EP0347625B1 - Method for separating technetium, ruthenium and palladium from solutions of nuclear fuels - Google Patents

Method for separating technetium, ruthenium and palladium from solutions of nuclear fuels Download PDF

Info

Publication number
EP0347625B1
EP0347625B1 EP19890109897 EP89109897A EP0347625B1 EP 0347625 B1 EP0347625 B1 EP 0347625B1 EP 19890109897 EP19890109897 EP 19890109897 EP 89109897 A EP89109897 A EP 89109897A EP 0347625 B1 EP0347625 B1 EP 0347625B1
Authority
EP
European Patent Office
Prior art keywords
palladium
ruthenium
solution
nitric acid
technetium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19890109897
Other languages
German (de)
French (fr)
Other versions
EP0347625A2 (en
EP0347625A3 (en
Inventor
Hossein Ghafourian
Abdel Hadi Ali Dr. Sameh
Hans Joachim Prof. Dr. Ache
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Kernforschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kernforschungszentrum Karlsruhe GmbH filed Critical Kernforschungszentrum Karlsruhe GmbH
Publication of EP0347625A2 publication Critical patent/EP0347625A2/en
Publication of EP0347625A3 publication Critical patent/EP0347625A3/en
Application granted granted Critical
Publication of EP0347625B1 publication Critical patent/EP0347625B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing

Definitions

  • the invention relates to a process for separating the valuable substances technetium, ruthenium and palladium from material flows which arise during the reprocessing of irradiated nuclear fuel, the valuable substances being isolated by precipitation and ion exchange from a nitric acid containing the valuable substances and other fission / activation products.
  • Fission products are isotopes of chemical elements that arise when atoms of the nuclear fuel (uranium, plutonium) are split into two or three fragments. These isotopes can themselves be radioactive, but can also be inactive. Technetium, ruthenium and palladium belong to the group of fission products. Technetium mainly forms the isotope with the mass 99, which is weakly radioactive and therefore does not occur in nature and can therefore only be generated artificially by nuclear reactions.
  • the fission products ruthenium and palladium arise in nuclear reactors in large quantities, whereby both radioactive and non-radioactive isotopes are formed.
  • Fission ruthenium contains about 3% of the isotope Ru-106, which has a half-life of about 1 year and decays into inactive palladium (Pd-106). Fission palladium is very weakly radioactive due to its Pd-107 content. However, this radioactivity does not significantly limit the usability for technical purposes.
  • the irradiated nuclear fuel is dissolved in boiling semi-concentrated nitric acid. The majority of the nuclear fuels and the fission and activation products go into solution.
  • a small remainder of the irradiated nuclear fuel remains in the undissolved form in the dissolver. This residue is known as feed sludge. It contains significant amounts of molybdenum, zirconium, technetium and precious metals.
  • the loaded beds are preferably incinerated and the valuable materials are isolated from the ashes.
  • the chelating agents can contaminate the solution which has been freed from the valuable substances and in this way can severely disrupt the removal of further valuable substances or the conditioning of the remaining ingredients.
  • the carbon beds represent a significant hazard potential. They are burned after loading, whereby radioactive components are released as gases or aerosols and must be retained by an effective exhaust gas cleaning system with the help of scrubbers and filters. Washing liquids and filters must be disposed of as secondary waste.
  • the object of the invention is to selectively separate the valuable materials technetium, ruthenium and palladium from acidic solutions of irradiated nuclear fuel and with high efficiency.
  • the separation of these valuable substances should not cause any additional problems in the further treatment of the radioactive substances; in particular, only substances should be used which do not contaminate the solution freed from the valuable substances or which can be removed by simple measures such. B. remove by heating or extracting the solution. Easily flammable substances should not be used.
  • the process should be simple to carry out, with as little secondary waste as possible.
  • the process according to the invention can be carried out with all nitric acid solutions which are produced during the reprocessing process and which contain technetium, ruthenium and palladium.
  • Feed clarification sludge is a preferred source of these valuable substances because it contains the valuable substances in a concentrated form.
  • the feed sludge can be brought into solution by treating it in a manner known per se with reducing gases such as C0 or H2 and annealing it with carbonates.
  • reducing gases such as C0 or H2
  • the residue on ignition is taken up with 3-7 molar nitric acid and the solution is adjusted to 1 mol HN03 / l.
  • Rhodium remains behind as Rh203.
  • the solution freed from solid Rh203 forms the stock solution of the process according to the invention which, in addition to the valuable materials technetium, ruthenium and palladium, depending on the origin and pretreatment of the irradiated nuclear fuel, also varying amounts of the elements Pu, U, Am, Mo, Zr, Ce and other fission and may contain activation products.
  • Diethyl thiourea (DETH) is added to the stock solution in solid form or as an aqueous solution.
  • the amount of DETH depends on the amount of palladium and ruthenium in the stock solution. 4 moles of DETH are added per mole of palladium and an additional 6 moles of DETH are added per mole of ruthenium. Palladium selectively forms an insoluble precipitate with the DETH reagent, which contains more than 99% of the palladium present are. Spectrophotometric studies allow the assumption that it is polymeric Pd-DETH complexes.
  • the precipitate containing palladium is separated off in a customary manner and roasted at about 500.degree. This forms Pd0, which can be reduced to metal by annealing at 900 ° C.
  • the Pd precipitate filtrate is heated to a temperature of about 70 ° C for about 30 minutes to accelerate complexation of the DETH with ruthenium.
  • the cooled solution is passed through a strongly acidic cation exchanger.
  • the Ru (NO) -DETH compounds which are only present in cationic form, are quantitatively retained on the adsorber together with the Tc02+ ions present in the medium in the tetravalent state, while the accompanying impurities are only partially adsorbed and by washing the column with about 2-molar HNO3 can be desorbed again.
  • the strongly acidic cation exchanger AG 50 W-X2 (Fa. BiO-RAD Laboratories GmbH, Kunststoff) proved to be particularly efficient in terms of capacity and sorption kinetics; it consists of a macroporous co-polymer of polystyrene divinylbenzene with 2% crosslinking.
  • the technetium is selectively and quantitatively eluted.
  • the elution is preferably carried out with a solution of about 0.1 - 1 mol H202 / l and 0.1 - 1 mol HNO3 / l.
  • Technetium is present as pertechnetate after elution.
  • Ruthenium is then eluted; preferably 6-8 molar HN03 is used as the eluent.
  • An essential advantage of the process according to the invention is that, in addition to the nitric acid which is in any case necessary for the dissolution of irradiated nuclear fuel, only chemicals are used which can be removed from the solution freed from the valuable substances by simple boiling or extraction. Therefore, the further treatment of these solutions is not made difficult.
  • the process can be integrated into the process diagram of the reprocessing without the reprocessing process having to be changed.
  • the method according to the invention is characterized by a high effectiveness;
  • the high loading levels that can be achieved allow the construction of compact, easy-to-use systems.
  • the implementation examples are based on a stock solution which is obtained from feed sludge by carbonate digestion.
  • rhodium remains behind.
  • An inactive simulate was used for the feed sewage sludge, which is based on published data on the composition of the feed sewage sludge (K. Naito et al, Recovery of Noble Metals from Insoluble Residue of Spent Fuel, J. Nucl. Sc. And Tech., 23 (6) , pp. 540-549 (June 1986); H. Kleykamp, composition of residues from the dissolution of irradiated LWR- (U, PU) 02 with recycled Pu, atomic economy, July 1982).
  • the inactive simulate was carried with radioactive isotopes of the corresponding elements.
  • Isotope 239 was used for plutonium; the rare earths are represented by the element cerium.
  • Table 1 shows the average composition of the feed sludge in% by weight.
  • Tables 2 and 3 show the molar concentrations of the individual elements in the stock solution used.
  • Table 2 (Experiment 1) element Concentration (mol / l) Ru / external nuclide ratio Decontamination factor DF Ru 5 x 10 ⁇ 3 - 3 x 103 U 5 x 10 ⁇ 4 10th 4.6 x 102 Pu 1.25 x 10 ⁇ 5 400 > 1 x 103 At the 3 x 10 ⁇ 6 333 > 6 x 102 Mon 1.87 x 10 ⁇ 3 2.67 > 1 x 106 Tc 3.75 x 10 ⁇ 4 13.33 1 x 104 Pd 1 x 10 ⁇ 3 5 > 99 Zr 3.75 x 10 ⁇ 5 133.33 6.25 x 102 Ce 1.25 x 10 ⁇ 4 40 5 x 104 (Experiment 2) element Concentration (mol / l) Ru / external nuclide ratio Decontamination factor DF Ru 1 x 10 ⁇ 2 - 2.8 x 103 U 1 x 10 ⁇ 3 10th 5.1 x 102 Pu 2.5 x
  • the decontamination factor DF indicates the proportion of the elements removed when carrying out the method according to the invention.
  • the valuable materials ruthenium, technetium and palladium are separated with decontamination factors from 2800 - 3000 or 10000 to 13000 or> 99.
  • the separated materials are only very slightly contaminated by the undesired fission products and actinides, as can be seen from the decontamination factors of these elements.
  • a 1 molar nitric acid solution was used as the stock solution.
  • the element concentrations for test 1 are shown in table 2, for test 2 in table 3.
  • the organic complexing agent N, N′-diethylthiourea was added to the stock solutions at room temperature. 4 moles of DETH were added per mole of palladium present in the stock solution and 6 moles of DETH were added per mole of ruthenium present in the stock solution. After about 15 minutes, more than 99% of the palladium has precipitated as a Pd-DETH complex. The residue was separated and the solution freed from the residue was heated in a thermostated water bath at 70 ° C. for 30 minutes.
  • the ruthenium nitrosyl nitrate complexes which are present in different Ru values, are quantitatively converted into the double and triple positively charged ruthenium nitrosyl diethyl urea complexes, while technetium, which originally existed as pertechnetrate, is reduced to Tc02+.
  • the column was washed with 4-5 column volumes of 2-molar HNO3, the interfering substances (Zr, Ce, U, Pu, Am, Mo) partially retained on the column being removed.
  • the column was then oxidized with 4 column volumes of an aqueous solution, each containing HNO3 and H202 in a concentration of 0.5 mol / l, the technetium being released as the pertechnetrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Abtrennung der Wertstoffe Technetium, Ruthenium und Palladium aus Stoffströmen, die bei der Wiederaufarbeitung von bestrahltem Kernbrennstoff entstehen, wobei die Wertstoffe durch Fällung und Ionenaustausch aus einer salpetersäuren, die Wertstoffe und andere Spalt-/Aktivierungsprodukte enthaltenden Stammlösung isoliert werden.The invention relates to a process for separating the valuable substances technetium, ruthenium and palladium from material flows which arise during the reprocessing of irradiated nuclear fuel, the valuable substances being isolated by precipitation and ion exchange from a nitric acid containing the valuable substances and other fission / activation products.

