EP0355192B1 - Omnidirectional x-ray tube - Google Patents

Omnidirectional x-ray tube Download PDF

Info

Publication number
EP0355192B1
EP0355192B1 EP88113832A EP88113832A EP0355192B1 EP 0355192 B1 EP0355192 B1 EP 0355192B1 EP 88113832 A EP88113832 A EP 88113832A EP 88113832 A EP88113832 A EP 88113832A EP 0355192 B1 EP0355192 B1 EP 0355192B1
Authority
EP
European Patent Office
Prior art keywords
target
ray tube
cathode
radiation
tube according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88113832A
Other languages
German (de)
French (fr)
Other versions
EP0355192A1 (en
Inventor
Horst Steffel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPEZIALMASCHINENBAU STEFFEL GmbH and Co KG
Original Assignee
SPEZIALMASCHINENBAU STEFFEL GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPEZIALMASCHINENBAU STEFFEL GmbH and Co KG filed Critical SPEZIALMASCHINENBAU STEFFEL GmbH and Co KG
Priority to AT88113832T priority Critical patent/ATE72498T1/en
Priority to EP88113832A priority patent/EP0355192B1/en
Priority to DE8888113832T priority patent/DE3868324D1/en
Publication of EP0355192A1 publication Critical patent/EP0355192A1/en
Priority to US07/554,963 priority patent/US5003568A/en
Application granted granted Critical
Publication of EP0355192B1 publication Critical patent/EP0355192B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor

Definitions

  • the invention relates to an omnidirectional X-ray tube according to the preamble of claim 1 and the use of such a tube.
  • the X-ray omnidirectional tube is arranged in the space enclosed by the tire near its open inside so that the radiation emanating from it radiates through the outer walls and the tire tread from the inside out.
  • Known omnidirectional x-ray tubes have an annular beam passage window, and the electron beam optics or the target are designed such that the radiation emerging from the passage window sweeps over a large sector, for example with an arc angle of 180 ° and more.
  • the radiation angle across it is, for example, 40 °.
  • Another advantage is that the radiation is almost vertical of all the tire areas to be checked is possible and thus a distortion-free display on the display device, for example a screen.
  • Such advantages are favored if three linear arrangements of light-sensitive diodes (diode rows) are arranged parallel to the diameter or parallel to the axis and serve as a receiving device for the X-rays.
  • Known omnidirectional x-ray tubes use cone or flat targets.
  • Cone-shaped targets allow a large-angle sector for the emerging X-ray radiation in a simple manner, but have a poor resolution because of the large focal spot, which must be thought of as an annular surface around the cone of the target.
  • the wires can no longer be discriminated against.
  • the invention is therefore based on the object of providing an omnidirectional X-ray tube which enables high resolution and at the same time largely distortion-free imaging even with geometrically uneven objects.
  • the omnidirectional X-ray tube In the omnidirectional X-ray tube according to the invention, at least two focal spots are generated on a target.
  • an electron source and electron beam optics are assigned to the cathode for each focal spot.
  • the arrangement of the focus on the target is selected so that the radiation emanating from a focal spot only sweeps a part of the sector that corresponds to the angle of the passage window in its plane corresponds. For example, if the passage window of the X-ray tube enables a radiation sector of 270 °, a focal spot generates, for example, a radiation sector of 90 or 180 °. The remaining area is assigned to the other focal spot. To avoid gray shadows and therefore insufficient images, the radiation emitted by the individual focal spots is shielded from one another.
  • the advantages of a surface anode and a cone anode are combined and their disadvantages eliminated.
  • the X-ray tube according to the invention thus enables a perfect omnidirectional beam with a large arc angle and excellent resolution.
  • X-ray tubes have already become known (e.g. US-A-2.836757) in which two targets or two focal spots are provided, namely a small and a large focal spot. With such X-ray tubes, however, the targets are never moved simultaneously, but only one after the other.
  • the portion of the target facing the cathode is gabled and the focal spots are formed on one roof surface each.
  • the cathode requires two electron sources and two electron beam optics in order to focus the electron beam on the target to the focal spot.
  • anode enables a 360 ° omnidirectional beam, which, however, is normally not required.
  • a dead zone of approximately 4 °, which cannot be used for the mapping. It lies in the area of the plane which passes through the "ridge" of the roof-shaped anode. Depending on the object to be tested, this dead zone can be set as desired if the arrangement of the cathode and anode is selected accordingly.
  • the portion of the target facing the cathode has the shape of a four-sided pyramid, on each of the three side faces of which a focal spot is formed. In this way, three radiation sectors delimited from one another can be obtained, for example at an angle of 90 °, if the entire radiation range is or should be 270 °.
  • the target can also have a conical shape, two or more focal spots being formed on the lateral surface.
  • shielding is already obtained by the surfaces of a roof-shaped or pyramid-shaped body lying at an angle to one another. If necessary, however, additional shielding can also be used, for example in the form of a flat shielding of, for example, lead or other suitable material.
  • the x-ray tube according to the invention is particularly suitable for all-round x-ray inspection of a rotatably supported motor vehicle tire, in which the x-ray omnidirectional tube is arranged in the space enclosed by the tire near the open inside so that the radiation emanating from it radiates through the outer walls and the tire tread from the inside to the outside.
  • the receiving devices are to be formed by three linear diode arrangements (diode rows) which are arranged approximately parallel to the diameter or axially parallel.
  • the dead zones already mentioned above, which cannot be completely avoided, can be in the range according to one embodiment of the invention run between adjacent linear diode arrays in which imaging cannot be carried out anyway.
  • FIG. 1 shows a section through two tires 10, 11 of different sizes. Their flanks or side walls 12, 13 or 12 ', 13' and their tread 14 or 14 'are provided with a plastic cord 15 or steel cord or the like.
  • the tire 10 and 11 is rotatably supported about its axis in a known manner. The corresponding constructive arrangements for this are not shown; they are state of the art. The protective measures for X-ray inspection devices are also not shown.
  • an X-ray omnidirectional tube 16 is arranged at the entrance to the tires 10 and 11, respectively.
  • the X-ray omnidirectional tube 16 In a radial plane for ripening (here in the drawing plane), the X-ray omnidirectional tube 16 has a radiation angle of approximately 300 °. In the radial plane, therefore, all areas of the tire are irradiated by the radiation of the tube 16, approximately at an angle of 90 °. It goes without saying that the X-ray tube 16 can be laid further inside the tires 10 or 11, but also further outside. In a plane perpendicular to the radial plane, the omnidirectional x-ray tube 16 has a radiation angle of approximately 40 °.
  • diode arrangements 17, 18 and 19 are provided on the outside of the outer walls 12, 13 and 12 ', 13' and the outside of the tread 14, 14 '. These are only indicated schematically in FIG. 1.
  • Each diode arrangement 17 to 19 contains a linear arrangement of individual light-sensitive diodes, the row of diodes of the arrangements 17 and 19 being approximately parallel in diameter, while the row of diodes of the arrangement 18 is axially parallel.
  • the diodes are scanned periodically, the scanned signals being stored in a known manner so that a series of scans appear simultaneously on a display device 20, for example a screen.
  • the playback device 20 is also indicated very schematically. It can consist, for example, of three individual screens or of just one, on which all areas of the tires 10 and 11 are shown.
  • the diode arrangements 17 to 19 form a U and are mounted together on a component, not shown, which is mounted in the machine frame (not shown) so as to be adjustable in the direction of the double arrow 21.
  • the diode arrays 17 and 19 are in turn adjustable parallel to themselves in the component, as by the double arrows 22 indicated. This makes it possible to produce an equal distance from the outside of the tire 10 or 11 or from the tread and to achieve a uniform imaging standard.
  • the adjustment devices are also not shown. They can be of any known construction.
  • FIG. 2 only the target 30 and the beryllium window 31 surrounding it are shown of the omnidirectional tube 16 according to FIG. 1.
  • the tube axis is designated 32, and the two heating coils and the electron beam optics assigned to them are not shown. However, these are shown very schematically in FIG. 3.
  • the heating coils are designated 33 and 34 and the electron beam optics 35 and 36, respectively.
  • the target 30 has two roof surfaces 37, 38 which are at an angle to one another and intersect in the "ridge" 39. However, the roof surfaces 37, 38 are tilted to the tube axis 32 in such a way that focal spots 40, 41 are formed. Each roof surface 37, 38 with associated focal spot 40, 41 now corresponds to its own sector A or B.
  • the "ridge" 39 is placed in such a way that the dead zone extends in the plane of the ridge 39 through the area in which the diode rows 18 , 19 collide. In this area there would be no image of the irradiated areas anyway possible. It is understood that additional shielding can be provided in the plane by the ridge 39 in order to prevent the radiation from the focal spots 40, 41 from being superimposed.
  • the radiation emanating from the focal spot 40 ensures that the left tire wall and its tread in FIG. 1 are irradiated, while that of the focal spot 41 irradiates the right tire wall. Since the focal spots have a very small extent, the resolution, which is relatively good anyway due to the close arrangement of the omnidirectional tube 16 at the areas to be irradiated, is considerably improved.
  • a four-sided pyramid is provided in the zone of the target 50 assigned to the cathode, which is also surrounded by a beryllium window 51 in a known manner.
  • the three side faces of the pyramid are labeled 52, 53 and 54.
  • the intermediate edges have the reference numerals 55, 56 and 57.
  • three focal spots 60, 61 and 62 are generated on the surfaces 52 to 54.
  • the edges 55 and 57 are assigned lead plates 63, 64, which extend approximately in one plane through the edges 55, 57.
  • the sector A covered by the focal spot 60 has, for example, an angle of 72 ° and can therefore serve to shine through the tread according to the embodiment according to FIG. 1.
  • the radiation emanating from the focal spots 61, 62 is accordingly used to check the wall of the tires.
  • the components and materials to be used for the X-ray tube according to the invention, for example for the cathode, the target, etc., are known in the prior art and need not be mentioned separately.

