EP0353216B1 - Device for controlling and regulating the combustion engine of a vehicle - Google Patents

Device for controlling and regulating the combustion engine of a vehicle Download PDF

Info

Publication number
EP0353216B1
EP0353216B1 EP89890171A EP89890171A EP0353216B1 EP 0353216 B1 EP0353216 B1 EP 0353216B1 EP 89890171 A EP89890171 A EP 89890171A EP 89890171 A EP89890171 A EP 89890171A EP 0353216 B1 EP0353216 B1 EP 0353216B1
Authority
EP
European Patent Office
Prior art keywords
cylinder
speed
correction
correction values
values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89890171A
Other languages
German (de)
French (fr)
Other versions
EP0353216A1 (en
Inventor
Christian Dipl.-Ing. Augesky
Michael Dipl.-Ing. Heiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Automotive Diesel GmbH
Original Assignee
Automotive Diesel GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automotive Diesel GmbH filed Critical Automotive Diesel GmbH
Priority to AT89890171T priority Critical patent/ATE67279T1/en
Publication of EP0353216A1 publication Critical patent/EP0353216A1/en
Application granted granted Critical
Publication of EP0353216B1 publication Critical patent/EP0353216B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires

Definitions

  • the invention relates to a device for controlling and regulating the internal combustion engine of a vehicle, in particular a diesel engine, with a basic controller which receives signals from sensors and sensors for detecting operating variables of the engine or vehicle, such as e.g. the speed, the accelerator pedal position, the engine temperature, etc.
  • an output signal of the basic controller for driving an electromechanical actuator for the fuel and / or air quantity supplied to the engine is used, with a speed calculator, to which signals from a speed sensor are supplied and which is used for the calculation a cylinder-specific speed of each cylinder is set up, as well as with a mean value computer for determining an average engine speed, with a comparator unit for outputting positive or negative change values for each cylinder, if the cylinder-specific speeds are below or above the mean speed, with a correction value memory with z cylinder memories, which, synchronized by a synchronization unit, the change values can be supplied, for cylinder-specific correction values, and with a cylinder connected downstream of the correction value memory and synchronized by the synchronization unit Selection unit for the output of the correction values, as well as with a summer, to which the output signal of the basic controller and the output signal of the cylinder selection unit are fed.
  • EP-A1-0140065 for single-cylinder control, which is intended to counteract vibrations of the vehicle when idling, is equipped with drift compensation, with an average value of the actuator signal being subtracted from the output signals of the integrating components of the controls assigned to the individual cylinders.
  • the solution disclosed here has the disadvantage that since the mean value signal is not fed to the inputs of the integrator, but only acts after it, the integrator can start up very high values, which results in circuitry problems, as well as a few effective drift compensation, so that too only the idle case is dealt with.
  • the aim of the invention is to achieve stable operation of the additional single cylinder control, so that load change processes and in particular acceleration of the engine speed when the accelerator pedal is depressed with the single cylinder control switched on are also possible.
  • the individual cylinder control should also be able to be carried out not only at idling speed but over the largest possible speed range.
  • a drift compensator is provided, the number of cylinders corresponding to the number of inputs corresponding to the cylinder-specific correction values stored in the cylinder memories of the correction value memory and for the formation of an average value of the correction values is set up and which has subtracting elements which are connected upstream of each input of the correction memory and to which each cylinder-specific change value determined in the comparator unit and on the other hand an average value of the correction values are supplied.
  • the drift compensator constructed according to the invention prevents the correction values from "running away" during e.g. For longer acceleration phases, the mean value of the engine speed is naturally lower than the cylinder-specific engine speed values, and in this case the single-cylinder control would attempt an undesirable correction for lower amounts of fuel in all cylinders.
  • the regulation would become unstable, but at least all the individual stores would quickly reach a limit value which would make further regulation difficult. This undesirable effect can be effectively combated by the invention.
  • FIG. 1 shows a block diagram of the device according to the invention, applied to a 6-cylinder diesel engine
  • FIG. 2 shows a similar block diagram, but in more detail
  • FIG. 3a, b shows a possible flow diagram for single-cylinder control in a device the invention.
  • FIG. 1 schematically shows a 6-cylinder diesel engine 1 with an injection pump 2 of known type, the control rod of which is adjustable by means of an electromechanical drive 3.
  • a speed sensor 5 is provided, which scans pins, not shown here, which are inserted on the flywheel 4 and which accordingly delivers pulses during engine rotation which correspond to specific angular positions of the flywheel 4.
  • speed sensors are known and are disclosed, for example, in DE-A-3122533 (FIG. 3 and associated description).
  • two speed sensors can also be used, the alternator of the vehicle being used as a speed sensor, as described in the applicant's DE-A-3501435.
  • sensors 6 which provide signals with information about various operating states of the engine 1 or of the vehicle, e.g. B. temperature and pressure sensors.
  • at least one needle stroke sensor 6 ' is provided, which provides information about the position of the valve needle of an injection valve, such as in DE-A-3726712 by the applicant. In general, e.g. six such needle stroke sensors are used.
  • an electronic controller for the regulation or control of the motor 1, an electronic controller, here called basic controller 7, is used in a known manner.
  • a controller contains arithmetic units that generate an output signal RW from supplied operating quantity signals calculate which determines the current control rod travel and thus the fuel quantity via the electromechanical drive 3.
  • the basic controller 7 are thus fed the operating variable signals of the sensors 6, 6 'and at least one output signal from a speed computer 8, which is an average speed or a corresponding signal n determined.
  • a speed computer 8 which is an average speed or a corresponding signal n determined.
  • the speed calculator 8 is shown in the general part of the basic controller 7 and only here, for the sake of clarity, separately from it.
  • the output signal of an accelerator pedal position sensor 9 is fed to the basic controller.
  • a basic controller 7 generally has a PID control characteristic, as can be seen, for example, from DE-A-2735596. In principle, it forms a closed control loop via the control rod drive 3, the motor 1 and the speed sensor 5, the actual variable being the average speed n and the target variable in the basic controller 7 is calculated as a function of the supplied operating variable signals, of which of course the signal indicating the accelerator pedal position is an essential signal.
  • the middle speed signal becomes a comparator unit 10 n as well as a cylinder-specific speed signal n i determined in the speed computer 8.
  • This signal n i is determined by measuring the time period T i via the combustion strokes of the individual cylinders, specifically by counting time in a time counter 11 and generating reciprocal values in a reciprocal value generator 12.
  • the time counter 11, the reciprocal value generator 12 and an average value generator 13 are here as blocks of Speed calculator 8 shown (Fig. 2).
  • the time is counted between pulses of the speed sensor 5, the pins on the Flywheel 4 and successive top dead centers of the cylinders (in the chronological order of ignition) correspond.
  • the pulses do not have to correspond exactly to the top dead center, they can also each be generated a small angle of rotation before or after the top dead center, but should occur essentially in the vicinity of the top dead center, since in this case the most reliable information about the speed fluctuations is obtained.
  • the comparator unit 10 in this exemplary embodiment contains a subtractor 14 to which the mean or the cylinder-specific speed signal n or n i are supplied, and a signal generator 15 connected downstream of the subtractor, which outputs a change value + 1 if n i ⁇ n , and a change value - 1 if n i > n . If the cylinder-specific speed n i is not or not significantly from the mean speed n deviates, no change value is output. However, the comparator unit 10 can generally output a change value ⁇ Q i , the size of which also depends on the measure of the deviation between n i and n can depend, as indicated in Fig. 1 at the output of the comparator unit 10 with ⁇ Q i .
  • the change values ⁇ Q i form the starting point for the single-cylinder control, because according to these change values the respective cylinders should receive more or less fuel so that uneven running is compensated for.
  • a synchronization unit 19 is provided, on the one hand the signal of the speed sensor 5 and on the other hand the signal of at least one needle stroke sensor 6 'are supplied, so that an absolute, ie cylinder-related synchronization is possible.
  • the signal from a needle stroke sensor another signal can just as well can be used, which is derived, for example, from moving engine parts and enables absolute synchronization. If the invention is applied to a gasoline engine, it could be, for example, signals derived from the electrical ignition.
  • the synchronization unit 19 thus controls the memory control unit via an input 20 by means of a synchronization signal s in such a way that the signals ⁇ Q i always get into the assigned memory 18-i. This is illustrated in FIG. 2 by a controlled switch 21.
  • the above-mentioned switch 16 is controlled by a comparator 22, which prevents the change values ⁇ Q i from being supplied to the correction value memory 18 if the average speed n is above a predetermined value nKB, since it is not sensible to utilize the change values ⁇ Q i at high speeds.
  • the comparator 22 can also be subject to hysteresis, ie — which has proven to be expedient — the switch-off threshold nKB-off is at higher speeds n than the switch-on threshold nKB-on.
  • a decision unit 23 shown as a multiplier, which is connected upstream of the memory control unit 17 and which outputs the output signal Q i of the comparator unit 10, the output signal ("0") or ("1") from the comparator 22 and a status signal st the synchronization unit 19 are supplied.
  • This status signal has the value "0” as long as no synchronization has taken place, which is possible, for example, when the engine is started, and the value "1" if synchronization is present.
  • the change values ⁇ Q i are only passed on with existing synchronization and below a certain speed limit.
  • the decision unit 23 corresponds to the controlled switch 16 of FIG. 1, but has an expanded function.
  • the cylinder memories 18-1 to 18-6 are each designed as summing or integrating memories, so that the correction value ⁇ RW i stored in each case increases or decreases depending on the sign (and size) of the corresponding change value ⁇ Q i supplied.
  • For the output of the correction values is also provided by the synchronization unit 19 via a synchronization signal s' synchronized cylinder selection unit 24, which is shown again in FIG. 2 as a controlled switch 25 and which serves for the correctly assigned output of the correction values to the corresponding cylinders.
  • the correction values can ⁇ RW i prior to their feed to a summer 26 where they are added to the respective output signal RW of the base controller 7, are multiplied in a multiplier 27 with a dynamics adaptation factor K EZR. This may be advisable due to the digital development of the correction values for numerical reasons.
  • the cylinder selection unit 24 (or the multiplier 27) is followed by a switch 29 controlled by a comparator 28.
  • the comparator 28 and the switch 29 have essentially the same function as the comparator 22 and the switch 16; the output of the correction values ⁇ RW i is prevented if the average speed n is above a predetermined value nKA.
  • the comparator 28 can also be subject to hysteresis, ie the switch-off threshold nKA-aus at higher speeds n lie than the switch-on threshold nKA-on.
  • FIG. 2 shows a decision unit 30, represented as a multiplier, which is connected downstream of the cylinder selection unit 24 (or the multiplier 27) and to which the correction values ⁇ RW i are thus supplied. Furthermore, the output signal (“0" or “1") from the comparator 28 and the status signal st of the synchronization unit 19 are fed to it, so that the correction values can only be output when synchronization is present and the average speed below one certain limit.
  • the decision unit 30 corresponds to the controlled switch 29 of FIG. 1, however, has an expanded function.
  • a subtractor 34-i is connected upstream of each cylinder memory 18-i or each input of the correction value memory 18, to which the change value ⁇ Q i determined by the comparator unit 10 and the mean value of the correction values are supplied.
  • the drift compensator 31 is also supplied with an activation signal from the synchronization unit 19, which occurs in synchronism with the rotation, for example every 10 or 20 revolutions, and the actual calculation or output of the arithmetic mean value to the subtracting elements 34-i, for which purpose controlled switches (not shown) or The like can be provided.
  • the activation signal as can also occur at fixed time intervals, for example every second, in which case it is generated in a clock. It is in no way necessary to carry out the drift compensation with every combustion stroke, so that computing time can be saved for other calculations if the drift compensation is only carried out at intervals at which it is likely to be required.
  • the synchronization of the memory control unit 17 and the cylinder selection unit 24 by means of the signals s and s' causes the correct storage value to be output at the correct time. If the cylinder-specific speed for the i-th cylinder was measured, the injection into the (i + 1) -th cylinder begins almost simultaneously with the completion of this measurement, so that not only the injection in the i-th but also in the (i + 1) -th cylinder is "missed". It therefore makes sense to put the control rod in one Bring position that was calculated for the (i + 2) th cylinder. In other words, a phase shift of the synchronization between the memory control unit 17 and the cylinder selection unit 24 is ensured by at least one, preferably by two cylinders. This is symbolically represented in FIG. 2 by corresponding positions of the switches 21 and 25.
  • FIG. 2 A possible embodiment of the cylinder memory 18-i is shown in FIG. 2.
  • Each of the memories 18-i acts as a digital integrator or totalizer with limitation.
  • a limiting unit 35-i At the input of a limiting unit 35-i is a summing element 36-i, on the one hand the output signal of the corresponding subtracting element 34-i of the drift compensator 31 and on the other hand the output signal of a reset element 37-i located in the feedback branch of the integrator (symbol z ⁇ 1: see Isermann , "Digital control systems", Springerverlag, Berlin / Heidelberg 1977). Such arrangements belong to the prior art.
  • Each cylinder memory 18-i with limiting unit 35-i can be set up to emit an indicator signal si which occurs if the stored correction value ⁇ RW i reaches an upper or lower limit. This is indicated in FIG. 2 for a limiting unit 35-i.
  • the indicator signals si can be OR-fed and used to trigger an error display or an alarm signal.
  • FIG. 3 shows block diagrams with individual function blocks, but in practice, all or most of the function blocks are implemented in software in a microcomputer or a microcomputer system.
  • FIG. 3 shows a possible program sequence for this.
  • limiters is entered as the penultimate process.
  • Such a limiter is shown symbolically in FIG. 1 and designated 38. 1 also shows a controlled switch 39, which is controlled by a ready signal bs of the basic controller 7.
  • This switch 39 is only closed when current values of the output signal RW are present at the output of the basic controller 7 in order to prevent the transmission of the mere correction values ⁇ RW i to the drive 3 of the controller rod.
  • the drive 3 for the control rod is usually integrated into its own servo loop, which has a feedback for the control rod position.