Bei der Bestrahlung von Kernbrennstoffen in Kernreaktoren entstehen Spalt- und Aktivierungsprodukte. Aktivierungsprodukte entstehen aus den Atomen des Kernbrennstoffs (Uran, Plutonium) durch Neutroneneinfang; sie gehören der Gruppe der Aktiniden an.When nuclear fuels are irradiated in nuclear reactors, fission and activation products are created. Activation products arise from the atoms of the nuclear fuel (uranium, plutonium) by neutron capture; they belong to the group of actinides.

Spaltprodukte sind Isotope von chemischen Elementen, die entstehen, wenn Atome des Kernbrennstoffs (Uran, Plutonium) in zwei oder drei Bruchstücke gespalten werden. Diese Isotope können selbst radioaktiv, aber auch inaktiv sein. Die Wertstoffe Technetium, Ruthenium und Palladium gehören zu der Gruppe der Spaltprodukte. Von Technetium wird hauptsächlich das Isotop mit der Masse 99 gebildet, das schwach radioaktiv ist und deshalb in der Natur nicht vorkommt und somit nur künstlich durch Kernreaktionen erzeugt werden kann.Fission products are isotopes of chemical elements that arise when atoms of the nuclear fuel (uranium, plutonium) are split into two or three fragments. These isotopes can themselves be radioactive, but can also be inactive. Technetium, ruthenium and palladium belong to the group of fission products. Technetium mainly forms the isotope with the mass 99, which is weakly radioactive and therefore does not occur in nature and can therefore only be generated artificially by nuclear reactions.

Die Spaltprodukte Ruthenium und Palladium entstehen in Kernreaktoren in großen Mengen, wobei sowohl radioaktive als auch nicht radioaktive Isotope gebildet werden.The fission products ruthenium and palladium arise in nuclear reactors in large quantities, whereby both radioactive and non-radioactive isotopes are formed.

