EP0352961B1 - Klystrode multiplicateur de fréquence - Google Patents
Klystrode multiplicateur de fréquence Download PDFInfo
- Publication number
- EP0352961B1 EP0352961B1 EP19890307345 EP89307345A EP0352961B1 EP 0352961 B1 EP0352961 B1 EP 0352961B1 EP 19890307345 EP19890307345 EP 19890307345 EP 89307345 A EP89307345 A EP 89307345A EP 0352961 B1 EP0352961 B1 EP 0352961B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tube
- gap
- frequency
- cavity
- grid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005291 magnetic effect Effects 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 238000010894 electron beam technology Methods 0.000 claims description 3
- 230000005294 ferromagnetic effect Effects 0.000 claims description 2
- 229910002804 graphite Inorganic materials 0.000 claims description 2
- 239000010439 graphite Substances 0.000 claims description 2
- 230000001965 increasing effect Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J25/00—Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
- H01J25/02—Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
- H01J25/04—Tubes having one or more resonators, without reflection of the electron stream, and in which the modulation produced in the modulator zone is mainly density modulation, e.g. Heaff tube
Definitions
- the invention pertains to linear-beam electron tubes in which the beam is density-modulated by a control grid.
- Such tubes have been found useful for generating amplitude-modulated ultra-high-frequency radio waves such as television broadcast transmission, with efficiency superior to klystrons.
- Radio transmitters have generally used grid-controlled electron tubes such as tetrodes.
- UHF ultra-high frequency range
- the gridded tubes reached their performance limits of power or frequency due to the transit times of electrons across the gaps between electrodes becoming comparable to the period of the generated wave.
- the first development to overcome these limits was the UHF klystron in which transit time is taken advantage of rather than being unwanted.
- the klystron is very inefficient for amplifying an amplitude-modulated wave such as the standard TV signal where amplitude corresponds to brightness.
- the klystron has to have enough power in the beam to generate the signal peaks, such as black and the still stronger synchronization pulses.
- the average power needed for an average signal is several times smaller, but the unused beam power is wasted as heat in the spent-beam collector.
- Preist and Shrader made a high-power tube using klystron beam technology and a much larger carbon grid to which the rf signal was applied in class B or class C modulation.
- the video-frequency power envelope of the beam is thus just what is needed to generate the instantaneous signal amplitude.
- the power efficiency in TV transmission was increased greatly.
- US-A-4611149 can be taken to describe a linear-beam frequency-multiplier electron vacuum tube comprising an electron emissive cathode; an electron-permeable control grid closely spaced from the emissive surface of said cathode; means for supplying a high-frequency signal voltage between said cathode and said grid; an anode spaced from said grid and facing said emissive surface, apertured for passage of an electron beam from said cathode; a hollow conductive drift tube for transmitting said beam beyond said anode, the drift tube being formed with a first and a second gap, the second gap being on one side of the first gap near the anode; a first hollow cavity located around the first gap in said drift tube to form a re-entrant cavity resonant at a frequency near the frequency of said signal voltage; a second hollow cavity located around the second gap in said drift tube to form a re-entrant cavity resonant at a frequency higher than said signal voltage frequency; means for extracting wave energy at
- the present invention is set out in Claim 1.
- Figure 1 illustrates a tube which has a thermionic cathode with preferably concave emitting surface 11, heated by a radiant wire coil 12.
- a convergent beam of electrons 14 is drawn from emitter 11 by a hollow anode 16.
- Directly in front of emitter 11 is an electron-permeable grid, preferably of pyrolytic graphite bars 18 bounding apertures 20.
- Beam 14 is converged toward anode 16 by the convergent electrostatic field. It passes through anode 16 and an annular ferro-magnetic polepiece 22 which forms one terminus of a strong axial magnetic focusing field generated by a surrounding solenoid coil (not shown). Beam 14 then passes through a hollow metallic drift tube 24 and crosses an interaction gap 26 between input drift tube 24 and an exit drift tube 28. Drift tubes 24 and 28 form the center conductor of a coaxial cavity 30, resonant at preferably a frequency just above the frequency band of the tube's input signal.
- Cavity 32 is resonant at a harmonic of the band-center input frequency and is excited by the harmonic component of the modulated beam current.
- beam 14 After leaving harmonic output cavity 32, beam 14 passes through a second annular polepiece 37 which terminates most of the axial field. Beam 14 then expands under its own space-charge repulsion and is collected on the hollow, inner surface of a beam collector 38. The heat energy dissipated is removed by a coolant 40 (such as water) circulating from a coolant pipe 42.
- a coolant 40 such as water
- an input signal to be amplified and frequency-multiplied is fed in from a coaxial transmission line 46 through a coaxial dielectric vacuum window 48 to the space between the grid support 50 (usually at rf ground) and cathode support 52. This space may be partially blocked from input line 46 to form a resonant cavity to properly match impedances.
