EP0354860A1 - Highly integrated EPROM device laid out in a grid and having an altered coupling factor and a redundancy capability - Google Patents

Highly integrated EPROM device laid out in a grid and having an altered coupling factor and a redundancy capability Download PDF

Info

Publication number
EP0354860A1
EP0354860A1 EP89420289A EP89420289A EP0354860A1 EP 0354860 A1 EP0354860 A1 EP 0354860A1 EP 89420289 A EP89420289 A EP 89420289A EP 89420289 A EP89420289 A EP 89420289A EP 0354860 A1 EP0354860 A1 EP 0354860A1
Authority
EP
European Patent Office
Prior art keywords
transistor
transistors
memory
floating gate
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89420289A
Other languages
German (de)
French (fr)
Inventor
Albert Bergemont
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SA
Original Assignee
SGS Thomson Microelectronics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SGS Thomson Microelectronics SA filed Critical SGS Thomson Microelectronics SA
Publication of EP0354860A1 publication Critical patent/EP0354860A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0491Virtual ground arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • H01L29/7884Programmable transistors with only two possible levels of programmation charging by hot carrier injection
    • H01L29/7885Hot carrier injection from the channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Definitions

  • the present invention relates to semiconductor memories, and more particularly to electrically programmable non-volatile memories, more commonly called EPROM memories; the manufacture of floating gate memories is more specifically concerned.
  • FIGS. 1A and 1B A conventional memory elementary memory point is shown in FIGS. 1A and 1B, FIG. 1A being a representation in the form of an electrical diagram and FIG. 1B being a schematic sectional view of the elementary memory point.
  • FIG. 1A represents a transistor T of a floating gate memory point.
  • This transistor has a floating gate 1 and a control gate 2, as well as two regions semiconductors of a first type of conductivity (source 3 and drain 4) separated by a channel region of an opposite type of conductivity covered by the floating gate 1 and the control gate 2.
  • the control gate 2 is connected to a word line LM.
  • the drain 4 is connected to a bit line LB.
  • a voltage is applied to the control gate of the transistor of this memory point that is both greater than the conduction trigger threshold voltage in the non-state programmed and lower than the conduction trigger threshold voltage in the programmed state. If the transistor conducts current when a suitable potential difference is applied between the source and the drain, the memory point is in the non-programmed state. If the transistor does not conduct current, the memory point is in the programmed state.
  • Vpp programming potential The potential applied to the control grid when programming the memory point, or Vpp programming potential, is for example 15 volts.
  • the drain potential Vcc is then for example 10 volts, and the source potential Vss is for example zero volts, or ground.
  • the potential applied to the control grid when reading the memory point is for example 5 volts.
  • the drain potential Vcc is then for example 1.5 volts, and the source potential Vss is for example zero volts, or ground.
  • FIG. 1B which represents a sectional view of a memory point implanted on a silicon wafer, there is the floating gate 1 and the control gate 2 of the transistor.
  • the source 3 and the drain 4 which are two semiconductor regions of a first type of conductivity, for example N+, separated by a channel region 7 of an opposite type of conductivity, for example P ⁇ .
  • the floating gate 1 of the transistor is produced by a first level of polycrystalline silicon (poly 1). It is separated from the substrate by a layer of silicon dioxide 5, also called the gate oxide layer.
  • silicon dioxide 6 This layer is located between the floating grid 1 and the control grid 2, the latter being produced by a second level of polycrystalline silicon (poly 2) .
  • the silicon dioxide layer 6 thus also bears the name of the interpoly oxide layer.
  • control gate 2 of the transistor is connected to a word line LM.
  • Source 3 is connected to ground, and drain 4 to a bit line LB.
  • French patent application 86/12938 has proposed structures in which the thick oxide zones and the multiple contacts to the drains or sources are deleted. These structures are called checkerboard structures.
  • FIG. 2 represents a top view of nine adjacent memory points in such a checkerboard-type structure.
  • the various floating-gate transistors constituting the array of memory points are designated by Tij, where i is a row index and j a column index.
  • the transistors T11 to T13 are those of the first row
  • the transistors T21 to T23 are those of the second row
  • the transistors T31 to T33 are those of the third row.
  • the transistors T11 to T31 are those of the first column
  • the transistors T12 to T32 are those of the second column
  • the transistors T13 to T33 are those of the third column.
  • the control gates of the transistors of the same row are all connected to the same word line, LM1 to LM3 for the rows 1 to 3, respectively.
  • the word lines are conductors (in practice in polycrystalline silicon) extending in a horizontal direction (direction of the rows).
  • Each transistor shares with the two adjacent transistors on the same row a region produced by a diffusion of the first type of conductivity which extends along a column to form a bit line, which is designated by LB1, LB2, LB3 and LB4 for columns 1 to 4, respectively, and by LBj generally speaking.
  • These lines LBj can thus make, at the location of the transistors, either the source office or the drain office.
  • FIG. 3 represents a sectional view along the axis YY ′ of FIG. 2.
  • the devices are located on a substrate 10.
  • the floating gates 11 of the transistors are produced by a first level of polycrystalline silicon (poly 1) and located between two bit lines.
  • the control gates 12 of the transistors are formed by the parts of the word line LM2 located at the location of the transistors.
  • the word lines, and thus the control grids of the transistors, are produced by a second level of polycrystalline silicon (poly 2).
  • a gate oxide layer 13 is located under the floating gate of the transistors.
  • An isolation zone 14 is located between the floating gates of the transistors. Conventionally, a planarization process is used so that the upper surfaces of this isolation zone 14 and of the first level of polycrystalline silicon are at the same level.
  • This isolation zone 14 is for example made up of orthosilicate tetraethyl or TEOS.
  • An interpoly oxide layer 15 covers the floating gates 11 and the isolation zones 14.
  • FIG. 4 represents a diagram of the capacities existing at the location of a transistor, for example the transistor T22.
  • V F ⁇ V M and which is defined by the ratio between the capacity at the interpoly oxide layer and the sum of all the capacities present.
  • the numerical value of the coupling factor is then equal to the ratio between the quantities 0.5 / 20 and 0.5 / 20 + 0.5 / 20, ie only 0.5.
  • the present invention provides a new structure which improves the coupling factor.
  • this new structure does not have a thick oxide zone, which allows the memory to occupy a reduced bulk.
  • the memory whose memory points consist of floating gate MOS transistors is composed of a network of word lines extending in a first direction called row, and bit lines extending along a second direction called column.
  • each transistor comprises two regions, each serving either to source or drain, each of the two regions is constituted by a diffusion of a first type of conductivity which is extended along a column to form a bit line in a substrate of the second type of conductivity, the floating gate of each transistor is produced by a first level of polycrystalline silicon, and an isolation zone is located between each pair of floating grids of the same row.
  • a conductive zone produced by a second level of polycrystalline silicon contacts and covers, in the direction of the rows, the floating gate of each transistor by projecting in the direction of the rows.
  • the conductive areas are covered on their upper surface with an interpoly oxide layer, and they are covered at their two ends, in the direction of the rows, by a corner oxide area.
  • the word lines of dimensions along the direction of the columns substantially equal to those of the floating gate of the transistors and produced by a third level of polycrystalline silicon, cover the layers of interpoly oxide, the corner oxide zones and the parts isolation zones not covered by the corner oxide zones.
  • the conductive area in each transistor is opposite the word line connected to the transistor, this word line corresponding, at the location of the conductive areas, to the control gate.
  • FIG. 5 represents a top view of an embodiment of the structure according to the present invention. As in the case of FIG. 2, the transistors are arranged in an array of rows and columns.
  • control gates of the transistors of row i are still all connected to word lines LMi.
  • the bit lines LBj are located between each pair of columns of transistors and can act, at the location of the transistors, either as source office or as drain office.
  • a conductive area 25 is in contact with the floating gate of each transistor of the memory.
  • FIG. 6 shows a sectional view along the axis YY 'of Figure 5. We see in this figure two transistors designated by T22 and T23.
  • Each of the two transistors T22 and T23 comprises two regions 21 formed by a diffusion of a first type of conductivity which extends along a column to form a bit line. These bit lines are designated by LB2, LB3 and LB4 in the figure.
  • the floating gates 23 of the transistors are produced by a first level of polycrystalline silicon (poly 1).
  • a gate oxide layer 24 is located under the floating gates of the transistors.
  • a conductive zone 25 contacts and covers in the direction of the rows the floating gate of each of the two transistors T22 and T23. It is produced by a second level of polycrystalline silicon (poly 2).
  • This conductive zone 25 is covered on its upper surface by an interpoly oxide layer 26, and it is covered at its ends, in the direction of the rows, by an oxide zone 27 which is called the corner oxide zone.
  • An isolation zone 29 is located between the floating gates of the transistors. As in the case of the structure shown in FIG. 3, a planarization process is used so that the upper surfaces of this zone 29 and of the first level of polycrystalline silicon are at the same level.
  • This area 29 is for example made up of TEOS.
  • the word line LM2 covers the whole.
  • the interpoly oxide layer 26 and the corner oxide zones 27 make it possible to isolate the conductive zone 25 from the word line LM2.
  • the word line LM2 acts as a control grid 28 at the location of the conductive zones 25.
  • FIG. 7 shows a sectional view along the axis ZZ 'of Figure 5.
  • This figure shows transistors designated by T13, T23 and T33.
  • the transistors each have a floating gate 23 located above the gate oxide layer 24.
  • the conductive zone 25 is placed above the floating gates 23 and below the interpoly oxide layer 26. It is observed also the word lines LM1, LM2 and LM3, located above the interpoly oxide layers 26, which act as a control grid 28 at the location of the conductive areas.
  • FIG. 8 represents a diagram of the capacities existing at the location of a memory point of the structure according to the present invention, for example the memory point comprising the transistor T22.
  • the capacity at the level of the interpoly oxide layer 26 denoted C OI1 and located between the word line LM2 and the conductive area 25.
  • C OI1 the capacity at the level of the interpoly oxide layer 26
  • C OG1 the capacity at the level of the oxide layer grid 24 located between the floating grids 23 and the substrate 20.
  • the conductive zone 25 extends beyond the floating grid of the transistors in the direction of the rows, a capacity C OD1 and a capacity C OD2 at the level of the zone d 'TEOS type isolation, each of these two capacities corresponding to overflow on one side.
  • a numerical value representative of the coupling factor can be calculated using the following usual values: - length of the floating grid in the direction of the rows: 0.5 micrometer; - total length of overflow from the conductive zone 25 (the overflows on each side of the floating grid are thus grouped together): 0.2 micrometer; - thickness of the interpoly oxide layer: 20 nm; - thickness of the gate oxide layer: 20 nm; - thickness of the TEOS type isolation zone: 200 nm.
  • the numerical value of the coupling factor is then equal to the ratio between the quantities (0.5 + 0.2) / 20 and (0.5 + 0.2) / 20 + 0.5 / 20 + 0.2 / ( 200 + 20).
  • the coupling factor is then equal to 0.58.
  • the structure according to the invention thus makes it possible to improve the coupling factor.
  • This structure also has good planarization conditions due to the absence of a thick oxide zone.
  • Figure 9 shows, in a section similar to that of Figure 6, and with the same reference numerals whenever possible, an alternative embodiment of the invention which allows the use of a conventional addressing section.
  • T1, T2 denotes a pair of adjacent transistors which will be connected by the addressing system to constitute a single memory point PM.
  • the memory then has a so-called half-checkerboard structure.
  • the transistors T1 and T2 share a common drain region 40.
  • Each of the two transistors T1 and T2 comprises a source region 41, 42 shared with a transistor of an adjacent memory point of the same row.
  • the floating gates 23, 25 of the transistors T1, T2 are addressed simultaneously by the memory addressing system.
  • the half-checkerboard structure has redundancy. Indeed, if the floating gate of one of the transistors loses its charge, we can still read the charge present on the floating gate of the other.
  • the structure observed in FIG. 9 has other advantages in addition to the high security resulting from redundancy.
  • a conductive line (not shown in the figures), for example made of aluminum, is conventionally located above each bit line.
  • a conductive line is located between each pair of columns of transistors.
  • two columns of transistors separate two adjacent conductive lines. The development of the conductive lines will thus be easier to carry out in the second case.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