Spalt-Ruthenium enthält etwa 3 % des Isotops Ru-106, das eine Halbwertszeit von etwa 1 Jahr aufweist und in inaktives Palladium (Pd-106) zerfällt. Spalt-Palladium ist wegen seines Gehalts an Pd-107 sehr schwach radioaktiv. Diese Radioaktivität schränkt die Verwendbarkeit zu technischen Zwecken jedoch nicht wesentlich ein.Fission ruthenium contains about 3% of the isotope Ru-106, which has a half-life of about 1 year and decays into inactive palladium (Pd-106). Fission palladium is very weakly radioactive due to its Pd-107 content. However, this radioactivity does not significantly limit the usability for technical purposes.

Bei der Wiederaufarbeitung wird der bestrahlte Kernbrennstoff in kochender halbkonzentrierter Salpetersäure aufgelöst. Dabei geht der Hauptteil der Kernbrennstoffe und der Spalt- und Aktivierungsprodukte in Lösung.During reprocessing, the irradiated nuclear fuel is dissolved in boiling semi-concentrated nitric acid. The majority of the nuclear fuels and the fission and activation products go into solution.

Ein kleiner Rest des bestrahlten Kernbrennstoffs verbleibt im Auflöser in ungelöster Form. Dieser Rückstand wird als Feedklärschlamm bezeichnet. Er enthält wesentliche Anteile an Molybdän, Zirkonium, Technetium und Edelmetallen.A small remainder of the irradiated nuclear fuel remains in the undissolved form in the dissolver. This residue is known as feed sludge. It contains significant amounts of molybdenum, zirconium, technetium and precious metals.

Aus der Lösung des bestrahlten Kernbrennstoffs wird durch Extraktion unverbrauchtes Uran und das erzeugte Plutonium abgetrennt. Die verbleibenden Spaltprodukte werden schließlich in Glas eingeschmolzen.Unused uranium and the plutonium produced are separated from the solution of the irradiated nuclear fuel by extraction. The remaining fission products are finally melted into glass.

Wegen des kommerziellen Wertes der Spaltprodukte Technetium, Ruthenium und Palladium wurde eine Reihe von Vorschlägen zur Abtrennung dieser Wertstoffe aus Lösungen, die bei der Wiederaufarbeitung bestrahlter Kernbrennstoffe hergestellt werden, veröffentlicht (M.W. Davis, The Extraction of Cs, Sr and the Platinum Group Metals from Acidic High Activity Nuclear Waste, DOE/SR/10714-T3).Because of the commercial value of the fission products technetium, ruthenium and palladium, a number of proposals for the separation of these valuable materials from solutions that are produced during the reprocessing of irradiated nuclear fuels have been published (MW Davis, The Extraction of Cs, Sr and the Platinum Group Metals from Acidic High Activity Nuclear Waste, DOE / SR / 10714-T3).

Diese Vorschläge beziehen sich auf die Verwendung mehrerer hintereinandergeschalteter Kolonnen, an denen zuerst die störenden und später die gewünschten Nuklide mit einer Rückhaltung zwischen 75 % und 95 % an den Kolonnen fixiert werden. Dies bedingt einen hohen apparativen Aufwand durch den notwendigen Einsatz mehreren Kolonnen.These proposals relate to the use of several columns connected in series, on which the disruptive and later the desired nuclides are fixed to the columns with a retention of between 75% and 95%. This requires a high level of equipment due to the necessary use of several columns.

Weiterhin entsteht dabei eine erhebliche Menge an Sekundärabfall, da verbrauchte Kolonnen stark kontaminiert sind und gesondert entsorgt werden müssen.Furthermore, there is a considerable amount of secondary waste, since used columns are heavily contaminated and have to be disposed of separately.

Aus der US-3,848,048 ist ein Verfahren bekannt, bei dem Palladium, Technetium, Rhodium und Ruthenium aus sauren Kernbrennstofflösungen abgetrennt werden, indem diese Lösungen nacheinander über drei Kohlebetten geleitet werden, die mit verschiedenen Chelatisierungsmitteln imprägniert sind. Auf diesen Betten werden nacheinander die Elemente Palladium, Technetium und Ruthenium/Rhodium in chelatisierter Form zurückgehalten.A process is known from US Pat. No. 3,848,048 in which palladium, technetium, rhodium and ruthenium are separated from acidic fuel solutions by passing these solutions in succession over three carbon beds which are impregnated with different chelating agents. The elements palladium, technetium and ruthenium / rhodium are retained in chelated form on these beds.

Die beladenen Betten werden vorzugsweise verascht und die Wertstoffe aus der Asche isoliert.The loaded beds are preferably incinerated and the valuable materials are isolated from the ashes.

Dieses Verfahren weist mehrere Nachteile auf. Die Chelatisierungsmittel können die von den Wertstoffen befreite Lösung verunreinigen und auf diese Weise die Abtrennung weiterer Wertstoffe oder die Konditionierung der restlichen Inhaltsstoffe empfindlich stören. Die Kohlebetten stellen wegen ihrer Brennbarkeit ein wesentliches Gefährdungspotential dar. Sie werden nach ihrer Beladung verbrannt, wobei radioaktive Bestandteile als Gase oder Aerosole freigesetzt werden und durch eine wirksame Abgasreinigungsanlage mit Hilfe von Wäschern und Filtern zurückgehalten werden müssen. Waschflüssigkeiten und Filter müssen als Sekundärabfall entsorgt werden.This process has several disadvantages. The chelating agents can contaminate the solution which has been freed from the valuable substances and in this way can severely disrupt the removal of further valuable substances or the conditioning of the remaining ingredients. Because of their flammability, the carbon beds represent a significant hazard potential. They are burned after loading, whereby radioactive components are released as gases or aerosols and must be retained by an effective exhaust gas cleaning system with the help of scrubbers and filters. Washing liquids and filters must be disposed of as secondary waste.

Aufgabe der Erfindung ist, die Wertstoffe Technetium, Ruthenium und Palladium aus sauren Lösungen von bestrahltem Kernbrennstoff selektiv und mit hohem Wirkungsgrad abzutrennen. Die Abtrennung dieser Wertstoffe soll bei der weiteren Behandlung der radioaktiven Stoffe keine zusätzlichen Probleme verursachen; insbesondere sollen nur Stoffe angewendet werden, die die von den Wertstoffen befreite Lösung nicht verunreinigen oder sich durch einfache Maßnahmen wie z. B. durch Erhitzen oder Extrahieren der Lösung beseitigen lassen. Leicht brennbare Stoffe sollen nicht eingesetzt werden. Das Verfahren soll sich in einfacher Weise durchführen lassen, wobei möglichst wenig Sekundärabfall anfallen soll.The object of the invention is to selectively separate the valuable materials technetium, ruthenium and palladium from acidic solutions of irradiated nuclear fuel and with high efficiency. The separation of these valuable substances should not cause any additional problems in the further treatment of the radioactive substances; in particular, only substances should be used which do not contaminate the solution freed from the valuable substances or which can be removed by simple measures such. B. remove by heating or extracting the solution. Easily flammable substances should not be used. The process should be simple to carry out, with as little secondary waste as possible.