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • X-Ray Techniques (AREA)

Abstract

Omnidirectional X-ray tube (16) with a ring-section shaped beam aperture (31, 51) partially surrounding the target (30, 50) and a design of cathode and electron beam optics (35, 36) on the one hand and of the target (30, 50) on the other hand such that the radiation emerging from the aperture covers a larger sector in the plane of the aperture, a cathode arrangement having at least two electron sources (33, 34) with associated electron optics (35, 36) and a design of the electron optics and of the target in such a way that one burn spot (40, 41, 60, 61, 62) is produced on the target (30, 50) per electron optics, and the radiation going out from the individual burn spots (40, 41, 60, 61, 62) covers mutually adjacent subsectors, but is largely shielded from a mutual superimposition. <IMAGE>

Description

Die Erfindung bezieht sich auf eine Rundstrahl-Röntgenröhre nach dem Oberbegriff des Anspruchs 1 und die Verwendung einer derartigen Röhre.The invention relates to an omnidirectional X-ray tube according to the preamble of claim 1 and the use of such a tube.

Eine derartige Rundstrahl-Röntgenröhre für eine Vorrichtung zur allseitigen Röntgenüberprüfung eines drehbar abgestützten Kraftfahrzeugreifens während einer Reifen-Umdrehung ist beschrieben in DE-U-8.715.213.Such an omnidirectional x-ray tube for a device for all-round x-ray inspection of a rotatably supported motor vehicle tire during a tire revolution is described in DE-U-8.715.213.

Zur Strukturprüfung von Kraftfahrzeugreifen ist bekannt, diese mit einer Röntgenstrahlung zu durchstrahlen und die dergestalt erhaltene Abbildung auf einem Monitor wiederzugeben. Aus der DE-PS 2239003 ist eine Röntgenprüfvorrichtung bekanntgeworden, die drei Röntgenröhren benötigt. Die gesamte Prüfvorrichtung ist relativ aufwendig und erlaubt keine verzerrungsfreie Abbildung und damit eine einwandfreie Fehlererkennung bzw. Federzuordnung. Um diesem Mangel abzuhelfen, ist in der DE 3737159 vorgeschlagen worden, eine sogenannte Röntgenrundstrahlröhre zu verwenden.For the structural inspection of motor vehicle tires, it is known to irradiate them with X-rays and to display the image obtained in this way on a monitor. From DE-PS 2239003 an X-ray test device has become known which requires three X-ray tubes. The entire test device is relatively complex and does not allow distortion-free imaging and thus fault-free detection or spring assignment. To remedy this deficiency, it has been proposed in DE 3737159 to use a so-called X-ray omnidirectional tube.

