EP0347304B1 - Transformateur électrique de mesure - Google Patents

Transformateur électrique de mesure Download PDF

Info

Publication number
EP0347304B1
EP0347304B1 EP89401633A EP89401633A EP0347304B1 EP 0347304 B1 EP0347304 B1 EP 0347304B1 EP 89401633 A EP89401633 A EP 89401633A EP 89401633 A EP89401633 A EP 89401633A EP 0347304 B1 EP0347304 B1 EP 0347304B1
Authority
EP
European Patent Office
Prior art keywords
transformer
configuration
measuring
transformer according
adapting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89401633A
Other languages
German (de)
English (en)
Other versions
EP0347304A1 (fr
Inventor
Jean Paul Avocat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT89401633T priority Critical patent/ATE95943T1/de
Publication of EP0347304A1 publication Critical patent/EP0347304A1/fr
Application granted granted Critical
Publication of EP0347304B1 publication Critical patent/EP0347304B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/38Instruments transformers for polyphase ac
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers

Definitions

  • the invention relates to an electrical measuring transformer. More specifically, the present invention applies to transformers, single-phase or multi-phase, capable of adapting an actual electrical value to a value compatible with a measurement, counting, control or monitoring module.
  • the invention will find its application in the field of electrical construction of such transformers and in particular in the industry of manufacturing current transformers.
  • Such transformers are used to supply measurement, metering, control or monitoring modules. These modules are generally designed to work with a reduced current and therefore require the use of measuring transformers when the currents to be controlled have values greater than the nominal value of said modules which, generally, are located at five amps.
  • the transformers are made so that the current reduced at the secondary is exactly proportional to the primary current, that is to say that it is its total image. . This is particularly important when the metering module is used to bill the energy consumed by a subscriber on the national distribution network.
  • the transformer when the transformer is made for a module of the electromechanical type, it is common for the power absorbed to be of the order of 15 VA. In this case, the transformation ratio error curve is within the fixed limits. On the other hand, if this same transformer is used on a metering or other electronic module, the absorbed power will be much lower and of the order of 3 VA and the error curve will be outside the allowed limits, which will distort the measurement.
  • the consumption of subscribers differs from one to the other and one can envisage networks of use consuming 50 amperes while others in consume 2000.
  • the purpose of the current transformer is to adapt the current consumed to the nominal value of the meter, which makes it possible to provide only one type of meter.
  • the variation in resistance of the secondary winding due to the temperature is compensated for by providing a resistance shunting part of the secondary winding.
  • document US-A-3617967 discloses a transformer having different primary switchable windings. According to this document, the switching is carried out winding by winding, by means of small bars, mounted one by one, without voltage, that is to say without operation, in order to carry out series, parallel or series-parallel couplings. of these primary winding portions.
  • the aim of the present invention is to propose an electrical measurement transformer, single-phase or polyphase, capable of adapting an actual electrical value to a value compatible with a measurement, counting, control or monitoring module, which makes it possible to overcome the disadvantages mentioned above while avoiding any risk of human error.
  • One of the aims of the present invention is to propose an electrical measuring transformer, the configuration of which is adapted as a function of the range of use chosen, that is to say which, when its characteristics have been determined with respect to in use, easily adaptable to this use, preventing the risk of incorrect wiring.
  • Another object of the present invention is to provide an electrical measurement transformer which has at least two ratings, that is to say two ranges of use, thus allowing evolution over time without having to change the installation. to transform it if there is evolution.
  • the measurement transformer of the present invention has two consecutive transformation ratios, in particular 10, 20 or 20, 40, etc., which, when it is used for the first time, is configured on the first ratio and whose structure is designed to adapt the configuration of the transformer according to the range of use chosen, in particular by switching the windings according to the range chosen.
  • Another object of the present invention is to present a measurement transformer whose control of the configuration of the transformer as a function of the chosen range is possible in order to avoid any anomaly.
  • the present invention provides an electrical measuring transformer having means for controlling the configuration of the transformer, means which may be, in a simplified version, only visual and which, in a more elaborate version, may react automatically by signaling the unsuitability.
  • Another object of the present invention is to provide a measurement transformer which can easily be adapted as a function of the power required for the measurement, counting, control or monitoring module, and in particular which can allow consumption of 3 VA or 15 VA , depending on whether one works respectively in electronic module or in electromechanical module.
  • Another object of the present invention is to provide an polyphase electrical measuring transformer which, during its installation, allows, by a single operation, to adapt the configuration of the transformer according to the range of use chosen without wiring error, d '' adapt the configuration of the transformer according to the use of the measurement and / or control the configuration of the transformer according to the range chosen and / or the use of the measurement.
  • the electric transformer for measuring current (1), single-phase or multi-phase capable of adapting an actual electrical value (i1) to a value compatible (12) with a module (7) for measuring, metering, control or monitoring, in particular said transformer (1) having a primary side (2) and a secondary side (3), defining a transformation ratio (i1 / i2) and consequently its range of use, as well as means (6) for adapting the secondary configuration of the transformer as a function of the range of use chosen, said secondary side (3) having at least one switchable winding (5) comprising a plurality of secondary connection terminals S2, S3 (11 , 12) defining a plurality of respective single transformation ratios, a first output terminal connected to the secondary winding S1, a second free output terminal S0, is characterized in that the means (6) for adapting the secondary configuration of the transformer are constituted by a set of devices (13) for selecting a single current ratio, each device (13) allowing the selection of one of said plurality of ratios single transformation and being provided to be de
  • the transformer comprises at each selection device an auxiliary circuit capable of delivering output information dependent on the single transformation ratio chosen in order to control the configuration of the transformer selected.
  • the transformer comprises means for adapting the configuration of the transformer as a function of the use of the measurement, namely as a function of the power necessary for the measurement, counting, control module. or monitoring, in order to correct the image value of the actual measurement delivered.
  • FIG. 1 schematically illustrates a first embodiment of a single-phase electrical measurement transformer produced according to the present invention.
  • Figure 2 schematically shows a more elaborate variant of a single-phase measurement transformer according to the present invention.
  • FIG. 3 shows a simplified perspective view of the production of a secondary winding of a single-phase current transformer operating according to the principle of FIG. 1.
  • Figure 4 shows a detail of the embodiment of the transformer as for example illustrated in Figure 3, means for adapting the configuration of the transformer.
  • FIG. 5 shows a perspective view of a three-phase current transformer whose winding is provided in accordance with the present invention.
  • FIG. 6 shows a perspective view from below of the means of the present invention for adapting and / or controlling the configuration of the transformer as a function of the range chosen according to one of the embodiments.
  • FIG. 7 illustrates a perspective view from above of the means illustrated in FIG. 6.
  • FIG. 8 shows an alternative embodiment of the means shown in FIG. 4.
  • the invention relates to an electrical measuring transformer, single-phase or multi-phase.
  • a transformer will in particular be provided for adapting an actual electrical value to a value compatible with a measurement, metering, control or monitoring module.
  • a typical application of the present invention will be the production of current transformers intended for metering single-phase or multi-phase energy.
  • other applications could be envisaged for, for example, giving information proportional to the values measured to measuring devices, protection relays or any other monitoring system.