Abstract

A device for controlling and regulating a diesel engine, with a base controller (7) to which performance quantity signals of the engine are fed and an output signal of the base controller is used for driving an electromechanical final controlling element for the fuel and/or air quantity, with a rotational-speed calculator (8) for calculating a cylinder-specific rotational speed (n1) and a mean engine speed (), with a comparator unit (10) for outputting positive or negative alteration values ( DELTA Qi) for each cylinder if the cylinder- specific rotational speeds (ni) lie below or above the mean rotational speed (), with a correction value memory (18) with z cylinder memories (18-i) for cylinder-specific correction values ( DELTA RWi), to which the alteration values ( DELTA Qi) can be fed, and with a cylinder selection unit (24) for outputting the correction values. A drift compensator (31), to which the cylinder-specific correction values ( DELTA RWi) stored in the cylinder memories (18-i) are fed, is set up to form a mean value of the correction values and has subtracting elements (34-i) which are connected upstream of each input of the correction memory (18) and to which, on the one hand, each cylinder- specific alteration value ( DELTA Qi) determined in the comparator unit (10) and, on the other hand, a mean value of the correction values is in each case fed. <IMAGE>

Description

Die Erfindung bezieht sich auf eine Einrichtung zum Steuern und Regeln der Brennkraftmaschine eines Fahrzeuges, insbesondere eines Dieselmotors, mit einem Basisregler, dem Signale von Gebern und Sensoren zur Erfassung von Betriebsgrößen des Motors bzw. Fahrzeuges, wie z.B. der Drehzahl, der Gaspedalstellung, der Motortemperatur etc. zugeführt sind und ein Ausgangssignal des Basisreglers zum Antrieb eines elektromechanischen Stellgliedes für die dem Motor zugeführte Kraftstoff- und/oder Luftmenge herangezogen ist, mit einem Drehzahlrechner, dem Signale eines Drehzahlsensors zugeführt sind und der zur Berechnung einer zylinderspezifischen Drehzahl jedes Zylinders eingerichtet ist, sowie mit einem Mittelwertrechner zur Ermittlung einer mittleren Motordrehzahl, mit einer Vergleichereinheit zur Ausgabe positiver oder negativer Änderungswerte für jeden Zylinder, falls die zylinderspezifischen Drehzahlen unter oder oberhalb der mittleren Drehzahl liegen, mit einem Korrekturwertspeicher mit z Zylinderspeichern, welchen, synchronisiert von einer Synchronisiereinheit, die Änderungswerte zuführbar sind, für zylinderspezifische Korrekturwerte, und mit einer dem Korrekturwertspeicher nachgeschalteten, von der Synchronisiereinheit synchronisierten Zylinderauswahleinheit für die Ausgabe der Korrekturwerte, sowie mit einem Summierer, dem das Ausgangssignal des Basisreglers sowie das Ausgangssignal der Zylinderauswahleinheit zugeführt sind.The invention relates to a device for controlling and regulating the internal combustion engine of a vehicle, in particular a diesel engine, with a basic controller which receives signals from sensors and sensors for detecting operating variables of the engine or vehicle, such as e.g. the speed, the accelerator pedal position, the engine temperature, etc. are supplied and an output signal of the basic controller for driving an electromechanical actuator for the fuel and / or air quantity supplied to the engine is used, with a speed calculator, to which signals from a speed sensor are supplied and which is used for the calculation a cylinder-specific speed of each cylinder is set up, as well as with a mean value computer for determining an average engine speed, with a comparator unit for outputting positive or negative change values for each cylinder, if the cylinder-specific speeds are below or above the mean speed, with a correction value memory with z cylinder memories, which, synchronized by a synchronization unit, the change values can be supplied, for cylinder-specific correction values, and with a cylinder connected downstream of the correction value memory and synchronized by the synchronization unit Selection unit for the output of the correction values, as well as with a summer, to which the output signal of the basic controller and the output signal of the cylinder selection unit are fed.