The present invention relates to an electrically programmable nonvolatile memory composed of a grid of word lines (LM2) extending along a first direction referred to as a row direction, and of bit lines (LB2 to LB4) extending along a second direction referred to as a column direction. A conductive zone (25) formed by a second level of polycrystalline silicon contacts and covers the floating gate (23) of each transistor, projecting in the direction of the rows. The conductive zone (25) in each transistor is opposite the word line connected to the transistor, this word line corresponding, at the site of the conductive zones, to the control gate (28). <IMAGE>

Description

La présente invention concerne les mémoires à semicon­ducteur, et plus particulièrement les mémoires non-volatiles électriquement programmables, plus couramment appelées mémoires EPROM ; la fabrication des mémoires à grille flottante est plus précisément concernée.The present invention relates to semiconductor memories, and more particularly to electrically programmable non-volatile memories, more commonly called EPROM memories; the manufacture of floating gate memories is more specifically concerned.

Pour obtenir des mémoires de grande capacité de stoc­kage, par exemple des mémoires capables de stocker jusqu'à 16 mégabits, on doit réduire le plus possible la dimension de chacune des cellules constituant la mémoire.To obtain memories with large storage capacity, for example memories capable of storing up to 16 megabits, the size of each of the cells constituting the memory must be reduced as much as possible.

Mais on est évidemment limité par des considérations physiques, et notamment par la finesse des motifs que permettent les étapes de photolithographie ; on est limité aussi par les paramètres électriques parasites qui sont dus au processus de fabrication et qui perturbent le fonctionnement de la mémoire.However, it is obviously limited by physical considerations, and in particular by the fineness of the patterns which the photolithography stages allow; one is also limited by the parasitic electrical parameters which are due to the manufacturing process and which disturb the functioning of the memory.

Un point-mémoire élémentaire de mémoire classique est représenté sur les figures 1A et 1B, la figure 1A étant une repré­sentation sous forme de schéma électrique et la figure 1B étant une vue en coupe schématique du point-mémoire élémentaire.A conventional memory elementary memory point is shown in FIGS. 1A and 1B, FIG. 1A being a representation in the form of an electrical diagram and FIG. 1B being a schematic sectional view of the elementary memory point.