  • this invention was made in the field of electric current measurement transformers, however it could be transposed in other fields and for example in voltage measurement transformers.
  • Voltage measurement generally poses few problems because the measuring devices are easily achievable for voltages up to 1000 volts. On the other hand, as regards the current, this being able to evolve up to, for example, 2000 amperes, electrical transformers for measuring current are generally used. However, the correct choice of the gauge and their correct wiring depend on the quality and accuracy of the measurement.
  • FIG. 1 illustrates a transformer (1), single phase, current, according to the present invention, in a simplified version to understand the essence of the invention.
  • the transformer (1) traditionally comprises a primary circuit (2), as well as a secondary circuit (3) distributed over a magnetic circuit (4).
  • the magnetic circuit In the case of the single-phase current transformer, the magnetic circuit generally has a toroidal shape defining a central space capable of receiving the phase connector which in this case defines the primary (2) and on which the toroid is wound at least one secondary winding ( 5).
  • the current transformer (1) is defined by its nominal value of the secondary current, its ratio of transformation and the limits imposed on its errors within a range of variation of the primary current, that is to say its operating range.
  • the secondary is provided in such a way that it allows two calibers, that is to say two normal ranges of use.
  • the secondary circuit (3) has at least one winding (5) with intermediate tap or even two separate windings.
  • the primary has two connection terminals (E1) and (E2) while the secondary has three connection terminals (S1), (S2) and (S3).
  • the winding is carried out in such a way that the ratio of the primary currents (i1) to the secondary current (i2) defines two transformation ratios.
  • the ratio is 100/5 while on terminal (S3), the ratio is 200/5.
  • the transformer (1) comprises means (6) for adapting the configuration of the transformer (1) according to the range of use chosen, which performs at least the switching of the secondary winding (s) (5) depending on the range chosen.
  • each secondary circuit (3) has at least on each controlled phase at least one winding (5) with intermediate tap or two separate windings.
  • the means (6) for adapting the configuration of the transformer then simultaneously carry out the wiring of the said winding (s) (5) of each secondary phase considered.
  • FIGS. 5, 6, 7 and more particularly FIG. 6 shows the different connections that are made for example in the case of the ratio 100/5 between (S0) and ( S2) of phase I, (S0) and (S2) of phase II, (S0) and (S2) of phase III.
  • Figures 3, 4 or 8 show a first alternative embodiment of a single-phase transformer.
  • FIG. 3 shows a toroidal magnetic core (4) on which is wound a secondary winding (5) with stitching, inside of which the core will be disposed the primary (2), generally constituted by the same conductive wire in which we want the current measurement.
  • the different outputs of the secondary winding (5), marked (S1), (S2), (S3) as well as the use output marked (S0) are connected to electrical contacts marked (8) and (9) for the outputs (S0) and (S1) to use and respectively (10, 11, 12) for the outputs (S0, S2 and S3) to be switched.
  • the means (6) are in the form of a plate or element (13) wiring support, connectable, pluggable or snap-on on the body of the transformer (1) according to the embodiments, the wiring of which is according to the chosen operating range.
  • the contacts (10, 11, 12) are produced by elastic lyres, obtained in particular by cutting from a strip of phosphorous bronze, identified (14), suitable to cooperate with a cylinder or rod (15) made of copper metal alloy.
  • a strip of phosphorous bronze identified (14)
  • a cylinder or rod made of copper metal alloy.
  • Figure 8 shows another embodiment in which, instead of using an elastic lyre trapping the contact rod, two U-shaped contacts are used on which the contact rod is pushed by a spring (24).
  • the transformer of the present invention advantageously further comprises means (16) for controlling the configuration of the transformer as a function of the range chosen, capable of delivering information dependent on the configuration produced.
  • these means (16) consist of a window cut out from each plate (13) constituting the means (6), window revealing an inscription worn on the body of the transformer indicating the chosen ratio.
  • these means for controlling the configuration will deliver materializable output information, in particular electrically. This will be described in more detail, in particular with regard to FIG. 2.
  • FIG. 2 shows an embodiment of a single-phase transformer according to the present invention, which takes up the specific characters which have just been described and shows in particular said means (6) for adapting the configuration of the transformer according to the range of use chosen.
  • the transformer (1) further comprises means (17) for adapting the configuration of the transformer (1) as a function of the use of the measurement, in particular as a function of the power required by the measurement, counting, control or monitoring module in order to correct the "image" value of the actual measurement delivered.
  • This adaptation of the transformer which as specified above makes it possible to carry out a correction of amperes turns to place the error curve of transformation ratio in an authorized range, will be carried out by switching according to the cases at one end of the secondary winding (5) the output (S1) (9) of the use on the output (S′1) or (S ⁇ 1) of the winding (5).
  • a tapping will be carried out at the start of the winding which in position (S ⁇ 1) will allow the error curve to be slightly displaced for electromechanical use of power consumption of about 15 VA.
  • the secondary circuit (3) having at least one winding (5) with intermediate tap or even two separate windings to define the characteristic of the transformer as a function of the measured measured power consumed , the means (17) carry out the internal wiring at the input of the winding, this according to the same principle as described above for the means (13).
  • the present invention also applies to a polyphase and in particular three-phase transformer.
  • the secondary circuit has at least on each secondary phase at least one winding (5) with intermediate tap or even two separate windings to define the characteristic of the transformer as a function of the necessary power consumed, and the means (17) for adapt the configuration of the transformer according to the use simultaneously carry out the internal wiring of the said winding (s) of each secondary phase.
  • the means (6) for adapting the configuration of the transformer as a function of the range of use chosen and the means (17) for adapting the configuration of the transformer as a function of the use of the measurement are carried by the same wiring support plate (13) which makes the connections simultaneously.
  • each of the four plates or elements (13) making it possible to adapt the configuration of the transformer is in the form of an insulating plate on which are arranged a first series of electrical bridges (15) depending on the connections to be made to determine the size, and a second series of electrical bridges (25) depending on the connections to be made for determine the power.
  • said transformer body carries elastic or other contacts connected to the secondary windings capable of cooperating with the electrical bridges of the first and second series.
  • Figures 5 and 6 illustrate such a three-phase transformer for current measurement, allowing the adaptation of the configuration of the transformer according to the range of use and according to the power of use.
  • the transformer includes means allowing this control (16, 22) which are presented as above under the form of windows revealing the inscriptions engraved on the body of the whole.
  • the transformer will include means (23) capable of delivering output information dependent on the configuration produced.
  • these means (23) are in the form of an auxiliary circuit physically and structurally associated with said means (6) and / or (17) for adapting the configuration of the transformer.
  • Such an auxiliary circuit will give, for example, different electrical output information according to the configuration cases, information which can be exploited for example by the use module and can in particular detect an anomaly.
  • auxiliary circuit To structurally produce this auxiliary circuit, different polarizing devices can be used within the reach of those skilled in the art. For example, as illustrated in FIG. 2, from four contacts, the relative connections of these make it possible to have at least four positions. However, other connections could be used and one could also use ohmic resistors of different values according to the cases.
  • the transformer may also be fitted with any other safety device such as sealing, shielding or other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformers For Measuring Instruments (AREA)
  • Housings And Mounting Of Transformers (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Regulation Of General Use Transformers (AREA)
  • Organic Insulating Materials (AREA)

