EP0347699B1 - Process and device for making a homogeneous austenitic structure - Google Patents

Process and device for making a homogeneous austenitic structure Download PDF

Info

Publication number
EP0347699B1
EP0347699B1 EP89110580A EP89110580A EP0347699B1 EP 0347699 B1 EP0347699 B1 EP 0347699B1 EP 89110580 A EP89110580 A EP 89110580A EP 89110580 A EP89110580 A EP 89110580A EP 0347699 B1 EP0347699 B1 EP 0347699B1
Authority
EP
European Patent Office
Prior art keywords
wire
tube
gas
temperature
pearlitisation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89110580A
Other languages
German (de)
French (fr)
Other versions
EP0347699A1 (en
Inventor
André Reiniche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Generale des Etablissements Michelin SCA
Original Assignee
Compagnie Generale des Etablissements Michelin SCA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale des Etablissements Michelin SCA filed Critical Compagnie Generale des Etablissements Michelin SCA
Priority to AT89110580T priority Critical patent/ATE97698T1/en
Publication of EP0347699A1 publication Critical patent/EP0347699A1/en
Application granted granted Critical
Publication of EP0347699B1 publication Critical patent/EP0347699B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/63Continuous furnaces for strip or wire the strip being supported by a cushion of gas
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/64Patenting furnaces

Definitions

  • the invention relates to methods and devices for thermally treating carbon steel wires so as to obtain a homogeneous austenite structure, these wires being for example capable of undergoing another heat treatment to obtain a fine pearlitic structure. .
  • Document DE-A-2 111 631 describes a device for thermally treating metal wires so as to obtain a pearlitic structure. At the start of this treatment, the wires pass through a combustion oven or an electric oven to undergo an austenitization. The wires thus reach a temperature of 900 ° C to 1000 ° C.
  • Patent EP-B-0 326 005 describes a process and a device making it possible to heat treat at least one carbon steel wire so as to obtain a fine pearlitic structure by passing the wire through at least one tube containing a gas practically without forced ventilation, the tube being surrounded by a heat transfer fluid.
  • the object of the invention is to obtain heating times of less than 4 seconds per millimeter of wire diameter, during an austenitization treatment, which makes it possible to have higher production rates than with known installations, and which also makes it possible to reduce the lengths of the installations.
  • the invention also relates to the methods and complete installations for heat treatment of carbon steel wires using the methods and / or the devices described above.
  • FIG. 1 is a section of the device 100 along the axis xx ′ of this device
  • FIG. 2 is a section perpendicular to this axis xx ′, the section of FIG. 2 being shown diagrammatically by the straight line segments II-II to Figure 1.
  • the device 100 comprises a tube 2, for example ceramic, refractory steel or tungsten carbide, in which the wire 1 runs in carbon steel along arrow F, along the axis xx ′.
  • the wire drive means 1 are known means not shown in these Figures 1 and 2 for the purpose of simplification, these means comprising for example a winder actuated by a motor, for winding the wire after treatment.
  • the space 3 between the wire 1 and the internal wall 20 of the tube 2 is filled with a gas 4.
  • This gas 4 is directly in contact with the wire 1 and the internal wall 20.
  • the gas 4 remains in the space 3 during the treatment of the wire 1, the device 100 being devoid of means capable of allowing forced ventilation of the gas 4, that is to say that the gas 4 without forced ventilation is possibly set in motion in space 3 as by the displacement of the wire 1 according to arrow F.
  • This gas is for example hydrogen, a mixture of hydrogen and nitrogen, a mixture of hydrogen and methane, a mixture of hydrogen, nitrogen, and methane, helium, a mixture of helium and methane.
  • the wire 1 is guided by two wire guides 5, for example made of ceramic or tungsten carbide located at the entry and the exit of the wire 1 in the tube 2.
  • the tube 2 is heated externally by an electric resistance 6 wound around the tube 2 and outside this tube 2 against the external wall 21 of the tube 2.
  • the tube 2 is thermally insulated from the outside by the sleeve 7 surrounding the tube 2 and by the two plates 8 located at the ends of the tube 2.
  • Tube 2 is also electrically isolated in case where it is metallic.
  • the plates 8 and the sleeve 7 are for example made with sintered refractory fibers.
  • the tube 2, the heating resistor 6, the sleeve 7 and the plates 8 are placed inside a metal tube 9 which is cooled by a hollow tube 10 wound around the tube 9, this hollow tube 10 being traversed by a cooling fluid 11, for example water.
  • the device 100 is closed at both ends by circular plates 12 which are applied to the flanges 90 of the tube 9, by means of gas-tight seals 13.
  • the sealed passage 14 allows the electrical supply of the resistor 6.
  • This passage 14 is crossed by two electric wires 15 each connected to one end of the resistor 6 (this connection is not shown in the drawing for the purpose of simplification) .
  • This sealed passage 14 is fixed to one of the two circular plates 12 with gas-tight seals 16.
  • the device 100 comprises an expansion clearance 17, the springs 18 act on the plate 19 serving for the distribution of the forces, which makes it possible to maintain the tube 2 in the middle of the sleeve 7 whatever its temperature.
  • D f represents the diameter of the wire 1
  • D ti represents the internal diameter of the tube 2 (diameter of the internal wall 20)
  • D te represents the external diameter of the tube 2 (diameter of the external wall 21).
  • is the conductivity of gas 4 determined at 800 ° C, this conductivity being expressed in watts.m ⁇ 1. ° K ⁇ 1.
  • the invention thus makes it possible, unexpectedly, to heat the wire 1 from a temperature below the transformation temperature AC3, for example from ambient temperature, to a temperature above the transformation temperature AC3, so as to obtain a homogeneous austenite structure, and this for a very short time less than 4 seconds per millimeter in diameter of the wire D f .
  • the nature of the gas 4 so that it exerts a chemical action on the surface of the wire, for example a deoxidizing, fuel or decarburizing action.
  • the ratio R is close to 1 and the use of a very good heat conducting gas, for example hydrogen, then becomes necessary.
  • the diameter D f of the wire is at least equal to 0.4 mm and at most equal to 6 mm.
  • FIGS. 3 and 4 represent another device 200 according to the invention, this device making it possible to simultaneously treat several wires 1, for example six, FIG. 3 being a section of this device along the axis yy ′ of this device and the FIG. 4 being a section perpendicular to the axis of this device, the axis yy ′ being represented by the reference "y" in FIG. 4.
  • the structure of this device 200 is similar to that of the device 100 with the difference that six tubes 2 are arranged in the enclosure 9 constituted by a steel tube, around the axis yy ′ which is the axis of this tube 9.
  • a wire 1 passes through each tube 2, the gas 4 being placed inside the tubes 2 which are each heated by a resistor 6 as previously described for the device 100, the insulating sleeve 7 being arranged around the six tubes 2 .
  • the diameter D f of the wire 1 and the nature of the gas 4 which is a mixture of hydrogen and nitrogen are varied and therefore the values of ⁇ , R and K.
  • the following table 2 gives the values of D f , the volumetric% of gas 4 in hydrogen, the values of ⁇ , R, K, as well as the production of wire 1.
  • the heating time per millimeter of wire diameter (T c / D f ) varies from 1.46 to 3.1 sec / mm; Table 2 Wire diameter 1 (mm) (D f ) R % H2 ⁇ at 800 ° C (Wm ⁇ 1. ° K ⁇ 1) K Yarn production 1 in kg / hour 1.75 1.43 100 0.487 2.24 158.0 1.55 1.61 98 0.472 2.43 124.0 1.30 1.92 90 0.418 2.64 87.0 0.94 2.66 69 0.297 2.91 45.8 0.82 3.05 62 0.263 2.85 35.0
  • a multitubular device similar to the device 200 described above is used, but with ten tubes 2.
  • This example is carried out under the same conditions and with the same results as example n ° 2 but by replacing the cracked ammonia with a gas 4 maintaining the thermodynamic equilibrium with the carbon of the steel at 800 ° C., this gas 4 having the following composition (% by volume): 74% hydrogen; 24% nitrogen; 2% methane.
  • This example is carried out under the same conditions as example n ° 2 but the cracked ammonia is replaced by a fuel gas making it possible to correct a decarburization which occurred in the previous operations.
  • the composition of gas 4 is as follows in this example (% volumetric): 85% hydrogen, 15% methane.
  • the other conditions and results are the same as for Example 2 with the following differences: the heating time goes from 2.97 to 2.75 seconds, the ratio T c / D f then being equal to 1.57 sec / mm, the wire running speed is 2.18 m / sec. a thickness of superficial recarburization is obtained on the order of 2 ⁇ m. No graphite deposition is observed on wire 1.
  • the invention makes it possible to obtain a very precise wire temperature at the outlet of the treatment, this temperature not varying by more than 1.5 ° C. by excess or by default of the temperature indicated at the outlet of the tubes 2, for the examples 1 to 8, which guarantees good consistency in the quality of the wire.
  • Examples 9 to 12 which follow are produced in a device similar to the device 100 previously described, but these examples are not in accordance with the invention.
  • the characteristics of the wire 1 and of this device are given in the following table 3. These examples are characterized by a ratio T c / D f notably greater than 4 seconds per mm of diameter of the wire, the values of the ratios R and K not corresponding to the set of relations (1) and (2) previously indicated and the austenitization does not can not then be performed with the advantages described above.
  • FIG. 6 represents the curve ⁇ showing the evolution of the temperature of the steel wire 1 as a function of time, when this wire crosses the zones Z2 to Z5.
  • This figure also represents the curve x1 corresponding to the start of the transformation of metastable austenite into perlite and the curve x2 corresponding to the end of the transformation of metastable austenite into perlite, for the steel of this wire.
  • the abscissa axis corresponds to time T and the ordinate axis corresponds to temperature ⁇ , the origin of times corresponding to point A.
  • the wire 1 Prior to the pearlitization treatment, the wire 1 is heated and maintained at a temperature higher than the transformation temperature AC3 so as to obtain a homogeneous austenite, this temperature ⁇ A , for example between 900 ° C and 1000 ° C, corresponding to point A in FIG. 6.
  • the point known as "pearlitic nose” corresponds to the minimum time T m of the curve x1, the temperature of this pearlitic nose being referenced ⁇ P.
  • the wire 1 is then cooled until it reaches a temperature below the transformation temperature AC1, the state of the wire after this cooling corresponding to point B, the temperature obtained at this point B at the end of time T B being referenced ⁇ B.
  • This temperature ⁇ B has been shown in FIG. 6 as being higher than the temperature ⁇ P of the pearlitic nose, which is the most frequent in practice, without being absolutely necessary.
  • This cooling of the wire between points A and B there is transformation of stable austenite into metastable austenite, as soon as the temperature of the wire drops below the transformation point AC3, and "seeds" appear at the grain boundaries of the metastable austenite.
  • the area between the curves x1, x2 is referenced ⁇ .
  • Perlitization consists in passing the thread from the state represented by point B, to the left of zone ⁇ , to a state represented by point C, to the right of zone ⁇ .
  • This transformation of the wire is for example shown diagrammatically by the straight line segment BC which intersects the curve x1 at B x and the curve x2 at C x , but the invention also applies to cases where the variation in temperature of the wire between the points B and C is not linear.
  • the wire is cooled, for example to room temperature, this cooling, preferably rapid, being shown diagrammatically for example by the curved line segment CD, the temperature at D being referenced ⁇ D.
  • the zone Z1 corresponds to the heating of the wire 1 to bring it to the state corresponding to the point A
  • the zone Z2 corresponds to the cooling represented by the portion AB of the curve ⁇
  • the zone Z3 corresponds to the portion BC of the curve ⁇
  • the zones Z4 and Z5 together correspond to the cooling represented by the portion CD of the curve ⁇ .
  • the zone Z1 is produced for example with the device 100 according to the invention described above.
  • the zone Z2 is produced for example in accordance with the French patent application n ° 88/00904.
  • the device 32 corresponding to this zone Z2 is shown in FIGS. 7 and 8.
  • This device 32 is a heat exchanger comprising an enclosure 33 in the form of a tube with an internal diameter D ′ ti and an external diameter D ′ te in which the wire 1 to be treated travels along the arrow F, of diameter D f .
  • FIG. 7 is a section taken along the axis xx ′ of the wire 1 which is also the axis of the device 32
  • FIG. 8 is a section made perpendicular to this axis xx ′, the section of FIG. 8 being shown diagrammatically by the straight line segments VIII-VIII, in FIG. 7, the axis xx ′ being shown diagrammatically by the letter "x" in FIG. 8.
  • the space 34 between the wire 1 and the tube 33 is filled with a gas 35 which is directly in contact with the wire 1 and the inner wall 330 of the tube 33.
  • the gas 35 remains in the space 34 during the treatment of the wire 1, the device 32 being devoid of means capable of allowing forced ventilation of the gas 35, that is to say that the gas 35 practically without forced ventilation is possibly set in motion in the space 34 only by the displacement of the wire 1 according to arrow F.
  • ⁇ ′ is the conductivity of gas 35 d complete at 600 ° C. This conductivity is expressed in watts.m ⁇ 1.
  • the wire 1 is guided by two wire guides 36 made for example of ceramic or tungsten carbide, these guides 36 being located one at the inlet, the other at the outlet of the wire 1 in the tube 33.
  • the tube 33 is cooled externally by a heat transfer fluid 37, for example water circulating in an annular sleeve 38 which surrounds the tube 33.
  • This sleeve 38 has a length L ′ m , an internal diameter D ′ mi , an external diameter D ′ Me .
  • the sleeve 38 is supplied with water 37 through the tubing 39, the water 37 leaves the sleeve 38 through the tubing 40, the flow of water 37 along the tube 33 thus taking place in the opposite direction to the direction F
  • the seal between the zone 41 containing water 37 (interior volume of the sleeve 38) and the space 34 containing the gas 35 is obtained using seals 42 produced for example in elastomers.
  • the length of the tube 33 in contact with the fluid 37 is referenced L ′ t in FIG. 7.
  • the exchanger 32 can in itself constitute a device for the zone Z2. It is also possible to assemble several exchangers 32, along the axis xx ', by means of the flanges 43 constituting the ends of the sleeve 38, the wire 1 then passing through several exchangers 32 arranged in series along the axis xx'.
  • the gas 35 is for example hydrogen, nitrogen, helium, a mixture of hydrogen and nitrogen, hydrogen and methane, nitrogen and methane, helium and methane, d 'hydrogen, nitrogen and methane.
  • the ratio R 'between the internal diameter D' ti and the diameter D f of the wire must be close to 1, and the use of a very conductive gas 35, for example hydrogen , becomes necessary.
  • the zone Z3 of the installation 300 is produced for example by using several exchangers 32 arranged in series, under the conditions described below.
  • the steps of transformation of the wire 1 shown diagrammatically by the line BC in FIG. 1 are carried out at a temperature which varies as little as possible, the temperature of the wire 1, for example, not differing by more than 10 ° C by excess or by default of the temperature ⁇ B obtained after the cooling shown diagrammatically by the line AB.
  • This limitation of the variation in temperature is therefore carried out for a time greater than the pearlitization time, this pearlitization time corresponding to the segment B x C x .
  • the temperature of the wire 1 does not differ by more than 5 ° C by excess or by default of the temperature ⁇ B on this line BC.
  • FIG. 6 represents for example the ideal case where the temperature is constant and equal to ⁇ B during the stages shown diagrammatically by the line BC which is therefore a line segment parallel to the abscissa axis.
  • This modulation can preferably be carried out by varying either the internal diameter D ′ ti of the tubes 33 through which the wire passes, or the length L ′ t of the various tubes 33 through which the wire passes, as described in the patent application French aforementioned No. 88/00904.
  • the zone Z4 is constituted for example by an exchanger 32 verifying the relationships (3) and (4) previously defined.
  • the wire 1 then enters the zone Z5 where it is brought to a temperature close to ambient temperature, by example from 20 to 50 ° C, by immersion in water.
  • the wire 1 treated in the installation 300 has the same structure as that obtained by the known lead patenting process, that is to say a fine pearlitic structure.
  • This structure consists of cementite lamellae separated by ferrite lamellae.
  • FIG. 9 represents in section a portion 50 of such a fine pearlitic structure.
  • This portion 50 comprises two substantially parallel cementite lamellae 51 separated by a ferrite lamella 52.
  • the thickness of the cementite lamellae 51 is represented by "i” and the thickness of the ferrite lamellae 52 is represented by "e”.
  • the pearlitic structure is fine, that is to say that the average value i + e is at most equal to 1000 ⁇ , with a standard deviation of 250 ⁇ .
  • Such a wire can be used, for example, to reinforce articles made of plastics or rubbers, in particular tire casings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Glass Compositions (AREA)
  • Heat Treatment Of Steel (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