Bei Mehrzylinderdieselmotoren kommt es auf Grund von Fertigungstoleranzen und unterschiedlicher Abnützung zu einer unterschiedlichen Leistungsabgabe der einzelnen Zylinder, auch dann, wenn das Mengenstellglied, i.a. die Regelstange der Einspritzpumpe, unverändert bleibt. Sinngemäß gleiches gilt für Ottomotoren. Eine solche Streuung in der Leistung der einzelnen Zylinder bewirkt nicht nur eine Laufunruhe und hierdurch eine stärkere Belastung der Lager etc., sondern erhöht auch die Menge schädlicher Abgaskomponenten bzw. erschwert die Einstellung vorgegebener Maximalwerte derartiger Komponenten. Man versucht daher durch individuelle Korrektur der den einzelnen Zylindern zugeführten Kraftstoffmenge die genannten Unregelmäßigkeiten auszugleichen, wobei als Ausgangsgröße meist die periodischen Drehzahlschwankungen herangezogen werden, die einen Rückschluß auf zu große oder zu geringe Leistungsabgabe einzelner Zylinder ermöglichen.In the case of multi-cylinder diesel engines, due to manufacturing tolerances and different wear, there is a different output of the individual cylinders, even if the quantity control element, generally the control rod of the injection pump, remains unchanged. The same applies analogously to gasoline engines. Such a scatter in the performance of the individual cylinders not only causes uneven running and thereby a greater load on the bearings etc., but also increases the amount of harmful exhaust gas components or makes it difficult to set predetermined maximum values of such components. One tries therefore by individual Correction of the quantity of fuel supplied to the individual cylinders to compensate for the irregularities mentioned, the periodic fluctuations in speed usually being used as the output variable, which make it possible to draw conclusions about excessive or insufficient output of individual cylinders.

Eine Einrichtung der eingangs genannten Art ist aus der Veröffentlichung "The Nippondenso Electronic Control System for the Diesel Engine", F. Murayama und Y.Tanaka, im SAE-Paper 880489 zum International Congress and Exposition, Detroit, Michigan, 29. Feb.-4. März 1988, bekannt geworden. Hierbei wird für jeden Zylinder die Abweichung zwischen Maximal- und Minimaldrehzahl ermittelt und der arithmetische Mittelwert dieser Abweichungen berechnet. Sodann werden die Abweichungen je mit diesem Mittelwert verglichen. Ist die zylinderspezifische Abweichung kleiner als der Mittelwert, wird ein zylinderspezifischer Korrekturwert erhöht, ist die Abweichung größer als der Mittelwert, so wird dieser Korrekturwert erniedrigt und entspricht die Abweichung dem Mittelwert, bleibt der Korrekturwert unverändert. Diese im Leerlaufbetrieb ermittelten Korrekturwerte werden während des Betriebes zu dem von dem Basisregler ermittelten Wert für die Verstellung des Einspritzmengenstellgliedes addiert, um eine Kompensation von zylinderspezifischen Abweichungen der Verbrennung zu erreichen, wobei aber offensichtlich in erster Linie ein ruhiger Leerlauf des Motors angestrebt wird.A device of the type mentioned at the outset is from the publication "The Nippondenso Electronic Control System for the Diesel Engine", F. Murayama and Y.Tanaka, in SAE paper 880489 on the International Congress and Exposition, Detroit, Michigan, Feb. 29 - 4th March 1988, became known. The deviation between maximum and minimum speed is determined for each cylinder and the arithmetic mean of these deviations is calculated. The deviations are then compared to this mean. If the cylinder-specific deviation is smaller than the mean value, a cylinder-specific correction value is increased, if the deviation is larger than the mean value, this correction value is decreased and if the deviation corresponds to the mean value, the correction value remains unchanged. These correction values determined in idle mode are added during operation to the value determined by the basic controller for the adjustment of the injection quantity actuator in order to compensate for cylinder-specific deviations in the combustion, but obviously the primary aim is quiet idling of the engine.

Ähnliche Einrichtungen zur Einzelzylinderregelung eines Dieselmotors im Leerlauf sind in den DE-OS3609245 und 3644639 beschrieben, wobei als Bezugswert für die Drehzahlabweichung immer die Drehzahl des vorhergehenden Zylinders herangezogen wird. Da Instabilitäten der Einzelzylinderregelung sehr leicht auftreten können, wird diese Regelung oberhalb der Leerlaufdrehzahl oder bei Änderungen der Fahrpedalstellung etc. sofort abgeschaltet und die Regelung erfolgt über den Basisregler in herkömmlicher Weise.Similar devices for single-cylinder control of a diesel engine when idling are described in DE-OS3609245 and 3644639, the speed of the preceding cylinder always being used as a reference value for the speed deviation. Since instabilities of the single-cylinder control can very easily occur, this control is switched off immediately above the idling speed or in the event of changes in the accelerator pedal position, and the control is carried out in a conventional manner via the basic controller.

Eine weitere in der EP-A1-0140065 geoffenbarte Einrichtung zur Einzelzylinderregelung, die Schüttelschwingungen des Fahrzeuges im Leerlauf entgegenwirken soll, ist mit einer Driftkompensation ausgestattet, wobei ein Mittelwert des Stellgliedsignales von den Ausgangssignalen der integrierenden Anteile der den einzelnen Zylindern zugeordneten Regelungen subtrahiert wird. Die hier geoffenbarte Lösung weist den Nachteil auf, daß, da das Mittelwertsignal nicht den Eingängen des Integrators zugeführt wird, sondern erst nach diesem wirkt, der Integrator sehr hohe Werte anlaufen kann, woraus sich schaltungstechnische Probleme ergeben, sowie eine wenigen effektive Drifkompensation, sodaß auch lediglich der Leerlauffall behandelt wird.Another device disclosed in EP-A1-0140065 for single-cylinder control, which is intended to counteract vibrations of the vehicle when idling, is equipped with drift compensation, with an average value of the actuator signal being subtracted from the output signals of the integrating components of the controls assigned to the individual cylinders. The solution disclosed here has the disadvantage that since the mean value signal is not fed to the inputs of the integrator, but only acts after it, the integrator can start up very high values, which results in circuitry problems, as well as a few effective drift compensation, so that too only the idle case is dealt with.

Ziel der Erfindung ist es, einen stabilen Betrieb der zusätzlichen Einzelzylinderregelung zu erreichen, sodaß auch Lastwechselvorgänge und insbesondere ein Beschleunigen der Motordrehzahl bei Niedertreten des Fahrpedals bei eingeschalteter Einzelzylinderregelung möglich sind. Auch soll die Einzelzylinderregelung nicht lediglich bei Leerlaufdrehzahl sondern über einen möglichst großen Drehzahlbereich durchführbar sein.The aim of the invention is to achieve stable operation of the additional single cylinder control, so that load change processes and in particular acceleration of the engine speed when the accelerator pedal is depressed with the single cylinder control switched on are also possible. The individual cylinder control should also be able to be carried out not only at idling speed but over the largest possible speed range.