Die Röntgenrundstrahlröhre wird in dem vom Reifen umschlossenen Raum nahe seiner offenen Innenseite so angeordnet, daß die von ihr ausgehende Strahlung die Außenwände und die Reifenlauffläche von innen nach außen durchstrahlt.The X-ray omnidirectional tube is arranged in the space enclosed by the tire near its open inside so that the radiation emanating from it radiates through the outer walls and the tire tread from the inside out.

Bekannte Rundstrahl-Röntgenröhren weisen ein ringförmiges Strahlendurchtrittsfenster auf, und die Elektronenstrahloptik bzw. das Target sind so ausgebildet, daß die aus dem Durchtrittsfenster austretende Strahlung einen großen Sektor bestreicht, beispielsweise mit einem Bogenwinkel von 180° und mehr. Der Strahlungswinkel quer dazu beträgt zum Beispiel 40°. Bei einer Prüfung von Reifen, jedoch auch in ähnlich gelagerten Fällen, werden bei der Verwendung einer Rundstrahlröntgenröhre erhebliche Vorteile erhalten. Die Röntgenquelle kann sehr nahe an die zu prüfenden Bereiche herangebracht werden. Sie kann daher mit einer geringen Leistung betrieben werden, was sich günstig auf den zu erzielenden Kontrast zwischen Gummi und zum Beispiel Kunststoff oder eingelegten Drähten auswirkt. Ein weiterer Vorteil liegt darin, daß eine merkliche Verkleinerung der kompletten Röntgenanlage erhalten wird. Dadurch wird nicht nur der apparative Aufwand geringer, sondern auch eine entsprechende Raumersparnis erreicht. Ein weiterer Vorteil besteht darin, daß eine annähernd senkrechte Durchstrahlung aller zu prüfenden Reifenbereiche möglich ist und damit eine verzerrungsfreie Darstellung auf der Wiedergabevorrichtung, beispielsweise einem Bildschirm. Derartige Vorteile werden begünstigt, wenn drei lineare Anordnungen lichtempfindlicher Dioden (Diodenzeilen) durchmesserparallel bzw. achsparallel angeordnet sind und als Empfangsvorrichtung für die Röntgenstrahlung dienen.Known omnidirectional x-ray tubes have an annular beam passage window, and the electron beam optics or the target are designed such that the radiation emerging from the passage window sweeps over a large sector, for example with an arc angle of 180 ° and more. The radiation angle across it is, for example, 40 °. When testing tires, but also in similar cases, considerable advantages are obtained when using an omnidirectional X-ray tube. The X-ray source can be brought very close to the areas to be checked. It can therefore be operated with a low output, which has a favorable effect on the contrast to be achieved between rubber and, for example, plastic or inserted wires. Another advantage is that a noticeable downsizing of the entire X-ray system is obtained. This not only reduces the expenditure on equipment, but also saves a corresponding amount of space. Another advantage is that the radiation is almost vertical of all the tire areas to be checked is possible and thus a distortion-free display on the display device, for example a screen. Such advantages are favored if three linear arrangements of light-sensitive diodes (diode rows) are arranged parallel to the diameter or parallel to the axis and serve as a receiving device for the X-rays.

Bekannte Rundstrahlröntgenröhren verwenden Kegel- oder Flachtargets. Kegelförmige Targets erlauben zwar auf einfache Weise einen großwinkligen Sektor für die austretende Röntgenstrahlung, haben jedoch wegen des großen Brennflecks, der als Ringfläche um den Konus des Targets gedacht werden muß, eine schlechte Auflösung zur Folge. Bei der Strukturprüfung von Kraftfahrzeugreifen, beispielsweise von Stahlgürtelreifen, können unter Umständen die Drähte nicht mehr diskriminiert werden.Known omnidirectional x-ray tubes use cone or flat targets. Cone-shaped targets allow a large-angle sector for the emerging X-ray radiation in a simple manner, but have a poor resolution because of the large focal spot, which must be thought of as an annular surface around the cone of the target. When testing the structure of motor vehicle tires, for example steel belt tires, the wires can no longer be discriminated against.

Bei flachen Targets sind die ersten vier bis sechs Grad, die an die Ebene der Fläche angrenzen, zur Erzeugung verwendbarer Röntgenstrahlung nicht geeignet. Deshalb erhält man einen kegelförmigen Strahlverlauf, der im übrigen aufgrund der notwendigen Schräganordnung der Fläche gegenüber der Röhrenachse zu einer ungleichen Abbildung der jeweils gleichzeitig durchstrahlten Reifenpartie führt und damit zu einer Verzerrung. So kann, obwohl ein derartiges Target eine gute Auflösung wegen des flächenmäßig kleinen Brennflecks ermöglicht, zum Beispiel nicht unterschieden werden, ob ein Draht im Reifen gekrümmt verläuft oder ob es sich um eine Verzerrung handelt.In the case of flat targets, the first four to six degrees which adjoin the plane of the surface are not suitable for generating usable X-rays. For this reason, a conical beam path is obtained which, due to the necessary oblique arrangement of the surface with respect to the tube axis, results in an uneven image of the respective one at the same time the tire area is irradiated and thus leads to distortion. For example, although such a target enables good resolution due to the small focal spot, it cannot be distinguished whether a wire in the tire is curved or whether it is a distortion.

Der Erfindung liegt daher die Aufgabe zugrunde, eine Rundstrahlröntgenröhre zu schaffen, die eine hohe Auflösung und gleichzeitig eine weitgehend verzerrungsfreie Abbildung auch bei geometrisch ungleichmäßigen Objekten ermöglicht.The invention is therefore based on the object of providing an omnidirectional X-ray tube which enables high resolution and at the same time largely distortion-free imaging even with geometrically uneven objects.

Diese Aufgabe wird durch die Merkmale des Kennzeichnungsteils des Anspruchs 1 gelöst.This object is achieved by the features of the characterizing part of claim 1.