Die Aufgabe wird erfindungsgemäß durch die im Kennzeichen des Hauptanspruchs aufgeführten Merkmale gelöst.The object is achieved by the features listed in the characterizing part of the main claim.

Die Unteransprüche geben vorteilhafte Weiterbildungen des Verfahrens an.The subclaims indicate advantageous developments of the method.

Das erfindungsgemäße Verfahren kann prinzipiell mit allen während des Wiederaufarbeitungsprozesses hergestellten salpetersauren Lösungen, die Technetium, Ruthenium und Palladium enthalten, durchgeführt werden.In principle, the process according to the invention can be carried out with all nitric acid solutions which are produced during the reprocessing process and which contain technetium, ruthenium and palladium.

Eine bevorzugte Quelle für diese Wertstoffe bildet der Feedklärschlamm, denn er enthält die Wertstoffe in konzentrierter Form.Feed clarification sludge is a preferred source of these valuable substances because it contains the valuable substances in a concentrated form.

Der Feedklärschlamm kann dadurch in Lösung gebracht werden, daß er in an sich bekannter Weise mit reduzierenden Gasen wie C0 oder H₂ behandelt und mit Carbonaten geglüht wird. Der Glührückstand wird mit 3-7-molarer Salpetersäure aufgenommen und die Lösung auf 1 Mol HN0₃/l eingestellt. Dabei bleibt Rhodium als Rh₂0₃ im Rückstand.The feed sludge can be brought into solution by treating it in a manner known per se with reducing gases such as C0 or H₂ and annealing it with carbonates. The residue on ignition is taken up with 3-7 molar nitric acid and the solution is adjusted to 1 mol HN0₃ / l. Rhodium remains behind as Rh₂0₃.

Die von festem Rh₂0₃ befreite Lösung bildet die Stammlösung des erfindungsgemäßen Verfahrens, die neben den Wertstoffen Technetium, Ruthenium und Palladium je nach Herkunft und Vorbehandlung des bestrahlten Kernbrennstoffs noch wechselnde Mengen der Elemente Pu, U, Am, Mo, Zr, Ce und weitere Spalt-und Aktivierungsprodukte enthalten kann.The solution freed from solid Rh₂0₃ forms the stock solution of the process according to the invention which, in addition to the valuable materials technetium, ruthenium and palladium, depending on the origin and pretreatment of the irradiated nuclear fuel, also varying amounts of the elements Pu, U, Am, Mo, Zr, Ce and other fission and may contain activation products.

Die Stammlösung wird mit Diäthylthioharnstoff (DETH) in fester Form oder als wäßrige Lösung versetzt. Die Menge an DETH richtet sich nach der Menge an Palladium und Ruthenium in der Stammlösung. Pro Mol Palladium werden 4 Mol DETH und pro Mol Ruthenium zusätzlich 6 Mol DETH zugegeben. Dabei bildet Palladium mit dem Reagens DETH selektiv einen unlöslichen Niederschlag, in dem mehr als 99 % des vorhandenen Palladiums enthalten sind. Spektralphotometrische Untersuchungen lassen die Vermutung zu, daß es sich um polymere Pd-DETH-Komplexe handelt.Diethyl thiourea (DETH) is added to the stock solution in solid form or as an aqueous solution. The amount of DETH depends on the amount of palladium and ruthenium in the stock solution. 4 moles of DETH are added per mole of palladium and an additional 6 moles of DETH are added per mole of ruthenium. Palladium selectively forms an insoluble precipitate with the DETH reagent, which contains more than 99% of the palladium present are. Spectrophotometric studies allow the assumption that it is polymeric Pd-DETH complexes.

Der Palladium enthaltende Niederschlag wird in üblicher Weise abgetrennt und bei ca. 500° C geröstet. Dabei bildet sich Pd0, das durch Glühen bei 900° C zum Metall reduziert werden kann.The precipitate containing palladium is separated off in a customary manner and roasted at about 500.degree. This forms Pd0, which can be reduced to metal by annealing at 900 ° C.

Das Filtrat des Pd-Niederschlags wird zur Beschleunigung der Komplexbildung des DETH mit Ruthenium für etwa 30 min auf eine Temperatur von ungefähr 70° C erhitzt.The Pd precipitate filtrate is heated to a temperature of about 70 ° C for about 30 minutes to accelerate complexation of the DETH with ruthenium.

Die erkaltete Lösung wird durch einen stark sauren Kationenaustauscher geleitet. Dabei werden die ausschließlich in kationischer Form vorliegenden Ru(NO)-DETH-Verbindungen gemeinsam mit den in diesem Medium im vierwertigen Zustand vorliegenden Tc0²⁺-Ionen quantitativ am Adsorber zurückgehalten, während die begleitenden Verunreinigungen nur teilweise adsorbiert werden und durch Waschen der Kolonne mit etwa 2-molarer HNO₃ wieder desorbiert werden können.The cooled solution is passed through a strongly acidic cation exchanger. The Ru (NO) -DETH compounds, which are only present in cationic form, are quantitatively retained on the adsorber together with the Tc0²⁺ ions present in the medium in the tetravalent state, while the accompanying impurities are only partially adsorbed and by washing the column with about 2-molar HNO₃ can be desorbed again.

Als besonders leistungsfähig hinsichtlich Kapazität und Sorptionskinetik erwies sich der stark saure Kationenaustauscher AG 50 W-X2 (Fa. BiO-RAD Laboratories GmbH, München); er besteht aus einem makroporösen Ko-Polymerisat von Polystyroldivinylbenzol mit 2 % Vernetzung.The strongly acidic cation exchanger AG 50 W-X2 (Fa. BiO-RAD Laboratories GmbH, Munich) proved to be particularly efficient in terms of capacity and sorption kinetics; it consists of a macroporous co-polymer of polystyrene divinylbenzene with 2% crosslinking.