Dieses Ziel läßt sich mit einer Einrichtung der eingangs genannten Art erreichen, bei welcher erfindungsgemäß ein Driftkompensator vorgesehen ist, dessen in ihrer Zahl der Zylinderanzahl z entsprechenden Eingängen die in den Zylinderspeichern des Korrekturwertspeichers abgelegten, zylinderspezifischen Korrekturwerte zugeführt sind und der zur Bildung eines Mittelwertes der Korrekturwerte eingerichtet ist und der Subtrahierglieder aufweist, die jedem Eingang des Korrekturspeichers vorgeschaltet sind und welchen je einerseits jeder in der Vergleichereinheit ermittelte zylinderspezifische Änderungswert und andererseits ein Mittelwert der Korrekturwerte zugeführt ist.This goal can be achieved with a device of the type mentioned at the beginning, in which according to the invention a drift compensator is provided, the number of cylinders corresponding to the number of inputs corresponding to the cylinder-specific correction values stored in the cylinder memories of the correction value memory and for the formation of an average value of the correction values is set up and which has subtracting elements which are connected upstream of each input of the correction memory and to which each cylinder-specific change value determined in the comparator unit and on the other hand an average value of the correction values are supplied.

Der erfindungsgemäß aufgebaute Driftkompensator verhindert ein "Davonlaufen" der Korrekturwerte Während z.B. längerer Beschleunigungsphasen liegt der Mittelwert der Drehzahl naturgemäß unter den zylinderspezifischen Drehzahlwerten und die Einzelzylinderregelung würde in diesem Fall bei allen Zylindern eine unerwünschte Korrektur zu geringeren Kraftstoffmengen hin versuchen. Die Regelung würde instabil werden, zumindest aber wären rasch alle Einzelspeicher an einem Begrenzungswert angelangt, der ein weiteres Regeln erschwert. Dieser unerwünschte Effekt kann durch die Erfindung wirksam bekämpft werden.The drift compensator constructed according to the invention prevents the correction values from "running away" during e.g. For longer acceleration phases, the mean value of the engine speed is naturally lower than the cylinder-specific engine speed values, and in this case the single-cylinder control would attempt an undesirable correction for lower amounts of fuel in all cylinders. The regulation would become unstable, but at least all the individual stores would quickly reach a limit value which would make further regulation difficult. This undesirable effect can be effectively combated by the invention.

Weitere Merkmale sind in den Unteransprüchen gekennzeichnet.Further features are characterized in the subclaims.

Die Erfindung samt ihren weiteren Vorteilen ist im folgenden an Hand von Ausführungsbeispielen näher erläutert, die in der Zeichnung veranschaulicht sind. In dieser zeigen Fig. 1 an Hand eines möglichen Blockschaltbildes die erfindungsgemäße Einrichtung, angewandt auf einen 6-Zylinder Dieselmotor, Fig. 2 ein ähnliches Blockschaltbild, jedoch mehr ins Detail gehend und Fig. 3a, b ein mögliches Flußdiagramm zur Einzelzylinderregelung in einer Einrichtung nach der Erfindung.The invention and its further advantages are explained in more detail below with reference to exemplary embodiments which are illustrated in the drawing. 1 shows a block diagram of the device according to the invention, applied to a 6-cylinder diesel engine, FIG. 2 shows a similar block diagram, but in more detail, and FIG. 3a, b shows a possible flow diagram for single-cylinder control in a device the invention.

In Fig. 1 ist schematisch ein 6-Zylinder Dieselmotor 1 mit einer Einspritzpumpe 2 bekannter Bauart dargestellt, deren Regelstange mittels eines elektromechanischen Antriebes 3 verstellbar ist. Beispielsweise in Nähe des Schwungrades 4 des Motors 1 ist ein Drehzahlsensor 5 vorgesehen, der an dem Schwungrad 4 eingesetzte, hier nicht gezeigte Stifte abtastet und dem entsprechend während der Motordrehung Impulse liefert, die bestimmten Winkelstellungen des Schwungrades 4 entsprechen. Derartige Drehzahlsensoren sind bekannt und beispielsweise in der DE-A-3122533 (Fig. 3 und dazugehörige Beschreibung) geoffenbart. Es können aus Sicherheitsgründen auch zwei Drehzahlsensoren verwendet werden, wobei als ein Drehzahlsensor die Lichtmaschine des Fahrzeuges herangezogen ist, wie in der DE-A-3501435 der Anmelderin beschrieben. Es sind noch weitere Sensoren 6 vorgesehen, die Signale mit Informationen über diverse Betriebszustände des Motors 1 bzw. des Fahrzeuges liefern, z. B. Temperatur- und Drucksensoren. Auch ist zumindest ein Nadelhubsensor 6′ vorgesehen, der eine Information über die Lage der Ventilnadel eines Einspritzventils liefert, wie z.B. in der DE-A-3726712 der Anmelderin beschrieben. Im allgemeinen werden entsprechend der Zylinderanzahl z.B. sechs derartige Nadelhubsensoren verwendet.1 schematically shows a 6-cylinder diesel engine 1 with an injection pump 2 of known type, the control rod of which is adjustable by means of an electromechanical drive 3. For example, in the vicinity of the flywheel 4 of the engine 1, a speed sensor 5 is provided, which scans pins, not shown here, which are inserted on the flywheel 4 and which accordingly delivers pulses during engine rotation which correspond to specific angular positions of the flywheel 4. Such speed sensors are known and are disclosed, for example, in DE-A-3122533 (FIG. 3 and associated description). For safety reasons, two speed sensors can also be used, the alternator of the vehicle being used as a speed sensor, as described in the applicant's DE-A-3501435. There are further sensors 6 which provide signals with information about various operating states of the engine 1 or of the vehicle, e.g. B. temperature and pressure sensors. Also at least one needle stroke sensor 6 'is provided, which provides information about the position of the valve needle of an injection valve, such as in DE-A-3726712 by the applicant. In general, e.g. six such needle stroke sensors are used.

Für die Regelung bzw. Steuerung des Motors 1 wird in bekannter Weise ein elektronischer Regler, hier Basisregler 7 genannt, herangezogen. Ein solcher Regler enthält Recheneinheiten, die aus zugeführten Betriebsgrößensignalen ein Ausgangssignal RW errechnen, welches über den elektromechanischen Antrieb 3 den augenblicklichen Regelstangenweg und damit die Kraftstoffmenge bestimmt.For the regulation or control of the motor 1, an electronic controller, here called basic controller 7, is used in a known manner. Such a controller contains arithmetic units that generate an output signal RW from supplied operating quantity signals calculate which determines the current control rod travel and thus the fuel quantity via the electromechanical drive 3.

Dem Basisregler 7 sind somit die Betriebsgrößensignale der Sensoren 6, 6′ zugeführt und zumindest ein Ausgangssignal eines Drehzahlrechners 8, der eine mittlere Drehzahl bzw. ein entsprechendes Signal n ermittelt. Die Berechnung von Drehzahlsignalen bzw. mittleren Drehzahlen ist gleichfalls bekannt, wobei auf die EP-A-333701 und die dort zitierte Literatur verwiesen wird. Der Drehzahlrechner 8 ist im allgemeinen Teil des Basisreglers 7 und nur hier, der Übersichtlichkeit halber, von diesem getrennt dargestellt. Schließlich ist dem Basisregler noch das Ausgangssignal eines Fahrpedalstellungsgebers 9 zugeführt.The basic controller 7 are thus fed the operating variable signals of the sensors 6, 6 'and at least one output signal from a speed computer 8, which is an average speed or a corresponding signal n determined. The calculation of speed signals or average speeds is also known, reference being made to EP-A-333701 and the literature cited therein. The speed calculator 8 is shown in the general part of the basic controller 7 and only here, for the sake of clarity, separately from it. Finally, the output signal of an accelerator pedal position sensor 9 is fed to the basic controller.

Ein Basisregler 7, wie hier verwendet, weist i.a. eine PID-Regelcharakteristik auf, wie dies z.B. aus der DE-A-2735596 hervorgeht. Er bildet, vom Prinzip her, über den Regelstangenantrieb 3, den Motor 1 und den Drehzahlsensor 5 eine geschlossene Regelschleife, wobei die Ist-Größe die mittlere Drehzahl n ist und die Sollgröße im Basisregler 7 in Abhängigkeit der zugeführten Betriebsgrößensignale, von welchen selbstverständlich das die Fahrpedalstellung anzeigende ein wesentliches Signal ist, errechnet wird.A basic controller 7, as used here, generally has a PID control characteristic, as can be seen, for example, from DE-A-2735596. In principle, it forms a closed control loop via the control rod drive 3, the motor 1 and the speed sensor 5, the actual variable being the average speed n and the target variable in the basic controller 7 is calculated as a function of the supplied operating variable signals, of which of course the signal indicating the accelerator pedal position is an essential signal.