Process and device (100) for heat-treating at least one carbon steel wire (1) so as to obtain a homogeneous austenite structure, characterised in that the wire (1) is heated in a tube (2) containing a gas (4) virtually free from forced ventilation, the gas (4) being directly in contact with the wire (1), the time for heating the wire (1) being less than 4 seconds per millimetre of diameter of the wire (1). Pearlitising installation (300) using such a process and such a device. <??>Steel wires obtained according to this process, this device or this installation. <IMAGE>

Description

L'invention concerne les procédés et les dispositifs permettant de traiter thermiquement des fils d'acier au carbone de façon à obtenir une structure d'austénite homogène, ces fils étant par exemple susceptibles de subir ultérieurement un autre traitement thermique pour obtenir une structure perlitique fine.The invention relates to methods and devices for thermally treating carbon steel wires so as to obtain a homogeneous austenite structure, these wires being for example capable of undergoing another heat treatment to obtain a fine pearlitic structure. .

Les procédés connus d'austénitisation de fils d'acier au défilé sont notamment les suivants :

  • chauffage par induction dans lequel le fil est soumis à un champ magnétique ayant une fréquence de 5000 à 200 000 Hz ; ce procédé ne s'applique dans de bonnes conditions qu'à des fils d'un diamètre supérieur à 3 mm et pour des températures inférieures au point de Curie.
  • chauffage dans un four à moufle à l'aide de résistances électriques ; ce procédé évite les inconvénients du chauffage par induction, mais il conduit à des temps de chauffage élevés de l'ordre de 10 à 15 secondes par millimètre de diamètre des fils.
  • chauffage dans un four à gaz ; ce procédé conduit ici encore à des temps de chauffage élevés, du même ordre que ceux des fours à moufle, car la température des gaz à la sortie du four doit être faible si l'on veut obtenir un rendement thermique convenable, d'autre part la conductibilité thermique des gaz de combustion est moins bonne que celle des gaz utilisables dans un four à moufle (hydrogène, mélange d'hydrogène et d'azote, hélium) ; il est possible, dans les fours à gaz, de contrôler le pouvoir désoxydant des gaz de combustion, mais cela demande une surveillance très attentive du réglage des brûleurs à gaz.
The known processes for austenitizing steel wires in the process are notably the following:
  • induction heating in which the wire is subjected to a magnetic field having a frequency of 5000 to 200,000 Hz; this process only applies under good conditions to wires with a diameter greater than 3 mm and for temperatures below the Curie point.
  • heating in a muffle furnace using electric resistances; this process avoids the drawbacks of induction heating, but it leads to high heating times of the order of 10 to 15 seconds per millimeter of diameter of the wires.
  • heating in a gas oven; this process again leads to high heating times, of the same order as those of muffle furnaces, because the temperature of the gases at the outlet of the oven must be low if one wants to obtain a suitable thermal efficiency, on the other hand the thermal conductivity of the combustion gases is less good than that of the gases usable in a muffle furnace (hydrogen, mixture of hydrogen and nitrogen, helium); it is possible, in gas ovens, to control the deoxidizing power of the combustion gases, but this requires very careful monitoring of the adjustment of the gas burners.

Le document DE-A-2 111 631 décrit un dispositif pour traiter thermiquement des fils métalliques de façon à obtenir une structure perlitique. Au début de ce traitement, les fils passent dans un four de combustion ou un four électrique pour y subir une austénitisation. Les fils atteignent ainsi une température de 900°C à 1000°C.Document DE-A-2 111 631 describes a device for thermally treating metal wires so as to obtain a pearlitic structure. At the start of this treatment, the wires pass through a combustion oven or an electric oven to undergo an austenitization. The wires thus reach a temperature of 900 ° C to 1000 ° C.

Le brevet EP-B-0 326 005 décrit un procédé et un dispositif permettant de traiter thermiquement au moins un fil d'acier au carbone de façon à obtenir une structure perlitique fine en faisant passer le fil dans au moins un tube contenant un gaz pratiquement dépourvu de ventilation forcée, le tube étant entouré par un fluide caloporteur.Patent EP-B-0 326 005 describes a process and a device making it possible to heat treat at least one carbon steel wire so as to obtain a fine pearlitic structure by passing the wire through at least one tube containing a gas practically without forced ventilation, the tube being surrounded by a heat transfer fluid.

Le but de l'invention est l'obtention de temps de chauffage inférieurs à 4 secondes par millimètre de diamètre du fil, lors d'un traitement d'austénitisation, ce qui permet d'avoir des cadences de production plus élevées qu'avec les installations connues, et ce qui permet aussi de diminuer les longueurs des installations.The object of the invention is to obtain heating times of less than 4 seconds per millimeter of wire diameter, during an austenitization treatment, which makes it possible to have higher production rates than with known installations, and which also makes it possible to reduce the lengths of the installations.

En conséquence, le procédé conforme à l'invention pour traiter thermiquement au moins un fil d'acier au carbone, de façon à obtenir une structure d'austénite homogène comporte les points suivants :

  • a) on chauffe le fil en le faisant passer dans au moins un tube contenant un gaz pratiquement dépourvu de ventilation forcée, le gaz étant directement au contact du fil, le temps de chauffage du fil étant inférieur à 4 secondes par millimètre de diamètre du fil ;
  • b) les caractéristiques du tube, du fil et du gaz sont choisies de telle sorte que les relations suivantes soient vérifiées :

    1,05 ≦ R ≦ 7   (1)
    Figure imgb0001


    0,6 ≦ K ≦ 8   (2)
    Figure imgb0002


    avec par définition

    R = D ti /D f
    Figure imgb0003

    K = [Log (D ti /D f )]xD f ²/λ
    Figure imgb0004


    Dti étant le diamètre intérieur du tube exprimé en millimètres, Df étant le diamètre du fil exprimé en millimètres, λ étant la conductibilité du gaz déterminée à 800°C, cette conductibilité étant exprimée en watts.m⁻¹.°k⁻¹, Log étant le logarithme népérien.
    L'invention concerne également un dispositif permettant de traiter thermiquement au moins un fil d'acier au carbone, de façon à obtenir une structure d'austénite homogène, le dispositif comportant les points suivants :
    • a) il comporte au moins un tube et des moyens permettant de faire passer le fil dans le tube ; le tube contient un gaz pratiquement dépourvu de ventilation forcée, directement au contact du fil, le dispositif comportant des moyens pour chauffer le gaz ; les moyens permettant de faire passer le fil dans le tube sont tels que le temps de contact du fil avec le gaz soit inférieur à 4 secondes par millimètre de diamètre du fil ;
    • b) les caractéristiques du tube, du fil et du gaz sont choisies de telle sorte que les relations (1) et (2) précédentes soient vérifiées Dti, Df, λ et Log ayant les mêmes définitions que précédemment indiqué.
Consequently, the process according to the invention for heat treating at least one carbon steel wire, so as to obtain a homogeneous austenite structure comprises the following points:
  • a) the wire is heated by passing it through at least one tube containing a gas practically without forced ventilation, the gas being directly in contact with the wire, the wire heating time being less than 4 seconds per millimeter of wire diameter ;
  • b) the characteristics of the tube, wire and gas are chosen so that the following relationships are verified:

    1.05 ≦ R ≦ 7 (1)
    Figure imgb0001


    0.6 ≦ K ≦ 8 (2)
    Figure imgb0002


    with by definition

    R = D ti / D f
    Figure imgb0003

    K = [Log (D ti / D f )] xD f ² / λ
    Figure imgb0004


    D ti being the inside diameter of the tube expressed in millimeters, D f being the diameter of the wire expressed in millimeters, λ being the conductivity of the gas determined at 800 ° C, this conductivity being expressed in watts.m⁻¹. ° k⁻¹ , Log being the natural logarithm.
    The invention also relates to a device making it possible to heat treat at least one carbon steel wire, so as to obtain a homogeneous austenite structure, the device comprising the following points:
    • a) it comprises at least one tube and means making it possible to pass the wire through the tube; the tube contains a gas practically without forced ventilation, directly in contact with the wire, the device comprising means for heating the gas; the means for passing the wire through the tube are such that the contact time of the wire with the gas is less than 4 seconds per millimeter of wire diameter;
    • b) the characteristics of the tube, the wire and the gas are chosen so that the preceding relations (1) and (2) are verified D ti , D f , λ and Log having the same definitions as previously indicated.

