cavitation in superplastic aluminum composites reinforced with Si3N4
EP1371740A1 (en) Heat-resistant and creep-resistant aluminum alloy and billet thereof, and method for their production
GB2130941A (en) A cast bar of an aluminum alloy for wrought products, having improved mechanical properties and workability
Tsutsui et al. Superplastic deformation behavior in commercial magnesium alloy AZ61
Chan et al. Fracture toughness and fatigue crack growth in rapidly quenched Nb-Cr-Ti in situ composites
Nakayama et al. Effect of eutectic si particle morphology on ECAP formability and mechanical properties of AC4CH aluminum casting alloys
EP0504077B1 (en) Strong, formable, isotropic aluminium alloys for deep drawing
JPH06256883A (en) Magnesium alloy having excellent creep strength
Friedman Investigation of continuous cast 5754 Al and 6111 Al alloys for potential automotive applications
Závodská et al. The Fatigue lifetime of AlZn10Si8Mg cast alloy with different percentage of iron
JPS6314059B2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19900324

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PECHINEY RHENALU

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19920519