Zusätzlich zu der Regelung durch den Basisregler erfolgt eine Einzelzylinderregelung, die im folgenden näher erläutert wird. Einer Vergleichereinheit 10 wird das mittlere Drehzahlsignal n sowie ein gleichfalls in dem Drehzahlrechner 8 ermitteltes, zylinderspezifisches Drehzahlsignal ni zugeführt. Dieses Signal ni wird durch Messung der Zeitdauer Ti über die Verbrennungshübe der einzelnen Zylinder ermittelt, und zwar durch Zeitzählung in einem Zeitzähler 11 und Kehrwertbildung in einem Kehrwertbildner 12. Der Zeitzähler 11, der Kehrwertbildner 12 und ein Mittelwertbildner 13 sind hier als Blöcke des Drehzahlrechners 8 dargestellt (Fig. 2). Die Zeitzählung erfolgt dabei zwischen Impulsen des Drehzahlsensors 5, die Stiften an dem Schwungrad 4 und aufeinanderfolgenden oberen Totpunkten der Zylinder (in der zeitlichen Reihenfolge des Zündens) entsprechen. Die Impulse müssen nicht genau dem oberen Totpunkt entsprechen, sie können jeder auch einen kleinen Drehwinkel vor oder nach dem oberen Totpunkt erzeugt werden, sollten jedoch im wesentlichen in Nähe des oberen Totpunktes auftreten, da man in diesem Fall die zuverlässigste Information über die Drehzahlschwankungen erhält.In addition to the control by the basic controller, there is a single cylinder control, which is explained in more detail below. The middle speed signal becomes a comparator unit 10 n as well as a cylinder-specific speed signal n i determined in the speed computer 8. This signal n i is determined by measuring the time period T i via the combustion strokes of the individual cylinders, specifically by counting time in a time counter 11 and generating reciprocal values in a reciprocal value generator 12. The time counter 11, the reciprocal value generator 12 and an average value generator 13 are here as blocks of Speed calculator 8 shown (Fig. 2). The time is counted between pulses of the speed sensor 5, the pins on the Flywheel 4 and successive top dead centers of the cylinders (in the chronological order of ignition) correspond. The pulses do not have to correspond exactly to the top dead center, they can also each be generated a small angle of rotation before or after the top dead center, but should occur essentially in the vicinity of the top dead center, since in this case the most reliable information about the speed fluctuations is obtained.

Wie aus Fig. 2 hervorgeht, enthält die Vergleichereinheit 10 bei diesem Ausführungsbeispiel ein Subtrahierglied 14 dem das mittlere bzw. das zylinderspezifische Drehzahl signal n bzw. ni zugeführt sind, sowie einen dem Subtrahierglied nachgeschalteter Signumgenerator 15, der einen Änderungswert  + 1 ausgibt, falls ni  <  n, und einen Änderungswert  - 1, falls ni  >  n. Sofern die zylinderspezifische Drehzahl ni nicht oder nicht wesentlich von der mittleren Drehzahl n abweicht, wird kein Änderungswert ausgegeben. Die Vergleichereinheit 10 kann aber ganz allgemein einen Änderungswert ΔQi ausgeben, dessen Größe auch von dem Maß der Abweichung zwischen ni und n abhängen kann, wie in Fig. 1 am Ausgang der Vergleichereinheit 10 mit ΔQi angegeben.As can be seen from FIG. 2, the comparator unit 10 in this exemplary embodiment contains a subtractor 14 to which the mean or the cylinder-specific speed signal n or n i are supplied, and a signal generator 15 connected downstream of the subtractor, which outputs a change value + 1 if n i < n , and a change value - 1 if n i > n . If the cylinder-specific speed n i is not or not significantly from the mean speed n deviates, no change value is output. However, the comparator unit 10 can generally output a change value ΔQ i , the size of which also depends on the measure of the deviation between n i and n can depend, as indicated in Fig. 1 at the output of the comparator unit 10 with ΔQ i .

Die Änderungswerte ΔQi bilden den Ausgangspunkt für die Einzelzylinderreglung, denn diesen Änderungswerten entsprechend sollen die jeweiligen Zylinder mehr oder weniger Kraftstoff erhalten, damit eine Laufunruhe ausgeglichen wird. Die Änderungswerte ΔQi werden über einen gesteuerten Schalter 16 einer Speicheransteuereinheit 17 und von dieser einem Korrekturwertspeicher 18 mit z, hier z = 6, Zylinderspeichern 18-i, zugeführt (Fig.1).The change values ΔQ i form the starting point for the single-cylinder control, because according to these change values the respective cylinders should receive more or less fuel so that uneven running is compensated for. The change values ΔQ i are fed via a controlled switch 16 to a memory control unit 17 and from there to a correction value memory 18 with z, here z = 6, cylinder memories 18-i (FIG. 1).

Für die erforderliche Synchronisierung ist eine Synchronisiereinheit 19 vorgesehen, der einerseits das Signal des Drehzahl sensors 5 und andererseits das Signal zumindest eines Nadelhubsensors 6′ zugeführt sind, sodaß eine absolute, d.h. zylinderbezogende Synchronisierung möglich ist. Anstelle des Signals eines Nadelhubsensors kann ebensogut ein anderes Signal verwendet werden, das z.B. von sich bewegenden Motorteilen abgeleitet ist und die Absolutsynchronisierung ermöglicht. Im Falle der Anwendung der Erfindung auf einen Ottomotor könnte es sich z.B. um von der elektrischen Zündung abgeleitete Signale handeln.For the required synchronization, a synchronization unit 19 is provided, on the one hand the signal of the speed sensor 5 and on the other hand the signal of at least one needle stroke sensor 6 'are supplied, so that an absolute, ie cylinder-related synchronization is possible. Instead of the signal from a needle stroke sensor, another signal can just as well can be used, which is derived, for example, from moving engine parts and enables absolute synchronization. If the invention is applied to a gasoline engine, it could be, for example, signals derived from the electrical ignition.

Die Synchronisiereinheit 19 steuert somit über einen Eingang 20 die Speicheransteuereinheit mittels eines Synchronisiersignals s so, daß die Signale ΔQi immer in den zugeordneten Speicher 18-i gelangen. In Fig. 2 ist dies durch einen gesteuerten Schalter 21 veranschaulicht.The synchronization unit 19 thus controls the memory control unit via an input 20 by means of a synchronization signal s in such a way that the signals ΔQ i always get into the assigned memory 18-i. This is illustrated in FIG. 2 by a controlled switch 21.

Der oben erwähnte Schalter 16 wird von einem Komparator 22 gesteuert, der die Zuführung der Änderungswerte ΔQi an den Korrekturwertspeicher 18 unterbindet, falls die mittlere Drehzahl n oberhalb eines vorgegebenen Wertes nKB liegt, da bei zu hohen Drehzahlen eine Verwertung der Änderungswerte ΔQi nicht sinnvoll ist. Wie in Fig. 2 symbolisch dargestellt, kann der Komparator 22 auch hysteresebehaftet sein, d.h. ― was sich als zweckmäßig erwiesen hat ―, die Ausschaltschwelle nKB-aus liegt bei höheren Drehzahlen n als die Einschaltschwelle nKB-ein.The above-mentioned switch 16 is controlled by a comparator 22, which prevents the change values ΔQ i from being supplied to the correction value memory 18 if the average speed n is above a predetermined value nKB, since it is not sensible to utilize the change values ΔQ i at high speeds. As shown symbolically in FIG. 2, the comparator 22 can also be subject to hysteresis, ie — which has proven to be expedient — the switch-off threshold nKB-off is at higher speeds n than the switch-on threshold nKB-on.

In Fig. 2 ist weiters eine Entscheidungseinheit 23, dargestellt als Multiplikator, ersichtlich, die der Speicheransteuereinheit 17 vorgeschaltet ist, und der das Ausgangssignal Qi der Vergleichereinheit 10, das Ausgangssignal ("0") oder ("1") des Komparators 22 sowie ein Statussignal st der Synchronisiereinheit 19 zugeführt sind. Dieses Statussignal weist den Wert "0" auf, solange keine Synchronisation erfolgt ist, was z.B. bei Starten des Motors möglich ist, und den Wert "1", wenn Synchronisation vorliegt. Somit erfolgt eine Weitergabe der Änderungswerte ΔQi nur bei bestehender Synchronisation und unterhalb einer bestimmten Drehzahlgrenze. Die Entscheidungseinheit 23 entspricht dem gesteuerten Schalter 16 der Fig. 1, weist jedoch eine erweiterte Funktion auf.2, a decision unit 23, shown as a multiplier, can be seen, which is connected upstream of the memory control unit 17 and which outputs the output signal Q i of the comparator unit 10, the output signal ("0") or ("1") from the comparator 22 and a status signal st the synchronization unit 19 are supplied. This status signal has the value "0" as long as no synchronization has taken place, which is possible, for example, when the engine is started, and the value "1" if synchronization is present. Thus, the change values ΔQ i are only passed on with existing synchronization and below a certain speed limit. The decision unit 23 corresponds to the controlled switch 16 of FIG. 1, but has an expanded function.