- Drift tube 34 of harmonic cavity 32 is smaller in diameter than drift tube 24 of fundamental cavity 30, to provide good interactive coupling between beam and cavity at the higher frequency.
- the beam size is tapered down by a gradual increase in strength of the focussing magnetic field by increasing the wire turns per unit length of the solenoid. Shaping of polepieces 22, 37 to concave-convex shapes may also be used to generate the tapered field. In the strong "confined flow" focussing, the electrons follow the magnetic flux lines.
- Useful harmonic energy is extracted from output cavity 32 via a coupling orifice 54 into an output waveguide 56 which is sealed off by a dielectric vacuum window 57.
- FIG. 4 shows calculated trajectories (in rf phase) of sample electrons where harmonic content of beam current is enhanced by bunching at a harmonic frequency.
- FIG. 2 is a graph of calculated harmonic components of beam current in the present frequency multiplier, plotted as functions of distance Z from the amplitude-modulating grid.
- Graph 60 is the fundamental component having a decreasing value 62 after leaving grid 18 due to space-charge debunching.
- beam 14 receives velocity modulation which in following drift tube 28 increases the A.C. component 64.
- the A.C. component reaches a maximum value 66.
- an output circuit with a gap at the position of harmonic gap 36 but resonant at the fundamental frequency gives a conversion efficiency of 87%.
- the second graph shows the second harmonic component 70 of beam current.
- the space-charge debunching 72 is more severe than for the fundamental current 60 due to the shorter wavelength.
- the second harmonic current also increases faster due to the increased number of wavelengths traversed.
- the peak value 76 is reached at about the same distance as that of fundamental 60. At this point output gap 36 is located.
- the conversion efficiency for second harmonic power was calculated as 75%, a value completely out of reach in klystrons or simple grid-controlled tubes.
- the second or third harmonic would be used.
- the limits of power and frequency available from the multiplier are greatly extended.
Landscapes
- Microwave Tubes (AREA)
- Microwave Amplifiers (AREA)
Claims (10)
- Tube électronique à vide multiplicateur de fréquence à faisceau linéaire comportant :
une cathode émissive d'électrons (10) pour l'émission d'un faisceau d'électrons ;
une grille de commande (11) perméable aux électrons pour commander ledit faisceau, ladite grille étant très voisine de la surface émissive de ladite cathode ;
un moyen (46-52) pour fournir une tension de signal à haute fréquence entre ladite cathode et ladite grille ;
une anode (16) espacée de ladite grille et faisant face à ladite surface émissive, comportant des ouvertures pour le passage dudit faisceau d'électrons ;
un tube de transit conducteur creux (24, 28) pour transmettre ledit faisceau au-delà de ladite anode, le tube de transit comportant un premier et un deuxième espaces, le deuxième espace étant situé du côté du premier espace éloigné de l'anode ;
une première cavité creuse (30) destinée à la modulation en vitesse dudit faisceau, ladite première cavité creuse étant située autour du premier espace dans ledit tube de transit pour constituer une cavité de ré-entrée résonant à une fréquence voisine de la fréquence de ladite tension de signal ;
une deuxième cavité creuse (32) située autour du deuxième espace dans ledit tube de transit pour constituer une cavité de ré-entrée résonant à une fréquence voisine d'un harmonique de ladite fréquence de tension du signal ;
un moyen (54-57) pour extraire l'énergie de l'onde à ladite fréquence d'harmonique depuis ladite deuxième cavité ; et
un moyen (38) pour recueillir ledit faisceau en aval de ladite deuxième cavité. - Tube selon la revendication 1, dans lequel ladite première cavité (30) est résonante à une fréquence supérieure à la bande de fréquence dudit signal et inférieure à la bande de fréquence dudit harmonique.
- Tube selon la revendication 1 ou la revendication 2, dans lequel ladite deuxième cavité (32) est résonante à une fréquence située approximativement au centre de la bande de fréquence dudit harmonique.
- Tube selon l'une quelconque des revendications 1 à 3, dans lequel ladite grille (11) est en graphite pyrolytique.
- Tube selon l'une quelconque des revendications 1 à 4, dans lequel ledit moyen d'alimentation en une tension de signal comporte un circuit résonant connecté à ladite cathode et à ladite grille.
- Tube selon l'une quelconque des revendications 1 à 5, dans lequel ledit tube de transit (24, 28) est plus petit au niveau dudit deuxième espace (36) qu'au niveau dudit premier espace (26).
- Tube selon l'une quelconque des revendications 1 à 6, dans lequel ledit deuxième espace (36) est plus court que ledit premier espace (26).
- Tube selon l'une quelconque des revendications 1 à 7, comportant un moyen (22, 37) pour produire un champ magnétique stable dans la direction dudit faisceau entre ladite anode et ledit deuxième espace.