La figure 1A représente un transistor T d'un point-­mémoire à grille flottante. Ce transistor possède une grille flottante 1 et une grille de commande 2, ainsi que deux régions semiconductrices d'un premier type de conductivité (source 3 et drain 4) séparées par une région de canal d'un type de conducti­vité opposé recourverte par la grille flottante 1 et la grille de commande 2.FIG. 1A represents a transistor T of a floating gate memory point. This transistor has a floating gate 1 and a control gate 2, as well as two regions semiconductors of a first type of conductivity (source 3 and drain 4) separated by a channel region of an opposite type of conductivity covered by the floating gate 1 and the control gate 2.

La grille de commande 2 est reliée à une ligne de mot LM. Le drain 4 est relié à une ligne de bit LB.The control gate 2 is connected to a word line LM. The drain 4 is connected to a bit line LB.

Pour programmer, ou écrire, un tel point-mémoire, on charge sa grille flottante 1 par injection de porteurs chauds, en appliquant à la grille de commande 2, pendant que le transistor conduit un courant entre ses régions de source 3, mises à la mas­se, et de drain 4, un potentiel suffisamment élevé pour que les porteurs de charge (électrons) soient attirés et piégés dans la grille flottante. Cette opération d'écriture a pour effet d'augmenter le seuil de conduction du transistor qui, une fois programmé, ne conduira le courant que pour des valeurs de poten­tiel appliqué sur la grille de commande plus élevées qu'en l'absence de programmation.To program, or write, such a memory point, its floating gate 1 is loaded by injection of hot carriers, by applying to the control gate 2, while the transistor conducts a current between its source regions 3, set to mass, and of drain 4, a sufficiently high potential for the charge carriers (electrons) to be attracted and trapped in the floating grid. This writing operation has the effect of increasing the conduction threshold of the transistor which, once programmed, will conduct the current only for potential values applied to the control gate higher than in the absence of programming.

Lors de la lecture de l'information contenue dans un point-mémoire, on applique à la grille de commande du transistor de ce point-mémoire une tension à la fois supérieure à la tension de seuil de déclenchement de conduction à l'état non-programmé et inférieure à la tension de seuil de déclenchement de conduction à l'état programmé. Si le transistor conduit le courant quand une différence de potentiel adaptée est appliquée entre la source et le drain, le point-mémoire est à l'état non-programmé. Si le tran­sistor ne conduit pas le courant, le point-mémoire est à l'état programmé.When reading the information contained in a memory point, a voltage is applied to the control gate of the transistor of this memory point that is both greater than the conduction trigger threshold voltage in the non-state programmed and lower than the conduction trigger threshold voltage in the programmed state. If the transistor conducts current when a suitable potential difference is applied between the source and the drain, the memory point is in the non-programmed state. If the transistor does not conduct current, the memory point is in the programmed state.

Le potentiel appliqué à la grille de commande lorsqu'on programme le point-mémoire, ou potentiel de programmation Vpp, est par exemple de 15 volts. Le potentiel de drain Vcc est alors par exemple de 10 volts, et le potentiel de source Vss est par exemple zéro volt, ou la masse.The potential applied to the control grid when programming the memory point, or Vpp programming potential, is for example 15 volts. The drain potential Vcc is then for example 10 volts, and the source potential Vss is for example zero volts, or ground.

Le potentiel appliqué à la grille de commande lors de la lecture du point-mémoire est par exemple de 5 volts. Le potentiel de drain Vcc est alors par exemple de 1,5 volts, et le potentiel de source Vss est par exemple zéro volt, ou la masse.The potential applied to the control grid when reading the memory point is for example 5 volts. The drain potential Vcc is then for example 1.5 volts, and the source potential Vss is for example zero volts, or ground.

Sur la figure 1B, qui représente une vue en coupe d'un point-mémoire implanté sur une tranche de silicium, on retrouve la grille flottante 1 et la grille de commande 2 du transistor. On voit également la source 3 et le drain 4, qui sont deux régions semiconductrices d'un premier type de conductivité, par exemple N⁺, séparées par une région de canal 7 d'un type de conductivité opposé, par exemple P⁻.In FIG. 1B, which represents a sectional view of a memory point implanted on a silicon wafer, there is the floating gate 1 and the control gate 2 of the transistor. We also see the source 3 and the drain 4, which are two semiconductor regions of a first type of conductivity, for example N⁺, separated by a channel region 7 of an opposite type of conductivity, for example P⁻.

La grille flottante 1 du transistor est réalisée par un premier niveau de silicium polycristallin (poly 1). Elle est sépa­rée du substrat par une couche de dioxyde de silicium 5, également appelée couche d'oxyde de grille.The floating gate 1 of the transistor is produced by a first level of polycrystalline silicon (poly 1). It is separated from the substrate by a layer of silicon dioxide 5, also called the gate oxide layer.

Au-dessus de la grille flottante 1, on trouve une couche de dioxyde de silicium 6. Cette couche est située entre la grille flottante 1 et la grille de commande 2, cette dernière étant réalisée par un deuxième niveau de silicium polycristallin (poly 2). La couche de dioxyde de silicium 6 porte ainsi également le nom de couche d'oxyde interpoly.Above the floating grid 1, there is a layer of silicon dioxide 6. This layer is located between the floating grid 1 and the control grid 2, the latter being produced by a second level of polycrystalline silicon (poly 2) . The silicon dioxide layer 6 thus also bears the name of the interpoly oxide layer.

Dans la mémoire, la grille de commande 2 du transistor est reliée à une ligne de mot LM. La source 3 est reliée à la masse, et le drain 4 à une ligne de bit LB.In memory, the control gate 2 of the transistor is connected to a word line LM. Source 3 is connected to ground, and drain 4 to a bit line LB.

Avec l'architecture de mémoire classique et le mode de programmation associé, il est impératif que le drain d'un tran­sistor soit électriquement isolé, par de l'oxyde de silicium épais (comparativement à l'oxyde de grille des transistors), du drain des transistors adjacents de la même ligne de mot, faute de quoi on ne pourrait programmer un point-mémoire particulier sans programmer ou déprogrammer en même temps les autres.With the classic memory architecture and the associated programming mode, it is imperative that the drain of a transistor is electrically isolated, by thick silicon oxide (compared to the gate oxide of the transistors), from the drain adjacent transistors of the same word line, failing which one could not program a particular memory point without programming or deprogramming the others at the same time.

Mais cet oxyde épais qui isole deux points adjacents oc­cupe beaucoup de place, surtout lorsqu'il est réalisé par la tech­nique dite d'oxydation localisée.However, this thick oxide which isolates two adjacent points takes up a lot of space, especially when it is produced by the technique known as localized oxidation.

On a essayé de remplacer l'oxydation localisée par une isolation par tranchées remplies d'oxyde, pour réduire l'encombre­ment global de la cellule, mais cette technologie n'est pas indus­triellement au point.Attempts have been made to replace localized oxidation with insulation by trenches filled with oxide, in order to reduce the overall bulk of the cell, but this technology is not industrially developed.