Description

  • L'invention est relative à un transformateur électrique de mesure. Plus précisément, la présente invention s'applique aux transformateurs, monophasés ou polyphasés, aptes à adapter une valeur électrique réelle en une valeur compatible avec un module de mesure, de comptage, de contrôle ou de surveillance.
  • L'invention trouvera son application dans le domaine de la construction électrique de tels transformateurs et notamment dans l'industrie de la fabrication des transformateurs de courant.
  • A ce sujet, il est connu de tels transformateurs de courant constitués par un circuit primaire et un circuit secondaire qui donnent, au secondaire, un courant réduit proportionnel et isolé galvaniquement du courant traversant le primaire.
  • On utilise de tels transformateurs pour alimenter des modules de mesure, de comptage, de contrôle ou de surveillance. Ces modules sont généralement prévus pour travailler avec un courant réduit et nécessitent donc l'utilisation de transformateurs de mesure lorsque les courants à contrôler ont des valeurs supérieures à la valeur nominale desdits modules qui, généralement, se situent à cinq ampères.
  • Etant donné l'utilisation spécifique de certains modules de contrôle et de comptage, les transformateurs sont réalisés de façon à ce que le courant réduit au secondaire soit exactement proportionnel au courant primaire, c'est-à-dire qu'il soit son image totale. Ceci a notamment de l'importance quand le module de comptage sert à facturer l'énergie consommée par un abonné sur le réseau de distribution national.
  • Dans un tel cas, il apparaît différentes causes de facturation erronée qui peuvent porter préjudice soit à l'abonné, soit au distributeur.
  • En effet, malgré la précision apportée aux modules de comptage et les contrôles stricts auxquels ils sont soumis, si l'image du courant consommé n'est pas fiable, le comptage sera faussé. Ceci peut provenir de la construction du transformateur de mesure en tant que tel, mais également de l'inadaptation du transformateur au module de comptage.
  • En particulier, certains appareils fonctionnent mal ou moins bien en dessous d'un seuil du courant secondaire, c'est pourquoi ce dernier doit alors être compris entre une limite inférieure et une limite supérieure, autrement dit dans une plage de fonctionnement caractérisée par sa valeur nominale.
  • De même, selon le type de module à alimenter, et plus précisément selon la puissance absorbée par le module alimenté, il est nécessaire de prévoir le transformateur de mesures différemment afin d'effectuer une correction d'ampères tours telle que la courbe d'erreur de rapport de transformation, spécifique au transformateur, soit comprise entre deux valeurs définies par des normes ou par le distributeur ou l'administration concernée.
  • Pratiquement, lorsque le transformateur est réalisé pour un module du type électromécanique, il est courant que la puissance absorbée soit de l'ordre de 15 VA. Dans ce cas, la courbe d'erreur de rapport de transformation est comprise dans les limites fixées. Par contre, si on utilise ce même transformateur sur un module de comptage ou autre électronique, la puissance absorbée sera beaucoup plus faible et de l'ordre de 3 VA et la courbe d'erreur se trouvera en dehors des limites autorisées, ce qui faussera la mesure.
  • D'autres causes de mesures erronées peuvent également être dues à l'installateur qui effectue un mauvais câblage ou un mauvais choix du calibre des transformateurs de mesure.
  • En effet, dans le cas de contrôle de réseaux polyphasés, notamment triphasés, la mesure de l'intensité doit être effectuée sur chaque phase, ce par exemple au moyen d'un ensemble polyphasé. Pour faciliter la terminologie, on parlera de "transformateur polyphasé". Cependant, dans le cas de mesure de courant, ce transformateur polyphasé sera composé de "n" transformateurs monophasés.
  • Dans le cas du triphasé, on utilise généralement trois transformateurs monophasés que l'on couple de manière adéquate pour obtenir une bonne mesure. En particulier, il faut respecter les sens d'enroulement pour éviter des déphasages intempestifs et prévoir un choix identique du calibre des trois transformateurs.
  • En ce qui concerne ce dernier point, dans le cas de la distribution d'énergie électrique, la consommation des abonnés diffère de l'un à l'autre et on peut envisager des réseaux d'utilisation consommant 50 ampères alors que d'autres en consomment 2000. Le but du transformateur d'intensité est d'adapter le courant consommé à la valeur nominale du compteur ce qui permet de prévoir qu'un seul type de compteur.
  • Cependant, il n'est pas possible de prévoir un seul type de transformateur de mesure car, comme on l'a rappelé ci-dessus, si on travaille avec un transformateur autorisant 1000 ampères, il donnera des informations erronées si la consommation n'est que de 50 ampères du fait de sa plage de fonctionnement caractérisée par sa valeur nominale.
  • L'étude de l' adéquation de ces plages respectives montre qu'on utilise généralement une gamme de six transformateurs de courant couvrant pratiquement toutes les situations dont le rapport de transformation est de 10, 20, 40, 100, 200 et 400 pour 5 ampères secondaire.
  • Cela étant, il est nécessaire de tenir en stock ou d'utiliser l'un quelconque de ces six rapports. De plus, il est courant de s'apercevoir que par mégarde lors d'un ensemble triphasé, un des transformateurs utilisés n'est pas identique aux deux autres.
  • Ces inconvénients précisés sont complétés par un inconvénient d'exploitation tenant compte de l'évolution dans le temps de la consommation sur le réseau.
  • En effet, il est courant, dans le domaine du comptage d'énergie, qu'au cours du temps l'abonné augmente sa consommation et demande la modification du calibre de son compteur. Dans ce cas, il est nécessaire d intervenir au niveau du tableau de distribution et de remplacer tous les transformateurs de mesure.
  • On connaît du document US-A-3.564.392 un transformateur électrique de mesure de courant présentant un côté primaire et un côté secondaire, définissant un rapport de transformation, ainsi que des moyens pour adapter la configuration secondaire du transformateur en fonction de la plage d'utilisation choisie.
  • En outre, selon ce document, on compense la variation de résistance de l'enroulement secondaire due à la température en prévoyant une résistance shuntant une partie de l'enroulement secondaire.
  • Par ailleurs, on connaît du document US-A-3617967 un transformateur présentant au primaire différents enroulements commutables. Selon ce document, la commutation s'effectue enroulement par enroulement, au moyen de petites barrettes, montées une par une, hors tension, c'est-à-dire hors exploitation, afin d'effectuer des couplages série, parallèle ou série-parallèle de ces portions d'enroulement primaire.
  • On connaît également du document US-A-3584299 la réalisation d'un multimètre équipé d'une pince ampèremétrique multifonction, cette dernière présentant un élément transformateur avec deux enroulements secondaires qui, en fonction d'un sélecteur, permet la mesure de courant ou de tension ou le facteur de puissance.