Le terme "pratiquement dépourvu de ventilation forcée" veut dire que le gaz dans le tube est soit immobile, soit soumis à une faible ventilation qui ne modifie pratiquement pas les échanges thermiques entre le fil et le gaz, cette faible ventilation étant par exemple due uniquement au déplacement du fil lui-même.The term "practically without forced ventilation" means that the gas in the tube is either immobile or subjected to weak ventilation which practically does not modify the heat exchanges between the wire and the gas, this weak ventilation being for example due only to the movement of the wire itself.

L'invention concerne également les procédés et les installations complets de traitement thermique de fils d'acier au carbone utilisant les procédés et/ou les dispositifs précédemment décrits.The invention also relates to the methods and complete installations for heat treatment of carbon steel wires using the methods and / or the devices described above.

L'invention sera aisément comprise à l'aide des exemples non limitatifs qui suivent et des figures toutes schématiques relatives à ces exemples.The invention will be easily understood with the aid of the following nonlimiting examples and all schematic figures relating to these examples.

Sur le dessin :

  • la figure 1 représente un dispositif conforme à l'invention, cette figure étant une coupe effectuée selon l'axe du dispositif ;
  • la figure 2 représente en coupe le dispositif représenté à la figure 1, cette coupe qui est effectuée perpendiculairement à l'axe du dispositif, étant représentée par les segments de ligne droite II-II à la figure 1 ;
  • la figure 3 représente en coupe un autre dispositif conforme à l'invention, cette coupe étant effectuée selon l'axe du dispositif ;
  • la figure 4 représente en coupe le dispositif représenté à la figure 3, cette coupe, qui est effectuée perpendiculairement à l'axe du dispositif, étant représentée par les segments de ligne droite IV-IV à la figure 3 ;
  • la figure 5 représente une installation complète de traitement thermique d'un fil métallique, cette installation comportant un dispositif conforme à l'invention ;
  • la figure 6 représente une courbe montrant l'évolution de la température en fonction du temps pour le fil traité dans l'installation de la figure 5 ;
  • la figure 7 représente un dispositif utilisé dans l'installation de la figure 5, cette figure étant une coupe effectuée selon l'axe du dispositif ;
  • la figure 8 représente le dispositif de la figure 7 selon une coupe perpendiculaire à l'axe du dispositif, cette coupe étant indiquée par les segments de ligne droite VIII-VIII à la figure 7 ;
  • la figure 9 représente en coupe une portion de la structure perlitique fine du fil traité dans l'installation représentée à la figure 5.
On the drawing :
  • Figure 1 shows a device according to the invention, this figure being a section taken along the axis of the device;
  • 2 shows in section the device shown in Figure 1, this section which is made perpendicular to the axis of the device, being represented by the straight line segments II-II in Figure 1;
  • Figure 3 shows in section another device according to the invention, this section being taken along the axis of the device;
  • 4 shows in section the device shown in Figure 3, this section, which is made perpendicular to the axis of the device, being represented by the straight line segments IV-IV in Figure 3;
  • FIG. 5 represents a complete installation for heat treatment of a metal wire, this installation comprising a device according to the invention;
  • FIG. 6 represents a curve showing the evolution of the temperature as a function of time for the wire treated in the installation of FIG. 5;
  • 7 shows a device used in the installation of Figure 5, this figure being a section taken along the axis of the device;
  • 8 shows the device of Figure 7 in a section perpendicular to the axis of the device, this section being indicated by the straight line segments VIII-VIII in Figure 7;
  • FIG. 9 represents in section a portion of the fine pearlitic structure of the wire treated in the installation shown in FIG. 5.

Les figures 1 et 2 représentent un dispositif 100 conforme à l'invention pour la mise en oeuvre du procédé selon l'invention. La figure 1 est une coupe du dispositif 100 selon l'axe xx′ de ce dispositif, la figure 2 est une coupe perpendiculaire à cet axe xx′, la coupe de la figure 2 étant schématisée par les segments de ligne droite II-II à la figure 1. Le dispositif 100 comporte un tube 2, par exemple en céramique, en acier réfractaire ou en carbure de tungstène, dans lequel défile le fil 1 en acier au carbone suivant la flèche F, le long de l'axe xx′.Figures 1 and 2 show a device 100 according to the invention for implementing the method according to the invention. FIG. 1 is a section of the device 100 along the axis xx ′ of this device, FIG. 2 is a section perpendicular to this axis xx ′, the section of FIG. 2 being shown diagrammatically by the straight line segments II-II to Figure 1. The device 100 comprises a tube 2, for example ceramic, refractory steel or tungsten carbide, in which the wire 1 runs in carbon steel along arrow F, along the axis xx ′.

Les moyens d'entraînement du fil 1 sont de moyens connus non représentés sur ces figures 1 et 2 dans un but de simplification, ces moyens comportant par exemple un enrouleur actionné par un moteur, pour enrouler le fil après traitement.The wire drive means 1 are known means not shown in these Figures 1 and 2 for the purpose of simplification, these means comprising for example a winder actuated by a motor, for winding the wire after treatment.

L'espace 3 entre le fil 1 et la paroi interne 20 du tube 2 est rempli par un gaz 4. Ce gaz 4 se trouve directement au contact du fil 1 et de la paroi interne 20. Le gas 4 reste dans l'espace 3 pendant le traitement du fil 1, le dispositif 100 étant dépourvu de moyens susceptibles de permettre une ventilation forcée du gaz 4, c'est-à-dire que le gaz 4 dépourvu de ventilation forcée n'est éventuellement mis en mouvement dans l'espace 3 que par le déplacement du fil 1 selon la flèche F. Ce gaz est par exemple de l'hydrogène, un mélange d'hydrogène et d'azote, un mélange d'hydrogène et de méthane, un mélange d'hydrogène, d'azote, et de méthane, de l'hélium, un mélange d'hélium et de méthane.The space 3 between the wire 1 and the internal wall 20 of the tube 2 is filled with a gas 4. This gas 4 is directly in contact with the wire 1 and the internal wall 20. The gas 4 remains in the space 3 during the treatment of the wire 1, the device 100 being devoid of means capable of allowing forced ventilation of the gas 4, that is to say that the gas 4 without forced ventilation is possibly set in motion in space 3 as by the displacement of the wire 1 according to arrow F. This gas is for example hydrogen, a mixture of hydrogen and nitrogen, a mixture of hydrogen and methane, a mixture of hydrogen, nitrogen, and methane, helium, a mixture of helium and methane.

Le fil 1 est guidé par deux guide-fils 5, par exemple en céramique ou en carbure de tungstène situés à l'entrée et à la sortie du fil 1 dans le tube 2. Le tube 2 est chauffé extérieurement par une résistance électrique 6 bobinée autour du tube 2 et à l'extérieur de ce tube 2 contre la paroi externe 21 du tube 2. Le tube 2 est isolé thermiquement de l'extérieur par le manchon 7 entourant le tube 2 et par les deux plaques 8 situées aux extrémités du tube 2. Le tube 2 est également isolé électriquement au cas où il est métallique. Les plaques 8 et le manchon 7 sont par exemple réalisés avec des fibres réfractaires frittées. Le tube 2, la résistance chauffante 6, le manchon 7 et les plaques 8 sont placés à l'intérieur d'un tube en métal 9 qui est refroidi par un tube 10 creux enroulé autour du tube 9, ce tube creux 10 étant parcouru par un fluide 11 de refroidissement, par exemple de l'eau.The wire 1 is guided by two wire guides 5, for example made of ceramic or tungsten carbide located at the entry and the exit of the wire 1 in the tube 2. The tube 2 is heated externally by an electric resistance 6 wound around the tube 2 and outside this tube 2 against the external wall 21 of the tube 2. The tube 2 is thermally insulated from the outside by the sleeve 7 surrounding the tube 2 and by the two plates 8 located at the ends of the tube 2. Tube 2 is also electrically isolated in case where it is metallic. The plates 8 and the sleeve 7 are for example made with sintered refractory fibers. The tube 2, the heating resistor 6, the sleeve 7 and the plates 8 are placed inside a metal tube 9 which is cooled by a hollow tube 10 wound around the tube 9, this hollow tube 10 being traversed by a cooling fluid 11, for example water.

Le dispositif 100 est fermé aux deux extrémités par des plaques circulaires 12 qui s'appliquent sur les brides 90 du tube 9, par l'intermédiaire de joints 13 étanches au gaz. Le passage étanche 14 permet l'alimentation électrique de la résistance 6. Ce passage 14 est traversé par deux fils électriques 15 relié chacun à une extrémité de la résistance 6 (cette liaison n'est pas représentée sur le dessin dans un but de simplification). Ce passage étanche 14 est fixé sur l'une des deux plaques circulaires 12 avec des joints 16 étanches aux gaz.The device 100 is closed at both ends by circular plates 12 which are applied to the flanges 90 of the tube 9, by means of gas-tight seals 13. The sealed passage 14 allows the electrical supply of the resistor 6. This passage 14 is crossed by two electric wires 15 each connected to one end of the resistor 6 (this connection is not shown in the drawing for the purpose of simplification) . This sealed passage 14 is fixed to one of the two circular plates 12 with gas-tight seals 16.

Le dispositif 100 comporte un jeu de dilatation 17, les ressorts 18 agissent sur le plaque 19 servant à la répartition des efforts, ce qui permet de maintenir le tube 2 au milieu du manchon 7 quelle que soit sa température.The device 100 comprises an expansion clearance 17, the springs 18 act on the plate 19 serving for the distribution of the forces, which makes it possible to maintain the tube 2 in the middle of the sleeve 7 whatever its temperature.

Sur la figure 2, Df représente le diamètre du fil 1, Dti représente le diamètre intérieur du tube 2 (diamètre de la paroi interne 20), Dte représente le diamètre extérieur du tube 2 (diamètre de la paroi externe 21). λ est la conductibilité du gaz 4 déterminée à 800°C, cette conductibilité étant exprimée en watts.m⁻¹.°K⁻¹.In FIG. 2, D f represents the diameter of the wire 1, D ti represents the internal diameter of the tube 2 (diameter of the internal wall 20), D te represents the external diameter of the tube 2 (diameter of the external wall 21). λ is the conductivity of gas 4 determined at 800 ° C, this conductivity being expressed in watts.m⁻¹. ° K⁻¹.

Conformément à l'invention, Dti, Df, et λ sont choisis de façon à vérifier les relations suivantes :

1,05 ≦ R ≦ 7   (1)

Figure imgb0005


0,6 ≦ K ≦ 8   (2)
Figure imgb0006


avec par définition

R = D ti /D f
Figure imgb0007

K = [Log(D ti /D f )]xD f ²/λ
Figure imgb0008


Dti et Df étant exprimés en millimètres, Log étant le logarithme népérien.In accordance with the invention, D ti , D f , and λ are chosen so as to verify the following relationships:

1.05 ≦ R ≦ 7 (1)
Figure imgb0005


0.6 ≦ K ≦ 8 (2)
Figure imgb0006


with by definition

R = D ti / D f
Figure imgb0007

K = [Log (D ti / D f )] xD f ² / λ
Figure imgb0008


D ti and D f being expressed in millimeters, Log being the natural logarithm.