Pour réduire l'encombrement des points-mémoire et ainsi augmenter la capacité de stockage de la mémoire, on a proposé dans la demande de brevet français 86/12938 des structures où les zones d'oxyde épais et les contacts multiples vers les drains ou sources sont supprimés. Ces structures sont appelées structures de type damier.To reduce the size of the memory points and thus increase the storage capacity of the memory, French patent application 86/12938 has proposed structures in which the thick oxide zones and the multiple contacts to the drains or sources are deleted. These structures are called checkerboard structures.

La figure 2 représente une vue de dessus de neuf points-­mémoire adjacents dans un telle structure de type damier.FIG. 2 represents a top view of nine adjacent memory points in such a checkerboard-type structure.

On désigne par Tij les différents transistors à grille flottante constituant le réseau de points-mémoire, où i est un indice de rangée et j un indice de colonne.The various floating-gate transistors constituting the array of memory points are designated by Tij, where i is a row index and j a column index.

Ainsi, les transistors T11 à T13 sont ceux de la premiè­re rangée, les transistors T21 à T23 sont ceux de la deuxième ran­gée, et les transistors T31 à T33 sont ceux de la troisième rangée. De même, les transistors T11 à T31 sont ceux de la premiè­re colonne, les transistors T12 à T32 sont ceux de la deuxième co­lonne et enfin les transistors T13 à T33 sont ceux de la troisième colonne.Thus, the transistors T11 to T13 are those of the first row, the transistors T21 to T23 are those of the second row, and the transistors T31 to T33 are those of the third row. Similarly, the transistors T11 to T31 are those of the first column, the transistors T12 to T32 are those of the second column and finally the transistors T13 to T33 are those of the third column.

Les grilles de commande des transistors d'un même ran­gée sont toutes reliées à une même ligne de mot, LM1 à LM3 pour les rangées 1 à 3, respectivement.The control gates of the transistors of the same row are all connected to the same word line, LM1 to LM3 for the rows 1 to 3, respectively.

Les lignes de mot sont des conducteurs (en pratique en silicium polycristallin) s'étendant selon une direction horizon­tale (direction des rangées).The word lines are conductors (in practice in polycrystalline silicon) extending in a horizontal direction (direction of the rows).

Chaque transistor partage avec les deux transistors ad­jacents sur la même rangée une région réalisée par une diffusion du premier type de conductivité qui se prolonge suivant une colon­ne pour former une ligne de bit, que l'on désigne par LB1, LB2, LB3 et LB4 pour les colonnes 1 à 4, respectivement, et par LBj d'une façon générale. Ces lignes LBj peuvent ainsi faire, à l'emplacement des transistors, soit office de source, soit office de drain.Each transistor shares with the two adjacent transistors on the same row a region produced by a diffusion of the first type of conductivity which extends along a column to form a bit line, which is designated by LB1, LB2, LB3 and LB4 for columns 1 to 4, respectively, and by LBj generally speaking. These lines LBj can thus make, at the location of the transistors, either the source office or the drain office.

La figure 3 représente une vue en coupe suivant l'axe YY′ de la figure 2.FIG. 3 represents a sectional view along the axis YY ′ of FIG. 2.

Les dispositifs sont situés sur un substrat 10. Les grilles flottantes 11 des transistors sont réalisées par un pre­mier niveau de silicium polycristallin (poly 1) et situées entre deux lignes de bit. Les grilles de commande 12 des transistors sont formées par les parties de la ligne de mot LM2 situées à l'emplacement des transistors. Les lignes de mot, et ainsi les grilles de commande des transistors, sont réalisées par un deuxiè­me niveau de silicium polycristallin (poly 2).The devices are located on a substrate 10. The floating gates 11 of the transistors are produced by a first level of polycrystalline silicon (poly 1) and located between two bit lines. The control gates 12 of the transistors are formed by the parts of the word line LM2 located at the location of the transistors. The word lines, and thus the control grids of the transistors, are produced by a second level of polycrystalline silicon (poly 2).

Une couche d'oxyde de grille 13 est située sous la grille flottante des transistors.A gate oxide layer 13 is located under the floating gate of the transistors.

Une zone d'isolement 14 est située entre les grilles flottantes des transistors. De façon classique, un procédé de pla­narisation est utilisé pour que les surfaces supérieures de cette zone d'isolement 14 et du premier niveau de silicium polycristal­lin soient au même niveau. Cette zone d'isolement 14 est par exem­ple constituée de tétraéthyle ortho silicate ou TEOS.An isolation zone 14 is located between the floating gates of the transistors. Conventionally, a planarization process is used so that the upper surfaces of this isolation zone 14 and of the first level of polycrystalline silicon are at the same level. This isolation zone 14 is for example made up of orthosilicate tetraethyl or TEOS.

Une couche d'oxyde interpoly 15 recouvre les grilles flottantes 11 et les zones d'isolement 14.An interpoly oxide layer 15 covers the floating gates 11 and the isolation zones 14.

Le mode de programmation de cette architecture est par­ticulier. Il est exposé dans la demande de brevet français préci­tée. Cela est dû fait que chaque point-mémoire partage avec chacun des deux points-mémoire adjacents de la même rangée une ré­gion qui peut être soit région de source soit région de drain.The programming mode of this architecture is particular. It is set out in the aforementioned French patent application. This is due to the fact that each memory point shares with each of the two adjacent memory points of the same row a region which can be either source region or drain region.

La figure 4 représente un schéma des capacités existant à l'emplacement d'un transistor, par exemple le transistor T22.FIG. 4 represents a diagram of the capacities existing at the location of a transistor, for example the transistor T22.

Si l'on applique une tension VM à la ligne de mot LM2, on obtient la tension VF sur la grille flottante 11 en calculant le facteur de couplage γ qui relie ces deux tensions par la rela­tion :
VF = γ VM
et qui est défini par le rapport entre la capacité au niveau de la couche d'oxyde interpoly et la somme de toutes les capacités pré­sentes.
If a voltage V M is applied to the word line LM2, the voltage V F is obtained on the floating gate 11 by calculating the coupling factor γ which connects these two voltages by the relation:
V F = γ V M
and which is defined by the ratio between the capacity at the interpoly oxide layer and the sum of all the capacities present.

Si l'on considère la figure 4, on observe la capacité au niveau de la couche d'oxyde interpoly 15 notée COI et située entre la ligne de mot LM2 et la grille flottante 11. On a aussi une ca­pacité COG au niveau de la couche d'oxyde de grille 13 située en­tre la grille flottante 11 et le substrat 10.If we consider FIG. 4, we observe the capacitance at the level of the interpoly oxide layer 15 denoted C OI and situated between the word line LM2 and the floating gate 11. We also have a capacitance C OG at the level of the gate oxide layer 13 located between the floating gate 11 and the substrate 10.