  • Cependant, ces trois documents ne permettent pas de solutionner les inconvénients précités et les difficultés auxquelles est confronté l'utilisateur lors d'une intervention pour modifier la plage d'utilisation du transformateur.
  • Actuellement, aucun dispositif ne permet de pallier ces différents inconvénients, et le bon fonctionnement des installations est essentiellement dépendant du contrôle de l'homme.
  • Le but de la présente invention est de proposer un transformateur électrique de mesure, monophasé ou polyphasé, apte à adapter une valeur électrique réelle en une valeur compatible avec un module de mesure, de comptage, de contrôle ou de surveillance, qui permette de pallier les inconvénients précités en évitant tout risque d'erreur humaine.
  • Un des buts de la présente invention est de proposer un transformateur électrique de mesure, dont la configuration est adaptée en fonction de la plage d'utilisation choisie, c'est-à-dire qui soit, lorsqu'on a déterminé ses caractéristiques par rapport à l'utilisation, facilement adaptable à cette utilisation en prévenant les risques de mauvais câblage.
  • Un autre but de la présente invention est de proposer un transformateur électrique de mesure qui présente au moins deux calibres, c'est-à-dire deux plages d'utilisation permettant ainsi l'évolution dans le temps sans être obligé de changer l'installation pour la transformer si évolution il y a.
  • En particulier, le transformateur de mesure de la présente invention présente deux rapports de transformation consécutifs notamment 10, 20 ou 20, 40, etc, qui, lors de sa première utilisation, est configuré sur le premier rapport et dont la structure est prévue pour adapter la configuration du transformateur en fonction de la plage d'utilisation choisie, en réalisant notamment la commutation des enroulements selon la plage choisie.
  • Un autre but de la présente invention est de présenter un transformateur de mesure dont le contrôle de la configuration du transformateur en fonction de la plage choisie est possible afin d'éviter toute anomalie.
  • En effet, les risques de mesures erronées sont accrus avec l'utilisation de transformateurs à double calibre car, si la configuration du transfo est erronée, le compteur verra selon les cas une consommation de moitié ou une consommation double si le rapport entre les calibres est de 2.
  • Pour pallier un tel inconvénient, la présente invention propose un transformateur électrique de mesure présentant des moyens pour contrôler la configuration du transformateur, moyens qui peuvent être, dans une version simplifiée, uniquement visuels et qui, dans une version plus élaborée, peuvent réagir automatiquement en signalant l'inadaptation.
  • Un autre but de la présente invention est de proposer un transformateur de mesure qui puisse facilement être adapté en fonction de la puissance nécessaire au module de mesure, comptage, contrôle ou surveillance, et notamment qui puisse autoriser une consommation de 3 VA ou de 15 VA, selon que l'on travaille respectivement en module électronique ou en module électromécanique.
  • Un autre but de la présente invention est de proposer un transformateur électrique de mesure polyphasé qui, lors de son installation, permet par une seule opération d'adapter la configuration du transformateur en fonction de la plage d'utilisation choisie sans erreur de câblage, d'adapter la configuration du transformataur en fonction de l'utilisation de la mesure et/ou de contrôler la configuration du transformateur en fonction de la plage choisie et/ou de l' utilisation de la mesure.
  • D'autres buts et avantages de la présente invention apparaîtront au cours de la description qui va suivre qui n'est cependant donnée qu'à titre indicatif et qui n'a pas pour but de la limiter.
  • Selon la présente invention, le transformateur électrique de mesure de courant (1), monophasé ou polyphasé, apte à adapter une valeur électrique réelle (i1) en une valeur compatible (12) avec un module (7) de mesure, de comptage, de contrôle ou de surveillance, notamment ledit transformateur (1) présentant un côté primaire (2) et un côté secondaire (3), définissant un rapport de transformation (i1/i2) et par suite sa plage d'utilisation, ainsi que des moyens (6) pour adapter la configuration secondaire du transformateur en fonction de la plage d'utilisation choisie, ledit côté secondaire (3) présentant au moins un enroulement (5) commutable comportant une pluralité de bornes de connexion secondaires S₂, S₃ (11, 12) définissant une pluralité de rapports de transformation unique respectif, une première borne de sortie connectée à l'enroulement secondaire S₁, une seconde borne de sortie libre S₀, est caractérisé par le fait que les moyens (6) pour adapter la configuration secondaire du transformateur sont constitués par un ensemble de dispositifs (13) de sélection de rapport de courant unique, chaque dispositif (13) permettant la sélection d'un de ladite pluralité de rapport de transformation unique et étant prévu pour être connecté de façon détachable sur le côté secondaire (3) afin d'autoriser sélectivement une connexion entre ladite seconde borne de sortie libre S₀ (10) et la borne correspondante S₂ ou S₃ (11 ou 12) de ladite pluralité des bornes de connexion secondaires correspondant au rapport de transformation unique choisi.
  • Une autre caractéristique de la présente invention réside dans le fait que le transformateur comporte au niveau de chaque dispositif de sélection un circuit auxiliaire apte à délivrer une information de sortie dépendante du rapport de transformation unique choisi afin de contrôler la configuration du transformateur choisi.
  • Une autre caractéristique de la présente invention réside dans le fait que le transformateur comporte des moyens pour adapter la configuration du transformateur en fonction de l'utilisation de la mesure à savoir en fonction de la puissance nécessaire au module de mesure, de comptage, de contrôle ou de surveillance, afin de corriger la valeur image de la mesure réelle délivrée.
  • La présente invention sera mieux comprise à la lecture de la description suivante, accompagnée des dessins en annexe, qui en font partie intégrante.
  • La figure 1 illustre schématiquement un premier mode de réalisation de transformateur électrique de mesure monophasé réalisé selon la présente invention.
  • La figure 2 montre schématiquement une variante plus élaborée d'un transformateur de mesure monophasé selon la présente invention.
  • La figure 3 montre une vue en perspective simplifiée de la réalisation d'un bobinage secondaire d'un transformateur de courant monophasé fonctionnant selon le principe de la figure 1.
  • La figure 4 montre un détail de la réalisation du transformateur tel que par exemple illustré à la figure 3, des moyens pour adapter la configuration du transformateur.
  • La figure 5 montre une vue en perspective d'un transformateur de courant triphasé dont le bobinage est prévu conformément à la présente invention.
  • La figure 6 montre une vue en perspective de dessous des moyens de la présente invention pour adapter et/ou contrôler la configuration du transformateur en fonction de la plage choisie selon un des modes de réalisation.