L'invention permet ainsi, de façon inattendue, de chauffer le fil 1 depuis une température inférieure à la température de transformation AC3, par exemple depuis la température ambiante, jusqu'à une température supérieure à la température de transformation AC3, de façon à obtenir une structure d'austénite homogène, et ceci pendant un temps très court inférieur à 4 secondes par millimètre de diamètre du fil Df. D'autre part on peut choisir, si on le désire, la nature du gaz 4 pour qu'il exerce une action chimique sur la surface du fil, par exemple une action désoxydante, carburante ou décarburante.The invention thus makes it possible, unexpectedly, to heat the wire 1 from a temperature below the transformation temperature AC3, for example from ambient temperature, to a temperature above the transformation temperature AC3, so as to obtain a homogeneous austenite structure, and this for a very short time less than 4 seconds per millimeter in diameter of the wire D f . On the other hand, one can choose, if desired, the nature of the gas 4 so that it exerts a chemical action on the surface of the wire, for example a deoxidizing, fuel or decarburizing action.

L'invention présente donc les avantages suivants :

  • simplicité, coûts d'investissement et de fonctionnement peu élevés, car on se dispense d'employer des compresseurs ou des turbines qui seraient nécessaires avec une circulation de gaz forcée ;
  • on peut obtenir une loi de réchauffement précise ;
  • le réchauffement est rapide, ce qui permet d'augmenter les cadences de fabrication et de diminuer la longueur des installations ;
  • le réchauffement rapide peut s'appliquer à des fils dont le diamètre Df varie dans de larges limites, le même dispositif permettant notamment de traiter des fils dont les diamètres Df varient dans un rapport de 1 à 5.
The invention therefore has the following advantages:
  • simplicity, low investment and operating costs, because there is no need to use compressors or turbines which would be necessary with forced gas circulation;
  • you can get a precise warming law;
  • the heating is rapid, which makes it possible to increase the production rates and reduce the length of the installations;
  • rapid warming can be applied to wires whose diameter D f varies within wide limits, the same device making it possible in particular to treat wires whose diameters D f vary in a ratio of 1 to 5.

Pour des fils dont le diamètre Df est important, supérieur à 4 mm, le rapport R est voisin de 1 et l'utilisation d'un gaz très bon conducteur de la chaleur, par exemple de l'hydrogène, devient alors nécessaire.For wires with a large diameter D f , greater than 4 mm, the ratio R is close to 1 and the use of a very good heat conducting gas, for example hydrogen, then becomes necessary.

De préférence le diamètre Df du fil est au moins égal à 0,4 mm et au plus égal à 6 mm.Preferably the diameter D f of the wire is at least equal to 0.4 mm and at most equal to 6 mm.

Les figures 3 et 4 représentent un autre dispositif 200 conforme à l'invention, ce dispositif permettant de traiter simultanément plusieurs fils 1, par exemple six, la figure 3 étant une coupe de ce dispositif selon l'axe yy′ de ce dispositif et la figure 4 étant une coupe perpendiculaire à l'axe de ce dispositif, l'axe yy′ étant représenté par la référence "y" à la figure 4.FIGS. 3 and 4 represent another device 200 according to the invention, this device making it possible to simultaneously treat several wires 1, for example six, FIG. 3 being a section of this device along the axis yy ′ of this device and the FIG. 4 being a section perpendicular to the axis of this device, the axis yy ′ being represented by the reference "y" in FIG. 4.

La structure de ce dispositif 200 est analogue à celle du dispositif 100 avec la différence que six tubes 2 sont disposés dans l'enceinte 9 constituée par un tube d'acier, autour de l'axe yy′ qui est l'axe de ce tube 9. Un fil 1 passe dans chaque tube 2, le gaz 4 étant disposé à l'intérieur des tubes 2 qui sont réchauffés chacun par une résistance 6 comme précédemment décrit pour le dispositif 100, le manchon isolant 7 étant disposé autour des six tubes 2.The structure of this device 200 is similar to that of the device 100 with the difference that six tubes 2 are arranged in the enclosure 9 constituted by a steel tube, around the axis yy ′ which is the axis of this tube 9. A wire 1 passes through each tube 2, the gas 4 being placed inside the tubes 2 which are each heated by a resistor 6 as previously described for the device 100, the insulating sleeve 7 being arranged around the six tubes 2 .

Les exemples qui suivent permettent de mieux comprendre l'invention.The examples which follow make it possible to better understand the invention.

Exemples 1 à 4Examples 1 to 4

On effectue quatre exemples de traitement d'un fil 1 d'acier au carbone avec le dispositif 100 précédemment décrit. Les caractéristiques du fil 1 et du dispositif 100 sont données dans le tableau 1 suivant.

Figure imgb0009
Four examples of treatment of a carbon steel wire 1 are carried out with the device 100 previously described. The characteristics of the wire 1 and of the device 100 are given in the following table 1.
Figure imgb0009

La nature du gaz 4 était la suivante pour les exemples.

  • . exemples 1, 2, 3 : ammoniac craqué (75 % d'hydrogène, 25 % d'azote, ces % étant exprimés en volumes)
  • . exemple 4 : 78 % d'hydrogène, 2 % de méthane (% en volumes)
Le temps de chauffage Tc correspond au temps nécessaire pour que le fil passe de la température ambiante (environ 20°C) qu'il a, à l'entrée du tube, à la température qu'il a à la sortie du tube (980°C), cette température étant suffisante pour mettre les carbures en solution.The nature of gas 4 was as follows for the examples.
  • . Examples 1, 2, 3: cracked ammonia (75% hydrogen, 25% nitrogen, these% being expressed by volume)
  • . Example 4: 78% hydrogen, 2% methane (% by volume)
The heating time T c corresponds to the time necessary for the wire to go from the ambient temperature (about 20 ° C.) which it has, at the inlet of the tube, to the temperature which it has at the outlet of the tube ( 980 ° C), this temperature being sufficient to put the carbides in solution.

Exemple 5Example 5

On fait varier dans cet exemple le diamètre Df du fil 1 et la nature du gaz 4 qui est un mélange d'hydrogène et d'azote et donc les valeurs de λ, R et K. Les caractéristiques du fil 1 et du dispositif 100 sont les suivantes : Teneur en carbone de l'acier du fil 1 = 0,85 % ; tube 2 en alumine , Dti = 2,5 mm, Dte = 6 mm ; la face externe 21 du tube 2 est chauffée à 1100°C avec une résistance électrique 6 ayant une puissance de 33 kW ; vitesse de défilement du fil 1 : 2,35 m/sec ; longueur du tube 2 : 6 m ; temps de chauffage : 2,55 sec ; température du fil 1 : à l'entrée du tube 2 : 20°C, à la sortie du tube 2 : 980°C.In this example, the diameter D f of the wire 1 and the nature of the gas 4 which is a mixture of hydrogen and nitrogen are varied and therefore the values of λ, R and K. The characteristics of the wire 1 and of the device 100 are as follows: Carbon content of the steel of wire 1 = 0.85%; alumina tube 2, D ti = 2.5 mm, D te = 6 mm; the outer face 21 of the tube 2 is heated to 1100 ° C with an electrical resistance 6 having a power of 33 kW; wire running speed 1: 2.35 m / sec; length of tube 2: 6 m; heating time: 2.55 sec; temperature of wire 1: at the inlet of tube 2: 20 ° C, at the outlet of tube 2: 980 ° C.

Le tableau 2 suivant donne les valeurs de Df, le % volumétrique du gaz 4 en hydrogène, les valeurs de λ, R, K, ainsi que la production de fil 1.The following table 2 gives the values of D f , the volumetric% of gas 4 in hydrogen, the values of λ, R, K, as well as the production of wire 1.

Pour tous les essais correspondant à cet exemple, le temps de chauffage par millimètre de diamètre de fil (Tc/Df) varie de 1,46 à 3,1 sec/mm ; Tableau 2 Diamètre du fil 1 (mm) (Df) R % H₂ λ à 800°C (W.m⁻¹.°K⁻¹) K Production de fil 1 en kg/heure 1,75 1,43 100 0,487 2,24 158,0 1,55 1,61 98 0,472 2,43 124,0 1,30 1,92 90 0,418 2,64 87,0 0,94 2,66 69 0,297 2,91 45,8 0,82 3,05 62 0,263 2,85 35,0 For all the tests corresponding to this example, the heating time per millimeter of wire diameter (T c / D f ) varies from 1.46 to 3.1 sec / mm; Table 2 Wire diameter 1 (mm) (D f ) R % H₂ λ at 800 ° C (Wm⁻¹. ° K⁻¹) K Yarn production 1 in kg / hour 1.75 1.43 100 0.487 2.24 158.0 1.55 1.61 98 0.472 2.43 124.0 1.30 1.92 90 0.418 2.64 87.0 0.94 2.66 69 0.297 2.91 45.8 0.82 3.05 62 0.263 2.85 35.0

Exemple n° 6Example 6

On utilise un dispositif multitubulaire analogue au dispositif 200 précédemment décrit, mais avec dix tubes 2. Les caractéristiques de l'exemple sont les suivantes :
Teneur en carbone de l'acier du fil 1 : 0,70 % ; diamètre Df du fil : 1,75 mm ; tubes 2 identiques en alumine, Dti = 2,5 mm, Dte = 6 mm ; les faces externes 21 des tubes sont chauffées à 1100°C à l'aide de 10 résistances 6 (une résistance par tube 2), chaque résistance ayant une puissance unitaire de 27 kW (puissance totale 270 kW) ; gaz 4 : ammoniac craqué : vitesse de défilement du fil : 2,02 m/sec ; longueur de chaque tube 2 : 6 m ; temps de chauffage 2,97 sec ; production de fil 1 : 1360 kg/heure ; température du fil à l'entrée de chaque tube 2 : 20°C, à la sortie de chaque tube 2 : 980°C ; λ = 0,328 ; R = 1,43 ; K = 3,33. Le temps de chauffage par millimètre de diamètre de fil (Tc/Df) est égal à 1,70 sec/mm.
A multitubular device similar to the device 200 described above is used, but with ten tubes 2. The characteristics of the example are as follows:
Carbon content of the steel of wire 1: 0.70%; wire diameter D f : 1.75 mm; identical tubes 2 in alumina, D ti = 2.5 mm, D te = 6 mm; the external faces 21 of the tubes are heated to 1100 ° C. using 10 resistors 6 (one resistance per tube 2), each resistance having a unit power of 27 kW (total power 270 kW); gas 4: cracked ammonia: wire running speed: 2.02 m / sec; length of each tube 2: 6 m; heating time 2.97 sec; production of wire 1: 1360 kg / hour; wire temperature at the inlet of each tube 2: 20 ° C, at the outlet of each tube 2: 980 ° C; λ = 0.328; R = 1.43; K = 3.33. The heating time per millimeter of wire diameter (T c / D f ) is equal to 1.70 sec / mm.

Exemple 7Example 7

Cet exemple est effectué dans les mêmes conditions et avec les mêmes résultats que l'exemple n° 2 mais en remplaçant l'ammoniac craqué par un gaz 4 maintenant l'équilibre thermodynamique avec le carbone de l'acier à 800°C, ce gaz 4 ayant la composition suivante (% en volume) : 74 % d'hydrogène ; 24 % d'azote ; 2 % de méthane.This example is carried out under the same conditions and with the same results as example n ° 2 but by replacing the cracked ammonia with a gas 4 maintaining the thermodynamic equilibrium with the carbon of the steel at 800 ° C., this gas 4 having the following composition (% by volume): 74% hydrogen; 24% nitrogen; 2% methane.