Nachdem der Kationenaustauscher durch Waschen von den adsorbierten unerwünschten Stoffen befreit wurde, wird das Technetium selektiv und quantitativ eluiert. Die Eluierung erfolgt vorzugsweise mit einer Lösung aus ca. 0,1 - 1 Mol H₂0₂/l und 0,1 - 1 Mol HNO₃/l. Technetium liegt nach der Eluierung als Pertechnetat vor.After the cation exchanger has been freed from the adsorbed undesirable substances by washing, the technetium is selectively and quantitatively eluted. The elution is preferably carried out with a solution of about 0.1 - 1 mol H₂0₂ / l and 0.1 - 1 mol HNO₃ / l. Technetium is present as pertechnetate after elution.

Anschließend wird Ruthenium eluiert; vorzugsweise wird 6-8-molare HN0₃ als Elutionsmittel verwendet.Ruthenium is then eluted; preferably 6-8 molar HN0₃ is used as the eluent.

Ein wesentlicher Vorzug des erfindungsgemäßen Verfahrens besteht darin, daß - außer der zur Auflösung von bestrahltem Kernbrennstoff ohnehin notwendigen Salpetersäure - nur Chemikalien eingesetzt werden, die durch einfaches Verkochen bzw. Extrahieren aus der von den Wertstoffen befreiten Lösung entfernt werden können. Deshalb wird die weitere Behandlung dieser Lösungen nicht erschwert. Das Verfahren kann in das Verfahrensschema der Wiederaufarbeitung integriert werden, ohne daß der Wiederaufarbeitungsprozeß verändert werden muß.An essential advantage of the process according to the invention is that, in addition to the nitric acid which is in any case necessary for the dissolution of irradiated nuclear fuel, only chemicals are used which can be removed from the solution freed from the valuable substances by simple boiling or extraction. Therefore, the further treatment of these solutions is not made difficult. The process can be integrated into the process diagram of the reprocessing without the reprocessing process having to be changed.

Die verwendeten Chemikalien stellen an die Korrosionsbeständigkeit einer Anlage zur Durchführung des erfindungsgemäßen Verfahrens keine höheren Anforderungen als der Wiederaufarbeitungsprozeß. Das Verfahren kann einfach und kostengünstig durchgeführt werden. Wegen der Verwendung einer einzigen Abtrennkolonne, die - im Gegensatz zum Verfahren nach US-3,848,048 - wiederverwendet wird, fallen keine wesentlichen Mengen von Sekundärabfall an.The chemicals used place no higher demands on the corrosion resistance of a plant for carrying out the method according to the invention than the reprocessing process. The method can be carried out simply and inexpensively. Because of the use of a single separation column which, in contrast to the process according to US Pat. No. 3,848,048, is reused, no significant amounts of secondary waste are produced.

Die Wasserlöslichkeit der verwendeten Chemikalien macht den Zusatz brennbarer organischer Lösungsmittel überflüssig.The water solubility of the chemicals used makes the addition of flammable organic solvents unnecessary.

Das erfindungsgemäße Verfahren zeichnet sich durch eine hohe Wirksamkeit aus; die erzielbaren hohen Beladungsgrade erlauben den Bau kompakter, problemlos zu bedienender Anlagen.The method according to the invention is characterized by a high effectiveness; The high loading levels that can be achieved allow the construction of compact, easy-to-use systems.

Die Erfindung wird im folgenden anhand von zwei Durchführungsbeispielen näher erläutert.The invention is explained in more detail below with the aid of two implementation examples.

Die Durchführungsbeispiele gehen von einer Stammlösung aus, die durch Carbonataufschluß von Feedklärschlamm erhalten wird. Hierbei bleibt Rhodium im Rückstand. Für den Feedklärschlamm wurde ein inaktives Simulat verwendet, das auf veröffentlichten Daten zur Zusammensetzung des Feedklärschlamms basiert (K. Naito et al, Recovery of Noble Metals from Insoluble Residue of Spent Fuel, J. Nucl. Sc. and Tech., 23 (6), pp. 540 - 549 (June 1986); H. Kleykamp, Zusammensetzung von Rückständen aus der Auflösung von bestrahltem LWR-(U, PU)0₂ mit rückgeführtem Pu, Atomwirtschaft, Juli 1982).The implementation examples are based on a stock solution which is obtained from feed sludge by carbonate digestion. Here, rhodium remains behind. An inactive simulate was used for the feed sewage sludge, which is based on published data on the composition of the feed sewage sludge (K. Naito et al, Recovery of Noble Metals from Insoluble Residue of Spent Fuel, J. Nucl. Sc. And Tech., 23 (6) , pp. 540-549 (June 1986); H. Kleykamp, composition of residues from the dissolution of irradiated LWR- (U, PU) 0₂ with recycled Pu, atomic economy, July 1982).

Das inaktive Simulat wurde mit radioaktiven Isotopen der entsprechenden Elemente geträgert. Für Plutonium wurde das Isotop 239 verwendet; die Seltenen Erden werden durch das Element Cer repräsentiert.The inactive simulate was carried with radioactive isotopes of the corresponding elements. Isotope 239 was used for plutonium; the rare earths are represented by the element cerium.

Die Tabelle 1 gibt die mittlere Zusammensetzung des Feedklärschlamms in Gew.-% an.

Figure imgb0001
Table 1 shows the average composition of the feed sludge in% by weight.
Figure imgb0001