  • La figure 7 illustre une vue en perspective de dessus des moyens illustrés à la figure 6.
  • La figure 8 montre une variante de réalisation des moyens représentés à la figure 4.
  • L'invention concerne un transformateur électrique de mesure, monophasé ou polyphasé. Un tel transformateur sera notamment prévu pour adapter une valeur électrique réelle à une valeur compatible avec un module de mesure, de comptage, de contrôle ou de surveillance.
  • Une application typique de la présente invention sera la réalisation de transformateurs de courant destinés au comptage de l'énergie monophasée ou polyphasée. Néanmoins, d'autres applications pourraient être envisagées pour, par exemple, donner des informations proportionnelles aux valeurs mesurées à des appareils de mesure, relais de protection ou tout autre système de surveillance. Par ailleurs, la présente invention a été faite dans le domaine des transformateurs électriques de mesure de courant, néanmoins elle pourrait être transposée dans d'autres domaines et par exemple dans les transformateurs de mesure de tension.
  • Cela étant rappelons succinctement qu'en matière de comptage d'énergie électrique, on utilise un compteur apte à enregistrer une puissance délivrée pendant un certain laps de temps, la puissance étant mesurée à partir des tensions effectives et des courants consommés.
  • La mesure de tension ne pose généralement que peu de problèmes car les appareils de mesure sont facilement réalisables pour des tensions jusque 1000 volts. Par contre, pour ce qui est du courant, celui-ci pouvant évoluer jusque par exemple 2000 ampères, il est généralement fait appel aux transformateurs électriques de mesure de courant. Cependant, du bon choix du calibre de ceux-ci et de leur bon câblage dépendent la qualité et la justesse de la mesure.
  • La figure 1 illustre un transformateur (1), monophasé, de courant, selon la présente invention, dans une version simplifiée pour comprendre l'essence de l'invention.
  • Le transformateur (1) comporte traditionnellement un circuit primaire (2), ainsi qu'un circuit secondaire (3) réparti sur un circuit magnétique (4).
  • Dans le cas du transformateur monophasé de courant, le circuit magnétique présente généralement une forme torique définissant un espace central apte à recevoir le connecteur de phase qui définit dans ce cas le primaire (2) et sur lequel tore est bobiné au moins un enroulement secondaire (5).
  • Ainsi, le transformateur de courant (1) est défini par sa valeur nominale du courant secondaire, son rapport de transformation et les limites imposées à ses erreurs à l'intérieur d'une plage de variation du courant primaire, c'est-à-dire sa plage de fonctionnement.
  • Cela étant, selon l'invention, le secondaire est prévu de telle façon qu'il permette deux calibres, c'est-à-dire deux plages normales d'utilisation.
  • Ainsi, le circuit secondaire (3) présente au moins un enroulement (5) avec prise intermédiaire ou encore deux enroulements distincts.
  • Comme le montre la figure 1, le primaire présente deux bornes de connexion (E1) et (E2) tandis que le secondaire présente trois bornes de connexion (S1), (S2) et (S3).
  • Le bobinage est réalisé de telle manière que le rapport des courants primaires (i1) sur le courant secondaire (i2) définisse deux rapports de transformation. Dans l'exemple illustré à la borne (S2), le rapport est de 100/5 tandis que sur la borne (S3), le rapport est de 200/5.
  • Selon l'utilisation, l'opérateur devra connecter son module d'utilisation (7) entre les bornes (S1) et (S2) si le courant primaire est de l'ordre de 100 ampères maxi, ou sur les bornes (S1) et (S3) si le courant primaire (i1) est de l'ordre de 200 ampères. Selon la première caractéristique de la présente invention, le transformateur (1) comporte des moyens (6) pour adapter la configuration du transformateur (1) en fonction de la plage d'utilisation choisie, qui réalise au moins la commutation du ou des enroulements secondaires (5) selon la plage choisie.
  • Dans le cas du transformateur monophasé représenté à la figure 1, la définition des deux plages d'utilisation sélectionnables est réalisée uniquement par des moyens (6) qui adaptent la configuration du transformateur (1) au rapport de transformation en réalisant le câblage interne du ou des enroulements secondaires (5).
  • En effet, dans le cas du choix du premier rapport de transformation notamment 100/5, ces moyens réalisent une connexion entre (S2) et (S0) alors que dans le cas du choix du rapport de transformation supérieur, notamment 200/5, la connexion réalisée est alors (S3) - (S0). Ainsi, l'utilisation (7) est toujours connectée entre les bornes (S1) et (S0) quel que soit le calibre choisi.
  • L'intérêt de ces moyens devient plus important lorsqu'on est en présence d'un transformateur polyphasé tel qu'un transformateur triphasé. Dans ce cas, chaque circuit secondaire (3) présente au moins sur chaque phase contrôlée au moins un enroulement (5) avec prise intermédiaire ou deux enroulements distincts.
  • Pour définir les deux plages d'utilisation sélectionnables les moyens (6) pour adapter la configuration du transformateur réalisent alors simultanément le câblage du ou desdits enroulements (5) de chaque phase secondaire considérée.
  • Un exemple de réalisation d'un tel transformateur triphasé est illustré aux figures 5, 6, 7 et plus particulièrement la figure 6 montre les différentes connexions que l'on réalise par exemple dans le cas du rapport 100/5 entre (S0) et (S2) de la phase I, (S0) et (S2) de la phase II, (S0) et (S2) de la phase III.
  • Ces connexions sont réalisées simultanément en une seule opération, ce qui permet de prévenir tout risque de mauvais cablage de sens d'enroulement et d'erreur de choix du calibre d'un secondaire par rapport à un autre.
  • En ce qui concerne la structure de ces moyens, les figures 3, 4 ou 8 montrent une première variante de réalisation d'un transformateur monophasé.
  • En particulier, la figure 3 montre un noyau magnétique torique (4) sur lequel est bobiné un enroulement secondaire (5) avec piquage, à l'intérieur duquel tore sera disposé le primaire (2), généralement constitué par le fil conducteur même dans lequel on désire la mesure du courant.
  • Les différentes sorties du bobinage secondaire (5), repérées (S1), (S2), (S3) ainsi que la sortie d'utilisation repérée (S0) sont reliées à des contacts électriques repérés (8) et (9) pour les sorties (S0) et (S1) vers l'utilisation et respectivement (10, 11, 12) pour les sorties (S0, S2 et S3) à commuter.
  • Pour une configuration du transformateur, c'est-à-dire pour notamment définir un calibre, les moyens (6) se présentent sous la forme d'une plaque ou élément (13) support de câblage, raccordable, enfichable ou encliquetable sur le corps du transformateur (1) selon les modes de réalisation, dont le câblage est en fonction de la plage de fonctionnement choisie.
  • Par exemple, dans un mode de réalisation tel qu'illustré à la figure 4, les contacts (10, 11, 12) sont réalisés par des lyres élastiques, obtenues notamment par découpe dans une bande de bronze phosphoreux, repérées (14), aptes à coopérer avec un cylindre ou pige (15) en alliage métallique cuivreux. De telles réalisations seront à la portée de l'Homme de l'Art.