Exemple 8Example 8

Cet exemple est effectué dans les mêmes conditions que l'exemple n° 2 mais l'ammoniac craqué est remplacé par un gaz carburant permettant de corriger une décarburation qui s'est produite dans les opérations précédentes. La composition du gaz 4 est la suivante lors de cet exemple (% volumétriques) : 85 % d'hydrogène, 15 % de méthane. Les autres conditions et résultats sont les mêmes que pour l'exemple 2 avec les différences suivantes : le temps de chauffage passe de 2,97 à 2,75 secondes, le rapport Tc/Df étant alors égal à 1,57 sec/mm, la vitesse de défilement du fil est de 2,18 m/sec. on obtient une épaisseur de recarburation superficielle de l'ordre de 2µm. On n'observe pas de dépôt de graphite sur le fil 1.This example is carried out under the same conditions as example n ° 2 but the cracked ammonia is replaced by a fuel gas making it possible to correct a decarburization which occurred in the previous operations. The composition of gas 4 is as follows in this example (% volumetric): 85% hydrogen, 15% methane. The other conditions and results are the same as for Example 2 with the following differences: the heating time goes from 2.97 to 2.75 seconds, the ratio T c / D f then being equal to 1.57 sec / mm, the wire running speed is 2.18 m / sec. a thickness of superficial recarburization is obtained on the order of 2 μm. No graphite deposition is observed on wire 1.

L'invention permet d'obtenir une température du fil très précise à la sortie du traitement, cette température ne variant pas de plus de 1,5°C par excès ou par défaut de la température indiquée à la sortie des tubes 2, pour les exemples 1 à 8, ce qui permet de garantir une bonne constance de la qualité du fil.The invention makes it possible to obtain a very precise wire temperature at the outlet of the treatment, this temperature not varying by more than 1.5 ° C. by excess or by default of the temperature indicated at the outlet of the tubes 2, for the examples 1 to 8, which guarantees good consistency in the quality of the wire.

Les exemples 9 à 12 qui suivent sont réalisés dans un dispositif analogue au dispositif 100 précédemment décrit, mais ces exemples ne sont pas conformes à l'invention. Les caractéristiques du fil 1 et de ce dispositif sont données dans le tableau 3 suivant. Ces exemples se caractérisent par un rapport Tc/Df notablement supérieur à 4 secondes par mm de diamètre du fil, les valeurs des rapports R et K ne correspondant pas à l'ensemble des relations (1) et (2) précédemment indiquées et l'austénitisation ne peut pas alors être effectuée avec les avantages précédemment décrits.

Figure imgb0010
Examples 9 to 12 which follow are produced in a device similar to the device 100 previously described, but these examples are not in accordance with the invention. The characteristics of the wire 1 and of this device are given in the following table 3. These examples are characterized by a ratio T c / D f notably greater than 4 seconds per mm of diameter of the wire, the values of the ratios R and K not corresponding to the set of relations (1) and (2) previously indicated and the austenitization does not can not then be performed with the advantages described above.
Figure imgb0010

La nature du gaz 4 était la suivante pour ces exemples 9 à 12

  • . exemple 9 N₂ pur
  • . exemple 10 N₂ = 50 % H₂ = 50 %
  • . exemple 11 N₂ = 65 % H₂ = 35 %
  • . exemple 12 N₂ = 50 % H₂ = 50 %
    (% volumétriques)

Dans tous les exemples conformes à l'invention, on obtient une structure d'austénite homogène.The nature of gas 4 was as follows for these examples 9 to 12
  • . example 9 pure N₂
  • . example 10 N₂ = 50% H₂ = 50%
  • . example 11 N₂ = 65% H₂ = 35%
  • . example 12 N₂ = 50% H₂ = 50%
    (% volumetric)

In all the examples according to the invention, a homogeneous austenite structure is obtained.

La figure 5 représente une installation complète permettant de traiter thermiquement un fil 1 d'acier au carbone pour obtenir une structure perlitique fine. Cette installation 300 comporte les zones Z₁, Z₂, Z₃, Z₄, Z₅, le fil 1 traversant ces zones, dans le sens de la flèche F depuis la bobine de départ 30, jusqu'à la bobine 31 où s'enroule le fil 1 traité, cette bobine 31 étant actionnée en rotation par le moteur 310 qui permet donc le défilement du fil 1 selon la flèche F. Le fil 1 traverse successivement et dans cet ordre les zones Z₁ à Z₅.

  • La zone Z₁ correspond à l'échauffement du fil 1 pour obtenir une structure d'austénite homogène ;
  • la zone Z₂ correspond au refroidissement du fil 1 jusqu'à une température de 500 à 600°C de façon à obtenir une austénite métastable ;
  • la zone Z₃ correspond à la transformation d'austénite métastable en perlite ;
  • la zone Z₄ correspond à un refroidissement du fil 1, après perlitisation, jusqu'à une température par exemple d'environ 300°C ;
  • la zone Z₅ correspond à un refroidissement final du fil 1 pour l'amener à une température proche de la température ambiante, par exemple de 20 à 50°C.
FIG. 5 represents a complete installation making it possible to heat treat a wire 1 of carbon steel in order to obtain a fine pearlitic structure. This installation 300 comprises the zones Z₁, Z₂, Z₃, Z₄, Z₅, the wire 1 passing through these zones, in the direction of the arrow F from the starting coil 30, to the coil 31 where the wire 1 is wound. treated, this coil 31 being actuated in rotation by the motor 310 which therefore allows the wire 1 to travel along the arrow F. The wire 1 passes successively and in this order through the zones Z₁ to Z₅.
  • Zone Z₁ corresponds to the heating of wire 1 to obtain a homogeneous austenite structure;
  • zone Z₂ corresponds to the cooling of the wire 1 to a temperature of 500 to 600 ° C so as to obtain a metastable austenite;
  • zone Z₃ corresponds to the transformation of metastable austenite into perlite;
  • zone Z₄ corresponds to cooling of the wire 1, after pearlitization, to a temperature for example of around 300 ° C;
  • zone Z₅ corresponds to a final cooling of the wire 1 to bring it to a temperature close to ambient temperature, for example from 20 to 50 ° C.

La figure 6 représente la courbe φ montrant l'évolution de la température du fil d'acier 1 en fonction du temps, lorsque ce fil traverse les zones Z₂ à Z₅. Cette figure représente également la courbe x₁ correspondant au début de la transformation d'austénite métastable en perlite et la courbe x₂ correspondant à la fin de la transformation d'austénite métastable en perlite, pour l'acier de ce fil. Sur cette figure 6, l'axe des abscisses correspond au temps T et l'axe des ordonnées correspond à la température ϑ, l'origine des temps correspondant au point A.FIG. 6 represents the curve φ showing the evolution of the temperature of the steel wire 1 as a function of time, when this wire crosses the zones Z₂ to Z₅. This figure also represents the curve x₁ corresponding to the start of the transformation of metastable austenite into perlite and the curve x₂ corresponding to the end of the transformation of metastable austenite into perlite, for the steel of this wire. In this figure 6, the abscissa axis corresponds to time T and the ordinate axis corresponds to temperature ϑ, the origin of times corresponding to point A.

Préalablement au traitement de perlitisation, le fil 1 est chauffé et maintenu à une température supérieure à la température de transformation AC3 de façon à obtenir une austénite homogène, cette température ϑA, par exemple comprise entre 900°C et 1000°C, correspondant au point A de la figure 6. Le point dit "nez perlitique", correspond au temps minimum Tm de la courbe x₁, la température de ce nez perlitique étant référencée ϑP.Prior to the pearlitization treatment, the wire 1 is heated and maintained at a temperature higher than the transformation temperature AC3 so as to obtain a homogeneous austenite, this temperature ϑ A , for example between 900 ° C and 1000 ° C, corresponding to point A in FIG. 6. The point known as "pearlitic nose" corresponds to the minimum time T m of the curve x₁, the temperature of this pearlitic nose being referenced ϑ P.

Le fil 1 est refroidi ensuite jusqu'à ce qu'il atteigne une température inférieure à la température de transformation AC1, l'état du fil après ce refroidissement correspondant au point B, la température obtenue en ce point B au bout du temps TB étant référencée ϑB. Cette température ϑB a été représentée à la figure 6 comme supérieure à la température ϑP du nez perlitique, ce qui est le plus fréquent dans la pratique, sans être absolument nécessaire. Durant ce refroidissement du fil entre les points A et B il y a transformation d'austénite stable en austénite métastable, dès que la température du fil descend au dessous du point de transformation AC3, et des "germes" apparaissent aux joints de grains de l'austénite métastable. La zone comprise entre les courbes x₁, x₂ est référencée ω. La perlitisation consiste à faire passer le fil de l'état représenté par le point B, à gauche de la zone ω, à un état représenté par le point C, à droite de la zone ω. Cette transformation du fil est par exemple schématisée par le segment de ligne droite BC qui coupe la courbe x₁ en Bx et la courbe x₂ en Cx, mais l'invention s'applique aussi aux cas où la variation de température du fil entre les points B et C n'est pas linéaire.The wire 1 is then cooled until it reaches a temperature below the transformation temperature AC1, the state of the wire after this cooling corresponding to point B, the temperature obtained at this point B at the end of time T B being referenced ϑ B. This temperature ϑ B has been shown in FIG. 6 as being higher than the temperature ϑ P of the pearlitic nose, which is the most frequent in practice, without being absolutely necessary. During this cooling of the wire between points A and B there is transformation of stable austenite into metastable austenite, as soon as the temperature of the wire drops below the transformation point AC3, and "seeds" appear at the grain boundaries of the metastable austenite. The area between the curves x₁, x₂ is referenced ω. Perlitization consists in passing the thread from the state represented by point B, to the left of zone ω, to a state represented by point C, to the right of zone ω. This transformation of the wire is for example shown diagrammatically by the straight line segment BC which intersects the curve x₁ at B x and the curve x₂ at C x , but the invention also applies to cases where the variation in temperature of the wire between the points B and C is not linear.

La formation des germes se poursuit dans la partie du segment BC située à gauche de la zone ω, c'est-à-dire dans le segment BBx. Dans la partie du segment BC traversant la zone ω, c'est-à-dire dans le segment BxCx, il y a transformation d'austénite métastable en perlite, c'est-à-dire perlitisation. Le temps de perlitisation est susceptible de varier d'un acier à l'autre, aussi le traitement représenté par le segment CxC a pour but d'éviter d'appliquer au fil un refroidissement prématuré au cas où la perlitisation ne serait pas terminée. En effet, de l'austénite métastable résiduelle qui subirait un refroidissement rapide se transformerait en bainite qui n'est pas une structure favorable à la tréfilabilité après traitement thermique, ni à la valeur d'usage et aux propriétés mécaniques du produit final.The formation of germs continues in the part of the segment BC situated to the left of the zone ω, that is to say in the segment BBx. In the part of the segment BC crossing the zone ω, that is to say in the segment B x C x , there is transformation of a metastable austenite into perlite, that is to say perlitization. The pearlitization time may vary from one steel to another, so the treatment represented by the segment C x C aims to avoid applying premature cooling to the wire in case the pearlitization is not completed . Indeed, residual metastable austenite which would undergo rapid cooling would transform into bainite which is not a structure favorable to wire drawing after heat treatment, nor to the use value and the mechanical properties of the final product.

Un refroidissement rapide entre les points A et B suivi d'un maintien isotherme dans le domaine de l'austénite métastable, c'est-à-dire entre les points B et Bx permet un accroissement du nombre de germes et une diminution de leur taille. Ces germes sont les points de départ de la transformation ultérieure de l'austénite métastable en perlite et il est bien connu que la finesse de la perlite, donc la valeur d'usage du fil sera d'autant plus grande que ces germes seront plus nombreux et plus petits.Rapid cooling between points A and B followed by isothermal maintenance in the field of metastable austenite, that is to say between points B and B x allows an increase in the number of germs and a decrease in their cut. These germs are the starting points for the subsequent transformation of metastable austenite into perlite and it is well known that the fineness of perlite, therefore the use value of the wire will be all the greater as these germs are more numerous and smaller.

Après le traitement de perlitisation, on refroidit le fil, par exemple jusqu'à la température ambiante, ce refroidissement, de préférence rapide, étant schématisé par exemple par le segment de ligne courbe CD, le température en D étant référencée ϑD.After the pearlitization treatment, the wire is cooled, for example to room temperature, this cooling, preferably rapid, being shown diagrammatically for example by the curved line segment CD, the temperature at D being referenced ϑ D.