Die Tabellen 2 und 3 geben die molaren Konzentrationen der einzelnen Elemente in der verwendeten Stammlösung an. Tabelle 2 (Versuch 1) Element Konzentration (Mol/l) Verhältnis Ru/Fremdnuklid Dekontaminationsfaktor DF Ru 5 x 10⁻³ -- 3 x 10³ U 5 x 10⁻⁴ 10 4,6 x 10² Pu 1,25 x 10⁻⁵ 400 >1 x 10³ Am 3 x 10⁻⁶ 333 >6 x 10² Mo 1,87 x 10⁻³ 2,67 >1 x 10⁶ Tc 3,75 x 10⁻⁴ 13,33 1 x 10⁴ Pd 1 x 10⁻³ 5 > 99 Zr 3,75 x 10⁻⁵ 133,33 6,25 x 10² Ce 1,25 x 10⁻⁴ 40 5 x 10⁴ Tabelle 3 (Versuch 2) Element Konzentration (Mol/l) Verhältnis Ru/Fremdnuklid Dekontaminationsfaktor DF Ru 1 x 10⁻² -- 2,8 x 10³ U 1 x 10⁻³ 10 5,1 x 10² Pu 2,5 x 10⁻⁵ 400 >1 x 10³ Am 6 x 10⁻⁶ 333 >6 x 10² Mo 3,7 x 10⁻³ 2,67 >1 x 10⁶ Tc 7,5 x 10⁻⁴ 13,33 1,3 x 10⁴ Pd 2 x 10⁻³ 5 > 99 Zr 7,5 x 10⁻⁵ 133,33 5,8 x 10² Ce 2,5 x 10⁻⁴ 40 4,8 x 10⁴ Tables 2 and 3 show the molar concentrations of the individual elements in the stock solution used. Table 2 (Experiment 1) element Concentration (mol / l) Ru / external nuclide ratio Decontamination factor DF Ru 5 x 10⁻³ - 3 x 10³ U 5 x 10⁻⁴ 10th 4.6 x 10² Pu 1.25 x 10⁻⁵ 400 > 1 x 10³ At the 3 x 10⁻⁶ 333 > 6 x 10² Mon 1.87 x 10⁻³ 2.67 > 1 x 10⁶ Tc 3.75 x 10⁻⁴ 13.33 1 x 10⁴ Pd 1 x 10⁻³ 5 > 99 Zr 3.75 x 10⁻⁵ 133.33 6.25 x 10² Ce 1.25 x 10⁻⁴ 40 5 x 10⁴ (Experiment 2) element Concentration (mol / l) Ru / external nuclide ratio Decontamination factor DF Ru 1 x 10⁻² - 2.8 x 10³ U 1 x 10⁻³ 10th 5.1 x 10² Pu 2.5 x 10⁻⁵ 400 > 1 x 10³ At the 6 x 10⁻⁶ 333 > 6 x 10² Mon 3.7 x 10⁻³ 2.67 > 1 x 10⁶ Tc 7.5 x 10⁻⁴ 13.33 1.3 x 10⁴ Pd 2 x 10⁻³ 5 > 99 Zr 7.5 x 10⁻⁵ 133.33 5.8 x 10² Ce 2.5 x 10⁻⁴ 40 4.8 x 10⁴

Der Dekontaminationsfaktor DF gibt den Anteil der abgetrennten Elemente bei der Durchführung des erfindungsgemäßen Verfahrens an.The decontamination factor DF indicates the proportion of the elements removed when carrying out the method according to the invention.

Die Wertstoffe Ruthenium, Technetium und Palladium werden mit Dekontaminationsfaktoren von 2800 - 3000 bzw. 10000 bis 13000 bzw. >99 abgetrennt.The valuable materials ruthenium, technetium and palladium are separated with decontamination factors from 2800 - 3000 or 10000 to 13000 or> 99.

Die abgetrennten Werkstoffe sind nur sehr gering durch die unerwünschten Spaltprodukte und Aktiniden verunreinigt, wie sich aus den Dekontaminatonsfaktoren dieser Elemente ergibt.The separated materials are only very slightly contaminated by the undesired fission products and actinides, as can be seen from the decontamination factors of these elements.

Durchführungsbeispiele (Versuch 1, Versuch 2)Implementation examples (experiment 1, experiment 2)

Als Stammlösung wurde eine 1-molare Salpetersäurelösung verwendet. Die Elementkonzentrationen für Versuch 1 sind in Tabelle 2, für Versuch 2 in Tabelle 3 dargestellt.A 1 molar nitric acid solution was used as the stock solution. The element concentrations for test 1 are shown in table 2, for test 2 in table 3.

Unter ständigem Rühren wurde in die Stammlösungen der organische Komplexbildner N,N′-Diäthylthioharnstoff bei Zimmertemperatur zugegeben. Pro Mol in der Stammlösung vorliegendem Palladium wurden 4 Mol DETH und pro Mol in der Stammlösung vorliegendem Ruthenium wurden 6 Mol DETH zugegeben. Nach etwa 15 Minuten sind mehr als 99 % des Palladiums als Pd-DETH-Komplex ausgefallen. Der Rückstand wurde abgetrennt und die vom Rückstand befreite Lösung in einem thermostatisierten Wasserbad 30 Minuten lang auf 70° C erhitzt. Unter diesen Bedingungen werden die in verschiedenen Ru-Wertigkeiten vorliegenden Rutheniumnitrosylnitratokomplexe quantitativ in die zwei- und dreifach positiv geladenen Rutheniumnitrosyldiäthylharnstoffkomplexe umgewandelt, während Technetium, das ursprünglich als Pertechnetrat vorlag, zum Tc0²⁺ reduziert wird.With constant stirring, the organic complexing agent N, N′-diethylthiourea was added to the stock solutions at room temperature. 4 moles of DETH were added per mole of palladium present in the stock solution and 6 moles of DETH were added per mole of ruthenium present in the stock solution. After about 15 minutes, more than 99% of the palladium has precipitated as a Pd-DETH complex. The residue was separated and the solution freed from the residue was heated in a thermostated water bath at 70 ° C. for 30 minutes. Under these conditions, the ruthenium nitrosyl nitrate complexes, which are present in different Ru values, are quantitatively converted into the double and triple positively charged ruthenium nitrosyl diethyl urea complexes, while technetium, which originally existed as pertechnetrate, is reduced to Tc0²⁺.

Die in dieser Weise vorbehandelte Lösung wurde auf eine mit AG50W-X2 beladene Kolonne aufgegeben, wobei Ruthenium und Technetium vollständig zurückgehalten werden.The solution pretreated in this way was applied to a column loaded with AG50W-X2, with ruthenium and technetium being completely retained.

Die Kolonne wurde mit 4-5 Kolonnenvolumina 2-molarer HNO₃ gewaschen, wobei die teilweise auf der Kolonne zurückgehaltenen störenden Stoffe (Zr, Ce, U, Pu, Am, Mo) entfernt werden.The column was washed with 4-5 column volumes of 2-molar HNO₃, the interfering substances (Zr, Ce, U, Pu, Am, Mo) partially retained on the column being removed.

Die Kolonne wurde anschließend mit 4 Kolonnenvolumina einer wäßrigen Lösung, die HNO₃ und H₂0₂ jeweils in einer Konzentration von 0,5 Mol/l enthielt, oxidierend eluiert, wobei das Technetium als Pertechnetrat freigesetzt wurde.The column was then oxidized with 4 column volumes of an aqueous solution, each containing HNO₃ and H₂0₂ in a concentration of 0.5 mol / l, the technetium being released as the pertechnetrate.

Anschließend wurde die Kolonne zur Freisetzung von Ru mit 14 Kolonnenvolumina einer 7-molarer HNO₃ eluiert.The column was then eluted to release Ru with 14 column volumes of a 7 molar HNO₃.