  • A titre de variante, la figure 8 montre une autre réalisation dans laquelle, au lieu d'utiliser une lyre élastique emprisonnant la pige de contact, on utilise deux contacts en U sur lesquels la pige de contact est poussée par un ressort (24).
  • Cela étant, afin de prévenir toute erreur, le transformateur de la présente invention comporte avantageusement en outre des moyens (16) pour contrôler la configuration du transformateur en fonction de la plage choisie, aptes à délivrer une information dépendante de la configuration réalisée.
  • Dans une version simplifiée, ces moyens (16) sont constitués par une fenêtre découpée dans chaque plaque (13) constituant les moyens (6), fenêtre laissant apparaître une inscription portée sur le corps du transformateur indiquant le rapport choisi.
  • Dans un mode de réalisation plus élaboré, ces moyens pour contrôler la configuration délivreront une information de sortie matérialisable, notamment électriquement. Ceci sera décrit plus en détails, notamment en regard de la figure 2.
  • A cet égard, la figure 2 montre un mode de réalisation d'un transformateur monophasé selon la présente invention, qui reprend les caractères spécifiques qui viennent d'être décrits et montre notamment lesdits moyens (6) pour adapter la configuration du transformateur en fonction de la plage d'utilisation choisie.
  • Cependant, dans cette variante, le transformateur (1) comporte en outre des moyens (17) pour adapter la configuration du transformateur (1) en fonction de l'utilisation de la mesure à savoir notamment en fonction de la puissance nécessaire au module de mesure, de comptage, de contrôle ou de surveillance afin de corriger la valeur "image" de la mesure réelle délivrée.
  • Ces moyens (17) sont portés par lesdits moyens (6) réalisant la commutation du ou des enroulements selon la plage choisie. Ainsi, en une seule opération, le câblage des enroulements sera réalisé selon le cas.
  • Cette adaptation du transformateur, qui comme précisé ci-dessus permet de réaliser une correction d'ampères tours pour placer la courbe d'erreur de rapport de transformation dans une fourchette autorisée, s'effectuera en commutant selon les cas au niveau d'une extrémité de l'enroulement secondaire (5) la sortie (S1) (9) de l'utilisation sur la sortie (S′1) ou (S˝1) de l'enroulement (5).
  • Selon un mode de réalisation avantageux, on réalisera un piquage au début de l'enroulement qui en position (S˝1) permettra de déplacer légèrement la courbe d'erreur pour une utilisation électromécanique de puissance consommée d'environ 15 VA.
  • Comme le montre la figure 2 qui illustre une version monophasée du transformateur, le circuit secondaire (3) présentant au moins un enroulement (5) avec prise intermédiaire ou encore deux enroulements distincts pour définir la caractéristique du transformateur en fonction de la puissance mesurée nécessaire consommée, les moyens (17) réalisent le câblage interne au niveau de l'entrée de l'enroulement, ce selon le même principe que décrit précédemment pour les moyens (13).
  • Ainsi, à la figure 2, on a représenté les quatre variantes possibles des plaques ou éléments (13) supports de câblage et plus précisément le repère (18) représente la plaque permettant de configurer le transformateur (1) sur un calibre de 100/5 pour une puissance de mesure 5 VA, en (19) la configuration 200/5 - 5 VA, en (20) la configuration 100/5 - 15 VA, et en (21) la configuration 200/5 - 15 VA.
  • Par extension, la présente invention s'applique également à un transformateur polyphasé et notamment triphasé. Dans ce cas, le circuit secondaire présente au moins sur chaque phase secondaire au moins un enroulement (5) avec prise intermédiaire ou encore deux enroulements distincts pour définir la caractéristique du transformateur en fonction de la puissance nécessaire consommée, et les moyens (17) pour adapter la configuration du transformateur en fonction de l'utilisation réalisent simultanément le câblage interne du ou desdits enroulements de chaque phase secondaire.
  • Dans ce cas, comme décrit précédemment, les moyens (6) pour adapter la configuration du transformateur en fonction de la plage d'utilisation choisie et les moyens (17) pour adapter la configuration du transformateur en fonction de l'utilisation de la mesure sont portés par une même plaque support de câblage (13) qui réalise les connexions simultanément.
  • Autrement dit, chacune des quatre plaques ou éléments (13) permettant d'assurer l'adaptation de la configuration du transformateur se présente sous la forme d'une plaque isolante sur laquelle sont disposés une première série de ponts électriques (15) en fonction des connexions à réaliser pour déterminer le calibre, et une seconde série de ponts électriques (25) en fonction des connexions à réaliser pour déterminer la puissance. En outre, ledit corps du transformateur porte des contacts élastiques ou autres raccordés aux enroulements secondaires aptes à coopérer avec les ponts électriques des première et deuxième séries.
  • Les figures 5 et 6 illustrent un tel transformateur triphasé pour mesure de courant, permettant l'adaptation de la configuration du transformateur en fonction de la plage d'utilisation et en fonction de la puissance d'utilisation.
  • Cela étant, afin de contrôler la configuration du transformateur en fonction de la plage choisie et la configuration du transformateur en fonction de la puissance d'utilisation, le transformateur comporte des moyens permettant ce contrôle (16, 22) qui se présentent comme précédemment sous la forme de fenêtres laissant apparaître les inscriptions gravées sur le corps de l'ensemble.
  • Cependant, dans le but d'obtenir un contrôle plus objectif, le transformateur comportera des moyens (23) aptes à délivrer une information de sortie dépendante de la configuration réalisée.
  • En particulier, ces moyens (23) se présentent sous la forme d'un circuit auxiliaire associé physiquement et structurellement auxdits moyens (6) et/ou (17) pour adapter la configuration du transformateur.
  • Un tel circuit auxiliaire donnera par exemple une information électrique de sortie différente selon les cas de configuration, information qui pourra être exploitée par exemple par le module d'utilisation et pourra notamment détecter une anomalie.
  • En particulier, lorsqu'il s'agit de comptage d'énergie, si le comptage est prévu pour une intensité de 200 ampères et si, malencontreusement, le transformateur a été configuré sur 100 ampères, les deux informations ne coïncidant pas, on pourra déclencher une alarme d'anomalie.
  • Pour réaliser structurellement ce circuit auxiliaire, différents détrompeurs peuvent être utilisés à la portée de l'Homme de l'Art. Par exemple, comme illustré à la figure 2, à partir de quatre contacts, les connexions relatives de ceux-ci permettent d'avoir au moins quatre positions. Néanmoins, d'autres branchements pourraient être utilisés et on pourrait également employer des résistances ohmiques de valeurs différentes selon les cas.
  • Enfin, le transformateur pourra être équipé accessoirement de tout autre dispositif de sécurité tel que plombage, blindage ou autre.