Bei der erfindungsgemäßen Rundstrahlröntgenröhre werden auf einem Target mindestens zwei Brennflecke erzeugt. Hierzu ist je Brennfleck eine Elektronenquelle und eine Elektronenstrahloptik der Kathode zugeordnet. Erfindungswesentlich ist ferner, daß die Anordnung des Fokus auf dem Target so gewählt ist, daß die von einem Brennfleck ausgehende Strahlung nur einen Teil des Sektors bestreicht, der dem Winkel des Durchtrittsfensters in seiner Ebene entspricht. Ermöglicht das Durchtrittsfenster der Röntgenröhre zum Beispiel einen Strahlungssektor von 270°, erzeugt ein Brennfleck zum Beispiel einen Strahlungssektor von 90 oder 180°. Der übrige Bereich ist dem anderen Brennfleck zugeordnet. Zur Vermeidung von Grauschatten und damit von unzureichenden Abbildungen sind die von den einzelnen Brennflecken ausgehenden Strahlungen gegeneinander abgeschirmt.In the omnidirectional X-ray tube according to the invention, at least two focal spots are generated on a target. For this purpose, an electron source and electron beam optics are assigned to the cathode for each focal spot. It is also essential to the invention that the arrangement of the focus on the target is selected so that the radiation emanating from a focal spot only sweeps a part of the sector that corresponds to the angle of the passage window in its plane corresponds. For example, if the passage window of the X-ray tube enables a radiation sector of 270 °, a focal spot generates, for example, a radiation sector of 90 or 180 °. The remaining area is assigned to the other focal spot. To avoid gray shadows and therefore insufficient images, the radiation emitted by the individual focal spots is shielded from one another.

Bei der erfindungsgemäßen Rundstrahl-Röntgenröhre werden die Vorzüge einer Flächenanode und einer Kegelanode kombiniert und deren Nachteile ausgeschaltet. Die erfindungsgemäße Röntgenröhre ermöglicht mithin einen einwandfreien Rundstrahl von großem Bogenwinkel und hervorragendem Auflösungsvermögen.In the omnidirectional X-ray tube according to the invention, the advantages of a surface anode and a cone anode are combined and their disadvantages eliminated. The X-ray tube according to the invention thus enables a perfect omnidirectional beam with a large arc angle and excellent resolution.

Es sind bereits Röntgenröhren bekanntgeworden (z.B. US-A-2.836757), bei denen zwei Targets bzw. zwei Brennflecke vorgesehen sind, und zwar ein kleiner und ein großer Brennfleck. Bei derartigen Röntgenröhren werden die Targets jedoch niemals gleichzeitig, sondern nur nacheinander gefahren.X-ray tubes have already become known (e.g. US-A-2.836757) in which two targets or two focal spots are provided, namely a small and a large focal spot. With such X-ray tubes, however, the targets are never moved simultaneously, but only one after the other.

Es sind verschiedene geometrische Formen für das Target denkbar, um die gewünschte Abstrahlung zu erhalten. Eine besteht nach einer Ausgestaltung der Erfindung darin, daß der der Kathode zugekehrte Abschnitt des Targets satteldachförmig ist und die Brennflecke auf je einer Dachfläche gebildet werden. Entsprechend benötigt die Kathode zwei Elektronenquellen und zwei Elektronenstrahloptiken, um den Elektronenstrahl auf dem Target zum Brennfleck zu fokussieren. Theoretisch ermöglicht eine derartige Anode einen Rundstrahl von 360°, der jedoch normalerweise nicht benötigt wird. In dem Grenzbereich zwischen benachbarten Sektoren ergibt sich eine Totzone von etwa 4°, die für die Abbildung nicht herangezogen werden kann. Sie liegt im Bereich der Ebene, die durch den "First" der dachförmigen Anode hindurchgeht. Diese Totzone kann je nach zu prüfendem Objekt beliebig gelegt werden, wenn die Anordnung von Kathode und Anode entsprechend gewählt wird.Various geometrical shapes are conceivable for the target in order to obtain the desired radiation. A According to one embodiment of the invention, the portion of the target facing the cathode is gabled and the focal spots are formed on one roof surface each. Accordingly, the cathode requires two electron sources and two electron beam optics in order to focus the electron beam on the target to the focal spot. Theoretically, such an anode enables a 360 ° omnidirectional beam, which, however, is normally not required. In the border area between neighboring sectors there is a dead zone of approximately 4 °, which cannot be used for the mapping. It lies in the area of the plane which passes through the "ridge" of the roof-shaped anode. Depending on the object to be tested, this dead zone can be set as desired if the arrangement of the cathode and anode is selected accordingly.

In einer alternativen Ausgestaltung der Erfindung weist der der Kathode zugekehrte Abschnitt des Targets die Form einer vierseitigen Pyramide auf, auf deren drei Seitenflächen je ein Brennfleck gebildet wird. Auf diese Weise lassen sich drei voneinander abgegrenzte Strahlungssektoren erhalten, beispielsweise mit einem Winkel von 90°, wenn der gesamte Strahlungsbereich 270° beträgt bzw. betragen soll.In an alternative embodiment of the invention, the portion of the target facing the cathode has the shape of a four-sided pyramid, on each of the three side faces of which a focal spot is formed. In this way, three radiation sectors delimited from one another can be obtained, for example at an angle of 90 °, if the entire radiation range is or should be 270 °.

Schließlich kann das Target auch eine Konusform aufweisen, wobei auf der Mantelfläche zwei oder mehr Brennflecke gebildet werden.Finally, the target can also have a conical shape, two or more focal spots being formed on the lateral surface.

Bei einer entsprechenden geometrischen Ausbildung des Targets wird bereits eine Abschirmung durch die im Winkel zueinander liegenden Flächen eines dach- oder pyramidenförmigen Körpers erhalten. Falls erforderlich, kann jedoch auch eine zusätzliche Abschirmung verwendet werden, zum Beispiel in Form einer flächigen Abschirmung von zum Beispiel Blei oder anderem geeigneten Material.With a corresponding geometric design of the target, shielding is already obtained by the surfaces of a roof-shaped or pyramid-shaped body lying at an angle to one another. If necessary, however, additional shielding can also be used, for example in the form of a flat shielding of, for example, lead or other suitable material.