Dans l'installation 300, la zone Z₁ correspond à l'échauffement du fil 1 pour l'amener à l'état correspondant au point A, la zone Z₂ correspond au refroidissement représenté par la portion AB de la courbe φ, la zone Z₃ correspond à la portion BC de la courbe φ, les zones Z₄ et Z₅ correspondent ensemble au refroidissement représenté par la portion CD de la courbe φ.In the installation 300, the zone Z₁ corresponds to the heating of the wire 1 to bring it to the state corresponding to the point A, the zone Z₂ corresponds to the cooling represented by the portion AB of the curve φ, the zone Z₃ corresponds to the portion BC of the curve φ, the zones Z₄ and Z₅ together correspond to the cooling represented by the portion CD of the curve φ.

La zone Z₁ est réalisée par exemple avec le dispositif 100 conforme à l'invention précédemment décrit.The zone Z₁ is produced for example with the device 100 according to the invention described above.

La zone Z₂ est réalisée par exemple conformément à la demande de brevet français n° 88/00904. Le dispositif 32 correspondant à cette zone Z₂ est représenté aux figures 7 et 8.The zone Z₂ is produced for example in accordance with the French patent application n ° 88/00904. The device 32 corresponding to this zone Z₂ is shown in FIGS. 7 and 8.

Ce dispositif 32 est un échangeur de chaleur comportant une enceinte 33 sous forme d'un tube de diamètre intérieur D′ti et de diamètre extérieur D′te dans lequel défile suivant la flèche F le fil 1 à traiter, de diamètre Df.This device 32 is a heat exchanger comprising an enclosure 33 in the form of a tube with an internal diameter D ′ ti and an external diameter D ′ te in which the wire 1 to be treated travels along the arrow F, of diameter D f .

La figure 7 est une coupe effectuée suivant l'axe xx′ du fil 1 qui est aussi l'axe du dispositif 32, et la figure 8 est une coupe effectuée perpendiculairement à cet axe xx′, la coupe de la figure 8 étant schématisée par les segments de ligne droite VIII-VIII, à la figure 7, l'axe xx′ étant schématisé par la lettre "x" à la figure 8. L'espace 34 entre le fil 1 et le tube 33 est rempli d'un gaz 35 qui est directement au contact du fil 1 et de la paroi intérieure 330 du tube 33. Le gaz 35 reste dans l'espace 34 pendant le traitement du fil 1, le dispositif 32 étant dépourvu de moyens susceptibles de permettre une ventilation forcée du gaz 35, c'est-à-dire que le gaz 35 pratiquement dépourvu de ventilation forcée n'est éventuellement mis en mouvement dans l'espace 34 que par le déplacement du fil 1 selon la flèche F. Lors du traitement thermique du fil 1, un transfert de chaleur s'effectue depuis le fil 1 vers le gaz 35. λ′ est la conductibilité du gaz 35 déterminée à 600°C. Cette conductibilité est exprimée en watts.m⁻¹.oK⁻¹. Le fil 1 est guidé par deux guide-fils 36 réalisés par exemple en céramique ou en carbure de tungstène, ces guides 36 étant situés l'un à l'entrée, l'autre à la sortie du fil 1 dans le tube 33. Le tube 33 est refroidi extérieurement par un fluide caloporteur 37, par exemple de l'eau circulant dans un manchon 38 annulaire qui entoure le tube 33. Ce manchon 38 a une longueur L′m, un diamètre intérieur D′mi, un diamètre extérieur D′me. Le manchon 38 est alimenté en eau 37 par la tubulure 39, l'eau 37 sort du manchon 38 par la tubulure 40, l'écoulement de l'eau 37 le long du tube 33 s'effectuant ainsi en sens inverse de la direction F. L'étanchéité entre la zone 41 contenant de l'eau 37 (volume intérieur du manchon 38) et l'espace 34 contenant le gaz 35 est obtenue à l'aide de joints 42 réalisés par exemple en élastomères. La longueur du tube 33 en contact avec le fluide 37 est référencée L't à la figure 7.FIG. 7 is a section taken along the axis xx ′ of the wire 1 which is also the axis of the device 32, and FIG. 8 is a section made perpendicular to this axis xx ′, the section of FIG. 8 being shown diagrammatically by the straight line segments VIII-VIII, in FIG. 7, the axis xx ′ being shown diagrammatically by the letter "x" in FIG. 8. The space 34 between the wire 1 and the tube 33 is filled with a gas 35 which is directly in contact with the wire 1 and the inner wall 330 of the tube 33. The gas 35 remains in the space 34 during the treatment of the wire 1, the device 32 being devoid of means capable of allowing forced ventilation of the gas 35, that is to say that the gas 35 practically without forced ventilation is possibly set in motion in the space 34 only by the displacement of the wire 1 according to arrow F. During the heat treatment of the wire 1, heat is transferred from wire 1 to gas 35. λ ′ is the conductivity of gas 35 d complete at 600 ° C. This conductivity is expressed in watts.m⁻¹. o K⁻¹. The wire 1 is guided by two wire guides 36 made for example of ceramic or tungsten carbide, these guides 36 being located one at the inlet, the other at the outlet of the wire 1 in the tube 33. The tube 33 is cooled externally by a heat transfer fluid 37, for example water circulating in an annular sleeve 38 which surrounds the tube 33. This sleeve 38 has a length L ′ m , an internal diameter D ′ mi , an external diameter D ′ Me . The sleeve 38 is supplied with water 37 through the tubing 39, the water 37 leaves the sleeve 38 through the tubing 40, the flow of water 37 along the tube 33 thus taking place in the opposite direction to the direction F The seal between the zone 41 containing water 37 (interior volume of the sleeve 38) and the space 34 containing the gas 35 is obtained using seals 42 produced for example in elastomers. The length of the tube 33 in contact with the fluid 37 is referenced L ′ t in FIG. 7.

L'échangeur 32 peut constituer à lui seul un dispositif pour la zone Z₂. On peut aussi assembler plusieurs échangeurs 32, selon l'axe xx', grâce aux brides 43 constituant les extrémités du manchon 38, le fil 1 traversant alors plusieurs échangeurs 32 disposés en série selon l'axe xx'.The exchanger 32 can in itself constitute a device for the zone Z₂. It is also possible to assemble several exchangers 32, along the axis xx ', by means of the flanges 43 constituting the ends of the sleeve 38, the wire 1 then passing through several exchangers 32 arranged in series along the axis xx'.

Les caractéristiques du tube 33, du fil 1 et du gaz 35 sont choisies de telle sorte que les relations suivantes soient vérifiées, lors du refroidissement précédant la perlitisation et schématisé par la partie AB de la courbe φ :

1,05 ≦ R' < 15   (3)

Figure imgb0011


5 ≦ K' ≦ 10   (4)
Figure imgb0012


avec, par définition :

R' =D' ti /D f
Figure imgb0013

K' = [Log (D' ti /D f )]xD f ²/λ'
Figure imgb0014


D'ti et Df étant exprimés en millimètres, λ' étant la conductibilité du gaz déterminée à 600°C et exprimée en watts.m⁻¹.°K⁻¹, Log étant le logarithme népérien.The characteristics of the tube 33, of the wire 1 and of the gas 35 are chosen so that the following relationships are verified, during the cooling preceding the pearlitization and shown diagrammatically by the part AB of the curve φ:

1.05 ≦ R '<15 (3)
Figure imgb0011


5 ≦ K '≦ 10 (4)
Figure imgb0012


with, by definition:

R '= D' ti / D f
Figure imgb0013

K '= [Log (D' ti / D f )] xD f ² / λ '
Figure imgb0014


D ' ti and D f being expressed in millimeters, λ' being the conductivity of the gas determined at 600 ° C and expressed in watts.m⁻¹. ° K⁻¹, Log being the natural logarithm.

Le gaz 35 est par exemple l'hydrogène, l'azote, l'hélium, un mélange d'hydrogène et d'azote, d'hydrogène et de méthane, d'azote et de méthane, d'hélium et de méthane, d'hydrogène, d'azote et de méthane.The gas 35 is for example hydrogen, nitrogen, helium, a mixture of hydrogen and nitrogen, hydrogen and methane, nitrogen and methane, helium and methane, d 'hydrogen, nitrogen and methane.

Pour des fils 1 de diamètre important, le rapport R' entre le diamètre intérieur D'ti et le diamètre Df du fil doit être voisin de 1, et l'utilisation d'un gaz 35 très conducteur, par exemple de l'hydrogène, devient nécessaire.For wires 1 of large diameter, the ratio R 'between the internal diameter D' ti and the diameter D f of the wire must be close to 1, and the use of a very conductive gas 35, for example hydrogen , becomes necessary.

La zone Z₃ de l'installation 300 est réalisée par exemple en utilisant plusieurs échangeurs 32 disposés en série, dans les conditions décrites ci-après.The zone Z₃ of the installation 300 is produced for example by using several exchangers 32 arranged in series, under the conditions described below.

Pour obtenir une transformation d'austénite en perlite dans les meilleures conditions, il est préférable que les étapes de transformation du fil 1 schématisées par la ligne BC à la figure 1 s'effectuent à une température qui varie le moins possible, la température du fil 1, par exemple, ne différant pas de plus de 10°C par excès ou par défaut de la température ϑB obtenue après le refroidissement schématisé par la ligne AB. Cette limitation de la variation de la température est donc effectuée pendant un temps supérieur au temps de perlitisation, ce temps de perlitisation correspondant au segment BxCx. Avantageusement, la température du fil 1 ne diffère pas de plus de 5°C par excès ou par défaut de la température ϑB sur cette ligne BC. La figure 6 représente par exemple le cas idéal où la température est constante et égale à ϑB pendant les étapes schématisées par la ligne BC qui est donc un segment de droite parallèle à l'axe des abscisses.To obtain a transformation of austenite into perlite under the best conditions, it is preferable that the steps of transformation of the wire 1 shown diagrammatically by the line BC in FIG. 1 are carried out at a temperature which varies as little as possible, the temperature of the wire 1, for example, not differing by more than 10 ° C by excess or by default of the temperature ϑ B obtained after the cooling shown diagrammatically by the line AB. This limitation of the variation in temperature is therefore carried out for a time greater than the pearlitization time, this pearlitization time corresponding to the segment B x C x . Advantageously, the temperature of the wire 1 does not differ by more than 5 ° C by excess or by default of the temperature ϑ B on this line BC. FIG. 6 represents for example the ideal case where the temperature is constant and equal to ϑ B during the stages shown diagrammatically by the line BC which is therefore a line segment parallel to the abscissa axis.

La transformation d'austénite en perlite qui s'effectue dans le domaine ω dégage une quantité de chaleur d'environ 100 000 J.Kg⁻¹, avec une vitesse de transformation qui varie dans ce domaine en fonction du temps, cette vitesse étant faible au voisinage des points Bx et Cx et maximum vers le milieu du segment Bx Cx. Dans ces conditions, si l'on veut une température pratiquement constante lors de cette transformation, il est nécessaire d'effectuer des échanges thermiques modulés, c'est-à-dire des échanges thermiques dont la puissance par unité de longueur du fil 1 varie le long du dispositif où s'effectue cette transformation, le refroidissement dû au gaz 35 étant maximum lorsque la vitesse de perlitisation est maximum, ceci afin d'éviter le phénomène de recalescence dû à une montée en température excessive du fil 1 lors de la perlitisation.The transformation of austenite into perlite which takes place in the domain ω gives off an amount of heat of approximately 100,000 J.Kg⁻¹, with a transformation speed which varies in this domain as a function of time, this speed being low. near the points B x and C x and maximum towards the middle of the segment B x C x . Under these conditions, if one wants a practically constant temperature during this transformation, it is necessary to carry out modulated heat exchanges, that is to say heat exchanges whose power per unit of length of the wire 1 varies along the device where this transformation takes place, the cooling due to gas 35 being maximum when the pearlitization speed is maximum, this in order to avoid the phenomenon of recalescence due to an excessive temperature rise of the wire 1 during pearlitization .