Le facteur de couplage γ s'écrit :
γ = COI/(COI + COG)
The coupling factor γ is written:
γ = C OI / (C OI + C OG )

On peut calculer une valeur numérique représentative du facteur de couplage en utilisant des valeurs usuelles pour les dimensions des éléments concernés :
- longueur de la grille flottante suivant la direction des rangées : 0,5 micromètre ;
- épaisseur de la couche d'oxyde interpoly : 20 nm ;
- épaisseur de la couche d'oxyde de grille : 20 nm ;
One can calculate a numerical value representative of the coupling factor by using usual values for the dimensions of the elements concerned:
- length of the floating grid in the direction of the rows: 0.5 micrometer;
- thickness of the interpoly oxide layer: 20 nm;
- thickness of the gate oxide layer: 20 nm;

La valeur numérique du facteur de couplage est alors égale au rapport entre les quantités 0,5/20 et 0,5/20 + 0,5/20, soit seulement 0,5.The numerical value of the coupling factor is then equal to the ratio between the quantities 0.5 / 20 and 0.5 / 20 + 0.5 / 20, ie only 0.5.

La présente invention propose une nouvelle structure qui permet d'améliorer le facteur de couplage. De plus, cette nouvelle structure ne présente pas de zone d'oxyde épais, ce qui permet à la mémoire d'occuper un encombrement réduit.The present invention provides a new structure which improves the coupling factor. In addition, this new structure does not have a thick oxide zone, which allows the memory to occupy a reduced bulk.

Selon l'invention, la mémoire dont les points-mémoire sont constitués de transistors MOS à grille flottante est composée d'un réseau de lignes de mot s'étendant suivant une première di­rection dite de rangée, et de lignes de bit s'étendant suivant une deuxième direction dite de colonne. Dans cette mémoire, chaque transistor comprend deux régions faisant chacune office soit de source, soit de drain, chacune des deux régions est constituée par une diffusion d'un premier type de conductivité qui se prolonge suivant une colonne pour former une ligne de bit dans un substrat du deuxième type de conductivité, la grille flottante de chaque transistor est réalisée par un premier niveau de silicium poly­cristallin, et une zone d'isolement est située entre chaque paire de grilles flottantes d'une même rangée. Une zone conductrice réa­lisée par un deuxième niveau de silicium polycristallin contacte et recouvre suivant la direction des rangées la grille flottante de chaque transistor en débordant dans la direction des rangées. Les zones conductrices sont recouvertes sur leur surface supérieu­re d'une couche d'oxyde interpoly, et elles sont recouvertes à leurs deux extrémités, suivant la direction des rangées, par une zone d'oxyde de coin. Les lignes de mot, de dimensions suivant la direction des colonnes sensiblement égales à celles de la grille flottante des transistors et réalisées par un troisième niveau de silicium polycristallin, recouvrent les couches d'oxyde interpoly, les zones d'oxyde de coin et les parties de zones d'isolement non-­recouvertes par les zones d'oxyde de coin. La zone conductrice dans chaque transistor est en regard de la ligne de mot connectée au transistor, cette ligne de mot correspondant, à l'emplacement des zones conductrices, à la grille de commande.According to the invention, the memory whose memory points consist of floating gate MOS transistors is composed of a network of word lines extending in a first direction called row, and bit lines extending along a second direction called column. In this memory, each transistor comprises two regions, each serving either to source or drain, each of the two regions is constituted by a diffusion of a first type of conductivity which is extended along a column to form a bit line in a substrate of the second type of conductivity, the floating gate of each transistor is produced by a first level of polycrystalline silicon, and an isolation zone is located between each pair of floating grids of the same row. A conductive zone produced by a second level of polycrystalline silicon contacts and covers, in the direction of the rows, the floating gate of each transistor by projecting in the direction of the rows. The conductive areas are covered on their upper surface with an interpoly oxide layer, and they are covered at their two ends, in the direction of the rows, by a corner oxide area. The word lines, of dimensions along the direction of the columns substantially equal to those of the floating gate of the transistors and produced by a third level of polycrystalline silicon, cover the layers of interpoly oxide, the corner oxide zones and the parts isolation zones not covered by the corner oxide zones. The conductive area in each transistor is opposite the word line connected to the transistor, this word line corresponding, at the location of the conductive areas, to the control gate.

Ces objets, caractéristiques et avantages ainsi que d'autres de la présente invention seront exposés plus en détail dans la description suivante d'un mode de réalisation particulier faite en relation avec les figures jointes parmi lesquelles :

  • les figures 1A et 1B, déjà décrites, représentent un point-mémoire élémentaire de mémoire classique, la figure 1A étant une représentation sous forme de schéma électrique et la figure 1B étant une vue en coupe schématique du point-mémoire élémentaire ;
  • la figure 2, déjà décrite, représente une vue de dessus de l'implantation de neuf points-mémoire adjacents sur une tranche de silicium dans une architecture classique de type damier ;
  • la figure 3, déjà décrite, représente une vue en coupe suivant l'axe YY′ de la figure 2 ;
  • la figure 4, déjà décrite, représente un schéma des ca­pacités existant à l'emplacement d'un transistor dans une archi­tecture telle que celle de la figure 2 ;
  • la figure 5 représente une vue de dessus d'une structure selon la présente invention ;
  • la figure 6 représente une vue en coupe suivant l'axe YY′ de la figure 5 ;
  • la figure 7 représente une vue en coupe suivant l'axe ZZ′ de la figure 5 ;
  • la figure 8 représente un schéma des capacités existant à l'emplacement d'un point-mémoire de la structure de la figure 5 ; et
  • la figure 9 représente selon une coupe analogue à celle de la figure 6 une variante de réalisation de la présente inven­tion.
These objects, characteristics and advantages as well as others of the present invention will be explained in more detail in the following description of a particular embodiment made in relation to the appended figures among which:
  • FIGS. 1A and 1B, already described, represent an elementary memory point of conventional memory, FIG. 1A being a representation in the form of an electrical diagram and FIG. 1B being a schematic sectional view of the elementary memory point;
  • FIG. 2, already described, represents a top view of the implantation of nine adjacent memory points on a silicon wafer in a conventional architecture of the checkerboard type;
  • Figure 3, already described, shows a sectional view along the axis YY ′ of Figure 2;
  • FIG. 4, already described, represents a diagram of the capacities existing at the location of a transistor in an architecture such as that of FIG. 2;
  • FIG. 5 represents a top view of a structure according to the present invention;
  • 6 shows a sectional view along the axis YY 'of Figure 5;
  • 7 shows a sectional view along the axis ZZ 'of Figure 5;
  • FIG. 8 represents a diagram of the capacities existing at the location of a memory point of the structure of FIG. 5; and
  • Figure 9 shows a section similar to that of Figure 6 an alternative embodiment of the present invention.

De façon générale, comme cela est classique dans la représentation des circuits intégrés, on notera que les diverses figures ne sont pas représentées à l'échelle ni d'une figure à l'autre, ni à l'intérieur d'une même figure, et notamment que les épaisseurs des couches sont dessinées arbitrairement dans le but de faciliter la lecture des figures.In general, as is conventional in the representation of integrated circuits, it will be noted that the various figures are not represented to scale, neither from one figure to another, nor inside the same figure, and in particular that the thicknesses of the layers are drawn arbitrarily in order to facilitate the reading of the figures.