Claims (8)

  1. Transformateur électrique de mesure de courant (1), monophasé ou polyphasé, apte à adapter une valeur électrique réelle (i1) en une valeur compatible (i2) avec un module (7) de mesure, de comptage, de contrôle ou de surveillance, notamment ledit transformateur (1) présentant un côté primaire (2) et un côté secondaire (3), définissant un rapport de transformation (i1/i2) et par suite sa plage d'utilisation, ainsi que des moyens (6) pour adapter la configuration secondaire du transformateur en fonction de la plage d'utilisation choisie,
    ledit côté secondaire (3) présentant au moins un enroulement (5) commutable comportant une pluralité de bornes de connexion secondaires S₂, S₃ (11, 12) définissant une pluralité de rapports de transformation unique respectif, une première borne de sortie connectée à l'enroulement secondaire S₁, une seconde borne de sortie libre S₀,
    caractérisé par le fait que les moyens (6) pour adapter la configuration secondaire du transformateur sont constitués par un ensemble de dispositifs (13) de sélection de rapport de courant unique, chaque dispositif (13) permettant la sélection d'un de ladite pluralité de rapport de transformation unique et étant prévu pour être connecté de façon détachable sur le côté secondaire (3) afin d'autoriser sélectivement une connexion entre ladite seconde borne de sortie libre S₀ (10) et la borne correspondante S₂ ou S₃ (11 ou 12) de ladite pluralité des bornes de connexion secondaires correspondant au rapport de transformation unique choisi.
  2. Transformateur, selon la revendication 1, caractérisé par le fait que ledit dispositif (13) de sélection se présente sous la forme d'une plaque ou élément (13) support de câblage, raccordable, enfichable ou encliquetable sur le corps du transformateur (1), dont le câblage est fonction du rapport de transformation unique choisi.
  3. Transformateur, selon la revendication 2, caractérisé par le fait que ladite plaque ou élément (13) se présente sous la forme d'une plaque isolante sur laquelle sont disposés des ponts électriques, en fonction des connexions à réaliser, et que ledit corps du transformateur porte des contacts fixes élastiques raccordés aux enroulements secondaires.
  4. Transformateur, selon la revendication 1, caractérisé par le fait que chaque dispositif (13) de sélection comporte un circuit auxiliaire (23) apte à délivrer une information de sortie dépendante du rapport de transformation unique choisi afin de contrôler la configuration du transformateur choisie.
  5. Transformateur, selon la revendication 1, caractérisé par le fait qu'il comporte des moyens (17) pour adapter la configuration du transformateur en fonction de l'utilisation de la mesure, à savoir en fonction de la puissance nécessaire au module (7) de mesure, de comptage, de contrôle ou de surveillance, afin de corriger la valeur "image" de la mesure réelle délivrée.
  6. Transformateur, selon la revendication 5, caractérisé par le fait que lesdits moyens (17) pour adapter la configuration du transformateur en fonction de l'utilisation de la mesure se présentent sous la forme d'une seconde pluralité de bornes de connexion secondaires S'₁ S''₁ définissant une correction d'ampères-tours.
  7. Transformateur, selon la revendication 6, caractérisé par le fait que chaque dispositif (13) de sélection permet, en outre de la sélection d'un de ladite pluralité de rapport de transformation unique, la sélection de l'utilisation de la mesure, et est prévu pour autoriser sélectivement une connexion entre ladite première borne de sortie S₁ et la borne correspondante S'₁ ou S''₁ de ladite seconde pluralité de bornes de connexion secondaires.
  8. Transformateur, selon l'une quelconque des revendications précédentes, dans lequel le côté secondaire est constitué de plusieurs enroulements commutables et chaque dispositif (13) de sélection réalisant simultanément le câblage interne desdits enroulements.
EP89401633A 1988-06-17 1989-06-13 Transformateur électrique de mesure Expired - Lifetime EP0347304B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89401633T ATE95943T1 (de) 1988-06-17 1989-06-13 Elektrischer messtransformator.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8808555A FR2633093B1 (fr) 1988-06-17 1988-06-17 Transformateur electrique de mesure
FR8808555 1988-06-17

Publications (2)

Publication Number Publication Date
EP0347304A1 EP0347304A1 (fr) 1989-12-20
EP0347304B1 true EP0347304B1 (fr) 1993-10-13

Family

ID=9367718

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89401633A Expired - Lifetime EP0347304B1 (fr) 1988-06-17 1989-06-13 Transformateur électrique de mesure

Country Status (11)