- Tube selon la revendication 8, dans lequel ledit moyen de champ magnétique comporte des pièces polaires ferromagnétiques (22, 37) entourant ledit tube de transit.
- Tube selon la revendication 8, dans lequel ledit moyen de champ magnétique est agencé pour produire un champ magnétique plus puissant au niveau dudit deuxième espace qu'au niveau dudit premier espace, grâce à quoi ledit faisceau est comprimé entre lesdits espaces.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US22349088A | 1988-07-25 | 1988-07-25 | |
US223490 | 1988-07-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0352961A1 EP0352961A1 (fr) | 1990-01-31 |
EP0352961B1 true EP0352961B1 (fr) | 1994-09-07 |
Family
ID=22836735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19890307345 Expired - Lifetime EP0352961B1 (fr) | 1988-07-25 | 1989-07-20 | Klystrode multiplicateur de fréquence |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0352961B1 (fr) |
JP (1) | JPH0279330A (fr) |
DE (1) | DE68918021T2 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10145215B2 (en) | 2014-12-31 | 2018-12-04 | Halliburton Energy Services, Inc. | Drill bit with electrical power generator |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1273140B (it) * | 1993-04-13 | 1997-07-04 | Eev Ltd | Tubo a fascio elettronico lineare |
GB9724960D0 (en) | 1997-11-27 | 1998-01-28 | Eev Ltd | Electron beam tubes |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1143751B (it) * | 1977-08-01 | 1986-10-22 | Sits Soc It Telecom Siemens | Klystron oscillatore accordabile |
US4527091A (en) * | 1983-06-09 | 1985-07-02 | Varian Associates, Inc. | Density modulated electron beam tube with enhanced gain |
-
1989
- 1989-07-20 EP EP19890307345 patent/EP0352961B1/fr not_active Expired - Lifetime
- 1989-07-20 DE DE1989618021 patent/DE68918021T2/de not_active Expired - Fee Related
- 1989-07-21 JP JP18761989A patent/JPH0279330A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10145215B2 (en) | 2014-12-31 | 2018-12-04 | Halliburton Energy Services, Inc. | Drill bit with electrical power generator |
Also Published As
Publication number | Publication date |
---|---|
DE68918021D1 (de) | 1994-10-13 |
JPH0279330A (ja) | 1990-03-19 |
EP0352961A1 (fr) | 1990-01-31 |
DE68918021T2 (de) | 1995-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4527091A (en) | Density modulated electron beam tube with enhanced gain | |
US5650751A (en) | Inductive output tube with multistage depressed collector electrodes providing a near-constant efficiency | |
EP0181214B1 (fr) | Tube à faisceau d'électrons focalisé avec modulation de densité ainsi que de vitesse | |
US6380803B2 (en) | Linear amplifier having discrete resonant circuit elements and providing near-constant efficiency across a wide range of output power | |
US6326730B1 (en) | Low-power wide-bandwidth klystron | |
US5986388A (en) | Field-emission cold-cathode electron gun having emitter tips between the top surface of gate electrode and focusing electrode | |
US5355093A (en) | Compact microwave and millimeter wave amplifier | |
EP0352961B1 (fr) | Klystrode multiplicateur de fréquence | |
US3123735A (en) | Broadband crossed-field amplifier with slow wave structure | |
US20040174211A1 (en) | Inductive output tube having a broadband circuit | |
US3289032A (en) | Microwave hybrid tube apparatus | |
US6191651B1 (en) | Inductive output amplifier output cavity structure | |
US7474148B2 (en) | Amplifier comprising an electronic tube provided with collectors biased by at least two DC bias sources | |
GB2369488A (en) | Linear Amplifier | |
Symons | Klystrons for UHF television | |
EP1675150A2 (fr) | Arrangement de sortie pour un tube à faisceau d'électrons | |
US3924152A (en) | Electron beam amplifier tube with mismatched circuit sever | |
US3296483A (en) | Wideband amplifier utilizing common electron beam for interaction with high-frequency traveling-wave line and with low-frequency electron multiplier | |
Whitaker | Microwave Vacuum Devices | |
JPH0568817B2 (fr) | ||
McDowell et al. | 2.4 Crossed-Field Noise Generation Devices | |
Whitaker et al. | Microwave power tubes | |
JPH0568818B2 (fr) | ||
JPH0568816B2 (fr) | ||
Foster | The development of a 110 kilowatt high efficiency UHF TV klystron |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19900608 |
|
17Q | First examination report despatched |
Effective date: 19920702 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 68918021 Country of ref document: DE Date of ref document: 19941013 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19950616 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19950623 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19950627 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19950628 Year of fee payment: 7 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19960720 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19970201 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19960720 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19970328 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19970201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19970402 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050720 |