Die Zylinderspeicher 18-1 bis 18-6 sind je als summierende oder integrierende Speicher ausgebildet, sodaß sich der je abgespeicherte Korrekturwert ΔRWi je nach Vorzeichen (und Größe) des entsprechenden, zugeführten Änderungswertes ΔQi erhöht oder erniedrigt. Für die Ausgabe der Korrekturwerte ist eine gleichfalls von der Synchronisiereinheit 19 über ein Synchronisiersignal s′ synchronisierte Zylinderauswahleinheit 24 vorgesehen, die in Fig. 2 wieder als gesteuerter Schalter 25 dargestellt ist und die zur korrekt zugeordneten Ausgabe der Korrekturwerte an die entsprechenden Zylinder dient. Gewünschtenfalls können die Korrekturwerte ΔRWi vor ihrer Zuführung an einen Summierer 26, in dem sie zu dem jeweiligen Ausgangssignal RW des Basisreglers 7 addiert werden, in einem Multiplikator 27 mit einem Dynamikanpassungsfaktor KEZR multipliziert werden. Dies ist unter Umständen wegen der digitalen Erarbeitung der Korrekturwerte aus numerischen Gründen zweckmäßig.The cylinder memories 18-1 to 18-6 are each designed as summing or integrating memories, so that the correction value ΔRW i stored in each case increases or decreases depending on the sign (and size) of the corresponding change value ΔQ i supplied. For the output of the correction values is also provided by the synchronization unit 19 via a synchronization signal s' synchronized cylinder selection unit 24, which is shown again in FIG. 2 as a controlled switch 25 and which serves for the correctly assigned output of the correction values to the corresponding cylinders. If desired, the correction values can ΔRW i prior to their feed to a summer 26 where they are added to the respective output signal RW of the base controller 7, are multiplied in a multiplier 27 with a dynamics adaptation factor K EZR. This may be advisable due to the digital development of the correction values for numerical reasons.

Gemäß Fig. 1 ist der Zylinderauswahleinheit 24 (oder dem Multiplikator 27) noch ein von einem Komparator 28 gesteuerter Schalter 29 nachgeordnet. Dem Komparator 28 und dem Schalter 29 kommt im wesentlichen die gleiche Funktion wie dem Komparator 22 und dem Schalter 16 zu; es wird die Ausgabe der Korrekturwerte ΔRWi unterbunden, falls die mittlere Drehzahl n oberhalb eines vorgegebenen Wertes nKA liegt. Wie in Fig. 2 wiederum symbolisch gezeigt, kann auch der Komparator 28 hysteresebehaftet sein, d.h. die Ausschaltschwelle nKA-aus bei höheren Drehzahlen n liegen, als die Einschaltschwelle nKA-ein.1, the cylinder selection unit 24 (or the multiplier 27) is followed by a switch 29 controlled by a comparator 28. The comparator 28 and the switch 29 have essentially the same function as the comparator 22 and the switch 16; the output of the correction values ΔRW i is prevented if the average speed n is above a predetermined value nKA. As shown symbolically in FIG. 2, the comparator 28 can also be subject to hysteresis, ie the switch-off threshold nKA-aus at higher speeds n lie than the switch-on threshold nKA-on.

In Fig. 2 ist eine Entscheidungseinheit 30, dargestellt als Multiplikator, ersichtlich, die der Zylinderauswahleinheit 24 (oder dem Multiplikator 27) nachgeschaltet ist, und der somit die Korrekturwerte Δ RWi zugeführt sind. Weiters sind ihr das Ausgangssignal ("0" oder "1") des Komparators 28 und das Statussignal st der Synchronisiereinheit 19 zugeführt, sodaß eine Ausgabe der Korrekturwerte nur erfolgen kann, wenn Synchronisation vorliegt und die mittlere Drehzahl unterhalb einer bestimmten Grenze liegt. Die Entscheidungseinheit 30 entspricht dem gesteuerten Schalter 29 der Fig. 1 weist demgegenüber jedoch eine erweiterte Funktion auf.FIG. 2 shows a decision unit 30, represented as a multiplier, which is connected downstream of the cylinder selection unit 24 (or the multiplier 27) and to which the correction values Δ RW i are thus supplied. Furthermore, the output signal ("0" or "1") from the comparator 28 and the status signal st of the synchronization unit 19 are fed to it, so that the correction values can only be output when synchronization is present and the average speed below one certain limit. The decision unit 30 corresponds to the controlled switch 29 of FIG. 1, however, has an expanded function.

Aus den eingangs erwähnten Gründen ist ein Driftkompensator 31 vorgesehen, der z Eingänge (hier z = 6) aufweist, welchen die z Korrekturwerte der Zylinderspeicher 18-i zugeführt sind. In dem Driftkompensator 31 wird durch Summieren in einem Summierer 32 (Fig. 2) und darauffolgende Division durch k (hier k = 6) in einem Dividierer 33 der arithmetische Mittelwert ΣΔ RWi/z gebildet. Jedem Zylinderspeicher 18-i bzw. jedem Eingang des Korrekturwertspeichers 18 ist ein Subtrahierglied 34-i vorgeschaltet, dem einerseits der von der Vergleichereinheit 10 ermittelte Änderungswert ΔQi und andererseits der Mittelwert der Korrekturwerte zugeführt ist. Dem Driftkompensator 31 ist noch ein Aktivierungssignal aus der Synchronisiereinheit 19 zugeführt, das umdrehungssynchron auftritt, beispielsweise alle 10 oder 20 Umdrehungen, und die tatsächliche Berechnung bzw. Ausgabe des arithmetischen Mittelwertes an die Subtrahierglieder 34-i bewirkt, wozu gesteuerte Schalter (nicht gezeigt) od. dgl vorgesehen sein können. Alternativ kann das Aktivierungssignal as auch in festen Zeitabständen, z.B. jede Sekunde auftreten, wobei es in diesem Fall in einer Uhr erzeugt wird. Es ist nämlich keineswegs erforderlich, die Driftkompensation bei jedem Verbrennungshub vorzunehmen, sodaß man Rechenzeit für andere Berechnungen einsparen kann, wenn die Driftkompensation bloß in Zeitabständen vorgenommen wird, zu welchen sie wahrscheinlich erforderlich ist.For the reasons mentioned at the outset, a drift compensator 31 is provided which has z inputs (here z = 6), to which the z correction values of the cylinder memories 18-i are supplied. The arithmetic mean ΣΔ RW i / z is formed in the drift compensator 31 by summing in a summer 32 (FIG. 2) and then dividing by k (here k = 6) in a divider 33. A subtractor 34-i is connected upstream of each cylinder memory 18-i or each input of the correction value memory 18, to which the change value ΔQ i determined by the comparator unit 10 and the mean value of the correction values are supplied. The drift compensator 31 is also supplied with an activation signal from the synchronization unit 19, which occurs in synchronism with the rotation, for example every 10 or 20 revolutions, and the actual calculation or output of the arithmetic mean value to the subtracting elements 34-i, for which purpose controlled switches (not shown) or The like can be provided. Alternatively, the activation signal as can also occur at fixed time intervals, for example every second, in which case it is generated in a clock. It is in no way necessary to carry out the drift compensation with every combustion stroke, so that computing time can be saved for other calculations if the drift compensation is only carried out at intervals at which it is likely to be required.