Die erfindungsgemäße Röntgenstrahlröhre ist insbesondere zur allseitigen Röntgenprüfung eines drehbar abgestützten Kraftfahrzeugreifens geeignet, bei der die Röntgenrundstrahlröhre in dem vom Reifen umschlossenen Raum nahe der offenen Innenseite so angeordnet ist, daß die von ihr ausgehende Strahlung die Außenwände und die Reifenlauffläche von innen nach außen durchstrahlt. Außerdem sollen die Emfpangsvorrichtungen von drei linearen Diodenanordnungen (Diodenzeilen) gebildet sein, die annähernd durchmesserparallel bzw. achsparallel angeordnet sind. Die bereits weiter oben erwähnten, nicht völlig vermeidbaren Totzonen können nach einer Ausgestaltung der Erfindung im Bereich zwischen angrenzenden linearen Diodenanordnungen verlaufen, in denen ohnehin eine Abbildung nicht durchgeführt werden kann.The x-ray tube according to the invention is particularly suitable for all-round x-ray inspection of a rotatably supported motor vehicle tire, in which the x-ray omnidirectional tube is arranged in the space enclosed by the tire near the open inside so that the radiation emanating from it radiates through the outer walls and the tire tread from the inside to the outside. In addition, the receiving devices are to be formed by three linear diode arrangements (diode rows) which are arranged approximately parallel to the diameter or axially parallel. The dead zones already mentioned above, which cannot be completely avoided, can be in the range according to one embodiment of the invention run between adjacent linear diode arrays in which imaging cannot be carried out anyway.

Die Erfindung wird nachfolgend anhand von Zeichnungen näher erläutert.

Fig. 1
zeigt stark schematisch einen senkrechten Axialschnitt durch eine Vorrichtung zum Prüfen von Kraftfahrzeugreifen mit Hilfe einer Rundstrahlröhre nach der Erfindung.
Fig. 2
zeigt schematisch einen Schnitt durch eine Rundstrahlröhre nach der Erfindung, etwa der nach Fig.1.
Fig. 3
zeigt äußerst schematisch den Aufbau einer Rundstrahlröhre nach Fig. 2.
Fig. 4
zeigt einen Schnitt durch eine abgewandelte Rundstrahlröhre nach der Erfindung.

The invention is explained in more detail below with reference to drawings.
Fig. 1
schematically shows a vertical axial section through a device for testing motor vehicle tires with the help of an omnidirectional tube according to the invention.
Fig. 2
shows schematically a section through an omnidirectional tube according to the invention, such as that of Fig.1.
Fig. 3
shows extremely schematically the structure of an omnidirectional tube according to FIG. 2.
Fig. 4
shows a section through a modified omnidirectional tube according to the invention.

Bevor auf die in den Zeichnungen dargestellten Einzelheiten näher eingegangen wird, sei vorangestellt, daß jedes der beschriebenen Merkmale für sich oder in Verbindung mit Merkmalen der Ansprüche von erfindungswesentlicher Bedeutung sein kann.Before going into the details shown in the drawings, it should be assumed that each of the features described individually or in conjunction with Features of the claims can be of essential importance to the invention.

In Fig. 1 ist ein Schnitt durch zwei in der Größe unterschiedliche Reifen 10, 11 gezeigt. Ihre Flanken oder Seitenwände 12, 13 bzw. 12′, 13′ und ihre Lauffläche 14 bzw. 14′ sind mit einem Kunststoffcord 15 bzw. Stahlcord oder dergleichen versehen. Der Reifen 10 bzw. 11 ist um seine Achse in bekannter weise drehbar abgestützt. Die entsprechenden konstruktiven Vorkehrungen hierfür sind nicht gezeigt; sie sind Stand der Technik. Auch die Schutzvorkehrungen bei Röntgenprüfvorrichtungen sind nicht gezeigt.1 shows a section through two tires 10, 11 of different sizes. Their flanks or side walls 12, 13 or 12 ', 13' and their tread 14 or 14 'are provided with a plastic cord 15 or steel cord or the like. The tire 10 and 11 is rotatably supported about its axis in a known manner. The corresponding constructive arrangements for this are not shown; they are state of the art. The protective measures for X-ray inspection devices are also not shown.

Man erkennt in Fig. 1, daß eine Röntgenrundstrahlröhre 16 am Eingang der Reifen 10 bzw. 11 angeordnet ist. In einer Radialebene zum Reifen (hier in der Zeichenebene) weist die Röntgenrundstrahlröhre 16 einen Strahlungswinkel von etwa 300° auf. In der radialen Ebene werden daher alle Bereiche des Reifens von der Strahlung der Röhre 16 durchstrahlt, und zwar annähernd in einem Winkel von 90°. Es versteht sich, daß die Röntgenstrahlröhre 16 weiter in das Innere der Reifen 10 bzw. 11 verlegt sein kann, jedoch auch weiter außerhalb. In einer Ebene senkrecht zur Radialebene weist die Rundstrahlröntgenröhre 16 einen Strahlungswinkel von etwa 40° auf.1 that an X-ray omnidirectional tube 16 is arranged at the entrance to the tires 10 and 11, respectively. In a radial plane for ripening (here in the drawing plane), the X-ray omnidirectional tube 16 has a radiation angle of approximately 300 °. In the radial plane, therefore, all areas of the tire are irradiated by the radiation of the tube 16, approximately at an angle of 90 °. It goes without saying that the X-ray tube 16 can be laid further inside the tires 10 or 11, but also further outside. In a plane perpendicular to the radial plane, the omnidirectional x-ray tube 16 has a radiation angle of approximately 40 °.