Die Ergebnisse der Versuche 1 und 2 sind in den Tabellen 2 und 3 dargestellt.The results of experiments 1 and 2 are shown in Tables 2 and 3.

Legende zu den Figuren:Legend for the figures:

  • Fig. 1:
    Fließschema der Wertstoffgewinnung aus einer Stammlösung, die durch einen Carbonataufschluß und nachfolgende Auflösung in Salpetersäure erhalten wird.
    Fig. 1:
    Flow diagram of the recovery of valuable materials from a stock solution, which is obtained by carbonate digestion and subsequent dissolution in nitric acid.
  • Fig. 2:
    Dynamische Rückhaltung des Technetiums R. Ordinate: R in Prozent der aufgegebenen Technetiummenge. Abszisse: aufgegebene Technetiummenge in mg/g Kationenaustauscher. Kationenaustauscher: AG 50 W-X2 (50 - 100 mesh). Temperatur: 24 ± 0,1 °C.
    Fig. 2:
    Dynamic retention of technetium R. Ordinate: R as a percentage of the amount of technetium added. Abscissa: amount of technetium given in mg / g of cation exchanger. Cation exchanger: AG 50 W-X2 (50 - 100 mesh). Temperature: 24 ± 0.1 ° C.
  • Fig. 3:
    Technetiumkonzentration CTc im Eluat in Abhängigkeit des Eluatvolumens V. Kationenaustauscher: AG 50 W-X2. Eluationsmittel: 0,5 M H₂0₂/1 M HNO₃.
    Fig. 3:
    Technetium concentration C Tc in the eluate depending on the eluate volume V. Cation exchanger: AG 50 W-X2. Eluent: 0.5 M H₂0₂ / 1 M HNO₃.
  • Fig. 4:
    Dynamische Ru-DETH-Rückhaltung R. Ordinate: R in % der aufgegebenen Rutheniummenge. Abszisse: aufgegebene Rutheniummenge mRu im mg Ru/g Kationenaustauscher. Kationenaustauscher AG 50 W-X2 (200 - 400 mesh) 500 mg; Aufgabegeschwindigkeit 0,76 ml/min. Temperatur: 22° C.
    Fig. 4:
    Dynamic Ru-DETH retention R. Ordinate: R in% of the amount of ruthenium added. Abscissa: amount of ruthenium given m Ru in mg Ru / g cation exchanger. Cation exchanger AG 50 W-X2 (200 - 400 mesh) 500 mg; Feed speed 0.76 ml / min. Temperature: 22 ° C.
  • Fig. 5:
    Abhängigkeit der Rutheniumkonzentration CRu im Eluat aus einer mit 28 mg Ru/g Kationenaustauscher beladenen Kolonne. Ordinate: CRu in Mol/l. Abszisse: Eluatvolumen; V als vielfaches des Kolonnenvolumens. Kationenaustauscher: AG-50W-X2 (200 - 400 mesh). Kolonnenvolumen 5 ml. Eluationsmittel 6 m HNO₃.
    Fig. 5:
    Dependence of the ruthenium concentration C Ru in the eluate from a column loaded with 28 mg Ru / g cation exchanger. Ordinate: C Ru in mol / l. Abscissa: eluate volume; V as a multiple of the column volume. Cation exchanger: AG-50W-X2 (200 - 400 mesh). Column volume 5 ml. Eluent 6 m HNO₃.
  • Fig. 6:
    Rutheniumeluationsausbeute (ARu) in Prozent des fixierten Rutheniums in Abhängigkeit vom Eluatvolumen (V: Vielfaches des Kolonnenvolumens).
    Die folgenden Figuren beziehen sich auf die Eluationsausbeute A von adsorbierten unerwünschten Stoffen während des Waschens des Kationenaustauschers. A wird in Prozent des fixierten unerwünschten Stoffes angegeben.
    Auf der Abszisse sind die Vielfachen des Kolonnenvolumnes aufgetragen. Als Kationenaustauscher wurde AG 50W-X2 verwendet; das Elutionsmittel (Waschmedium) bestand bei Uran aus 1-molarer HN0₃, bei den übrigen unerwünschten Stoffen aus 2-molarer HNO₃.
    Fig. 6:
    Ruthenium elution yield (A Ru ) in percent of the fixed ruthenium as a function of the eluate volume (V: multiple of the column volume).
    The following figures relate to the elution yield A of adsorbed undesirable substances during the washing of the cation exchanger. A is given as a percentage of the fixed undesirable substance.
    The multiples of the column volume are plotted on the abscissa. AG 50W-X2 was used as the cation exchanger; the eluent (washing medium) consisted of 1-molar HN0₃ for uranium, for the other undesirable substances of 2-molar HNO₃.
  • Fig. 7: Elutionsausbeute AU für UranFig. 7: Elution yield A U for uranium
  • Fig. 8: Elutionsausbeute APu für PlutoniumFig. 8: Elution yield A Pu for plutonium
  • Fig. 9: Elutionsausbeute AAm für AmericiumFig. 9: Elution yield A Am for americium
  • Fig. 10: Elutionsausbeute AZr für ZirkoniumFig. 10: Elution yield A Zr for zirconium
  • Fig. 11: Elutionsausbeute ACe für Cer.Fig. 11: Elution yield A Ce for cerium.

Claims (7)