Cette modulation peut être effectuée de préférence en faisant varier soit le diamètre intérieur D′ti, des tubes 33 où passe le fil, soit la longueur L′t des divers tubes 33 où passe le fil, comme décrit dans la demande de brevet français précitée no 88/00904.This modulation can preferably be carried out by varying either the internal diameter D ′ ti of the tubes 33 through which the wire passes, or the length L ′ t of the various tubes 33 through which the wire passes, as described in the patent application French aforementioned No. 88/00904.

Dans la zone Z₃, l'échangeur 32 dont la puissance de refroidissement est la plus élevée correspond à la région où la vitesse de perlitisation est la plus grande. Dans ces conditions :

  • si la modulation est réalisée en faisant varier le diamètre intérieur D′ti des tubes 33, ce diamètre diminue depuis l'entrée de la zone Z₃ jusqu'à l'échangeur 32 où la vitesse de perlitisation est la plus grande, puis ce diamètre augmente ensuite en direction de la sortie de la zone Z₃, dans le sens de la flèche F ;
  • si la modulation est réalisée en faisant varier la longueur L′t des tubes 33, cette longueur augmente depuis l'entrée de la zone Z₃ jusqu'à l'échangeur 32 où la vitesse de perlitisation est la plus rapide, puis cette longueur diminue ensuite en direction de la sortie de la zone Z₃ dans le sens de la flèche F.
In the zone Z₃, the exchanger 32 whose cooling power is the highest corresponds to the region where the pearlitization speed is the greatest. In these conditions :
  • if the modulation is carried out by varying the internal diameter D ′ ti of the tubes 33, this diameter decreases from the entry of the zone Z₃ to the exchanger 32 where the pearlitization speed is the greatest, then this diameter increases then towards the exit from zone Z₃, in the direction of arrow F;
  • if the modulation is carried out by varying the length L ′ t of the tubes 33, this length increases from the entry of the zone Z₃ to the exchanger 32 where the pearlitization speed is the fastest, then this length then decreases towards the exit from zone Z de in the direction of arrow F.

Dans les deux cas, on provoque, dans le sens de la flèche F, une augmentation de la puissance de refroidissement depuis l'entrée de la zone Z₃ jusqu'à l'échangeur 32 où la vitesse de perlitisation est la plus rapide, puis cette puissance diminue ensuite en direction de la sortie de la zone Z₃.In both cases, in the direction of arrow F, an increase in the cooling power is caused from the entry of zone Z₃ to the exchanger 32 where the pearlitization speed is the fastest, then this power then decreases towards the exit from zone Z₃.

Dans cet échangeur 32 où la vitesse de perlitisation est la plus rapide, on a de préférence les relations suivantes :

1.05 ≦ R′ ≦ 8   (5)

Figure imgb0015


3 ≦ K′ ≦ 8   (6)
Figure imgb0016


R′ et K′ ayant les mêmes définitions que précédemment.In this exchanger 32 where the pearlitization speed is the fastest, there are preferably the following relationships:

1.05 ≦ R ′ ≦ 8 (5)
Figure imgb0015


3 ≦ K ′ ≦ 8 (6)
Figure imgb0016


R ′ and K ′ having the same definitions as above.

La zone Z₄ est constituée par exemple par un échangeur 32 vérifiant les relations (3) et (4) précédemment définies.The zone Z₄ is constituted for example by an exchanger 32 verifying the relationships (3) and (4) previously defined.

Le fil 1 pénètre ensuite dans la zone Z₅ où il est amené à une température proche de la température ambiante, par exemple de 20 à 50°C, par immersion dans de l'eau.The wire 1 then enters the zone Z₅ where it is brought to a temperature close to ambient temperature, by example from 20 to 50 ° C, by immersion in water.

Le fil 1 traité dans l'installation 300 comporte la même structure que celle qu'on obtient par le procédé connu de patentage au plomb, c'est-à-dire une structure perlitique fine. Cette structure comporte dans lamelles de cémentite séparées par des lamelles de ferrite. A titre d'exemple, la figure 9 représente en coupe une portion 50 d'une telle structure perlitique fine. Cette portion 50 comporte deux lamelles de cémentite 51 pratiquement parallèles séparées par une lamelle de ferrite 52. L'épaisseur des lamelles de cémentite 51 est représentée par "i" et l'épaisseur des lamelles de ferrite 52 est représentée par "e". La structure perlitique est fine, c'est-à-dire que la valeur moyenne i+e est au plus égale à 1000 Å, avec un écart type de 250 Å.The wire 1 treated in the installation 300 has the same structure as that obtained by the known lead patenting process, that is to say a fine pearlitic structure. This structure consists of cementite lamellae separated by ferrite lamellae. By way of example, FIG. 9 represents in section a portion 50 of such a fine pearlitic structure. This portion 50 comprises two substantially parallel cementite lamellae 51 separated by a ferrite lamella 52. The thickness of the cementite lamellae 51 is represented by "i" and the thickness of the ferrite lamellae 52 is represented by "e". The pearlitic structure is fine, that is to say that the average value i + e is at most equal to 1000 Å, with a standard deviation of 250 Å.

Un tel fil peut servir par exemple à renforcer des articles en matières plastiques ou en caoutchoucs, notamment des enveloppes de pneumatiques.Such a wire can be used, for example, to reinforce articles made of plastics or rubbers, in particular tire casings.

L'installation 300 permet d'obtenir en outre au moins un des résultats suivants :

  • Après traitement thermique et avant tréfilage, le fil présente une résistance de rupture à la traction au moins égale à 1300 MPa ;
  • Le fil peut être tréfilé de façon à avoir un rapport des sections au moins égal à 40 ;
  • Le fil, après tréfilage, présente une résistance de rupture à la traction au moins égale à 3000 MPa.
The installation 300 also makes it possible to obtain at least one of the following results:
  • After heat treatment and before drawing, the wire has a tensile breaking strength at least equal to 1300 MPa;
  • The wire can be drawn so as to have a section ratio at least equal to 40;
  • The wire, after drawing, has a tensile breaking strength at least equal to 3000 MPa.

Le rapport des sections correspond par définition au rapport :

Figure imgb0017

L'installation 300 présente les avantages suivants :

  • simplicité, coûts d'investissement et de fonctionnement peu élevés, car :
    • . on évite l'emploi de métaux ou de sels fondus ;
    • . on se dispense d'employer des compresseurs ou des turbines qui seraient nécessaires avec une circulation de gaz forcée ;
  • on peut obtenir une loi de refroidissement précise et éviter le phénomène de recalescence ;
  • possibilité d'effectuer avec la même installation un traitement de perlitisation sur des diamètres Df de fils qui peuvent varier dans de larges limites ;
  • on évite tout problème d'hygiène et un nettoyage du fil n'est pas nécessaire puisqu'on évite l'emploi de métaux ou de sels fondus.
The report of the sections corresponds by definition to the report:
Figure imgb0017

Installation 300 has the following advantages:
  • simplicity, low investment and operating costs, because:
    • . the use of molten metals or salts is avoided;
    • . there is no need to use compressors or turbines which would be necessary with forced gas circulation;
  • one can obtain a precise cooling law and avoid the phenomenon of recalescence;
  • possibility of carrying out with the same installation a pearlitization treatment on diameters D f of wires which can vary within wide limits;
  • any hygiene problem is avoided and cleaning of the wire is not necessary since the use of metals or molten salts is avoided.

Ces avantages ne sont obtenus que lorsque les relations (3) et (4) sont vérifiées lors du refroidissement schématisé par la portion AB de la courbe φ (figure 6). Lorsqu'on utilise des tubes contenant un gaz dépourvu de ventilation forcée, le tube étant entouré par un fluide caloporteur, mais les relations (3) et (4) n'étant pas vérifiées lors du refroidissement précédant la perlitisation et correspondant à la portion AB de la courbe φ, il n'est pas possible d'effectuer une perlitisation correcte.These advantages are only obtained when relations (3) and (4) are verified during the cooling shown diagrammatically by the portion AB of the curve φ (FIG. 6). When using tubes containing a gas without forced ventilation, the tube being surrounded by a heat transfer fluid, but the relationships (3) and (4) are not verified during the cooling preceding the pearlitization and corresponding to the portion AB of the curve φ, it is not possible to perform a correct perlitization.

Claims (27)

  1. A method for the heat treatment of at least one carbon steel wire (1) so as to obtain a homogenous austenite structure, comprising the following features:
    a) the wire (1) is heated by passing it through at least one tube (2) containing a gas (4) which is practically without forced ventilation, the gas (4) being directly in contact with the wire (1), the wire heating time being less than 4 seconds per millimetre of diameter of the wire;
    b) the characteristics of the tube (2), the wire (1) and the gas (4) are so selected that the following relationships are satisfied:

    1.05 ≦ R ≦ 7   (1)
    Figure imgb0038


    0.6 ≦ K ≦ 8   (2)
    Figure imgb0039


    with, by definition,

    R = D ti /D f
    Figure imgb0040

    K = [Log (D ti /D f )]xD f ²/λ
    Figure imgb0041


    Dti being the inside diameter of the tube expressed in millimetres, Df being the diameter of the wire expressed in millimetres, λ being the conductivity of the gas determined at 800°C, this conductivity being expressed in watts.m⁻¹.°k⁻¹, Log being the natural logarithm.
  2. A method according to Claim 1, characterised in that the tube (2) is heated on the outside by an electric resistor (6).
  3. A method according to any one of Claims 1 or 2, characterised in that the gas (4) is in thermodynamic equilibrium with the carbon of the steel of the wire (1).
  4. A method according to any one of Claims 1 or 2, characterised in that the gas (4) permits a surface recarburisation of the steel of the wire.
  5. A method according to any one of Claims 1 to 4, characterised in that the gas exerts a deoxidising action on the surface of the wire (1).
  6. A method according to any one of Claims 1 to 5, characterised in that a pearlitisation treatment is then carried out on the wire (1).
  7. A method according to Claim 6, comprising the following features:
    c) the wire (1) is cooled from a temperature above the AC3 transformation temperature to a temperature below the AC1 transformation temperature;
    d) the pearlitisation treatment is then carried out at a temperature below the AC1 transformation temperature;
    e) this cooling and pearlitisation treatment is carried out by passing the wire (1) through at least one tube (33) containing a gas (35) which is practically without forced ventilation, the tube being surrounded by a heat transport fluid in such a manner that a transfer of heat takes place from the wire, through the gas and the tube, towards the heat transport fluid;
    f) the characteristics of the tube (33), the wire (1) and the gas (35) are so selected that the following relationships are satisfied at least upon the cooling preceding the pearlitisation:

    1.05 ≦ R' < 15   (3)
    Figure imgb0042


    5 ≦ K' ≦ 10   (4)
    Figure imgb0043


    with, by definition:

    R' = D' ti /D f
    Figure imgb0044

    K' = [Log(D' ti /D f )]xD f ²/λ'
    Figure imgb0045


    D'ti being the inside diameter of the tube expressed in millimetres, Df being the diameter of the wire expressed in millimetres, λ' being the conductivity of the gas determined at 600°C, this conductivity being expressed in watts.m⁻¹.°k⁻¹, Log being the natural logarithm.
  8. A method according to Claim 7, characterised in that after having cooled the wire (1) from a temperature above the AC3 transformation temperature to a given temperature below the AC1 transformation temperature, the wire is maintained at a temperature which does not differ by more than 10°C plus or minus from said given temperature for a period of time greater than the pearlitisation time by modulating the heat exchanges, the following relationships being satisfied in the zone or zones of the tube or tubes (33) where the rate of pearlitisation is the fastest:

    1.05 ≦ R' ≦ 8   (5)
    Figure imgb0046


    3 ≦ K' ≦ 8   (6),
    Figure imgb0047
  9. A method according to Claim 8, characterised in that the wire (1) is maintained at a temperature which does not differ by more than 5°C plus or minus from said given temperature.
  10. A method according to any one of Claims 8 or 9, characterised in that the modulation is effected by varying the inside diameter (D'ti) of the tube, or of at least one tube (33).
  11. A method according to any one of Claims 8 to 10, characterised in that the modulation is effected using several tubes (33), the length (L't) of which is varied.
  12. A method according to any one of Claims 6 to 11, characterised in that the wire (1) is then cooled.
  13. A device (100) for the heat treatment of at least one carbon steel wire (1) so as to obtain a homogenous austenite structure, the device comprising the following features:
    a) it comprises at least one tube (2) and means for passing the wire through the tube; the tube (2) contains a gas (4) which is practically without forced ventilation, directly in contact with the wire, the device comprising means for heating the gas; the means for passing the wire through the tube are such that the time of contact of the wire with the gas is less than 4 seconds per millimetre of diameter of the wire;
    b) the characteristics of the tube (2), the wire (1) and the gas (4) are so selected that the following relationships are satisfied:

    1.05 ≦ R ≦ 7   (1)
    Figure imgb0048


    0.6 ≦ K ≦ 8   (2)
    Figure imgb0049


    with, by definition,

    R = D ti /D f
    Figure imgb0050

    K = [Log(D ti /D f )]xD f ²/λ
    Figure imgb0051


    Dti being the inside diameter of the tube expressed in millimetres, Df being the diameter of the wire expressed in millimetres, λ being the conductivity of the gas determined at 800°C, this conductivity being expressed in watts.m⁻¹.°k⁻¹, Log being the natural logarithm.
  14. A device (100) according to Claim 13, characterised in that it comprises an electric resistor (6) arranged on the outside of the tube in order to heat it.
  15. A device (100) according to any one of Claims 13 or 14, characterised in that the gas (4) is in thermodynamic equilibrium with the carbon of the steel of the wire.
  16. A device (100) according to any one of Claims 13 or 14, characterised in that the gas (4) permits a surface recarburisation of the steel of the wire (1).
  17. A device (100) according to any one of Claims 13 to 16, characterised in that the gas (4) is capable of exerting a deoxidising action on the surface of the wire (1).
  18. A device (200) according to any one of Claims 13 to 17, characterised in that it comprises an enclosure (9) within which several tubes (2) are arranged.
  19. A device (100, 200) according to any one of Claims 13 to 18, characterised in that the diameter Df of the wire (1) varies from 0.4 to 6 mm.
  20. A device (100, 200) according to any one of Claims 13 to 19, characterised in that it makes it possible to treat wires (1) within a diameter ratio Df of 1 to 5.
  21. An installation (300) for the heat treatment of at least one carbon steel wire (1) comprising at least one device (100, 200) according to any one of Claims 13 to 20.
  22. A heat treatment installation (300) according to Claim 21, characterised in that behind the austenitisation device (100, 200) it comprises means for cooling the wire (1) and for obtaining a fine pearlitic structure, these means comprising the following features:
    c) these cooling and pearlitisation means comprise at least one tube (33) containing a gas (35) which is practically without forced ventilation, the tube being surrounded by a heat transport fluid (37) in such a manner that a transfer of heat takes place from the wire, through the gas and the tube, towards the heat transport fluid;
    d) the characteristics of the tube (33), the wire (1) and the gas (35) are so selected that the following relationships are satisfied, at least upon the cooling preceding the pearlitisation:

    1.05 ≦ R' ≦ 15   (3)
    Figure imgb0052


    5 ≦ K' ≦ 10   (4)
    Figure imgb0053


    with, by definition:

    R' = D' ti /D f
    Figure imgb0054

    K' = [Log(D' ti /D f )]xD f ²/λ'
    Figure imgb0055


    D'ti being the inside diameter of the tube expressed in millimetres, Df being the diameter of the wire expressed in millimetres, λ' being the conductivity of the gas determined at 600°C, this conductivity being expressed in watts.m⁻¹.°k⁻¹, Log being the natural logarithm.
  23. An installation (300) according to Claim 22, characterised in that one or more tubes (33) are arranged in such a manner that after having cooled the wire (1) from a temperature above the AC3 transformation temperature to a given temperature below the AC1 transformation temperature, they make it possible to maintain the wire (1) at a temperature which does not differ by more than 10°C plus or minus from said given temperature for a period of time greater than the pearlitisation time by modulating the heat exchanges, the following relationships being satisfied in the zone or zones of the tube or tubes where the rate of pearlitisation is the fastest:

    1.05 ≦ R' ≦ 8   (5)
    Figure imgb0056


    3 ≦ K' ≦ 8   (6).
    Figure imgb0057
  24. An installation (300) according to Claim 23, characterised in that said tube or tubes (33) are so arranged that the temperature of the wire (1) does not differ by more than 5°C plus or minus from said given temperature.
  25. An installation (300) according to any one of Claims 23 or 24, characterised in that the inside diameter (D'ti) of the tube or of at least one tube (33) varies in the pearlitisation means.
  26. An installation (300) according to any one of Claims 23 to 25, characterised in that it comprises several tubes (33), the lengths (L't) of which vary, in the pearlitisation means.
  27. An installation (300) according to any one of Claims 21 to 26, characterised in that it comprises means for cooling the wire (1) after pearlitisation.
EP89110580A 1988-06-21 1989-06-12 Process and device for making a homogeneous austenitic structure Expired - Lifetime EP0347699B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89110580T ATE97698T1 (en) 1988-06-21 1989-06-12 METHOD AND DEVICE FOR ADJUSTING A HOMOGENEOUS AUSTENITIC STRUCTURE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8808425A FR2632973B1 (en) 1988-06-21 1988-06-21 METHODS AND DEVICES FOR OBTAINING A HOMOGENEOUS AUSTENITY STRUCTURE
FR8808425 1988-06-21

Publications (2)

Publication Number Publication Date
EP0347699A1 EP0347699A1 (en) 1989-12-27
EP0347699B1 true EP0347699B1 (en) 1993-11-24

Family

ID=9367617

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89110580A Expired - Lifetime EP0347699B1 (en) 1988-06-21 1989-06-12 Process and device for making a homogeneous austenitic structure

Country Status (15)

Country Link
US (1) US5032191A (en)
EP (1) EP0347699B1 (en)
JP (1) JP2885831B2 (en)
KR (1) KR0128253B1 (en)
CN (1) CN1018931B (en)
AT (1) ATE97698T1 (en)
AU (1) AU627463B2 (en)
BR (1) BR8903004A (en)
CA (1) CA1333250C (en)
DE (1) DE68910887T2 (en)
ES (1) ES2046373T3 (en)
FR (1) FR2632973B1 (en)
IE (1) IE65167B1 (en)
OA (1) OA09079A (en)
ZA (1) ZA894706B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8803700U1 (en) * 1988-03-18 1989-07-13 Vereinigte Aluminium-Werke AG, 1000 Berlin und 5300 Bonn Tubular reactor, especially for the high-temperature digestion of boehmite- and diaspora-containing bauxites
FR2650296B1 (en) * 1989-07-26 1991-10-11 Michelin & Cie METHOD AND DEVICE FOR HEAT TREATING AT LEAST ONE METAL WIRE WITH THERMAL TRANSFER PLATES
US6198083B1 (en) * 2000-04-12 2001-03-06 American Spring Wire Corp. Method and apparatus for heat treating wires

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR604885A (en) * 1924-11-01 1926-05-15 Siemens Schuckertwerke Gmbh Electric blank annealing oven for continuous blank annealing
DE586977C (en) * 1930-05-01 1933-10-28 Aeg Hydrogen furnace for bright annealing of metals
US2218177A (en) * 1939-02-28 1940-10-15 Rca Corp Wire treating furnace
DE2111631A1 (en) * 1970-03-13 1972-03-30 Pirelli Steel wire mfr - hardening in thermal refining furnace with non-oxidn gas
US3900347A (en) * 1974-08-27 1975-08-19 Armco Steel Corp Cold-drawn, straightened and stress relieved steel wire for prestressed concrete and method for production thereof
JPS5827006Y2 (en) * 1979-03-13 1983-06-11 日立電線株式会社 Wire annealing equipment
GB2174485A (en) * 1985-04-23 1986-11-05 Jeffery Boardman Annealing furnaces
JPS63501370A (en) * 1985-11-12 1988-05-26 エムジ− インダストリ−ズ インコ−ポレイテツド Method and device for cooling induction heated materials
GB8600533D0 (en) * 1986-01-10 1986-02-19 Bekaert Sa Nv Manufacturing pearlitic steel wire
FR2607519B1 (en) * 1986-11-27 1989-02-17 Michelin & Cie METHOD AND DEVICE FOR HEAT TREATING A STEEL WIRE
FR2626290B1 (en) * 1988-01-25 1990-06-01 Michelin & Cie METHODS AND DEVICES FOR THERMALLY TREATING CARBON STEEL WIRES TO PROVIDE A FINE PERLITRIC STRUCTURE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PROSPECTUS BBC, no. EO 1054: "Patentier- und Durchlaufhärteanlagen für die Drahtindustrie" *

Also Published As

Publication number Publication date
IE65167B1 (en) 1995-10-04
ZA894706B (en) 1990-02-28
CA1333250C (en) 1994-11-29
FR2632973A1 (en) 1989-12-22
ES2046373T3 (en) 1994-02-01
AU3662289A (en) 1990-01-04
CN1039062A (en) 1990-01-24
AU627463B2 (en) 1992-08-27
IE892007L (en) 1989-12-21
JPH0243325A (en) 1990-02-13
KR900000486A (en) 1990-01-30
CN1018931B (en) 1992-11-04
OA09079A (en) 1991-10-31
JP2885831B2 (en) 1999-04-26
ATE97698T1 (en) 1993-12-15
DE68910887D1 (en) 1994-01-05
BR8903004A (en) 1990-02-06
US5032191A (en) 1991-07-16
KR0128253B1 (en) 1998-04-16
EP0347699A1 (en) 1989-12-27
FR2632973B1 (en) 1993-01-15
DE68910887T2 (en) 1994-03-17

Similar Documents

Publication Publication Date Title
EP0326005B1 (en) Methods and device for heat treating carbon steel wires in order to obtain a fine perlitic structure
EP0347699B1 (en) Process and device for making a homogeneous austenitic structure
FR2782326A1 (en) METHOD FOR GALVANIZING A METAL STRIP
CA1303946C (en) Device and process for heat treatment of steel wire
EP0410300B1 (en) Method and apparatus for heat treating at least one metal wire by means of heat transfer plates
EP3108022B1 (en) Method for heat treatment with continuous cooling of a steel reinforcement element for tyres
EP0493424A1 (en) Processes and devices for the heat treatment of metal wires by bringing them around capstans.
EP0410294B1 (en) Method and apparatus for annealing metal strips
EP3108021A1 (en) Method for the heat treatment of a steel reinforcement element for tyres
FR2687169A1 (en) Process for heat treatment using simultaneous dual frequency induction
FR2586257A1 (en) PROCESS AND APPARATUS FOR CONTINUOUSLY RECEIVING EXTREMELY CARBON-CONTENT STEEL FOR DEEP TAPPING
CN201010672Y (en) Heating mechanism used for rail hardening of workpiece with rails
BE704139A (en)
BE600560A (en)
FR2503187A1 (en) METHOD AND DEVICE FOR ANNEALING AND SCRAPING FOR EXTENDED METAL ELEMENTS INTO FINE OR SPECIAL STEELS
BE502186A (en)
BE642745A (en)
BE509831A (en)
JPS6261648B2 (en)
BE825565A (en) METHOD AND DEVICE FOR PATENTAGE OF STEEL WIRES.
EP0885975A1 (en) Process for continuous heat treating metal wires and strips
WO2015124653A1 (en) Facility and method for the high-speed heat treatment of a steel reinforcement element for tyres
BE507697A (en)
FR2626292A1 (en) Process for thermochemical surface treatment of steel strips and in particular of thin strips and plant for its use
BE484279A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890612

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19911112

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19931124

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19931124

Ref country code: AT

Effective date: 19931124

REF Corresponds to:

Ref document number: 97698

Country of ref document: AT

Date of ref document: 19931215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68910887

Country of ref document: DE

Date of ref document: 19940105

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2046373

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940203

EPTA Lu: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19990312

Year of fee payment: 11

Ref country code: BE

Payment date: 19990312

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990315

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990531

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19990628

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

BERE Be: lapsed

Owner name: CIE GENERALE DES ETS MICHELIN-MICHELIN & CIE

Effective date: 20000630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010101

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030530

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030603

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030611

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050612