La figure 5 représente une vue de dessus d'un mode de réalisation de la structure selon la présente invention. Comme dans le cas de la figure 2, les transistors sont disposés en ré­seau de rangées et colonnes.FIG. 5 represents a top view of an embodiment of the structure according to the present invention. As in the case of FIG. 2, the transistors are arranged in an array of rows and columns.

Les grilles de commande des transistors de la rangée i sont encore toutes reliées à des lignes de mot LMi.The control gates of the transistors of row i are still all connected to word lines LMi.

Les lignes de bit LBj sont situées entre chaque paire de colonnes de transistors et peuvent faire, à l'emplacement des tran­sistors, soit office de source, soit office de drain.The bit lines LBj are located between each pair of columns of transistors and can act, at the location of the transistors, either as source office or as drain office.

Une zone conductrice 25 est en contact avec la grille flottante de chaque transistor de la mémoire.A conductive area 25 is in contact with the floating gate of each transistor of the memory.

La figure 6 représente une vue en coupe suivant l'axe YY′ de la figure 5. On voit sur cette figure deux transistors désignés par T22 et T23.6 shows a sectional view along the axis YY 'of Figure 5. We see in this figure two transistors designated by T22 and T23.

Les dispositifs sont situés sur un substrat 20. Chacun des deux transistors T22 et T23 comprend deux régions 21 constituées par une diffusion d'un premier type de conductivité qui se prolonge suivant une colonne pour former une ligne de bit. Ces lignes de bit sont désignées par LB2, LB3 et LB4 sur la figure.The devices are located on a substrate 20. Each of the two transistors T22 and T23 comprises two regions 21 formed by a diffusion of a first type of conductivity which extends along a column to form a bit line. These bit lines are designated by LB2, LB3 and LB4 in the figure.

Les grilles flottantes 23 des transistors sont réalisées par un premier niveau de silicium polycristallin (poly 1). Une couche d'oxyde de grille 24 est située sous les grilles flottantes des transistors.The floating gates 23 of the transistors are produced by a first level of polycrystalline silicon (poly 1). A gate oxide layer 24 is located under the floating gates of the transistors.

Une zone conductrice 25 contacte et recouvre suivant la direction des rangées la grille flottante de chacun des deux transistors T22 et T23. Elle est réalisée par un deuxième niveau de silicium polycristallin (poly 2).A conductive zone 25 contacts and covers in the direction of the rows the floating gate of each of the two transistors T22 and T23. It is produced by a second level of polycrystalline silicon (poly 2).

Cette zone conductrice 25 est recouverte sur sa surface supérieure par une couche d'oxyde interpoly 26, et elle est recou­verte à ses extrémités, suivant la direction des rangées, par une zone d'oxyde 27 qui est appelée zone d'oxyde de coin.This conductive zone 25 is covered on its upper surface by an interpoly oxide layer 26, and it is covered at its ends, in the direction of the rows, by an oxide zone 27 which is called the corner oxide zone.

Une zone d'isolement 29 est située entre les grilles flottantes des transistors. Comme dans le cas de la structure re­présentée sur la figure 3, un procédé de planarisation est utilisé pour que les surfaces supérieures de cette zone 29 et du premier niveau de silicium polycristallin soient au même niveau. Cette zo­ne 29 est par exemple constituée de TEOS.An isolation zone 29 is located between the floating gates of the transistors. As in the case of the structure shown in FIG. 3, a planarization process is used so that the upper surfaces of this zone 29 and of the first level of polycrystalline silicon are at the same level. This area 29 is for example made up of TEOS.

La ligne de mot LM2 recouvre l'ensemble.The word line LM2 covers the whole.

La couche d'oxyde interpoly 26 et les zones d'oxyde de coin 27 permettent d'isoler la zone conductrice 25 de la ligne de mot LM2. La ligne de mot LM2 fait office de grille de commande 28 à l'emplacement des zones conductrices 25.The interpoly oxide layer 26 and the corner oxide zones 27 make it possible to isolate the conductive zone 25 from the word line LM2. The word line LM2 acts as a control grid 28 at the location of the conductive zones 25.

La figure 7 représente une vue en coupe suivant l'axe ZZ′ de la figure 5. On voit sur cette figure des transistors dési­gnés par T13, T23 et T33. Les transistors possèdent chacun une grille flottante 23 située au-dessus de la couche d'oxyde de gril­le 24. La zone conductrice 25 est placée au-dessus des grilles flottantes 23 et au-dessous de la couche d'oxyde interpoly 26. On observe également les lignes de mot LM1, LM2 et LM3, situées au-­dessus des couches l'oxyde interpoly 26, qui font office de grille de commande 28 à l'emplacement des zones conductrices.7 shows a sectional view along the axis ZZ 'of Figure 5. This figure shows transistors designated by T13, T23 and T33. The transistors each have a floating gate 23 located above the gate oxide layer 24. The conductive zone 25 is placed above the floating gates 23 and below the interpoly oxide layer 26. It is observed also the word lines LM1, LM2 and LM3, located above the interpoly oxide layers 26, which act as a control grid 28 at the location of the conductive areas.

La figure 8 représente un schéma des capacités existant à l'emplacement d'un point-mémoire de la structure selon la présente invention, par exemple le point-mémoire comprenant le transistor T22. On observe sur cette figure la capacité au niveau de la couche d'oxyde interpoly 26 notée COI1 et située entre la ligne de mot LM2 et la zone conductrice 25. On a aussi une capa­cité COG1 au niveau de la couche d'oxyde de grille 24 située entre les grilles flottantes 23 et le substrat 20. Il existe également, puisque la zone conductrice 25 déborde de la grille flottante des transistors dans la direction des rangées, une capacité COD1 et une capacité COD2 au niveau de la zone d'isolement de type TEOS, chacune de ces deux capacités correspondant au débordement selon un côté.FIG. 8 represents a diagram of the capacities existing at the location of a memory point of the structure according to the present invention, for example the memory point comprising the transistor T22. We observe in this figure the capacity at the level of the interpoly oxide layer 26 denoted C OI1 and located between the word line LM2 and the conductive area 25. There is also a capacity C OG1 at the level of the oxide layer grid 24 located between the floating grids 23 and the substrate 20. There is also, since the conductive zone 25 extends beyond the floating grid of the transistors in the direction of the rows, a capacity C OD1 and a capacity C OD2 at the level of the zone d 'TEOS type isolation, each of these two capacities corresponding to overflow on one side.

Le facteur de couplage γ s'écrit :
γ = COI1/(COI1 + COD1 + COG1 + COD2)
The coupling factor γ is written:
γ = C OI1 / (C OI1 + C OD1 + C OG1 + C OD2 )

On peut calculer une valeur numérique représentative du facteur de couplage en utilisant les valeurs usuelles suivantes :
- longueur de la grille flottante suivant la direction des rangées : 0,5 micromètre ;
- longueur totale de débordement de la zone conductrice 25 (on regroupe ainsi les débordements de chaque côté de la grille flottante) : 0,2 micromètre ;
- épaisseur de la couche d'oxyde interpoly : 20 nm ;
- épaisseur de la couche d'oxyde de grille : 20 nm ;
- épaisseur de la zone d'isolement de type TEOS : 200 nm.
A numerical value representative of the coupling factor can be calculated using the following usual values:
- length of the floating grid in the direction of the rows: 0.5 micrometer;
- total length of overflow from the conductive zone 25 (the overflows on each side of the floating grid are thus grouped together): 0.2 micrometer;
- thickness of the interpoly oxide layer: 20 nm;
- thickness of the gate oxide layer: 20 nm;
- thickness of the TEOS type isolation zone: 200 nm.