Die Synchronisierung der Speicheransteuereinheit 17 und der Zylinderauswahleinheit 24 mittels der Signale s und s′ bewirkt, daß der richtige Speicherwert auch zur richtigen Zeit ausgegeben wird. Wurde die zylinderspezifische Drehzahl für den i-ten Zylinder gemessen, so beginnt nahezu gleichzeitig mit dem Abschluß dieser Messung die Einspritzung in den (i  +  1)-ten Zylinder, sodaß nicht nur die Einspritzung in den i-ten sondern auch in den (i  +  1)-ten Zylinder "versäumt" wird. Es ist demnach sinnvoll, die Regelstange in eine Position zu bringen, die für den (i  +  2)-ten Zylinder errechnet wurde. Mit anderen Worten sorgt man für eine Phasenverschiebung der Synchronisierung zwischen Speicheransteuereinheit 17 und Zylinderauswahleinheit 24 um mindestens einen, vorzugsweise um zwei Zylinder. Dies ist in Fig. 2 durch entsprechende Stellungen der Schalter 21 und 25 symbolisch dargestellt.The synchronization of the memory control unit 17 and the cylinder selection unit 24 by means of the signals s and s' causes the correct storage value to be output at the correct time. If the cylinder-specific speed for the i-th cylinder was measured, the injection into the (i + 1) -th cylinder begins almost simultaneously with the completion of this measurement, so that not only the injection in the i-th but also in the (i + 1) -th cylinder is "missed". It therefore makes sense to put the control rod in one Bring position that was calculated for the (i + 2) th cylinder. In other words, a phase shift of the synchronization between the memory control unit 17 and the cylinder selection unit 24 is ensured by at least one, preferably by two cylinders. This is symbolically represented in FIG. 2 by corresponding positions of the switches 21 and 25.

Eine mögliche Ausführung der Zylinderspeicher 18-i ist in Fig. 2 dargestellt. Jeder der Speicher 18-i wirkt als digitaler Integrator bzw. Summierer mit Begrenzung. Am Eingang einer Begrenzungseinheit 35-i liegt ein Summierglied 36-i, dem einerseits das Ausgangssignal des entsprechenden Subtrahiergliedes 34-i des Driftkompensators 31 und andererseits das Ausgangssignal eines im Rückkopplungszweig des Integrators liegenden Rückversetzelementes 37-i (Symbol z⁻¹: vgl. Isermann, "Digitale Regelsysteme", Springerverlag, Berlin/Heidelberg 1977) zugeführt ist. Solche Anordnungen gehören dem Stand der Technik an.A possible embodiment of the cylinder memory 18-i is shown in FIG. 2. Each of the memories 18-i acts as a digital integrator or totalizer with limitation. At the input of a limiting unit 35-i is a summing element 36-i, on the one hand the output signal of the corresponding subtracting element 34-i of the drift compensator 31 and on the other hand the output signal of a reset element 37-i located in the feedback branch of the integrator (symbol z⁻¹: see Isermann , "Digital control systems", Springerverlag, Berlin / Heidelberg 1977). Such arrangements belong to the prior art.

Jeder Zylinderspeicher 18-i mit Begrenzungseinheit 35-i kann zur Abgabe eines Indikatorsignales si eingerichtet sein, das auftritt, falls der abgespeicherte Korrekturwert ΔRWi eine obere oder untere Begrenzung erreicht. Dies ist in Fig. 2 bei einer Begrenzungseinheit 35-i angedeutet. Die Indikatorsignale si können einer ODER-Verknüpfung zugeführt und zur Auslösung einer Fehleranzeige oder eines Alarmsignales herangezogen werden.Each cylinder memory 18-i with limiting unit 35-i can be set up to emit an indicator signal si which occurs if the stored correction value ΔRW i reaches an upper or lower limit. This is indicated in FIG. 2 for a limiting unit 35-i. The indicator signals si can be OR-fed and used to trigger an error display or an alarm signal.

In der Zeichnung sind Blockschaltbilder mit einzelnen Funktionsblöcken dargestellt, doch sind in der praktischen Ausführung alle oder die meisten der Funktionsblöcke softwaremäßig in einem Mikrorechner oder einem Mikrorechnersystem realisiert. Ein möglicher Programmablauf hierzu ist in Fig. 3 veranschaulicht. In diesem Flußdiagramm, das sonst in Hinblick auf die vorgehenden Ausführungen keiner näheren Erläuterung bedarf, ist als vorletzter Vorgang der Begriff "Begrenzungen" eingetragen. Hiermit sind vor allem aus Sicherheitsgründen und zur Einhaltung vorgeschriebener Abgasgrenzwerte vorgenommene Begrenzungen des Stellgliedansteuersignals RW  +  ΔRWi angesprochen. Ein derartiger Begrenzer ist symbolisch in Fig. 1 dargestellt und mit 38 bezeichnet. Aus Fig. 1 geht weiters noch ein gesteuerter Schalter 39 hervor, der von einem Bereitschaftssignal bs des Basisreglers 7 gesteuert ist. Dieser Schalter 39 wird erst dann geschlossen, wenn am Ausgang des Basisreglers 7 aktuelle Werte des Ausgangssignals RW vorliegen, um die Weitergabe der bloßen Korrekturwerte ΔRWi an den Antrieb 3 der Reglerstange zu verhindern. Der Antrieb 3 für die Regelstange ist üblicherweise in eine eigene Servoschleife eingebunden, die einen Rückmelder für die Regelstangenlage aufweist.The drawing shows block diagrams with individual function blocks, but in practice, all or most of the function blocks are implemented in software in a microcomputer or a microcomputer system. A possible program sequence for this is illustrated in FIG. 3. In this flowchart, which otherwise does not require any further explanation in view of the preceding explanations, the term "limitations" is entered as the penultimate process. Hereby are mostly out Safety reasons and limitations of the actuator control signal RW + ΔRW i addressed to comply with the prescribed exhaust gas limit values. Such a limiter is shown symbolically in FIG. 1 and designated 38. 1 also shows a controlled switch 39, which is controlled by a ready signal bs of the basic controller 7. This switch 39 is only closed when current values of the output signal RW are present at the output of the basic controller 7 in order to prevent the transmission of the mere correction values ΔRW i to the drive 3 of the controller rod. The drive 3 for the control rod is usually integrated into its own servo loop, which has a feedback for the control rod position.

Claims (17)

1. A device for controlling and regulating the internal-combustion engine of a vehicle, in particular a diesel engine, with a base regulator (7), to which signals are supplied from transmitters and sensors for the detection of operating variables of the engine or respectively of the vehicle, such as e.g. the revolution rate, the gas-pedal position, the engine temperature, etc., an output signal of the base regulator being utilised for the drive of an electromechanical adjusting member for the amount of fuel and/or air supplied to the engine, with a speed calculator (8), to which signals of a speed sensor (5) are supplied and which is set up for the calculation of a cylinder-specific speed (ni) of each cylinder as well as for the determination of a mean engine speed (i), with a comparator unit (10) for the issuance of positive or negative alteration values (Δ Qi) for each cylinder, if the cylinder-specific speeds (ni) lie under or above the mean speed (n), with a correction value store (18) with z cylinder stores (18-i) for cylinder-specific correction values (Δ RWi), to which synchronised by a synchronisation unit (19), the alteration values (Δ Qi) can be supplied, and with a cylinder selection unit (24), connected subsequent to the correction value store (18) and synchronised by the synchronisation unit, for the issuance of the correction values, as well as with a summator (26), to which the output signal of the base regulator (7) as well as the output signal of the cylinder selection unit (24) are supplied, characterised in that a drift compensator (31) is provided, to whose inputs, corresponding in their number to the number z of cylinders, the cylinder-specific correction values (ΔRWi) deposited in the cylinder stores (18-i) of the correction value store (18) are supplied and which is set up for taking the mean of the correction values and which has subtraction members (34-i), which are connected prior to each input of the correction store and to each of which, on the one hand, each cylinder-specific alteration value (ΔQi) ascertained in the comparator unit (10) and, on the other hand, a mean value of the correction values is supplied.
2. A device according to claim 1, characterised in that mean value determination in the drift compensator (31) is effected in successive fixed intervals of time or in a speed-synchronous manner.
3. A device according to claim 2, characterised in that activation signals (as) of the synchronisation unit (19) are supplied to the drift compensator (31).
4. A device according to one of claims 1 to 3, characterised in that connected prior to the correction value store (18) is a store control unit (17), synchronised by the synchronisation unit (19), for the cylinder-specific assignment of the respective correction values to the cylinder stores (18-i).
5. A device according to one of claims 1 to 4, characterised in that each cylinder store (18-i) of the correction value store (18) is designed as a summating or an integrating store.
6. A device according to one of claims 1 to 5, characterised in that each cylinder store (18-i) of the correction value store (18) contains a limiter (35-i).
7. A device according to claim 6, characterised in that each limiter (35-i) is set up for the delivery of an indicator signal (si) when the fixed limiting value is reached.
8. A device according to one of claims 1 to 7, characterised in that output signals of a speed transmitter (5) and of at least one needle stroke sensor (6′) are supplied to the synchronisation unit (19).
9. A device according to one of claims 1 to 8, characterised in that the synchronisation unit (19) is set up for the delivery of a synchronisation status signal (st).
10. A device according to one of claims 1 to 9, characterised in that a first comparator (22) is provided, which delivers a first control signal, which below a speed limit (nKB) makes the calculation of the alteration values possible and which above this speed limit inhibits the calculation.
11. A device according to one of claims 1 to 10, characterised in that a second comparator (28) is provided, which delivers a second control signal, which below a speed limit (nKA) makes the issuance of the correction values possible and which above this speed limit inhibits the issuance.
12. A device according to claim 10 or 11, characterised in that the comparator (22, 28) is hysteresis-affected with respect to the speed limit (nKB, nKA).
13. A device according to one of claims 9 to 12, characterised in that the synchronisation status signal (st) makes the alteration of the correction values and the issuance of the correction values (RWi) possible only if the synchronisation status is reached.
14. A device according to claim 1 and 4, characterised in that the store control unit (17) and the cylinder selection unit (24) are synchronised by means of the synchronisation unit (19) so as to be mutually phase-shifted by at least one cylinder.
15. A device according to one of claims 1 to 14, characterised in that a multiplier (27) for multiplication with a dynamics adaptation factor (KEZR) is arranged subsequent to the cylinder selection unit (24).
16. A device according to one of claims 1 to 15, characterised in that the drift compensator (31) is set up for the formation of the arithmetical mean value of the correction values.
17. A device according to one of claims 1 to 16, characterised in that the speed calculator (8) is set up to determine the cylinder-specific speed (ni) by measuring the duration (Ti) of the respective combustion stroke, which begins in the region of the upper dead centre of a cylinder and ends in the region of the upper dead centre of the next-firing cylinder.
EP89890171A 1988-07-04 1989-06-20 Device for controlling and regulating the combustion engine of a vehicle Expired - Lifetime EP0353216B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89890171T ATE67279T1 (en) 1988-07-04 1989-06-20 DEVICE FOR CONTROLLING AND REGULATING THE INTERNAL COMBUSTION ENGINE OF A VEHICLE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3822583 1988-07-04
DE3822583A DE3822583A1 (en) 1988-07-04 1988-07-04 DEVICE FOR CONTROLLING AND REGULATING THE INTERNAL COMBUSTION ENGINE OF A VEHICLE