Auf der Außenseite der Außenwände 12, 13 bzw. 12′, 13′ und der Außenseite der Lauffläche 14, 14′ sind Diodenanordnungen 17, 18 und 19 vorgesehen. In Fig. 1 sind diese lediglich schematisch angedeutet. Jede Diodenanordnung 17 bis 19 enthält eine lineare Anordnung einzelner lichtempfindlicher Dioden, wobei die Diodenreihe der Anordnungen 17 und 19 annähernd durchmesserparallel ist, während die Reihe der Dioden der Anordnung 18 achsparallel verläuft. Die Dioden werden periodisch abgetastet, wobei die abgetasteten Signale in bekannter Weise so gespeichert werden, daß eine Reihe von Abtastungen gleichzeitig auf einer Wiedergabevorrichtung 20, beispielsweise einem Bildschirm, erscheint. Die Wiedergabevorrichtung 20 ist ebenfalls sehr schematisch angedeutet. Sie kann beispielsweise aus drei einzelnen Bildschirmen bestehen oder auch aus nur einem einzigen, auf dem alle Bereiche der Reifen 10 bzw. 11 abgebildet werden.On the outside of the outer walls 12, 13 and 12 ', 13' and the outside of the tread 14, 14 ', diode arrangements 17, 18 and 19 are provided. These are only indicated schematically in FIG. 1. Each diode arrangement 17 to 19 contains a linear arrangement of individual light-sensitive diodes, the row of diodes of the arrangements 17 and 19 being approximately parallel in diameter, while the row of diodes of the arrangement 18 is axially parallel. The diodes are scanned periodically, the scanned signals being stored in a known manner so that a series of scans appear simultaneously on a display device 20, for example a screen. The playback device 20 is also indicated very schematically. It can consist, for example, of three individual screens or of just one, on which all areas of the tires 10 and 11 are shown.

Die Diodenanordnungen 17 bis 19 bilden ein U und sind gemeinsam an einem nicht gezeigten Bauteil gelagert, das in Richtung des Doppelpfeils 21 verstellbar im Maschinengestell (nicht gezeigt) gelagert ist. Die Diodenanordnungen 17 und 19 sind ihrerseits parallel zu sich selbst im bauteil verstellbar gelagert, wie durch die Doppelpfeile 22 angedeutet. Damit läßt sich ein gleicher Abstand zur Außenseite des Reifens 10 bzw. 11 bzw. zur Lauffläche herstellen und ein einheitlicher Abbildungsmaßstand erreichen. Die Verstellvorrichtungen sind ebenfalls nicht gezeigt. Sie können von beliebigem bekannten Aufbau sein.The diode arrangements 17 to 19 form a U and are mounted together on a component, not shown, which is mounted in the machine frame (not shown) so as to be adjustable in the direction of the double arrow 21. The diode arrays 17 and 19 are in turn adjustable parallel to themselves in the component, as by the double arrows 22 indicated. This makes it possible to produce an equal distance from the outside of the tire 10 or 11 or from the tread and to achieve a uniform imaging standard. The adjustment devices are also not shown. They can be of any known construction.

In Fig. 2 ist von der Rundstrahlröhre 16 nach Fig. 1 lediglich das Target 30 und das es umgebende Berylliumfenster 31 dargestellt. Die Röhrenachse ist mit 32 bezeichnet, und die beiden Heizwendeln und die ihnen zugeordneten Elektronenstrahloptiken sind nicht gezeigt. Diese sind indessen in Fig. 3 sehr schematisch wiedergegeben. Die Heizwendeln sind dort mit 33 und 34 und die Elektronenstrahloptiken mit 35 bzw. 36 bezeichnet. Wie erkennbar, weist das Target 30 zwei im Winkel zueinanderstehende Dachflächen 37, 38 auf, die sich im "First" 39 schneiden. Die Dachflächen 37, 38 sind jedoch zur Röhrenachse 32 gekippt in der Weise, daß Brennflecke 40, 41 ausgebildet werden. Jeder Dachfläche 37, 38 mit zugehörigem Brennfleck 40, 41 entspricht nun ein eigener Sektor A bzw. B. Der "First" 39 ist so gelegt, daß sich die Totzone in der Ebene des Firstes 39 durch den Bereich erstreckt, in dem die Diodenzeilen 18, 19 aneinanderstoßen. In diesem Bereich wäre ohnehin eine Abbildung der durchstrahlten Flächen nicht möglich. Es versteht sich, daß eine zusätzliche Abschirmung in der Ebene durch den First 39 vorgesehen werden kann, um ein Überlagern der Strahlungen von den Brennflecken 40, 41 zu verhindern.In FIG. 2, only the target 30 and the beryllium window 31 surrounding it are shown of the omnidirectional tube 16 according to FIG. 1. The tube axis is designated 32, and the two heating coils and the electron beam optics assigned to them are not shown. However, these are shown very schematically in FIG. 3. The heating coils are designated 33 and 34 and the electron beam optics 35 and 36, respectively. As can be seen, the target 30 has two roof surfaces 37, 38 which are at an angle to one another and intersect in the "ridge" 39. However, the roof surfaces 37, 38 are tilted to the tube axis 32 in such a way that focal spots 40, 41 are formed. Each roof surface 37, 38 with associated focal spot 40, 41 now corresponds to its own sector A or B. The "ridge" 39 is placed in such a way that the dead zone extends in the plane of the ridge 39 through the area in which the diode rows 18 , 19 collide. In this area there would be no image of the irradiated areas anyway possible. It is understood that additional shielding can be provided in the plane by the ridge 39 in order to prevent the radiation from the focal spots 40, 41 from being superimposed.

Bezogen auf das Prüfen von Reifen gemäß Fig. 1 sorgt die Strahlung, die vom Brennfleck 40 ausgeht, für die Durchstrahlung der in Fig. 1 linken Reifenwandung und seiner Lauffläche, während diejenige des Brennflecks 41 die rechte Reifenwandung bestrahlt. Da die Brennflecke eine sehr geringe Ausdehnung haben, wird die Auflösung, die ohnehin wegen der nahen Anordnung der Rundstrahlröhre 16 an den zu durchstrahlenden Bereichen relativ gut ist, noch erheblich verbessert.1, the radiation emanating from the focal spot 40 ensures that the left tire wall and its tread in FIG. 1 are irradiated, while that of the focal spot 41 irradiates the right tire wall. Since the focal spots have a very small extent, the resolution, which is relatively good anyway due to the close arrangement of the omnidirectional tube 16 at the areas to be irradiated, is considerably improved.