La valeur numérique du facteur de couplage est alors égale au rapport entre les quantités (0,5 + 0,2)/20 et (0,5 + 0,2)/20 + 0,5/20 + 0,2/(200 + 20).The numerical value of the coupling factor is then equal to the ratio between the quantities (0.5 + 0.2) / 20 and (0.5 + 0.2) / 20 + 0.5 / 20 + 0.2 / ( 200 + 20).

Le facteur de couplage est alors égal à 0,58.The coupling factor is then equal to 0.58.

La structure selon l'invention permet ainsi d'améliorer le facteur de couplage.The structure according to the invention thus makes it possible to improve the coupling factor.

Cette structure présente également de bonnes conditions de planarisation du fait de l'absence de zone d'oxyde épais.This structure also has good planarization conditions due to the absence of a thick oxide zone.

Cependant, dans une telle structure, la programmation d'un point-mémoire doit tenir compte des points-mémoire adjacents. Cela rend le système d'adressage complexe.However, in such a structure, the programming of a memory point must take account of the adjacent memory points. This makes the addressing system complex.

La figure 9 représente, selon une coupe analogue à celle de la figure 6, et avec les mêmes références numériques chaque fois que cela était possible, une variante de réalisation de l'in­vention qui permet d'utiliser une section d'adressage classique.Figure 9 shows, in a section similar to that of Figure 6, and with the same reference numerals whenever possible, an alternative embodiment of the invention which allows the use of a conventional addressing section.

Dans cette variante, on désigne par T1, T2 un couple de transistors adjacents qui vont être connectés par le système d'adressage pour constituer un point-mémoire PM unique. La mémoire a alors une structure dite en demi-damier.In this variant, T1, T2 denotes a pair of adjacent transistors which will be connected by the addressing system to constitute a single memory point PM. The memory then has a so-called half-checkerboard structure.

Les diffusions en colonnes sont alors spécialisées. Les transistors T1 et T2 partagent une région de drain commune 40. Chacun des deux transistors T1 et T2 comprend une région de source 41, 42 partagée avec une transistor d'un point-mémoire adjacent de la même rangée. Les grilles flottantes 23, 25 des transistors T1, T2 sont adressées simultanément par le système d'adressage de la mémoire.Column broadcasts are then specialized. The transistors T1 and T2 share a common drain region 40. Each of the two transistors T1 and T2 comprises a source region 41, 42 shared with a transistor of an adjacent memory point of the same row. The floating gates 23, 25 of the transistors T1, T2 are addressed simultaneously by the memory addressing system.

La structure en demi-damier présente une redondance. En effet, si la grille flottante de l'un des transistors perd sa charge, on pourra encore lire la charge présente sur la grile flottante de l'autre.The half-checkerboard structure has redundancy. Indeed, if the floating gate of one of the transistors loses its charge, we can still read the charge present on the floating gate of the other.

La structure observée sur la figure 9 présente d'autres avantages en plus de la grande sécurité résultant de la redondan­ce.The structure observed in FIG. 9 has other advantages in addition to the high security resulting from redundancy.

En effet, si l'on adopte la configuration représentée en figure 9 avec un décalage (1) entre les portions de silicium poly­cristallin du deuxième niveau (poly 2) 25 et les grilles flottantes proprement dites 23, on peut former des régions de source 41, 42 plus larges que les régions de drain 40. Une augmentation de la largeur des régions de source entraîne une diminution de la résis­tance, ce qui a pour effet d'améliorer les caractéristiques de programmation.In fact, if we adopt the configuration shown in FIG. 9 with an offset (1) between the polycrystalline silicon portions of the second level (poly 2) 25 and the floating gates proper 23, we can form source regions 41 , 42 wider than the drain regions 40. An increase in the width of the source regions results in a decrease in the resistance, which has the effect of improving the programming characteristics.

Enfin, une ligne conductrice (non-représentée sur les figures), par exemple en aluminium, est classiquement située au-­dessus de chaque ligne de bit. Dans le cas de la structure repré­sentée sur la figure 6, une telle ligne conductrice est située entre chaque paire de colonnes de transistors. Dans le cas de la structure représentée sur la figure 9, deux colonnes de transis­tors séparent deux lignes conductrices adjacentes. L'élaboration des lignes conductrices sera ainsi plus facile à réaliser dans le deuxième cas.Finally, a conductive line (not shown in the figures), for example made of aluminum, is conventionally located above each bit line. In the case of the structure shown in Figure 6, such a conductive line is located between each pair of columns of transistors. In the case of the structure shown in Figure 9, two columns of transistors separate two adjacent conductive lines. The development of the conductive lines will thus be easier to carry out in the second case.

Claims (3)

1. Mémoire dont les points-mémoire sont constitués de transistors MOS à grille flottante, composée d'un réseau de lignes de mot (LM1 à LM3) s'étendant suivant une première direction dite de rangée, et de lignes de bit (LB1 à LB5) s'étendant suivant une deuxième direction dite de colonne, dans laquelle :
chaque transistor comprend deux régions (21) faisant chacune office soit de source, soit de drain,
chacune des deux régions (21) est constituée par une diffusion d'un premier type de conductivité qui se prolonge sui­vant une colonne pour former une ligne de bit dans un substrat (20) du deuxième type de conductivité,
la grille flottante (23) de chaque transistor est réali­sée par un premier niveau de silicium polycristallin,
une zone d'isolement (29) est située entre chaque paire de grilles flottantes d'un même rangée,
caractérisée en ce que :
une zone conductrice (25) réalisée par un deuxième ni­veau de silicium polycristallin contacte et recouvre suivant la direction des rangées la grille flottante de chaque transistor en débordant dans la direction des rangées,
les zones conductrices sont recouvertes sur leur surface supérieure d'une couche d'oxyde interpoly (26), et elles sont re­couvertes à leurs deux extrémités, suivant la direction des ran­gées, par une zone d'oxyde de coin (27),
les lignes de mot, de dimensions suivant la direction des colonnes sensiblement égales à celles de la grille flottante des transistors et réalisées par un troisième niveau de silicium polycristallin, recouvrent les couches d'oxyde interpoly, les zones d'oxyde de coin et les parties de zones d'isolement non-­recouvertes par les zones d'oxyde de coin, et
la zone conductrice dans chaque transistor est en regard de la ligne de mot connectée au transistor, cette ligne de mot correspondant, à l'emplacement des zones conductrices, à la grille de commande (28).
1. Memory whose memory points consist of floating gate MOS transistors, composed of a network of word lines (LM1 to LM3) extending in a first direction called row, and bit lines (LB1 to LB5) extending in a second direction known as a column, in which:
each transistor comprises two regions (21) each acting either as a source or as a drain,
each of the two regions (21) consists of a diffusion of a first type of conductivity which is extended along a column to form a bit line in a substrate (20) of the second type of conductivity,
the floating gate (23) of each transistor is produced by a first level of polycrystalline silicon,
an isolation zone (29) is located between each pair of floating grids in the same row,
characterized in that:
a conductive area (25) produced by a second level of polycrystalline silicon contacts and covers, in the direction of the rows, the floating gate of each transistor by projecting in the direction of the rows,
the conductive zones are covered on their upper surface with an interpoly oxide layer (26), and they are covered at their two ends, in the direction of the rows, by a corner oxide zone (27),
the word lines, of dimensions along the direction of the columns substantially equal to those of the floating gate of the transistors and produced by a third level of polycrystalline silicon, cover the layers of interpoly oxide, the corner oxide zones and the parts isolation zones not covered by the corner oxide zones, and
the conductive area in each transistor is opposite the word line connected to the transistor, this word line corresponding, at the location of the conductive areas, to the control gate (28).
2. Mémoire selon la revendication 1, caractérisée en ce qu'elle est connectée à une partie logique d'adressage de mémoire de type demi-damier.2. Memory according to claim 1, characterized in that it is connected to a logic addressing part of memory of the half-checkerboard type. 3. Mémoire selon l'une des revendications 1 ou 2, caractérisée en ce que les diffusions constituant les régions de source à l'emplacement des transistors ont une largeur plus impor­tante que la largeur des diffusions constituant les régions de drain à l'emplacement des transistors.3. Memory according to one of claims 1 or 2, characterized in that the diffusions constituting the source regions at the location of the transistors have a greater width than the width of the diffusions constituting the drain regions at the location of transistors.
EP89420289A 1988-08-11 1989-07-31 Highly integrated EPROM device laid out in a grid and having an altered coupling factor and a redundancy capability Withdrawn EP0354860A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8810965A FR2635411A1 (en) 1988-08-11 1988-08-11 HIGH DENSITY EPROM-TYPE MEMORY INTEGRATED WITH DAMIER ORGANIZATION, IMPROVED COUPLING FACTOR AND POSSIBILITY OF REDUNDANCY
FR8810965 1988-08-11