Publications (2)

Publication Number Publication Date
EP0353216A1 EP0353216A1 (en) 1990-01-31
EP0353216B1 true EP0353216B1 (en) 1991-09-11

Family

ID=6357913

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89890171A Expired - Lifetime EP0353216B1 (en) 1988-07-04 1989-06-20 Device for controlling and regulating the combustion engine of a vehicle

Country Status (4)

Country Link
EP (1) EP0353216B1 (en)
AT (1) ATE67279T1 (en)
DE (2) DE3822583A1 (en)
ES (1) ES2024074B3 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214946A (en) * 1990-12-14 1992-08-05 Toyota Motor Corp Torque fluctuation control device for internal combustion engine
EP0583495B1 (en) * 1992-08-14 1996-01-10 Siemens Aktiengesellschaft Method for the detection and correction of errors in time measurements of rotating shafts
DE4414727B4 (en) * 1993-04-27 2004-01-29 Hitachi, Ltd. Control method and control unit for multi-cylinder internal combustion engines
DE4447846B4 (en) * 1993-04-27 2006-06-14 Hitachi, Ltd. Control of IC engine - Has fluctuations in rotational speed during individual power strokes assessed to give combustion state of each cylinder
DE19828279A1 (en) * 1998-06-25 1999-12-30 Bosch Gmbh Robert Electronic control device for parameter which influences unsteady running of IC engine
PL221746B1 (en) * 2012-03-06 2016-05-31 Sarre Piotr Method for optimizing the dual fuel power, electronically controlled, four-stroke piston engines with the compression ignition using gaseous fuels

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4495920A (en) * 1982-04-09 1985-01-29 Nippondenso Co., Ltd. Engine control system and method for minimizing cylinder-to-cylinder speed variations
JPS5925055A (en) * 1982-08-03 1984-02-08 Nippon Denso Co Ltd Air-fuel ratio control device
DE3336028C3 (en) * 1983-10-04 1997-04-03 Bosch Gmbh Robert Device for influencing control variables of an internal combustion engine
JPS6131645A (en) * 1984-07-20 1986-02-14 Fuji Heavy Ind Ltd Electronic control for car engine
JPS61118535A (en) * 1984-11-14 1986-06-05 Nippon Soken Inc Air-fuel ratio controller for internal-combustion engine
JPS61212644A (en) * 1985-03-19 1986-09-20 Diesel Kiki Co Ltd Idle operation control device for internal-combustion engine
JP2562577B2 (en) * 1985-12-28 1996-12-11 株式会社ゼクセル Idle operation control device for internal combustion engine

Also Published As

Publication number Publication date
DE3822583C2 (en) 1990-05-31
ATE67279T1 (en) 1991-09-15
ES2024074B3 (en) 1992-02-16
EP0353216A1 (en) 1990-01-31
DE3822583A1 (en) 1990-01-11
DE58900281D1 (en) 1991-10-17

Similar Documents

Publication Publication Date Title
DE2633617C2 (en) Method and device for determining setting variables in an internal combustion engine, in particular the duration of fuel injection pulses, the ignition angle, the exhaust gas recirculation rate
DE2829958C2 (en)
DE10362187B4 (en) Combustion state estimation device for an internal combustion engine
EP0416270B1 (en) Method and apparatus to control and regulate an engine with self-ignition
DE3341622C2 (en)
DE3313038C2 (en)
DE102008043165B4 (en) Method and device for calibrating the pre-injection quantity of an internal combustion engine, in particular a motor vehicle
DE4324312C2 (en) Method for operating an internal combustion engine in a lean mixture combustion area
DE3010583A1 (en) METHOD FOR CONTROLLING THE FUEL SUPPLY TO AN INTERNAL COMBUSTION ENGINE
DE102008054690A1 (en) Injection amount calibrating method for injection system of internal-combustion engine of motor vehicle, involves providing physical variable determined from speed signal of internal-combustion engine for combustion characteristics
DE3108601C2 (en) Method for controlling fuel injection in an internal combustion engine
DE3138102C2 (en) Method for controlling the ignition advance in an internal combustion engine
DE60304067T2 (en) Fuel injection system
DE69915005T2 (en) Method for controlling the injection into the combustion chamber of an internal combustion engine
DE3209433A1 (en) ELECTRONIC CONTROL DEVICE FOR A FUEL METERING SYSTEM OF AN INTERNAL COMBUSTION ENGINE
DE3725521C2 (en)
EP0353216B1 (en) Device for controlling and regulating the combustion engine of a vehicle
DE3422384C2 (en)
EP0449851B1 (en) Processes for metering fuel
EP0385969B1 (en) Apparatus for the control and regulation of a diesel engine
DE19940873B4 (en) Throttle opening control method and throttle opening control apparatus for an internal combustion engine
EP1005609B1 (en) Method for controlling exhaust gas recirculation in an internal combustion engine
DE4327702C1 (en) Engine idling speed control module
DE3009627C2 (en)
DE19809010A1 (en) Fuel injection controller for internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19900306

17Q First examination report despatched

Effective date: 19910304

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AUTOMOTIVE DIESEL GESELLSCHAFT M.B.H.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: STUDIO GLP S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 67279

Country of ref document: AT

Date of ref document: 19910915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58900281

Country of ref document: DE

Date of ref document: 19911017

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2024074

Country of ref document: ES

Kind code of ref document: B3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89890171.5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960516

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960517

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960521

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960523

Year of fee payment: 8

Ref country code: AT

Payment date: 19960523

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960524

Year of fee payment: 8

Ref country code: BE

Payment date: 19960524

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960529

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19960618

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970620

Ref country code: AT

Effective date: 19970620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970621

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19970621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970630

Ref country code: BE

Effective date: 19970630

BERE Be: lapsed

Owner name: AUTOMOTIVE DIESEL G.M.B.H.

Effective date: 19970630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19980101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970620

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980227

EUG Se: european patent has lapsed

Ref document number: 89890171.5

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050620