Bei der Ausführungsform nach Fig. 4 wird eine vierseitige Pyramide in der der Kathode zugeordneten Zone des Targets 50 vorgesehen, das ebenfalls von einem Berylliumfenster 51 in bekannter Weise umgeben ist. Die drei Seitenflächen der Pyramide sind mit 52, 53 und 54 bezeichnet. Die dazwischenliegenden Kanten tragen die Bezugszeichen 55, 56 und 57. Mit Hilfe der nicht gezeigten drei Röntgenquellen und den zugeordneten drei Elektronenstrahloptiken werden auf den Flächen 52 bis 54 drei Brennflecke 60, 61 und 62 erzeugt. Den Kanten 55 und 57 sind Bleiplatten 63, 64 zugeordnet, die sich in einer Ebene annähernd durch die Kanten 55, 57 erstrecken. Sie dienen zur zusätzlichen Abschirmung der von den Brennflecken 60 bis 62 ausgehenden Röntgenstrahlung, um eine Überlappung bzw. Überlagerung in den aneinandergrenzenden Sektoren zu vermeiden. Der vom Brennfleck 60 abgedeckte Sektor A hat zum Beispiel einen Winkel von 72°, kann daher zum Durchstrahlen der Lauffläche gemäß der Ausführungsform nach Fig. 1 dienen. Die von den Brennflecken 61, 62 ausgehende Strahlung wird dementsprechend zur Prüfung der Wandung der Reifen verwendet.In the embodiment according to FIG. 4, a four-sided pyramid is provided in the zone of the target 50 assigned to the cathode, which is also surrounded by a beryllium window 51 in a known manner. The three side faces of the pyramid are labeled 52, 53 and 54. The intermediate edges have the reference numerals 55, 56 and 57. With the help of the three X-ray sources, not shown, and the associated three electron beam optics, three focal spots 60, 61 and 62 are generated on the surfaces 52 to 54. The edges 55 and 57 are assigned lead plates 63, 64, which extend approximately in one plane through the edges 55, 57. They are used for additional shielding of the X-rays emanating from the focal spots 60 to 62 in order to avoid overlapping or overlapping in the adjacent sectors. The sector A covered by the focal spot 60 has, for example, an angle of 72 ° and can therefore serve to shine through the tread according to the embodiment according to FIG. 1. The radiation emanating from the focal spots 61, 62 is accordingly used to check the wall of the tires.

Die im übrigen für die erfindungsgemäße Röntgenstrahlröhre zu verwendenden Bauteile und Werkstoffe, zum Beispiel für die Kathode, das Target usw. sind im stand der Technik bekannt und müssen nicht gesondert erwähnt werden.The components and materials to be used for the X-ray tube according to the invention, for example for the cathode, the target, etc., are known in the prior art and need not be mentioned separately.

Claims (7)

1. Omni-directional X-ray tube comprising an annular-section-like window (31) allowing the transmission of X-rays and partially surrounding a target (30), and a structure, on the one hand, of a cathode and an electron beam optical means and, on the other hand, of the target such that the radiation leaving the window sweeps over a larger sector in the plane of the window, characterized by a cathode arrangement including at least two electron sources (33, 34) with associated electron optical means (35, 36), and by a structure of the optical means (35, 36) and the target (30, 50) such that by each of said electron optical means a focal point (40, 41; 60, 61, 62, respectively) is generated on the target (30, 50) and that the radiation originating from the individual focal points sweeps over adjacent subsectors (A, B) and are substantially screened against each other.
2. The X-ray tube according to claims 1, characterized in that the portion of the target (30) facing the cathode is designed like a saddle roof, and the focal points (40, 41) are formed on each of the roof surfaces (37, 38).
3. The X-ray tube according to claim 1, characterized in that the portion of the target (50) facing the cathode has the configuration of a quadrihedral pyramid (50), a focal point (60, 61, 62) being formed on each of the three lateral surfaces (52, 53, 54).
4. The X-ray tube according to claim 1, characterized in that the target has the configuration of a cone, at least two circumferentially spaced focal points being formed on the circumference thereof.
5. The X-ray tube according to one of the claims 1 to 4, characterized in that a flat screen (63, 64), preferably of lead or the like, is located between the subsectors.
6. Use of an X-ray tube according to one of the claims 1 to 5 in a device for a universal X-ray examination of a vehicle tyre supported rotatably during one tyre rotation, wherein the omni-directional X-ray tube is arranged in the space surrounded by the tyre adjacent its opened inner side such that its radiation is penetrating the outer walls and the tread of the tyre from inside to outside, the receiving means being formed by linear diode arrangements which are positioned approximately parallel to the diameter and the axis, respectively.
7. Use according to claim 6, characterized by an arrangement and a structure of the target such that at least one dead zone between adjacent subsectors extending through the region between facing linear diode arrangements (18, 19).
EP88113832A 1988-08-25 1988-08-25 Omnidirectional x-ray tube Expired - Lifetime EP0355192B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT88113832T ATE72498T1 (en) 1988-08-25 1988-08-25 ROUND RAY X-RAY TUBE.
EP88113832A EP0355192B1 (en) 1988-08-25 1988-08-25 Omnidirectional x-ray tube
DE8888113832T DE3868324D1 (en) 1988-08-25 1988-08-25 ROUND JET X-RAY TUBE.
US07/554,963 US5003568A (en) 1988-08-25 1990-07-20 Omni-directional X-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP88113832A EP0355192B1 (en) 1988-08-25 1988-08-25 Omnidirectional x-ray tube

Publications (2)

Publication Number Publication Date
EP0355192A1 EP0355192A1 (en) 1990-02-28
EP0355192B1 true EP0355192B1 (en) 1992-02-05

Family

ID=8199226

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88113832A Expired - Lifetime EP0355192B1 (en) 1988-08-25 1988-08-25 Omnidirectional x-ray tube

Country Status (4)

Country Link
US (1) US5003568A (en)
EP (1) EP0355192B1 (en)
AT (1) ATE72498T1 (en)
DE (1) DE3868324D1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4684063B2 (en) * 2005-09-22 2011-05-18 株式会社ブリヂストン Tire X-ray imaging apparatus and tire X-ray imaging method