Publications (1)

Publication Number Publication Date
EP0354860A1 true EP0354860A1 (en) 1990-02-14

Family

ID=9369374

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89420289A Withdrawn EP0354860A1 (en) 1988-08-11 1989-07-31 Highly integrated EPROM device laid out in a grid and having an altered coupling factor and a redundancy capability

Country Status (4)

Country Link
EP (1) EP0354860A1 (en)
JP (1) JPH02100359A (en)
KR (1) KR900003893A (en)
FR (1) FR2635411A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0706222A1 (en) * 1994-10-06 1996-04-10 International Business Machines Corporation Dense flash semiconductor memory structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837302A (en) 1996-10-03 1998-11-17 Warner-Lambert Company Polyvinyl acetate process for chewing gum

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4258466A (en) * 1978-11-02 1981-03-31 Texas Instruments Incorporated High density electrically programmable ROM
EP0087155A2 (en) * 1982-02-22 1983-08-31 Kabushiki Kaisha Toshiba Means for preventing the breakdown of an insulation layer in semiconductor devices
DE3426306A1 (en) * 1983-09-26 1985-04-11 Mitsubishi Denki K.K., Tokio/Tokyo MOS TRANSISTOR AND METHOD FOR THE PRODUCTION THEREOF
EP0197284A2 (en) * 1985-03-01 1986-10-15 Fujitsu Limited Method of producing semiconductor memory device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4258466A (en) * 1978-11-02 1981-03-31 Texas Instruments Incorporated High density electrically programmable ROM
EP0087155A2 (en) * 1982-02-22 1983-08-31 Kabushiki Kaisha Toshiba Means for preventing the breakdown of an insulation layer in semiconductor devices
DE3426306A1 (en) * 1983-09-26 1985-04-11 Mitsubishi Denki K.K., Tokio/Tokyo MOS TRANSISTOR AND METHOD FOR THE PRODUCTION THEREOF
EP0197284A2 (en) * 1985-03-01 1986-10-15 Fujitsu Limited Method of producing semiconductor memory device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0706222A1 (en) * 1994-10-06 1996-04-10 International Business Machines Corporation Dense flash semiconductor memory structure
US5622881A (en) * 1994-10-06 1997-04-22 International Business Machines Corporation Packing density for flash memories
US5892257A (en) * 1994-10-06 1999-04-06 International Business Machines Corporation Packing density for flash memories

Also Published As

Publication number Publication date
FR2635411A1 (en) 1990-02-16
JPH02100359A (en) 1990-04-12
KR900003893A (en) 1990-03-27

Similar Documents

Publication Publication Date Title
EP0354859B1 (en) Highly integrated eprom laid out in a grid and having an altered coupling factor
KR100663358B1 (en) Phase change memory devices employing cell diodes and methods of fabricating the same
US6940109B2 (en) High density 3d rail stack arrays and method of making
FR2879800A1 (en) INTEGRATED MEMORY DEVICE AND METHOD
FR2692720A1 (en) EPROM device with single layer of polycrystalline silicon with fast erasure.
FR2987696A1 (en) METHOD FOR READING WRITTEN NON-VOLATILE MEMORY CELLS
FR2693308A1 (en) Triple grid eeprom memory and its manufacturing process.
FR3021803A1 (en) MEMORY CELLS TWINLY ACCESSIBLE INDIVIDUALLY READING
FR3021804A1 (en) DUAL NON-VOLATILE MEMORY CELL COMPRISING AN ERASING TRANSISTOR
FR2987700A1 (en) NON-VOLATILE MEMORY COMPRISING MINI FLOATING POTENTIAL HOUSINGS
EP0354858B1 (en) Large scale integrated EPROM device having a high coupling factor
EP0356346B1 (en) Large-scale integrated EPROM device
EP0543703B1 (en) Single-transistor electrically programmable integrated memory
EP2286450B1 (en) Read-only memory with eeprom structure
FR3080949A1 (en) NON-VOLATILE MEMORY DEVICE OF LOAD TRAPPING TYPE AND METHOD OF MANUFACTURE
EP0896370B1 (en) Floating-gate memory device on SOI and corresponding manufacturing process
US8300448B2 (en) Semiconductor storage device, memory cell array, and a fabrication method and drive method of a semiconductor storage device
EP0282520B1 (en) Non-volatile memory with floating grid and without thick oxide
EP0354860A1 (en) Highly integrated EPROM device laid out in a grid and having an altered coupling factor and a redundancy capability
EP1187142B1 (en) Cache cell with mask and equal number of N-channel transistors and P-channel transistors
FR3054723A1 (en) COMPACT EEPROM CELL-MEMORY WITH REDUCED TUNNEL INJECTION AREA
FR2638021A1 (en) DAMIER-TYPE EPROM MEMORY AND MANUFACTURING METHOD
FR3144402A1 (en) Electronic circuit comprising a transistor cell
FR2523354A1 (en) DEVICE FORMING MEMORY WITH NON-VOLATILE FLOATING DOOR, ELECTRICALLY MODIFIABLE WITH DOUBLE WORD LINE
EP1586118A2 (en) Embedded capacitor associated with a sram cell

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19900815