Country Link
US (1) US5150039A (fr)
EP (1) EP0347304B1 (fr)
AT (1) ATE95943T1 (fr)
CA (1) CA1308451C (fr)
DE (1) DE68909847T2 (fr)
DK (1) DK170124B1 (fr)
ES (1) ES2046504T3 (fr)
FR (1) FR2633093B1 (fr)
MA (1) MA21576A1 (fr)
NO (1) NO177513C (fr)
TN (1) TNSN89064A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2664738B1 (fr) * 1990-07-13 1993-11-12 Robert Conroi Transformateur de mesure de courant debrochable a plusieurs rapports de reduction.
US5982257A (en) * 1996-10-31 1999-11-09 Siemens Electromechanical Components, Inc. Integral armature retention spring for electromagnetic relays
US5834932A (en) * 1997-03-17 1998-11-10 May; Gregory R. Watthour meter system
US6040689A (en) * 1997-06-17 2000-03-21 Ssac, Inc. Current sensing method and apparatus
US6198268B1 (en) * 1999-06-30 2001-03-06 General Electric Company Dual-rated current transformer circuit having at least two input circuits
US6865073B2 (en) * 2003-03-06 2005-03-08 General Electric Company Panelboard metering arrangement and method of assembly thereof
FR2894034B1 (fr) * 2005-11-28 2008-01-18 Renault Sas Mesure deportee du courant traversant une charge
DE102011102978B4 (de) 2011-05-23 2018-05-17 Phoenix Contact Gmbh & Co. Kg Strommessumformer
CN103472429A (zh) * 2013-08-28 2013-12-25 国家电网公司 一种多功能多变比比对装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US249574A (en) * 1881-11-15 Switch-board for electric circuits
US1641757A (en) * 1924-05-26 1927-09-06 Gen Electric Combined voltmeter and phase-rotation indicator
US1800474A (en) * 1929-10-30 1931-04-14 Western Electromechanical Co I Meter for alternating current
US2384350A (en) * 1942-02-19 1945-09-04 John V Skulley Meter and scale therefor
US2594069A (en) * 1948-02-28 1952-04-22 Mallory & Co Inc P R Battery voltage selector jumper board and terminal board for industrial truck chargers
US2608626A (en) * 1949-05-18 1952-08-26 Donald P Morgan Circuit closing panel
US2891438A (en) * 1950-03-23 1959-06-23 S L F Engineering Company Photoelectric photometer having compensating means for line voltage fluctuations
US3002169A (en) * 1957-03-06 1961-09-26 Gen Dynamics Corp Electrical interconnection device
US3049645A (en) * 1959-06-29 1962-08-14 Skirpan Stephen James Preset lighting control system
US3514694A (en) * 1968-01-09 1970-05-26 Robert W Beachley Means for ground fault detection,metering and control of alternating current electrical systems
US3584299A (en) * 1969-07-11 1971-06-08 Sun Oil Co Hook-on power factor, volt and ampere meter
US3564392A (en) * 1969-09-19 1971-02-16 Gen Electric Magnetic transducer with means for compensating for temperature changes
US3617967A (en) * 1970-04-14 1971-11-02 Electromagnetic Ind Inc Current transformer having primary side switchable to different measuring ranges
US3957333A (en) * 1974-11-01 1976-05-18 Dana Corporation Universal control system interface

Also Published As

Publication number Publication date
DK299589A (da) 1989-12-18
CA1308451C (fr) 1992-10-06
US5150039A (en) 1992-09-22
ES2046504T3 (es) 1994-02-01
NO177513B (no) 1995-06-19
DE68909847D1 (de) 1993-11-18
TNSN89064A1 (fr) 1991-02-04
NO177513C (no) 1995-09-27
MA21576A1 (fr) 1989-12-31
DE68909847T2 (de) 1994-05-05
NO892525D0 (no) 1989-06-16
FR2633093A1 (fr) 1989-12-22
NO892525L (no) 1989-12-18
DK299589D0 (da) 1989-06-16
DK170124B1 (da) 1995-05-29
ATE95943T1 (de) 1993-10-15
FR2633093B1 (fr) 1992-02-28
EP0347304A1 (fr) 1989-12-20

Similar Documents

Publication Publication Date Title
EP0493272A1 (fr) Disjoncteur comportant une carte d'interface avec un déclencheur
EP0843332B1 (fr) Disjoncteur avec un bloc disjoncteur et des modules de traitement, de calibrage et de communication
EP0347304B1 (fr) Transformateur électrique de mesure
EP0892273B1 (fr) Circuit d'alimentation pour un compteur d'électricité
EP3267462B1 (fr) Module d'interconnexion d'un disjoncteur et d'un contacteur pour un ensemble électrique
FR3053829A1 (fr) Module d'interconnexion d'un disjoncteur et d'un contacteur pour un ensemble electrique comportant un capteur de tension
FR2746925A1 (fr) Dispositif de capteur pour une mesure d'intensite et de tension
EP3361268B1 (fr) Circuit de surveillance d'un réseau d'alimentation électrique
EP0570304B1 (fr) Déclencheur électronique comportant un dispositif de correction
EP0787994B1 (fr) Compteur de consommation électrique
EP0161151B1 (fr) Dispositif de mesure de courant dans un tableau ou coffret de distribution electrique
EP0320409A1 (fr) Déclencheur statique à source auxiliaire
FR2691301A1 (fr) Générateur de signal pour la télé-détection des défauts de fonctionnement des parafoudres montés sur les lignes électriques de distribution.
FR3116392A1 (fr) Appareillage de protection à coupure électronique
EP0909000B1 (fr) Dispositif de protection d'une batterie de condensateurs
EP0559580A1 (fr) Bloc de connexion d'un relais moyenne tension à des capteurs de courant
FR2477761A1 (fr) Commutateur d'echelons pour transformateurs a echelons avec une resistance dependant de la tension disposee dans le commutateur en charge
EP0492018A1 (fr) Transformateur électrique de mesure
FR2655476A2 (fr) Transformateur electrique de mesure.
EP1411577B1 (fr) Dispositif pour diagnostiquer l'état de corrosion d'une batterie notamment de véhicule automobile
WO2002011242A2 (fr) Dispositif permettant a un appareil maitre de mettre automatiquement en service au moins un appareil esclave des la mise en service de l'appareil maitre
FR2516303A1 (fr) Disjoncteur de branchement a basse tension equipe d'un commutateur de calibre telecommande
FR2810167A1 (fr) Montage a commutation pour controler une charge electrique
FR2692725A1 (fr) Dispositif sélecteur de circuit électrique.
FR2562732A1 (fr) Transformateur de courant pour la protection du neutre d'un appareil electrique tetrapolaire de protection

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19891220

17Q First examination report despatched

Effective date: 19920206

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19931013

Ref country code: NL

Effective date: 19931013

REF Corresponds to:

Ref document number: 95943

Country of ref document: AT

Date of ref document: 19931015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68909847

Country of ref document: DE

Date of ref document: 19931118

ITF It: translation for a ep patent filed

Owner name: INTERPATENT ST.TECN. BREV.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931223

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2046504

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3010424

EPTA Lu: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19980629

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990613

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990630

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990706

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990713

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000814

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000613

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010630

BERE Be: lapsed

Owner name: AVOCAT JEAN PAUL

Effective date: 20010630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20040628

Year of fee payment: 16

Ref country code: AT

Payment date: 20040628

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040719

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050613

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060103

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050614