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE440013C (en) * 1925-07-23 1927-01-27 Gebbert & Schall A G X-ray tube with a wedge-shaped anticathode
US2215426A (en) * 1939-04-07 1940-09-17 Machlett Lab Inc X-ray tube
US2812462A (en) * 1953-05-18 1957-11-05 Gen Electric Anode structure
US2836757A (en) * 1957-02-11 1958-05-27 Dunlee Corp X-ray generator target construction
CH355225A (en) * 1958-01-22 1961-06-30 Foerderung Forschung Gmbh Method and device for controlling and correcting the position of the focal spot generated by a cathode ray on the anti-cathode of an X-ray tube
US3518745A (en) * 1967-12-27 1970-07-07 Northrop Corp Installation tool
US3649861A (en) * 1970-09-09 1972-03-14 Picker Corp Double focus x-ray tube
US3873837A (en) * 1970-12-07 1975-03-25 Picker Corp Tire inspection apparatus
DE2138433A1 (en) * 1971-07-31 1973-02-08 Licentia Gmbh ROENTINE PIPE
GB1385738A (en) * 1971-10-06 1975-02-26 Picker Corp Inspection of tyres
DE2237153C3 (en) * 1972-07-28 1978-05-18 Collmann Gmbh & Co Spezialmaschinenbau Kg, 2400 Luebeck Device for picking up and introducing a pneumatic tire, which is required in a lying position, into a testing or processing station and vice versa
DE2239003C3 (en) * 1972-08-08 1978-11-09 Collmann Gmbh & Co Spezialmaschinenbau Kg, 2400 Luebeck Device for all-round X-ray testing of a rotatably braced motor vehicle tire
DE2262982C3 (en) * 1972-12-19 1979-06-13 Werner Dipl.-Phys. Dr. 3008 Garbsen Krebs Tire tester
US4032785A (en) * 1974-03-28 1977-06-28 United States Steel Corporation Tire inspection machine presenting an x-ray image of the entire width of the tire
DE3222511C2 (en) * 1982-06-16 1985-08-29 Feinfocus Röntgensysteme GmbH, 3050 Wunstorf Fine focus X-ray tube
FR2531571A1 (en) * 1982-08-06 1984-02-10 Thomson Csf X-RAY TUBE UNIVERSAL FOR STEREOGRAPHY
DE3229913A1 (en) * 1982-08-11 1984-03-29 Heimann Gmbh, 6200 Wiesbaden Device for producing X-ray images of bodies
GB2133208B (en) * 1982-11-18 1986-02-19 Kratos Ltd X-ray sources
EP0141041B1 (en) * 1983-08-26 1990-01-03 feinfocus Verwaltungs GmbH &amp; Co. KG X-ray lithographic apparatus
US4679219A (en) * 1984-06-15 1987-07-07 Kabushiki Kaisha Toshiba X-ray tube
DE3530938A1 (en) * 1985-08-29 1987-03-12 Heimann Gmbh LUGGAGE TEST SYSTEM
DE3530955A1 (en) * 1985-08-29 1987-03-05 Heimann Gmbh LUGGAGE TEST SYSTEM
DE8715213U1 (en) * 1987-11-02 1988-01-14 Spezialmaschinenbau Steffel GmbH & Co KG, 2418 Ratzeburg Device for all-round X-ray inspection of a rotatably supported motor vehicle tire during one tire rotation

Also Published As

Publication number Publication date
DE3868324D1 (en) 1992-03-19
US5003568A (en) 1991-03-26
EP0355192A1 (en) 1990-02-28
ATE72498T1 (en) 1992-02-15

Similar Documents

Publication Publication Date Title
DE3689231T2 (en) X-ray source.
EP0990892B1 (en) CT-Method using a conical beam, and CT Apparatus
DE4015180C2 (en)
DE2902308A1 (en) ROENTINE PIPE
DE3840398A1 (en) TURNING ANODE TUBE TUBES
DE3737159C2 (en)
DE102005009817B4 (en) A shadow mask for an X-ray detector, computed tomography apparatus, comprising a shadow mask and method for adjusting a shadow mask
EP1580765A2 (en) Secondary collimator for an X-ray scattering apparatus and X-ray scattering apparatus
DE2648503A1 (en) RADIOGRAPHIC DEVICE
EP0037008A1 (en) Radiodiagnostic apparatus
DE4041296A1 (en) PRIMARY RADIATION
EP1177767B1 (en) Computer tomograph with coneshaped beam and helicoidal relative movement
DE3104052A1 (en) &#34;X-RAY EXAMINATION ARRANGEMENT WITH HIGH LOCAL RESOLUTION&#34;
DE2723462C2 (en) X-ray diagnostic device for transverse slice images
EP4126438A1 (en) Method and device for generating a camera image of a welding seam for an image processing-supported laser transmission welding method
EP0355192B1 (en) Omnidirectional x-ray tube
DE19964395B4 (en) Computer-aided tomography method
EP1000408B1 (en) Computer tomagraphy method with helical scanning of an examination area
DE102013104193A1 (en) CT X-ray inspection system, in particular for the inspection of objects
EP0440847B1 (en) Appparatus for X-ray testing of a vehicle tyre
DE102022101379B4 (en) LASER PROCESSING HEAD AND LASER PROCESSING SYSTEM WITH RELATIVE LASER PROCESSING HEAD
DE19626095C2 (en) Computer tomograph
DE8715213U1 (en) Device for all-round X-ray inspection of a rotatably supported motor vehicle tire during one tire rotation
WO1996000387A1 (en) Device for measuring the size of irregularities on the inside walls of containers using ultrasonics
EP3438525B1 (en) Lighting device for simulation apparatus for motor vehicle accidents

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890521

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19910710

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19920205

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19920205

REF Corresponds to:

Ref document number: 72498

Country of ref document: AT

Date of ref document: 19920215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3868324

Country of ref document: DE

Date of ref document: 19920319

ITF It: translation for a ep patent filed
ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930525

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930528

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930607

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930621

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930719

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19930728

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930817

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930831

Year of fee payment: 6

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940825

Ref country code: GB

Effective date: 19940825

Ref country code: AT

Effective date: 19940825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940831

Ref country code: CH

Effective date: 19940831

Ref country code: BE

Effective date: 19940831

EAL Se: european patent in force in sweden

Ref document number: 88113832.5

BERE Be: lapsed

Owner name: SPEZIALMASCHINENBAU STEFFEL G.M.B.H. & CO. K.G.

Effective date: 19940831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950428

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 88113832.5

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971016

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050825