  1. Method of separating the valuable substances technetium, ruthenium and palladium from substance streams, which are produced during the reprocessing of irradiated nuclear fuel, the valuable substances being isolated from a nitrate stock solution, which contains the valuable substances and other fission/activation products, by means of precipitation and ion exchange, characterised by the following features:
    a) adding diethyl thiourea (DETH) to the stock solution, whereby palladium is selectively precipitated, and separating the precipitate;
    b) introducing the solution, which has been freed of palladium, into a bed of a strongly acidic cation exchanger for the separation of technetium and ruthenium;
    c) washing the cation exchanger with dilute nitric acid, preferably substantially 2-molar nitric acid;
    d) selectively and oxidisingly elutriating the technetium with a dilute nitric acid solution which contains an oxidising agent;
    e) selectively elutriating the ruthenium by means of concentrated nitric acid, preferably 6-8-molar nitric acid.
  2. Method according to claim 1, characterised in that substantially 4 mol DETH are added per mol palladium present in the stock solution, and additionally substantially 6 mol DETH are added per mol ruthenium present in the stock solution.
  3. Method according to claim 1, characterised in that a macroporous copolymer of polystyrene divinyl benzene is used as the strongly acidic cation exchanger, with 2-8 % cross-linking, preferably with 2 % cross-linking.
  4. Method according to claim 1, characterised in that, for the selective, oxidising elutriation of the technetium, a nitric acid solution is used, which contains hydrogen peroxide and contains both hydrogen peroxide and nitric acid in the concentration range 0.05 - 3 mol/l, preferably 0.1 - 1 mol/l.
  5. Method according to claim 1, characterised in that the stock solution is produced from feed clarification sludge, whereby the main quantity of the feed clarification sludge is brought into solution by a decomposition of carbonate and an addition of nitric acid, and the solution is separated from insoluble rhodium oxide.
  6. Method according to claim 1, characterised in that the precipitate, being formed from DETH and palladium, is converted into palladium oxide at substantially 500° C and is produced from the palladium oxide by heating palladium metal at substantially 900° C.
  7. Method according to claim 1, characterised in that the solution, freed of palladium, for accelerating the complex formation of ruthenium with DETH is heated for substantially 30 min. to a temperature of substantially 70° C.
EP19890109897 1988-06-24 1989-06-01 Method for separating technetium, ruthenium and palladium from solutions of nuclear fuels Expired - Lifetime EP0347625B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19883821295 DE3821295A1 (en) 1988-06-24 1988-06-24 METHOD FOR SEPARATING TECHNETIUM, RUTHENIUM AND PALLADIUM FROM NUCLEAR FUEL SOLUTIONS
DE3821295 1988-06-24

Publications (3)

Publication Number Publication Date
EP0347625A2 EP0347625A2 (en) 1989-12-27
EP0347625A3 EP0347625A3 (en) 1990-02-28
EP0347625B1 true EP0347625B1 (en) 1993-10-20

Family

ID=6357135

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890109897 Expired - Lifetime EP0347625B1 (en) 1988-06-24 1989-06-01 Method for separating technetium, ruthenium and palladium from solutions of nuclear fuels

Country Status (2)

Country Link
EP (1) EP0347625B1 (en)
DE (1) DE3821295A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886154A (en) * 1997-06-20 1999-03-23 Lebing; Wytold R. Chromatographic method for high yield purification and viral inactivation of antibodies
CN113406114B (en) * 2021-04-28 2022-10-21 中国辐射防护研究院 Combined analysis method for content of Pu, am and U in aerosol
FR3133390A1 (en) 2022-03-10 2023-09-15 Commissariat A L'energie Atomique Et Aux Energies Alternatives PROCESS FOR PURIFYING RUTHENIUM AGAINST TECHNETIUM AND METALLIC IMPURITIES IN AQUEOUS NITRIC ACID SOLUTION

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3848048A (en) * 1973-07-12 1974-11-12 Atomic Energy Commission Recovery of fission-produced technetium,palladium,rhodium and ruthenium
DE2849050C2 (en) * 1978-11-11 1986-04-17 Kernforschungsanlage Jülich GmbH, 5170 Jülich Process for processing waste solutions containing ammonium nitrate from nuclear engineering
DD145909A1 (en) * 1979-09-11 1981-01-14 Brunhilde Gorski METHOD FOR OBTAINING TECHNE IUM AND PALLADIUM FROM NUCLEAR REBUILDING SOLUTIONS
FR2485510A1 (en) * 1980-06-26 1981-12-31 Commissariat Energie Atomique Selective palladium solvent extn. from nitric acid soln. - esp. from nuclear fuel reprocessing soln., using di:alkyl di:thiophosphoric acid
DD154970A2 (en) * 1980-09-10 1982-05-05 Brunhilde Gorski METHOD FOR OBTAINING TECHNETIUM AND PALLADIUM FROM CORE FUEL REPRODUCTION SOLUTIONS
DE3243840A1 (en) * 1982-11-26 1984-05-30 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe METHOD FOR DENITITATING AQUEOUS, NITRIC ACID, SALTY WASTE SOLUTIONS

Also Published As

Publication number Publication date
DE3821295C2 (en) 1991-01-24
EP0347625A2 (en) 1989-12-27
DE3821295A1 (en) 1989-12-28
EP0347625A3 (en) 1990-02-28

Similar Documents

Publication Publication Date Title
US3848048A (en) Recovery of fission-produced technetium,palladium,rhodium and ruthenium
DE1215669B (en) Process for processing irradiated nuclear reactor fuel
DE2610948C3 (en) Process for the extraction of molybdenum -99 from a matrix containing fissile substances and fission products irradiated with neutrons
DE4231997C1 (en) Process for separating split molybdenum
DE3144974C2 (en) Process for the separation of actinide ions from aqueous, basic, carbonate-containing solutions
CH625363A5 (en)
DE2140998C3 (en) Process for the extraction of molybdenum
EP0347625B1 (en) Method for separating technetium, ruthenium and palladium from solutions of nuclear fuels
EP0170796B1 (en) Process for separating great amounts of uranium from small amounts of fission products which are present in aqueous basic solutions containing carbonate
EP0245588B1 (en) Process for the fine purification of fission molybdenum
DE102008064682B4 (en) Anionic borane polymer, as well as its use and preparation
EP0170795B1 (en) Method for recovering uranium values in an extractive reprocessing process for irradiated nuclear-fuel materials
DE1250801B (en) Process for the separation of volatile fluoride impurities from uranium hexafluoride
DE2610947C3 (en) Process for the extraction of molybdenum-99 from a matrix containing fissile substances and fission products irradiated with neutrons
US3208819A (en) Method for decontaminating nuclear fuels containing ruthenium complexes
JP3323856B2 (en) Method for separating americium from a solution containing fission products, curium and americium
DE2311569A1 (en) CHEMICAL PLATING PROCESS FOR THE PRODUCTION OF RADIATION SOURCE MATERIAL
US3694370A (en) Process for palladium recovery
DE3602591C2 (en)
US2942939A (en) Separation of plutonium values from other metal values in aqueous solutions by selective complexing and adsorption
DE1442430C (en) Process for the purification and recovery of solvents for the rejuvenation of nuclear fuels
US2847274A (en) Sulfide method plutonium separation
Moore Recovery of fission-produced technetium, palladium, rhodium, and ruthenium
US2864841A (en) Process for the recovery of plutonium
WHEELER et al. Neutron Activation of Cobaltocene and Nickelocene

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE FR GB

17P Request for examination filed

Effective date: 19900214

17Q First examination report despatched

Effective date: 19920818

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE FR GB

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19940630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: KERNFORSCHUNGSZENTRUM KARLSRUHE G.M.B.H.

Effective date: 19940630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST