EP0341646B1 - Process and apparatus for drying a liquid layer deposited onto a moving carrier material - Google Patents

Process and apparatus for drying a liquid layer deposited onto a moving carrier material Download PDF

Info

Publication number
EP0341646B1
EP0341646B1 EP89108281A EP89108281A EP0341646B1 EP 0341646 B1 EP0341646 B1 EP 0341646B1 EP 89108281 A EP89108281 A EP 89108281A EP 89108281 A EP89108281 A EP 89108281A EP 0341646 B1 EP0341646 B1 EP 0341646B1
Authority
EP
European Patent Office
Prior art keywords
channel
drying
carrier material
gas
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89108281A
Other languages
German (de)
French (fr)
Other versions
EP0341646A2 (en
EP0341646A3 (en
Inventor
Franz Dr. Prof. Durst
Raimund Dr. Dipl. Ing. Haas
Günter Dr. Dpl. Chem.. Hultzsch
Manfred Dipl. Ing. Dammann
Gerhard Dr. Dipl. Chem. Mack
Werner Dr. Dipl. Chem. Interthal
Joachim Dipl. Ing. Stroszynski
Peter Dr. Dipl. Chem. Lehmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE3816414A external-priority patent/DE3816414A1/en
Priority claimed from DE3900957A external-priority patent/DE3900957A1/en
Application filed by Hoechst AG filed Critical Hoechst AG
Priority to AT89108281T priority Critical patent/ATE75026T1/en
Publication of EP0341646A2 publication Critical patent/EP0341646A2/en
Publication of EP0341646A3 publication Critical patent/EP0341646A3/en
Application granted granted Critical
Publication of EP0341646B1 publication Critical patent/EP0341646B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/12Velocity of flow; Quantity of flow, e.g. by varying fan speed, by modifying cross flow area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/08Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation
    • B05C9/14Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation the auxiliary operation involving heating or cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/10Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/004Nozzle assemblies; Air knives; Air distributors; Blow boxes

Definitions

  • the invention relates to a method for drying a liquid layer which is applied to a carrier material moving through a drying zone and which contains vaporizable solvent components and non-vaporizable components, a gas flowing in the longitudinal direction of the carrier material parallel to the liquid layer and being accelerated in the direction of flow within the drying zone, and a device for drying a layer of liquid applied to a moving carrier material.
  • US-A-3,183,605 describes such a method for drying a layer applied to a carrier material moved through a drying zone, the carrier material being a wire to which, for example, a plastic or enamel layer is applied, the vaporizable solvent components and non-vaporizable ones Contains components.
  • the drying gas for the applied layer flows in the longitudinal direction of the wire transported through a drying channel parallel to the latter and is accelerated immediately after entering the drying channel in the flow direction in that the channel cover surface over a certain section which is significantly smaller than the total length of the Drying channel is inclined to the channel base.
  • the coating gives the surfaces of the carrier materials special properties which are only present in the form after the drying process, as are desired for later use.
  • An example of this is the coating of metal strips with light-sensitive layers, which are assembled into printing plates.
  • the coating of metal strips or plastic films with substances in the form of a solvent-containing wet film, in the following liquid film referred to, and its subsequent drying thus represent a process that requires special systems to ensure the desired product quality of the layers.
  • the process step of film drying is essential as the final process measure of the coating.
  • drying liquid films on carrier materials it is customary to allow a heated gas, in particular air, to flow over the surface of the carrier materials to remove the solvent components from the film layer.
  • the heated gas stream is brought into direct contact with the liquid film, which is applied in a uniform layer distribution on the carrier material, which passes through a drying device.
  • the drying systems are equipped with devices which are intended to achieve a favorable or even distribution of the air flow over the liquid film. The aim is to achieve uniform drying across the entire width of the coated web.
  • known drying systems have devices for minimizing disturbances in the air movements, which, in part due to turbulent flow movements, have a disadvantageous effect on the film surface and lead to mottling there.
  • Difficulties in removing the dryer air from the drying room often consist in the fact that in the case of longitudinal nozzles or longitudinal slots arranged transversely to the direction of belt travel, a decrease in the nozzle outlet velocity occurs in the middle of the field due to the pressure drop in the lateral outflow and thus also affects the heat and mass transfer transversely to the direction of belt travel becomes. The consequence of this is an overdrying of the edges, which leads to undesired structuring of the dried films in many coating processes.
  • pp. 290 to 294 therefore give suggestions for optimizing the design of the nozzle fields in slot nozzle dryers, which provide constant heat over the entire range of a dryer. and ensure mass transfer.
  • mass transfer measurements in impingement flow from slot nozzle fields with different nozzle areas are empirically correlated in a wide range of external factors. The relationship found is used to determine optimal nozzle geometries with regard to the fan output per m2 of goods area. It is shown that a constant heat and mass transfer over the web width is achieved in that the nozzle slots have a continuously increasing slot width from the web edge to the center.
  • slot nozzle fields are preferably used, in which the slots are arranged transversely to the running direction of the web.
  • the observed overdrying of the edges in the slot nozzle dryers with outflow in the slot direction can be attributed to the distribution of the exit velocity along the slots.
  • the outflow area should be as much as 3.5 times the nozzle exit area in order to obtain uniform drying over the width of the web.
  • the dryer air is led from a vestibule via suitable inlet openings and flow deflectors into a calm space, from where part of the dryer air passes through a device arranged in close proximity to the liquid film to avoid stagnation point-like flows in the initial area of the dryer apparatus porous filter element on the web to be dried.
  • the mode of operation of such drying is based on the fact that there is between the porous protective shield and the drying liquid film forms a calmed, but highly enriched, weak air flow, which is constantly renewed by exchange with the residual air flowing transversely over the porous medium and thus, due to the relatively short overall length, a predrying of the liquid film with reduced tendency to mottling is achieved .
  • This type of drying is characterized by predominant diffusion of the solvent vapor / air mixture through the porous protective shield, which means that if there is almost no convective removal within the space between the belt and the protective shield, complete drying of the liquid film is only possible with very large dryer lengths or with the addition of subordinate auxiliary dryers.
  • a particular disadvantage of drying devices used hitherto is that a sealing device which is compatible with the outside atmosphere must be created due to the solvent-laden air currents inside the drying room.
  • a part of the required fresh air flows inwards through the finite sealing gap in the case of negative pressure conditions or a part of the solvent-laden air flows outwards in the case of overpressure conditions, whereby the flow in the sealing gap on the undried liquid film irreversible structures can be created.
  • the object of the invention is to provide a method and an apparatus with which liquid layers applied to carrier materials can be dried in continuous operation in such a way that surface structures which interfere with the uniform distribution of the dried film layer and impair its desired properties, both for high and high also do not occur for low-viscosity layers of liquid.
  • This object is achieved by a method of the type described above in such a way that the gas flows in the same direction or in the opposite direction to the direction of travel of the sheet-like support material along and parallel to the liquid layer and is accelerated in the direction of flow within the entire drying zone that the entry velocity v 1 of the gas flow is increased to a final speed v2, which is up to 1000 times the value of the entry speed v1 and that the speed distribution of the gas flow in the individual cross sections of the drying zone is set to be constant across the direction of travel of the carrier material.
  • a sealing mat 36 is located in front of the channel inlet 27 of the drying channel 2.
  • the channel cross sections are constant over the length of the drying channel 2. Because of the different permeability of the filter mats 26, a different amount of gas / air flows through the individual filter mat 26, which is indicated by the size of the curved arrows P1 to P5, which are assigned to the individual filter mats 26.
  • the increase in the amount of gas / air supplied in the direction of the channel outlet results in an acceleration of the flow in the running direction of the carrier material band 33. This acceleration or this increase in speed of the flow towards the channel outlet is due to the increasing speed arrows v i , which are parallel to the carrier material band 33 are indicated.
  • the gas / air-permeable channel cover surface 7 constructed from filter mats 26 is not horizontal, i.e. runs parallel to the channel base 3, but, like in the first and second embodiment of the drying device according to the invention, is inclined to the channel base 3.
  • the channel cover surface 7 may also consist of filter mats of the same structure and consistency, but of different thicknesses, which are lined up, the thickness of the filter mats decreasing in the running direction of the carrier material band 33, i.e. in other words, the permeability of the filter mats increases in the direction of the channel outlet.
  • the filter or filter mats are commercially available so-called laminar flow filters, such as those used in supply air filter systems in clean rooms.
  • Such filter elements on the one hand filter dirt particles out of the gas / air flow and on the other hand ensure a very uniform laminar flow through the individual filter elements into the drying channel.
  • the channel cover surface 7 can be made of impermeable material and there is no need to blow in a drying gas through the side wall, so that the inflow channels in the vertical side wall of the drying device 1 can be omitted.
  • the carrier material strip 4 runs obliquely from top to bottom into a container 50 with the liquid to be applied, consisting of evaporable solvent components and non-evaporable components, and is turned around a deflection roller 51 vertically upward through the gap of squeeze rollers 52, 53 and between the suction boxes 37, 37 'Passed into the drying device.
  • the carrier material strip 4 is coated on both sides with liquid, the excess of which is squeezed off in the gap between the squeezing rollers 52, 53.
  • the carrier material strip 4 separates the two drying channels 2, 2 'from one another and emerges from the drying device between the two inflow boxes 39, 39'.
  • the drying gas is blown over the filter mats or metal mesh or the like of the inflow boxes 39, 39 'into the drying channels 2, 2' in the flow directions B, B 'vertically downward, in the opposite direction to the running direction A of the carrier material strip 4.
  • the circulating air line leads through a heat exchanger 57, in which the air flowing in the circulating air line is heated before it enters the inflow box 39 via a throttle valve 60.
  • a perforated plate 68 is arranged in the interior of the vacuum chamber and ensures a uniform outflow of the extracted gas or the extracted air.
  • the channel inlet 27 is closed at the bottom by a suction box 37.
  • the gas flow accelerated in the direction of flow B enters the interior of the suction box 37 through a filter mat 47, a metal mesh or the like, in which a diagonally arranged, perforated baffle plate 49 may also be present.
  • This baffle plate is not absolutely necessary and can also be omitted if there is no formation of vortices within the suction box 37.
  • the remaining components of the drying device which correspond to the components of the embodiments of the drying device according to FIGS. 9 and 11A, are given the same reference numbers as in FIGS. 9 and 11A.
  • a suction box 37 with a filter mat 47 In front of the channel inlet 27 of the drying channel 2 there is a suction box 37 with a filter mat 47.
  • the channel cross sections are constant over the length of the drying channel 2. Because of the different permeability of the filter mats 26, a different amount of gas / air flows through the individual filter mat 26, which is indicated by the size of the curved arrows P1 to P4, which are assigned to the individual filter mats 26. Air or gas flows from above into the drying duct 2 via the inflow box 39 with the filter mat 48.
  • the ninth embodiment shown in FIG. 12B is the same as the eighth embodiment except for the top surface.
  • the top surface 7 of the ninth embodiment has constant permeability over the channel length. Since the gas volume flow supplied via the cover surface increases in the direction of the channel inlet even with a constant permeability of the cover surface, the flow is accelerated counter to the running direction of the carrier material strip 33.
  • the inflow and suction boxes are sealed against the carrier tape 33 by means of labyrinth seals 40 and 38, respectively, and a vacuum chamber 41 provides negative pressure on the back of the carrier tape 33 in the region of the channel inlet in order to deflect the tape at the front of the tape 33 due to the flow prevent.
  • the channel cover surface 7 can also consist of filter mats of the same structure and consistency, but of different thicknesses, which are lined up, the thickness of the filter mats decreasing counter to the running direction of the carrier material band 33, i.e. in other words, the permeability of the filter mats increases in the direction of the channel inlet.
  • FIG. 13 shows a tenth embodiment of the drying device according to the invention in section, in which the channel cover surface 7 converges towards the vertical channel base surface 3 in the direction of the channel outlet.
  • the channel cover surface 7 is permeable to gas / air and consists of a continuous filter, but can also be made of filter mats strung together, as shown in FIG. 12A.
  • the carrier material strip 4 is guided around a deflection roller 35 which is opposite a slot die 34 in the 7 o'clock position with a small gap. Through the slot die 34, a liquid layer of vaporizable solvent components and non-vaporizable components is applied to the front of the carrier material strip 4, which runs vertically upwards through the duct inlet into the drying duct 2.
  • the carrier material strip 4 runs over support rollers 6, which are arranged laterally at a short distance from the channel base 3.
  • the channel inlet is closed by an inlet box 39 with a filter mat 48, and all or part of the drying gas flows through the inlet box 39 and the filter mat 48 in the direction of flow B upwards, in the same direction as the direction of travel A of the carrier material band 4, through the drying channel 2.
  • the drying duct 2 is sealed at the duct inlet and at the duct outlet by means of lamella seals 40 and 38 or labyrinth seals as tightly as possible, but without streaking, against the moving carrier material strip 4.
  • the lamella seals 38, 40 are located on the vertical outer walls of the suction box 37 and the inflow box 39, which face the carrier material band 4.
  • the carrier material strip 4 emerging from the channel outlet is guided over a deflection roller 36 and directed from the vertical direction in an obliquely downward direction for further processing.
  • the flow rate at the channel inlet is set so high that the influence of gravity is overcome by the flow rate of the drying gas. This happens in such a way that on Channel inlet of the drying gas by appropriate measures on the inflow box 39, such as attaching the filter mat 48 and a perforated plate 70 inside the inflow box, the drying gas flows in already laminar. This allows the solvent vapors to be discharged upwards at the required speed. This avoids the risk of blown structures occurring on the coated front side of the carrier material strip 4.
  • This embodiment is used, for example, when applying a second layer S2 to a dried first layer S1 on the carrier material strip 4.
  • the top of the upper run 65 is already provided with a dried first layer of liquid and is guided around by a revolving roller 63.
  • a slot die 64 is arranged in the 11 o'clock position and at a short distance from the deflection roller 63.
  • the second liquid layer becomes through the slot nozzle 64 applied to the dried first liquid layer on the carrier material tape 4.
  • the second liquid layer runs through the drying channel 2, hanging on the underside of the horizontally guided lower run 66.
  • the carrier material strip 4 is guided below and along a horizontal channel ceiling 72 of the drying channel 2.
  • a channel bottom 71 of the drying channel 2 converges in the flow direction B of the drying gas.
  • the channel inlet of the drying channel 2 for the carrier material band 4 has a lower height than the channel outlet which the vertically oriented inflow box 39, which has a filter mat 48, closes.
  • the channel inlet is closed by the suction box 37 and its filter mat 47. Both the inflow and the suction box carry labyrinth seals on their horizontal upper sides, which seal the channel outlet and the channel inlet against the lower run 66 of the carrier material strip 4.
  • This embodiment of the drying duct is comparable in its arrangement and mode of operation to the right half of the embodiment according to FIG. 10, if it is taken into account that the drying duct 2 is arranged horizontally and not vertically, as in the embodiment according to FIG. 10, and that it is the application and drying of a second layer on a first layer of the carrier material band.
  • the solution of a light-sensitive polymer material in an organic solvent is uniformly applied to an aluminum web 4 of 0.1 mm thickness pretreated for offset printing purposes at a running speed of 8 m / min by an appropriate coating method.
  • the solution has a dynamic viscosity of 1.4 mPas and the thickness of the liquid film is 27 ⁇ m.
  • the aluminum web runs into a drying device 1 according to one of the embodiments according to FIGS. 1 to 4 or 6.
  • the duct outlet height h2 in the duct outlet is 2 cm
  • the duct inlet height h1 in the duct inlet is 30 cm.
  • the duct cover surface 7 is inclined at an angle of 13.1 ° to the web plane.
  • the circulating air blower 12 is not switched on and the throttle valve 13 is closed.
  • the performance of the suction fan 9 is adjusted so that at the entrance of the drying duct 2 there is an air speed of v 1 equal to 0.3 m / sec.
  • a layer with a cloudy or mottled structure is obtained. Thin and thick spots with a surface area of 5 to 20 mm in diameter are distributed irregularly over the entire surface. The densitometric measurement does not result in a uniform optical density, but its size fluctuates between 1.43 and 1.50 depending on the measurement location.
  • the film is irradiated with UV light over a large area in a copier frame and then developed by briefly heating to 100 ° C.
  • the resulting clouding of the film layer is uniform over the entire surface.
  • a solution of a light-sensitive polymer material is uniformly applied to an aluminum web pretreated for offset printing purposes as a carrier material strip 4, with a thickness of 0.3 mm, at a belt speed of 15 m / min.
  • the liquid film is 33 ⁇ m thick.
  • the solution has a dynamic viscosity of 2.9 mPas.
  • a drying device 1 as shown in FIG. 2 is used.
  • the channel cover surface 7 is designed as a porous filter and inclined at an angle of 4.3 ° against the aluminum web or the carrier material strip 4.
  • the circulating air blower 12 is in operation and the throttle valve 13 is open.
  • the position of the throttle valve 14 is selected so that an air volume flow of 1000 m3 / h fresh air is sucked into the drying chamber 5.
  • An equal amount of air is sucked out of the drying duct 2 by the suction fan 12, so that there is no accumulation of evaporated solvent in the drying air. Due to the exact setting of the air volume flow on the suction fan 12 achieved that the inflow velocity v1 is almost zero.
  • the channel length of drying channel 2 is approx. 5.7 m.
  • channel lengths of the drying channels of 10 to 12 m are used, whereby the channel length and the volume flow of the drying gas include depend on the throughput speed of the carrier material strip through the drying device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Drying Of Solid Materials (AREA)
  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Trocknen einer auf einem durch eine Trocknungszone bewegten Trägermaterial aufgebrachten Flüssigkeitsschicht, die verdampfbare Lösungsmittelkomponenten und nichtverdampfbare Komponenten enthält, wobei ein Gas in Längsrichtung des Trägermaterial parallel zu der Flüssigkeitsschicht strömt und in Strömungsrichtung innerhalb der Trocknungszone beschleunigt wird, sowie eine Vorrichtung zum Trocknen einer auf einem bewegten Trägermaterial aufgebrachten Flüssigkeits schicht.The invention relates to a method for drying a liquid layer which is applied to a carrier material moving through a drying zone and which contains vaporizable solvent components and non-vaporizable components, a gas flowing in the longitudinal direction of the carrier material parallel to the liquid layer and being accelerated in the direction of flow within the drying zone, and a device for drying a layer of liquid applied to a moving carrier material.

Die US-A - 3,183,605 beschreibt ein derartiges Verfahren zum Trocknen einer auf einem durch eine Trocknungszone bewegten Trägermaterial aufgebrachten Schicht, wobei es sich bei dem Trägermaterial um einen Draht handelt, auf den beispielsweise eine Kunststoff- oder Emailleschicht aufgebracht wird, die verdampfbare Lösungsmittelkomponenten und nichtverdampfbare Komponenten enthält. Das Trocknungsgas für die aufgebrachte Schicht strömt in Längsrichtung des durch einen Trocknungskanal transportierten Drahtes parallel zu diesem und wird unmittelbar nach dem Eintritt in den Trocknungskanal in Strömungsrichtung dadurch beschleunigt, daß die Kanaldeckfläche über einen bestimmten Abschnitt, der wesentlich kleiner als die Gesamtlänge des Trocknungskanals ist, geneigt zu der Kanalgrundfläche verläuft.US-A-3,183,605 describes such a method for drying a layer applied to a carrier material moved through a drying zone, the carrier material being a wire to which, for example, a plastic or enamel layer is applied, the vaporizable solvent components and non-vaporizable ones Contains components. The drying gas for the applied layer flows in the longitudinal direction of the wire transported through a drying channel parallel to the latter and is accelerated immediately after entering the drying channel in the flow direction in that the channel cover surface over a certain section which is significantly smaller than the total length of the Drying channel is inclined to the channel base.

Bei der Trocknung großflächiger, bahnförmiger Güter, auf denen Flüssigkeitsschichten aufgetragen sind, werden unterschiedliche Trocknungsverfahren und Trocknungsvorrichtungen angewandt. Typische Trocknungsgüter sind beispielsweise Metall- oder Kunststoffbänder, auf denen Flüssigkeitsschichten aufgebracht sind, die in der Regel aus verdampfbaren Lösungsmtitelkomponenten, die während des Trocknungsprozesses aus dem Flüssigkeitsfilm entfernt werden, und aus nicht-verdampfbaren Komponenten bestehen, die nach der Trocknung auf dem Trägermaterial zurückbleiben.Different drying processes and drying devices are used for drying large, web-shaped goods on which layers of liquid are applied. Typical drying goods are, for example, metal or plastic belts, on which liquid layers are applied, which usually consist of evaporable solvent components that are removed from the liquid film during the drying process, and non-evaporable components that remain on the carrier material after drying.

Die Oberflächen der Trägermaterialien erhalten durch die Beschichtung spezielle Eigenschaften, die erst nach dem Trocknungsprozeß in der Form vorliegen, wie sie für die spätere Anwendung erwünscht sind. Als Beispiel hierzu kann die Beschichtung von Metallbändern mit lichtempfindlichen Schichten genannt werden, die zu Druckplatten konfektioniert werden. Die Beschichtung von Metallbändern oder Kunststoffolien mit Substanzen in Form eines lösungsmittelhaltigen Naßfilms, im folgenden Flüssigkeitsfilm bezeichnet, und dessen anschließende Trocknung stellen somit einen Vorgang dar, der besonderer Anlagen bedarf, um die gewünschte Produktqualität der Schichten sicherzustellen. Wesentlich ist hierbei der Verfahrensschritt der Filmtrocknung als abschließende Verfahrensmaßnahme der Beschichtung.The coating gives the surfaces of the carrier materials special properties which are only present in the form after the drying process, as are desired for later use. An example of this is the coating of metal strips with light-sensitive layers, which are assembled into printing plates. The coating of metal strips or plastic films with substances in the form of a solvent-containing wet film, in the following liquid film referred to, and its subsequent drying thus represent a process that requires special systems to ensure the desired product quality of the layers. The process step of film drying is essential as the final process measure of the coating.

Bei der Trocknung von Flüssigkeitsfilmen auf Trägermaterialien ist es üblich, ein erwärmtes Gas, insbesondere Luft, zum Entfernen der Lösungsmittelkomponenten aus der Filmschicht über die Oberfläche der Trägermaterialien strömen zu lassen. Dabei wird der aufgeheizte Gasstrom in direkten Kontakt mit dem Flüssigkeitsfilm gebracht, der in gleichmäßiger Schichtverteilung auf dem Trägermaterial aufgebracht ist, das eine Trocknungsvorrichtung durchläuft. Um eine schlieren- und melierfreie, getrocknete Filmoberfläche, d.h. eine gleichmäßige Verteilung der zurückbleibenden Komponenten sicherzustellen, werden die Trocknungsanlagen mit Einrichtungen ausgerüstet, die eine günstige bzw. gleichmäßige Verteilung der Luftströmung über dem Flüssigkeitsfilm bewirken sollen. Damit wird eine gleichmäßige Trocknung über die gesamte Breite der beschichteten Bahn angestrebt. Desweiteren weisen bekannte Trocknungsanlagen Einrichtungen zur Minimierung von Störungen der Luftbewegungen auf, die sich, teilweise aufgrund turbulenter Strömungsbewegungen, nachteilig auf die Filmoberfläche auswirken und dort zu Meliererscheinungen führen.When drying liquid films on carrier materials, it is customary to allow a heated gas, in particular air, to flow over the surface of the carrier materials to remove the solvent components from the film layer. The heated gas stream is brought into direct contact with the liquid film, which is applied in a uniform layer distribution on the carrier material, which passes through a drying device. For a streak-free and mottled, dried film surface, i.e. To ensure an even distribution of the remaining components, the drying systems are equipped with devices which are intended to achieve a favorable or even distribution of the air flow over the liquid film. The aim is to achieve uniform drying across the entire width of the coated web. Furthermore, known drying systems have devices for minimizing disturbances in the air movements, which, in part due to turbulent flow movements, have a disadvantageous effect on the film surface and lead to mottling there.

Eine übliche Bauweise einer solchen Trocknungsvorrichtung besteht gemäß dem US-Patent 3,012,335 darin, aus einem mit Trocknergas versorgten Gasraum, der über eine bestimmte Länge über der Beschichtungsbahn angeordnet ist, mittels einer Vielzahl von Schlitzen, Düsen, Löchern oder auch porösen Festkörpern den unmittelbaren Gasraum über dem zu trocknenden Flüssigkeitsfilm möglichst gleichmäßig mit Trocknergas zu versorgen. Das kontinuerlich beschichtete Band oder beschichtete Platten auf einem umlaufenden Transportband werden hierbei kontinuierlich und unter Abgabe von Lösungsmitteldampf an die Trocknerluft durch die Trocknungsvorrichtung hindurchgeführt. Hierbei kann die zugeführte Trocknerluft im offenen Kreislauf ständig erneuert bzw. die mit Lösungsmittel angereicherte Luft komplett abgeführt werden. Es kann auch ein Umluftverfahren mit teilweise erneuerter bzw. abgeführter Trocknerluft angewandt werden.A common design of such a drying device According to US Pat. No. 3,012,335, the immediate gas space above the liquid film to be dried is as uniform as possible from a gas space supplied with drying gas, which is arranged over a certain length above the coating web, by means of a plurality of slits, nozzles, holes or even porous solids to be supplied with dryer gas. The continuously coated belt or coated plates on a rotating conveyor belt are continuously passed through the drying device with the release of solvent vapor to the dryer air. The dryer air supplied can be constantly renewed in the open circuit or the air enriched with solvent can be completely removed. A circulating air process with partially renewed or discharged dryer air can also be used.

Schwierigkeiten bei der Abführung der Trocknerluft aus dem Trocknungsraum bestehen häufig darin, daß bei quer zur Bandlaufrichtung angeordneten Längsdüsen, oder Längsschlitzen, aufgrund des Druckgefälles bei seitlicher Abströmung, eine Verminderung der Düsenaustrittsgeschwindigkeit in Feldmitte auftritt und damit auch der Wärme- und Stoffübergang quer zur Bandlaufrichtung beeinflußt wird. Die Folge hiervon ist eine Randübertrocknung, die bei vielen Beschichtungsvorgängen zu unerwünschten Strukturierungen der getrockneten Filme führt.Difficulties in removing the dryer air from the drying room often consist in the fact that in the case of longitudinal nozzles or longitudinal slots arranged transversely to the direction of belt travel, a decrease in the nozzle outlet velocity occurs in the middle of the field due to the pressure drop in the lateral outflow and thus also affects the heat and mass transfer transversely to the direction of belt travel becomes. The consequence of this is an overdrying of the edges, which leads to undesired structuring of the dried films in many coating processes.

In der Fachzeitschrift "Chemie-Ingenieur-Technik", 42. Jahrgang, Heft 14 (1970), S. 927 bis 929, 43. Jahrgang, Heft 8 (1971), S. 516 bis 519 und 45. Jahrgang, Heft 5 (1973), S. 290 bis 294 werden deshalb Optimierungsvorschläge zur konstruktiven Gestaltung von Düsenfeldern in Schlitzdüsentrocknern gegeben, die über die gesamte Bandbreite eines Trockners einen konstanten Wärme- und Stoffübergang gewährleisten sollen. Zur Optimierung von Schlitzdüsentrocknern werden Stoffübergangsmessungen bei Prallströmung aus Schlitzdüsenfeldern mit unterschiedlichen Düsenflächen in einem weiten Bereich der äußeren Einflußgrößen empirisch korreliert. Die gefundene Beziehung wird dazu benutzt, optimale Düsengeometrien bezüglich der Ventilatorleistung pro m² Warenfläche zu ermitteln. Dabei zeigt sich, daß ein konstanter Wärme- und Stoffübergang über die Bahnbreite dadurch erzielt wird, daß die Düsenschlitze kontinuierlich vom Bahnrand zur Mitte hin zunehmende Schlitzweite aufweisen.In the trade journal "Chemie-Ingenieur-Technik", 42nd year, issue 14 (1970), pp. 927 to 929, 43rd year, Issue 8 (1971), pp. 516 to 519 and 45th volume, Issue 5 (1973), pp. 290 to 294 therefore give suggestions for optimizing the design of the nozzle fields in slot nozzle dryers, which provide constant heat over the entire range of a dryer. and ensure mass transfer. To optimize slot nozzle dryers, mass transfer measurements in impingement flow from slot nozzle fields with different nozzle areas are empirically correlated in a wide range of external factors. The relationship found is used to determine optimal nozzle geometries with regard to the fan output per m² of goods area. It is shown that a constant heat and mass transfer over the web width is achieved in that the nozzle slots have a continuously increasing slot width from the web edge to the center.

Beim Trocknen großflächiger Warenbahnen muß oftmals eine hohe Gleichmäßigkeit des Wärme- und Stoffübergangs über die Bahnbreite gefordert werden, um örtliche Übertrocknung und damit verbundene Qualitätsminderung zu vermeiden. In diesen Fällen werden vorzugsweise Schlitzdüsenfelder eingesetzt, in denen die Schlitze quer zur Laufrichtung der Bahn angeordnet sind. Die dabei beobachtete Randübertrocknung in den Schlitzdüsentrocknern mit Abströmung in Schlitzrichtung ist auf die Verteilung der Austrittsgeschwindigkeit längs der Schlitze zurückzuführen. Um diese Randübertrocknung zu vermeiden, folgt für Düsentrockner hieraus unter anderem, daß die Abströmfläche möglichst das 3,5-fache der Düsenaustrittsfläche betragen soll, um eine gleichmäßige Trocknung über die Breite der Warenbahn zu erhalten.When drying large-area webs, high uniformity of heat and mass transfer across the web width must often be required in order to avoid local over-drying and the associated reduction in quality. In these cases, slot nozzle fields are preferably used, in which the slots are arranged transversely to the running direction of the web. The observed overdrying of the edges in the slot nozzle dryers with outflow in the slot direction can be attributed to the distribution of the exit velocity along the slots. In order to avoid this overdrying of the edges, it follows, among other things, for nozzle dryers that the outflow area should be as much as 3.5 times the nozzle exit area in order to obtain uniform drying over the width of the web.

Es ist heute Stand der Technik, in Schwebetrocknern für Folien- oder Metallbänder mit Hilfe eines Tragluftdüsensystems berührungslos eine Oberflächenbehandlung vorzunehmen (Zeitschrift "gas wärme international", Band 24 (1975), Nr. 12, S. 527 bis 531). Es wird dabei die mit Lösungsmittel angereicherte Trocknerluft direkt in den Düsenfeldern wieder abgesaugt, um die unerwünschte Transversalströmung zu beseitigen. Dies ergibt sogenannte Düsentrockner bzw. Prallstrahltrockner, bei denen vor allem die staupunktähnliche Strömung einzelner Düsen nachteilig ist, die sowohl bei laminarer als auch bei turbulenter Strömungsform zu strömungsphysikalischen Instabilitäten neigt, die insbesondere beiniederviskosen Flüssigkeitsfilmen zwangsläufig zu irreversiblen Trocknungsstrukturen führen.It is state of the art today to carry out a surface treatment in suspension dryers for foil or metal strips with the aid of an air jet system without contact (magazine "gas warm international", Volume 24 (1975), No. 12, pp. 527 to 531). The dryer air, which is enriched with solvent, is sucked off directly in the nozzle fields in order to eliminate the undesired transverse flow. This results in so-called nozzle dryers or impingement jet dryers, in which the stagnation point-like flow of individual nozzles is disadvantageous, which tends to flow-physical instabilities in both laminar and turbulent flow forms, which inevitably lead to irreversible drying structures, particularly in the case of low-viscosity liquid films.

Zur Vermeidung von staupunktartigen Strömungen im Anfangsbereich der Trocknerapparatur wird nach der PCT-Anmeldung WO82/03450 die Trocknerluft aus einem Vorraum über geeignete Einlaßöffnungen und Strömungsabweiser in einen beruhigten Zwischenraum geführt, von dort aus gelangt ein Teil der Trocknerluft über ein in unmittelbarer Nähe zum Flüssigkeitsfilm angeordnetes poröses Filterelement auf die zu trocknende Bahn. Die Wirkungsweise einer solchen Trocknung beruht darauf, daß sich zwischen dem porösen Schutzschild und dem zu trocknenden Flüssigkeitsfilm eine beruhigte, an Lösungsmittel jedoch hoch angereicherte, schwache Luftströmung ausbildet, die durch Austausch mit der über dem porösen Medium transversal abströmenden Restluft ständig erneuert wird und somit, aufgrund der relativ kurzen Baulänge, eine Vortrocknung des Flüssigkeitsfilms mit verminderter Neigung zu Meliererscheinungen erzielt wird.According to PCT application WO82 / 03450, the dryer air is led from a vestibule via suitable inlet openings and flow deflectors into a calm space, from where part of the dryer air passes through a device arranged in close proximity to the liquid film to avoid stagnation point-like flows in the initial area of the dryer apparatus porous filter element on the web to be dried. The mode of operation of such drying is based on the fact that there is between the porous protective shield and the drying liquid film forms a calmed, but highly enriched, weak air flow, which is constantly renewed by exchange with the residual air flowing transversely over the porous medium and thus, due to the relatively short overall length, a predrying of the liquid film with reduced tendency to mottling is achieved .

Diese Art Trocknung ist gekennzeichnet durch überwiegende Diffusion des Lösungsmitteldampf/Luftgemisches durch den porösen Schutzschild, womit bei nahezu vollständig fehlendem konvektivem Abtransport innerhalb des Raumes zwischen Band und Schutzschild eine vollständige Austrocknung des Flüssigkeitsfilms nur bei sehr großen Trocknerlängen oder unter Hinzuschalten nachgeordneter Hilfstrockner möglich wird.This type of drying is characterized by predominant diffusion of the solvent vapor / air mixture through the porous protective shield, which means that if there is almost no convective removal within the space between the belt and the protective shield, complete drying of the liquid film is only possible with very large dryer lengths or with the addition of subordinate auxiliary dryers.

Ein besonderer Nachteil bisher eingesetzter Trocknungsvorrichtungen besteht darin, daß aufgrund der lösungsmittelbeladenen Luftströmungen innerhalb des Trocknerraumes eine mit der Außenatmosphäre verträgliche Abdichtungseinrichtung geschaffen werden muß. Je nach Größe des Absolutdruckes innerhalb des Trocknerraumes direkt über dem Flüssigkeitsfilm strömt bei Unterdruckverhältnissen entweder ein Teil der benötigten Frischluft über den endlichen Dichtungsspalt nach innen oder bei Überdruckverhältnissen ein Teil der lösungsmittelbeladenen Luft nach außen, wobei durch die Strömung im Dichtspalt auf dem ungetrockneten Flüssigkeitsfilm irreversible Strukturen erzeugt werden können.A particular disadvantage of drying devices used hitherto is that a sealing device which is compatible with the outside atmosphere must be created due to the solvent-laden air currents inside the drying room. Depending on the size of the absolute pressure inside the dryer room directly above the liquid film, either a part of the required fresh air flows inwards through the finite sealing gap in the case of negative pressure conditions or a part of the solvent-laden air flows outwards in the case of overpressure conditions, whereby the flow in the sealing gap on the undried liquid film irreversible structures can be created.

Aufgabe der Erfindung ist es, ein Verfahren und eine Vorrichtung zu schaffen, mit denen auf Trägermaterialien aufgebrachte Flüssigkeitsschichten im Durchlaufbetrieb so getrocknet werden können, daß Oberflächenstrukturen, welche die gleichmäßige Verteilung der getrockneten Filmschicht stören und deren erwünschte Eigenschaften beeinträchtigen könnten, sowohl für hoch- als auch für niederviskose Flüssigkeitsschichten nicht auftreten.The object of the invention is to provide a method and an apparatus with which liquid layers applied to carrier materials can be dried in continuous operation in such a way that surface structures which interfere with the uniform distribution of the dried film layer and impair its desired properties, both for high and high also do not occur for low-viscosity layers of liquid.

Diese Aufgabe wird durch ein Verfahren der eingangs beschriebenen Art in der Weise gelöst, daß das Gas gleich- oder gegensinnig zur Laufrichtung des flächenhaften Trägermaterials entlang und parallel zu der Flüssigkeitsschicht strömt und in Strömungsrichtung innerhalb der gesamten Trocknungszone beschleunigt wird, daß die Eintrittsgeschwindigkeit v₁ der Gasströmung auf eine Endgeschwindigkeit v₂ gesteigert wird, die bis zu dem 1000-fachen Wert der Eintrittsgeschwindigkeit v₁ beträgt und daß die Geschwindigkeitsverteilung der Gasströmung in den einzelnen Querschnitten der Trocknungszone quer zur Laufrichtung des Trägermaterials konstant eingestellt wird.This object is achieved by a method of the type described above in such a way that the gas flows in the same direction or in the opposite direction to the direction of travel of the sheet-like support material along and parallel to the liquid layer and is accelerated in the direction of flow within the entire drying zone that the entry velocity v 1 of the gas flow is increased to a final speed v₂, which is up to 1000 times the value of the entry speed v₁ and that the speed distribution of the gas flow in the individual cross sections of the drying zone is set to be constant across the direction of travel of the carrier material.

In Ausgestaltung des Verfahrens ist das Gas erwärmt und wird der Gesamtgasstrom an einem Ende der Trocknungszone abgesaugt. Zweckmäßigerweise ist die Trocknungszone so ausgestaltet, daß im Eintrittsquerschnitt und in der Trocknungszone auftretende Störungen, wie Wirbel und Turbulenzen in der Gasströmung, durch die beschleunigte Gasströmung gedämpft und laminar werden. Dabei wird das Verfahren entweder in der Weise angewandt, daß die Durchströmung der Trocknungszone mit einem konstanten Gasvolumenstrom erfolgt, wobei der Querschnitt der Trocknungszone in Laufrichtung des Trägermaterials ständig verkleinert wird oder derart, daß der Gasvolumenstrom in Laufrichtung des Trägermaterials ständig erhöht wird, bei gleichbleibendem Querschnitt der Trocknungszone oder auch bei abnehmendem Querschnitt der Trocknungszone.In one embodiment of the method, the gas is heated and the total gas stream is drawn off at one end of the drying zone. The drying zone is expediently designed in such a way that disturbances occurring in the inlet cross section and in the drying zone, such as eddies and turbulence in the gas flow, are damped and laminar by the accelerated gas flow. The method is used either in such a way that the drying zone is flowed through with a constant gas volume flow, the cross-section of the drying zone in the running direction of the carrier material being continuously reduced, or in such a way that the gas volume flow is continuously increased in the running direction of the carrier material, with a constant cross section the drying zone or even if the cross section of the drying zone decreases.

Bei dem Verfahren werden die in die Trocknungszone eingebrachten Turbulenzen der Gasströmung durch die in Strömungsrichtung lokal beschleunigte Gasströmung unmittelbar gedämpft und eine weitgehend laminare Strömung erhalten.In the process, the turbulence of the gas flow introduced into the drying zone is immediately dampened by the gas flow locally accelerated in the flow direction and a largely laminar flow is obtained.

In weiterer Ausgestaltung des Verfahrens läuft das Trägermaterial senkrecht durch die Trocknungszone hindurch und trägt eine Seite des Trägermaterials eine Flüssigkeitschicht, die getrocknet wird.In a further embodiment of the method, the carrier material runs vertically through the drying zone and carries one side of the carrier material with a liquid layer which is dried.

Ebenso ist es möglich, daß das Trägermaterial beidseitig mit Flüssigkeitsschichten versehen ist und beide Seiten des Trägermaterials durch gegensinnig zur senkrechten Laufrichtung des Trägermaterial strömendes Trocknungsgas getrocknet werden. Das Trägermaterial kann auch mit auf seiner Unterseite aufgetragener Flüssigkeitsschicht horizontal oder schräg durch die Trocknungszone hindurchlaufen, wobei das Trocknungsgas unterhalb des Trägermaterials entlang der hängenden Flüssigkeitsschicht strömt.It is also possible that the carrier material is provided on both sides with liquid layers and both sides of the carrier material are dried by drying gas flowing in the opposite direction to the vertical running direction of the carrier material. The carrier material can also run horizontally or obliquely through the drying zone with the liquid layer applied to its underside, the drying gas flowing below the carrier material along the hanging liquid layer.

Dabei wird das Verfahren entweder in der Weise angewandt, daß die Durchströmung der Trocknungszone mit einem konstanten Gasvolumenstrom erfolgt, wobei der Querschnitt der Trocknungszone gegen die Laufrichtung des Trägermaterials ständig kleiner wird oder derart, daß der Gasvolumenstrom gegen die Laufrichtung des Trägermaterials ständig erhöht wird, bei gleichbleibendem Querschnitt der Trocknungszone oder auch bei ständig sich verminderndem Querschnitt der Trocknungszone.The method is used either in such a way that the drying zone is flowed through with a constant gas volume flow, the cross section of the drying zone becoming smaller and smaller in the direction of travel of the carrier material, or in such a way that the gas volume flow is continuously increased against the direction of travel of the carrier material constant cross section of the drying zone or even with a continuously decreasing cross section of the drying zone.

Bei dem Verfahren tritt beispielsweise das Trägermaterial unten durch den Trocknereinlaß in die Trocknungszone ein, verläßt diese oben durch den Trocknerauslaß und wird der von oben nach unten gerichtete Gesamtgasstrom nahe dem Trocknereinlaß abgesaugt.In the method, for example, the carrier material enters the drying zone at the bottom through the dryer inlet, leaves the drying zone at the top through the dryer outlet and the total gas stream directed downwards is sucked off near the dryer inlet.

Eine Vorrichtung zum Trocknen einer auf einem bewegten Trägermaterial aufgebrachten Flüssigkeitsschicht, die verdampfbare Lösungsmittelkomponenten und nichtverdampfbare Komponenten enthält, mit einem Trocknungskanal, aus Kanaldeck- und -grundfläche, durch den in Längsrichtung das Trägermaterial hindurchläuft, zeichnet sich dadurch aus, daß sich die Kanaldeckfläche gegenüber der Kanalgrundfläche über die Gesamtlänge des Trocknungskanals parallel bzw. geneigt erstreckt, daß die Kanaldeckfläche eine gasdurchlässige Fläche ist, durch die hindurch ein Trocknungsgasstrom auf das durchlaufende flächenhafte Trägermaterial gerichtet ist und daß die Stärke des Trocknungsgasstroms in Längsrichtung des Trockungskanals durch die variabel einstellbare Gasdurchlässigkeit der Kanaldeckfläche und/oder durch auf der Oberseite der Kanaldeckfläche angeordnete Dosiervorrichtungen für das zuzugebende Gas veränderbar ist.A device for drying a liquid layer applied to a moving carrier material, which contains vaporizable solvent components and non-vaporizable components, with a drying channel, made of channel top and bottom surface, through which the carrier material runs in the longitudinal direction, is characterized by the fact that the duct cover surface extends parallel or inclined relative to the duct base surface over the entire length of the drying duct, that the duct cover surface is a gas-permeable surface through which a drying gas flow is directed onto the continuous sheet-like carrier material and that the strength of the drying gas flow in The longitudinal direction of the drying channel can be changed by the variably adjustable gas permeability of the channel cover surface and / or by metering devices arranged on the top of the channel cover surface for the gas to be added.

In Weiterbildung dieser Vorrichtung verläuft der Trocknungskanal horizontal und ist die Kanaleinlaßhöhe des Trocknungskanals größer als die Kanalauslaßhöhe.In a further development of this device, the drying duct runs horizontally and the duct inlet height of the drying duct is greater than the duct outlet height.

Die weitere Ausgestaltung der Erfindung ergibt sich aus den Merkmalen der Patentansprüche 16 bis 30.The further embodiment of the invention results from the features of claims 16 to 30.

Bei einer anderen Ausführungsform der Vorrichtung ist die Kanaleinlaßbreite des vertikalen Trocknungskanals kleiner als die Kanalauslaßbreite. Dabei ist der Kanaleinlaß der Bereich, in dem das Beschichtungsgut in den Kanal einläuft, wobei bei vertikalem Trocknungskanal der Kanaleinlaß oben oder unten sein kann.In another embodiment of the device, the channel inlet width of the vertical drying channel is smaller than the channel outlet width. The channel inlet is the area in which the coating material runs into the channel, the channel inlet being able to be at the top or bottom in the case of a vertical drying channel.

Die weitere Ausgestaltung der Erfindung ergibt sich aus den Merkmalen der Patentansprüche 32 bis 38.The further embodiment of the invention results from the features of claims 32 to 38.

Mit der Erfindung werden die Vorteile erzielt, daß mit relativ einfachen Baumaßnahmen, die eine bestimmte Gasstromführung im Trocknungskanal bewirken, die gewünschte störungsfreie Trocknung nieder- und hochviskoser Flüssigkeitsschichten auf Trägermaterialien erreicht wird. Dabei wird die mittlere Geschwindigkeit der Gasströmung von einer Eintrittsgeschwindigkeit v₁ über die Länge des Trocknungskanals auf eine Austrittsgeschwindigkeit v₂, die wesentlich größer als v₁ ist, gesteigert. Die Geschwindigkeitsverteilung ist dabei in dem einzelnen Trocknungskanalquerschnitt konstant eingestellt, und die Geometrie des Trocknungskanals ist so ausgelegt, daß die im Eintrittsquerschnitt und im Trocknungskanal auftretenden Gasstörungen durch die Gasbeschleunigung ausgedämpft werden und daß der zur Trocknung notwendige Gesamtluftstrom am Ende des Trocknungskanals abgesaugt wird.With the invention, the advantages are achieved that with relatively simple construction measures that a certain gas flow in the drying channel cause the desired trouble-free drying of low and high viscosity liquid layers on carrier materials is achieved. The mean speed the gas flow from an inlet velocity v₁ over the length of the drying channel to an outlet velocity v₂, which is substantially greater than v₁, increased. The speed distribution is set constant in the individual drying channel cross-section, and the geometry of the drying channel is designed so that the gas disturbances occurring in the inlet cross-section and in the drying channel are dampened by the gas acceleration and that the total air flow required for drying is extracted at the end of the drying channel.

Der Gasstrom ist am Kanaleinlaß, wo die Flüssigkeitsschicht am empfindlichsten gegen Verblasungen ist, laminar. Dabei führt die hohe Strömungsgeschwindigkeit im Kanaleinlaßbereich zu einer raschen Abführung der Lösungsmittel. Die Flüssigkeitsschicht trocknet besonders schnell an und ist dann stabil gegen turbulente Strömungen, die am aufgeweiteten Kanalauslaß auftreten können. Bei einem Vertikalbandlauf des Tägermaterials von unten nach oben werden die schweren Lösungsmitteldämpfe durch den gegensinnigen Gasstrom in Richtung der Schwerkraft und nicht entgegengesetzt dazu abgeführt.The gas flow is laminar at the channel inlet where the liquid layer is most sensitive to blowing. The high flow velocity in the channel inlet area leads to a rapid removal of the solvents. The liquid layer dries particularly quickly and is then stable against turbulent currents that can occur at the widened channel outlet. When the carrier material runs vertically from bottom to top, the heavy solvent vapors are removed by the opposite gas flow in the direction of gravity and not in the opposite direction.

Es muß keine strömungsberuhigte Eingangszone eingestellt werden, und es spielt keine Rolle, ob im Bereich geringer Strömungsgeschwindigkeiten am weiten Kanalauslaß Turbulenzen auftreten oder nicht, da die Schicht dort bereits angetrocknet ist. Die Luftströmung kann stark beschleunigt werden und dadurch die Trocknerstrecke verkürzt werden. Der Wärmeübergang in der Trocknungszone wird u.a. durch die Gasgeschwindigkeit bestimmt. Bei gleichsinniger Gasströmung erfolgt die Bandanwärmung und damit die Trocknung näher am Kanalauslaß, bei gegensinniger Gasströmung näher am Kanaleinlaß der Trocknungszone.It is not necessary to set a flow-reduced entrance zone, and it does not matter whether or not turbulence occurs at the wide duct outlet in the region of low flow speeds, since the layer has already dried there. The air flow can be greatly accelerated, thereby shortening the dryer route will. The heat transfer in the drying zone is determined, among other things, by the gas velocity. If the gas flow is in the same direction, the belt is heated and thus it dries closer to the duct outlet, and in the opposite direction the gas is closer to the duct inlet of the drying zone.

Die Erfindung wird im folgenden anhand von schematisch dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:

  • Fig. 1 eine schematische Schnittansicht einer ersten Ausführungsform der Trocknungsvorrichtung nach der Erfindung,
  • Fig. 2 eine schematische Schnittansicht einer zweiten Ausführungsform der Trocknungsvorrichtung nach der Erfindung, mit einem sich verengenden Trocknungskanal mit rechteckförmigem Querschnitt,
  • Fig. 3 einen Schnitt entlang der Linie I - I der Trocknungsvorrichtung nach Fig. 2,
  • Fig. 4A und 4B je eine perspektivische Ansicht eines Trocknungskanals mit trompetenförmiger Geometrie, der anstelle des Trocknungskanals mit rechteckförmigem Querschnitt in den Ausführungsformen nach den Figuren 1 bis 3, 9 und 10 verwendet werden kann,
  • Fig. 5A eine Schnittansicht einer dritten Ausführungsform der Trocknungsvorrichtung mit veränderlicher Durchlässigkeit der Deckfläche, teilweise aufgebrochen, nach der Erfindung,
  • Fig. 5B eine Schnittansicht einer vierten Ausführungsform der Erfindung, ähnlich Fig. 5A, mit konstanter Durchlässigkeit der Deckfläche,
  • Fig. 6 eine fünfte Ausführungsform der Trocknungsvorrichtung nach der Erfindung im Schnitt,
  • Fig. 7 ein Geschwindigkeitsprofil der Gasströmung in Abhängigkeit von der Kanallänge des Trocknungskanals,
  • Fig. 8 ein Druckprofil, nämlich den statischen Unterdruck der Gasströmung gegenüber Atmosphärendruck, in Abhängigkeit von der Kanallänge des Trocknungskanals,
  • Fig. 9 eine Schnittansicht einer sechsten Ausführungsform der Trocknungsvorrichtung für einseitige Trocknung des Trägermaterials, nach der Erfindung,
  • Fig. 10 eine schematische Schnittansicht einer siebenten Ausführungsform der Trocknungsvorrichtung für beidseitige Trocknung des Trägermaterials nach der Erfindung, mit zwei sich verengenden Trocknungskanälen mit rechteckförmigem Querschnitt,
  • Fig. 11A und 11B einen schematischen Detailausschnitt im Bereich des Kanaleinlasses einer Trocknungsvorrichtung, in der mit Unterdruck das Trägermaterial geführt wird, und eine schematische Schnittansicht im Bereich des Kanaleinlasses in leicht abgewandelter Ausführungsform gegenüber Fig. 11A,
  • Fig. 12A eine Schnittansicht einer achten Ausführungsform der Trocknungsvorrichtung mit veränderlicher Durchlässigkeit der Deckfläche nach der Erfindung,
  • Fig. 12B eine Schnittansicht einer neunten Ausführungsform der Erfindung, ähnlich Fig. 12A, mit konstanter Durchlässigkeit der Deckfläche,
  • Fig. 13 eine zehnte Ausführungsform der Trocknungsvorrichtung nach der Erfindung, im Schnitt, bei der die Laufrichtung des Trägermaterialbandes und die Strömungsrichtung des Trocknungsgases gleichsinnig sind, und
  • Fig. 14 eine schematische Schnittansicht einer elften Ausführungform mit horizontal geführtem Untertrum des Trägermaterialbandes, auf dem eine Flüssigkeitsschicht aufgebracht ist, die nach unten weist.
The invention is explained in more detail below with the aid of schematically illustrated exemplary embodiments. Show it:
  • 1 is a schematic sectional view of a first embodiment of the drying device according to the invention,
  • 2 shows a schematic sectional view of a second embodiment of the drying device according to the invention, with a narrowing drying channel with a rectangular cross section,
  • 3 shows a section along the line I - I of the drying device according to FIG. 2,
  • 4A and 4B each show a perspective view of a drying duct with a trumpet-shaped geometry, which can be used instead of the drying duct with a rectangular cross section in the embodiments according to FIGS. 1 to 3, 9 and 10,
  • 5A is a sectional view of a third embodiment of the drying device with variable permeability of the top surface, partially broken away, according to the invention,
  • 5B is a sectional view of a fourth embodiment of the invention, similar to FIG. 5A, with constant permeability of the top surface,
  • 6 shows a fifth embodiment of the drying device according to the invention in section,
  • 7 shows a velocity profile of the gas flow as a function of the channel length of the drying channel,
  • 8 shows a pressure profile, namely the static negative pressure of the gas flow against atmospheric pressure, as a function of the channel length of the drying channel,
  • 9 is a sectional view of a sixth embodiment of the drying device for one-sided drying of the carrier material, according to the invention,
  • Fig. 10 is a schematic sectional view of a seventh embodiment of the drying device for double-sided drying of the carrier material according to the invention, with two narrowing Drying channels with a rectangular cross-section,
  • 11A and 11B show a schematic detail in the area of the channel inlet of a drying device, in which the carrier material is guided with negative pressure, and a schematic sectional view in the area of the channel inlet in a slightly modified embodiment compared to FIG. 11A,
  • 12A is a sectional view of an eighth embodiment of the drying device with variable permeability of the top surface according to the invention,
  • 12B is a sectional view of a ninth embodiment of the invention, similar to FIG. 12A, with constant permeability of the top surface,
  • Fig. 13 shows a tenth embodiment of the drying device according to the invention, in section, in which the running direction of the carrier material band and the flow direction of the drying gas are in the same direction, and
  • 14 shows a schematic sectional view of an eleventh embodiment with a horizontally guided lower run of the carrier material strip, on which a liquid layer is applied, which points downward.

In Figur 1 ist in schematischer Schnittansicht eine erste Ausführungsform einer Trocknungsvorrichtung 1 nach der Erfindung dargestellt. Ein Trägermaterialband 4, beispielsweise ein Metallband aus Aluminium oder ein Folienband, läuft an einer Breitschlitzdüse 34 vorbei, von der eine Flüssigkeitsschicht auf das Trägermaterialband 4 aufgetragen wird, die verdampfbare Lösungsmittelkomponenten und nichtverdampfbare Komponenten enthält. Das Trägermaterialband 4 wird um eine Umlenkrolle 35 herumgeführt und läuft durch einen Kanaleinlaß 27, der einen Einlaßquerschnitt A1 aufweist, in einen Trocknungskanal 2 ein. Dabei läuft das Trägermaterialband 4 im Trocknungskanal 2 sowie in einem an den Trocknungskanal 2 anschließenden Durchlaufkanal 20 auf Tragrollen 6, die versenkt in der horizontalen Kanalgrundfläche 3 bzw. im Kanalboden eingelassen sind. Die Trocknungsvorrichtung 1 kann auch als Trockner ausgebildet sein, in welchem das Trägermaterialband 4 über Lufttragedüsen freischwebend durch den Trocknungskanal 2 geführt ist und die Tragluft seitlich abgeführt wird.In Figure 1, a first embodiment of a drying device 1 according to the invention is shown in a schematic sectional view. A carrier material strip 4, for example a metal strip made of aluminum or a foil strip, runs past a slot die 34, from which a liquid layer is applied to the carrier material strip 4, which contains evaporable solvent components and non-evaporable components. The carrier material strip 4 is guided around a deflection roller 35 and runs through a duct inlet 27, which has an inlet cross section A1, into a drying duct 2. The carrier material strip 4 runs in the drying duct 2 and in a through duct 20 adjoining the drying duct 2 on support rollers 6 which are recessed in the horizontal duct base surface 3 or in the duct bottom. The drying device 1 can also be designed as a dryer, in which the carrier material strip 4 is guided freely through the drying channel 2 via air-carrying nozzles and the carrier air is discharged laterally.

Eine Kanaldeckfläche 7 ist als gasdurchlässige Fläche ausgebildet, die gegenüber der horizontal verlaufenden Kanalgrundfläche 3 geneigt ist, wobei die Kanaleinlaßhöhe h1 des Kanaleinlasses 27 des Trocknungskanals 2 größer als die Kanalauslaßhöhe h2 des Kanalauslasses 28 ist, der einen Auslaßquerschnitt A2 aufweist. Die Kanaldeckfläche 7 ist zu der horizontalen Kanalgrundfläche 3 beispielsweise in einem Winkel gleich 3°9′ geneigt, wobei sich die durchlässige Kanaldeckfläche, beginnend an dem Kanaleinlaß 27, über die Gesamtlänge des Trocknungskanals 2 erstreckt.A channel cover surface 7 is designed as a gas-permeable surface which is inclined with respect to the horizontally running channel base surface 3, the channel inlet height h1 of the channel inlet 27 of the drying channel 2 being greater than the channel outlet height h2 of the channel outlet 28, which has an outlet cross section A2. The channel cover surface 7 is inclined to the horizontal channel base surface 3, for example at an angle equal to 3 ° 9 ', the permeable channel cover surface, starting at the Channel inlet 27 extends over the entire length of the drying channel 2.

Oberhalb des Trocknungskanals 2 befindet sich ein Trocknungsraum 5, den eine Zwischenwand 10 von einer Gasaustauschkammer 15 trennt. In der Gasaustauschkammer 15 ist ein Gebläse 12 bzw. ein Ventilator angeordnet, dessen Gebläseausgang 16 gegen einen Wärmetauscher 17 in der Zwischenwand 10 gerichtet ist. In einer Bodenfläche 18 der Gasaustauschkammer 15 ist eine Öffnung vorhanden, in der eine Drosselvorrichtung, z.B. eine Drosselklappe 13 angeordnet ist, die um eine Horizontalachse verstellbar ist. Die Gasaustauschkammer 15 weist einen Gaseinlaß 19 auf, der an die Deckfläche der Gasaustauschkammer 15 anschließt und als Drosselvorrichtung eine Drosselklappe 14 enthält. Die Drosselvorrichtung kann unter anderem auch aus zwei gegeneinander verschiebbaren Lochblechen oder aus einer Lamellenblendenvorrichtung bestehen.Above the drying channel 2 there is a drying chamber 5, which is separated by an intermediate wall 10 from a gas exchange chamber 15. A fan 12 or a fan is arranged in the gas exchange chamber 15, the fan outlet 16 of which is directed against a heat exchanger 17 in the intermediate wall 10. In a bottom surface 18 of the gas exchange chamber 15 there is an opening in which a throttle device, e.g. a throttle valve 13 is arranged, which is adjustable about a horizontal axis. The gas exchange chamber 15 has a gas inlet 19 which adjoins the top surface of the gas exchange chamber 15 and contains a throttle valve 14 as a throttle device. The throttle device can also consist of two perforated plates which can be displaced relative to one another or a lamella diaphragm device.

Das Gebläse 12 ist ein zweiflutiges Umwälzgebläse mit Rückschaufeln, wobei der aus dem Gaseinlaß 19 den Rückschaufeln zugegebene Frischgasstrom in den Trocknungsraum 5 gefördert wird.The blower 12 is a double-flow circulating blower with back blades, the fresh gas stream added to the back blades from the gas inlet 19 being conveyed into the drying chamber 5.

Der Durchlaufkanal 20, der an den Trocknungskanal 2 anschließt, hat einen gleichbleibenden Querschnitt entsprechend dem Kanalauslaßquerschnitt A2 des Trocknungskanals. Die Unterseite der Bodenfläche 18 der Gasaustauschkammer 15 ist zugleich die Deckfläche des Durchlaufkanals. Oberhalb der Deckfläche des Durchlaufkanals, nach der Gasaustauschkammer 15, befindet sich ein Ventilator bzw. ein Sauggebläse 9, dessen Ansaugöffnung in der Deckfläche des Durchlaufkanals liegt. In einem Auslaß 11 des Sauggebläses 9 ist eine Drosselklappe 8 angeordnet.The flow channel 20, which connects to the drying channel 2, has a constant cross section corresponding to the channel outlet cross section A2 of the drying channel. The underside of the bottom surface 18 of the gas exchange chamber 15 is also the top surface of the Flow channel. Above the top surface of the flow channel, after the gas exchange chamber 15, there is a fan or suction fan 9, the suction opening of which lies in the top surface of the flow channel. A throttle valve 8 is arranged in an outlet 11 of the suction fan 9.

Die Kanaldeckfläche 7 besteht beispielsweise aus einem durchgehenden Filter mit konstanter Permeabilität.The channel cover surface 7 consists for example of a continuous filter with constant permeability.

Figur 2 zeigt eine schematische Schnittansicht einer zweiten Ausführungsform der Trocknungsvorrichtung 1 nach der Erfindung, die gegenüber der ersten Ausführungsform auf der Oberseite der Kanaldeckfläche 7 zusätzliche Dosiereinrichtungen 21 für das zuzugebende Gas aufweist. Bei dem Gas handelt es sich im allgemeinen um erwärmte Luft. Der Trocknungskanal 2 ist ähnlich wie der Trocknungskanal der ersten Ausführungsform ausgebildet, mit einer horizontalen Kanalgrund- oder Bodenfläche 31 und einer dazu geneigten Kanaldeckfläche 7. Die Gas- bzw. Luftströmung im Einlaßquerschnitt A₁ des Kanaleinlasses hat eine Eintrittsgeschwindigkeit v₁ von nahezu Null, während die Austrittsgeschwindigkeit v₂ im Auslaßquerschnitt A₂ des Kanalauslasses bis zu 75 m/sec betragen kann. In Figur 2 ist aus Gründen der besseren Übersichtlichkeit das Sauggebläse, das in Figur 1 mit dem Bezugszeichen 9 belegt ist, nicht eingezeichnet, obwohl es, ebenso wie bei dem ersten Ausführungsbeispiel, vorhanden ist.FIG. 2 shows a schematic sectional view of a second embodiment of the drying device 1 according to the invention, which, compared to the first embodiment, has additional metering devices 21 for the gas to be added on the upper side of the channel cover surface 7. The gas is generally heated air. The drying channel 2 is similar to the drying channel of the first embodiment, with a horizontal channel base or bottom surface 31 and an inclined channel top surface 7. The gas or air flow in the inlet cross section A 1 of the channel inlet has an entry speed v 1 of almost zero, while the exit speed v₂ can be up to 75 m / sec in the outlet cross-section A₂ of the duct outlet. In FIG. 2, for reasons of better clarity, the suction fan, which is identified by the reference number 9 in FIG. 1, is not shown, although it is present, as in the first exemplary embodiment.

Die Dosiereinrichtungen 21 bestehen aus Kästen mit zwei gegeneinander verschiebbaren Lochblenden 22, 23, deren Öffnungsquerschnitte einstellbar sind. Diese Lochblenden 22, 23 liegen entweder unmittelbar übereinander oder weisen, wie dargestellt, einen Abstand voneinander auf. Je nach der Einstellung der Öffnungsquerschnitte der Lochblenden 22, 23 (vgl. Fig.en 3A und 3B) ergeben sich unterschiedliche Durchlässigkeiten der einzelnen Kästen der Dosiereinrichtungen 21, so daß abschnittsweise, entsprechend den Längen der Kästen, unterschiedliche Luftmengen die Kanaldeckfläche 7 durchströmen. Somit ist es möglich, die in den Trocknungskanal 2 einströmende Gas- bzw. Luftmenge zusätzlich zu der sich ohne die Dosiereinrichtungen einstellenden unterschiedlichen Gasmengenverteilung über die Länge des Trocknungskanals 2 unterschiedlich zu regeln.The metering devices 21 consist of boxes with two perforated diaphragms 22, 23, the opening cross sections of which are adjustable. These perforated diaphragms 22, 23 either lie directly one above the other or, as shown, are at a distance from one another. Depending on the setting of the opening cross sections of the perforated diaphragms 22, 23 (see FIGS. 3A and 3B), there are different permeabilities of the individual boxes of the metering devices 21, so that, depending on the lengths of the boxes, different amounts of air flow through the duct cover surface 7. It is thus possible to regulate the gas or air quantity flowing into the drying duct 2 differently over the length of the drying duct 2, in addition to the different gas quantity distribution that occurs without the metering devices.

Oberhalb des Trägermaterialbandes 4 in der Gasaustauschkammer 15 herrscht beispielsweise ein Unterdruck von 3,35 mbar gegenüber dem Atmosphärendruck, während am Gebläseausgang des Gebläses 12 ein Überdruck von 1,4 mbar vorhanden ist. Im Trocknungsraum 5 oberhalb der Dosiereinrichtungen 21 beträgt der Überdruck etwa 1,1 mbar.Above the carrier material band 4 in the gas exchange chamber 15, for example, there is a negative pressure of 3.35 mbar compared to the atmospheric pressure, while there is an excess pressure of 1.4 mbar at the fan outlet of the fan 12. In the drying room 5 above the metering devices 21, the excess pressure is approximately 1.1 mbar.

Die Bodenfläche 31 der Trocknungsvorrichtung weist mehrere Öffnungen 32 auf, von denen eine der Gasaustauschkammer 15 gegenüberliegt und mit dem gleichen Saugdruck bzw. Unterdruck beaufschlagt ist, wie er in der Gasaustauschkammer herrscht. Dadurch wird sichergestellt, daß das Trägerbandmaterial 4, das durch den Trocknungskanal 2 auf Tragrollen 6 hindurchläuft, von beiden Seiten mit dem gleichen Unterdruck beaufschlagt ist, so daß ein Abheben des Trägermaterialbandes 4 verhindert wird, wie es normalerweise in Richtung Gasaustauschkammer 15 auftritt, wenn nur in dieser Unterdruck herrscht.The bottom surface 31 of the drying device has a plurality of openings 32, one of which is opposite the gas exchange chamber 15 and is subjected to the same suction pressure or negative pressure as that prevailing in the gas exchange chamber. This ensures that the carrier tape material 4, which runs through the drying channel 2 on support rollers 6, is subjected to the same negative pressure from both sides, so that a lifting of the carrier material tape 4 is prevented, as normally occurs in the direction of the gas exchange chamber 15, if only there is negative pressure .

Die übrigen Öffnungen 32, die auch in den Seitenwänden, knapp oberhalb der Bodenfläche angeordnet sein können, ermöglichen ein Absaugen der in unmittelbarer Nähe der Seitenwände befindlichen Gasschichten.The remaining openings 32, which can also be arranged in the side walls, just above the bottom surface, allow the gas layers located in the immediate vicinity of the side walls to be extracted.

Wie aus Figur 3 ersichtlich ist, die einen Schnitt entlang der Linie I - I der Trocknungsvorrichtung 1 nach Figur 2 darstellt, ist der Trocknungskanalquerschnitt rechteckförmig, wobei sich die Kanalhöhe in Richtung auf den Kanalauslaßquerschnitt A₂ linear verringert. Die Kanaldeckfläche 7 und die Dosiereinrichtungen 21 sind beispielsweise in den Seitenwänden 29, 30 des Trocknungskanals 2 eingelassen. In der Bodenfläche 31 ist eine der Öffnungen 32 zu erkennen.As can be seen from Figure 3, which represents a section along the line I - I of the drying device 1 according to Figure 2, the drying channel cross section is rectangular, the channel height decreasing linearly in the direction of the channel outlet cross section A₂. The channel cover surface 7 and the metering devices 21 are embedded, for example, in the side walls 29, 30 of the drying channel 2. One of the openings 32 can be seen in the bottom surface 31.

In den Figuren 4A und B ist perspektivisch je ein Trocknungskanal 2 dargestellt, der eine in Längsrichtung sich vom Kanaleinlaß zum Kanalauslaß verjüngende trompetenförmige Geometrie besitzt. Ein derartiger Trocknungskanal kann in den Ausführungsbeispielen nach den Figuren 1 bis 3, 9 und 10 anstelle der dort gezeigten Trocknungskanäle verwendet werden. Durch die sich verjüngende trompetenförmige Geometrie der Trocknungskanäle ist sichergestellt, daß es zu einer Beschleunigung des Luft- bzw. Gasstromes in Strömungsrichtung kommt. Der Trocknungskanal nach Fig. 4A hat eine gekrümmte Deckfläche und gekrümmte Seitenwände, während der Trocknungskanal nach Fig. 4B rechteckförmigen Querschnitt, d.h. senkrecht zur Bodenfläche ausgerichtete Seitenwände, jedoch eine gekrümmte Deckfläche besitzt.FIGS. 4A and B each show a perspective view of a drying duct 2 which has a trumpet-shaped geometry that tapers in the longitudinal direction from the duct inlet to the duct outlet. Such a drying channel can be used in the exemplary embodiments according to FIGS. 1 to 3, 9 and 10 instead of the drying channels shown there. Due to the tapering trumpet-shaped geometry of the drying channels it is ensured that the air or gas flow is accelerated in the direction of flow. The drying channel according to FIG. 4A has a curved top surface and curved side walls, while the drying channel according to FIG. 4B has a rectangular cross section, ie side walls oriented perpendicular to the bottom surface, but has a curved top surface.

Die Beschleunigung der Strömung im Trocknungskanal kann durch zwei verschiedene Betriebsweisen oder auch durch eine Kombination dieser beiden Betriebsweisen erreicht werden. Bei der ersten Betriebsweise erfolgt die Durchströmung des Trocknungskanals 2 mit einem konstanten Luftvolumenstrom, der in allen Querschnitten des Trocknungskanals vorliegt, wobei die Querschnitte des Trocknungskanals in Bandlaufrichtung von dem Eintrittsquerschnitt A₁ auf den Auslaßquerschnitt A₂ ständig kleiner werden. Die längenabhängige Verminderung des Kanalquerschnitts ist so ausgeführt, daß in die Strömung eingebrachte Störungen ausgedämpft und die Strömung dadurch laminar wird. Dies geschieht in der Weise, daß z.B. über das Sauggebläse 9 bzw. den Ventilator bei geschlossenen Drosselvorrichtungen 13 und 14 der ersten Ausführungsform nach Figur 1 der zur Trocknung benötigte Gas- bzw. Luftvolumenstrom mit der Eintrittsgeschwindigkeit v₁ über den Kanaleinlaß 27 mit dem Einlaßquerschnitt A1 angesaugt und über die in Bandlaufrichtung geneigte Kanaldeckfläche 7 auf die Austrittsgeschwindigkeit v₂ am Kanalauslaß 28 mit dem Auslaßquerschnitt A₂ beschleunigt wird. Die Einstellung des ausreichenden Luftvolumenstroms erfolgt hierbei durch Drehzahlregelung des Sauggebläses 9 bzw. des Ventilators und bei drehzahlunabhängiger Betriebsweise durch Verstellen der Drosselklappe 8 im Auslaß 11 des Sauggebläses 9.The acceleration of the flow in the drying channel can be achieved by two different modes of operation or by a combination of these two modes of operation. In the first mode of operation, the flow through the drying channel 2 takes place with a constant air volume flow which is present in all cross-sections of the drying channel, the cross-sections of the drying channel in the direction of the belt running from the inlet cross-section A 1 to the outlet cross-section A 2 continuously becoming smaller. The length-dependent reduction of the channel cross-section is carried out in such a way that disturbances introduced into the flow are attenuated and the flow thereby becomes laminar. This is done in such a way that, for example, the gas or air volume flow required for drying is sucked in with the inlet velocity v 1 via the channel inlet 27 with the inlet cross section A1 via the suction fan 9 or the fan when the throttle devices 13 and 14 of the first embodiment according to FIG. 1 are closed and is accelerated via the channel cover surface 7 inclined in the direction of tape travel to the exit velocity v₂ at the channel outlet 28 with the outlet cross section A₂. The setting of the sufficient air volume flow takes place here by speed control of the suction fan 9 or the fan and, in the case of speed-independent operating mode, by adjusting the throttle valve 8 in the outlet 11 of the suction fan 9.

Bei der zweiten Betriebsweise geschieht die Zugabe des zum Trocknen notwendigen Gas- bzw. Luftvolumenstroms über geeignete Dosiereinrichtungen, die in der oder über der Kanaldeckfläche angebracht sind. Der Gas- bzw. Luftvolumenstrom im Trocknungskanal wird dabei in Bandlaufrichtung ständig erhöht oder so eingestellt, daß Störungen ausgedämpft werden und der Gas- bzw. Luftstrom in eine Laminarströmung übergeht. Hierzu wird bei den Ausführungsformen der Erfindung, wie sie in den Figuren 1 bis 5B dargestellt sind, wobei die Ausführungsformen nach den Figuren 5A und 5B noch näher beschrieben werden, der zur Trocknung benötigte Gas- bzw. Luftvolumenstrom in den Trocknungsraum 5 über das Gebläse 12 bzw. den Umwälzventilator mit Rückschaufeln bei geöffneten Drosselklappen 13 und 14 gefördert. Vom Trocknungsraum 5 strömt die Luft- bzw. Gasmenge über die Dosiereinrichtungen und die Kanaldeckfläche 7 in den Trocknungskanal 2 und wird in diesem auf die Austrittsgeschwindigkeit v₂ im Auslaßquerschnitt A₂ beschleunigt. Das Gebläse 9 bzw. der Ventilator ist hierbei so eingestellt, daß nur das über die Rückschaufeln des Gebläses 12 bzw. des Umwälzventilators zugegebene Gas aus dem Trocknungsraum 5 abgesaugt wird und die Restgasmenge ständig im Kreislauf gefördert wird. Dadurch wird erreicht, daß im Einlaßquerschnitt A₁ nahezu keine Strömung bzw. nur eine sehr geringe Strömung auftritt.In the second mode of operation, the gas or air volume flow required for drying is added via suitable metering devices which are attached in or above the duct cover surface. The gas or air volume flow in the drying channel is continuously increased in the belt running direction or adjusted so that disturbances are damped out and the gas or air flow changes into a laminar flow. For this purpose, in the embodiments of the invention as shown in FIGS. 1 to 5B, the embodiments according to FIGS. 5A and 5B being described in more detail, the gas or air volume flow required for drying into the drying chamber 5 via the blower 12 or the circulation fan with back blades with open throttle valves 13 and 14 promoted. From the drying chamber 5, the air or gas quantity flows via the metering devices and the channel cover surface 7 into the drying channel 2 and is accelerated therein to the exit velocity v₂ in the outlet cross section A₂. The blower 9 or the fan is set here so that only the gas added via the blades of the blower 12 or the circulation fan is sucked out of the drying chamber 5 and the residual gas quantity is continuously conveyed in the circuit. This ensures that almost no flow or only a very small flow occurs in the inlet cross-section A 1.

Bei den Ausführungsformen der Erfindung, wie sie in den Figuren 9 bis 12B dargestellt sind, wobei die Ausführungsformen nach den Figuren 12A und 12B noch näher beschrieben werden, wird der zur Trocknung benötigte Gas-bzw. Luftvolumenstrom über die Dosiereinrichtungen und die Kanaldeckfläche 7 und/oder den Kanalauslaß 28 in den Trocknungskanal 2 gefördert und in diesem auf die Austrittsgeschwindigkeit im Kanaleinlaßquerschnitt beschleunigt.In the embodiments of the invention, as shown in FIGS. 9 to 12B, the embodiments according to FIGS. 12A and 12B being described in more detail, the gas or. Air volume flow via the metering devices and the channel cover surface 7 and / or the channel outlet 28 is conveyed into the drying channel 2 and accelerated therein to the exit velocity in the channel inlet cross section.

Dadurch wird erreicht, daß im Kanaleinlaßquerschnitt die maximale Geschwindigkeit über die Länge des Trocknungskanals auftritt.This ensures that the maximum speed occurs over the length of the drying channel in the channel inlet cross section.

In der ersten Betriebsweise der Ausführungsformen nach den Fig. 1 bis 5B wird für einen optimalen Betrieb der Einlaßquerschnitt A₁ so groß ausgelegt, bzw. die Anfangsgeschwindigkeit v₁ so klein gehalten, daß auf dem zu trocknenden Flüssigkeitsfilm keinerlei Anfangsstöreffekte in Form von Melierungen oder großflächigen Verblasungen auftreten.In the first mode of operation of the embodiments according to FIGS. 1 to 5B, the inlet cross-section A 1 is designed so large for optimum operation, or the initial speed v 1 is kept so small that no initial interfering effects in the form of mottling or large-area blows occur on the liquid film to be dried .

Im einfachsten Betriebsfall wird das beschichtete Trägermaterialband 4 in unmittelbarer Nähe der horizontalen Kanalgrundfläche 3 geführt und die Strömungsbeschleunigung durch die in Strömungsrichtung geradlinig geneigte Kanaldeckfläche 7 herbeigeführt. Die Form des Kanalquerschnitts ist rechteckförmig, und die Kanalhöhe verkleinert sich linear von der Kanaleinlaßhöhe h1 auf die Kanalauslaßhöhe h2. Der gleiche Effekt wird beispielsweise mit den in den Figuren 4A und B gezeigten trompetenförmigen Geometrien des Trocknungskanals 2 erzielt. Daneben sind noch andere Kanalgeometrien möglich, solange diese eine in Strömungsrichtung erforderliche Beschleunigung herbeiführen.In the simplest case of operation, the coated carrier material strip 4 is guided in the immediate vicinity of the horizontal channel base surface 3 and the flow acceleration is brought about by the channel cover surface 7 which is inclined in a straight line in the direction of flow. The shape of the channel cross section is rectangular and the channel height decreases linearly from the channel inlet height h1 to the channel outlet height h2. The same effect will achieved for example with the trumpet-shaped geometries of the drying duct 2 shown in FIGS. 4A and B. In addition, other channel geometries are possible as long as they bring about the acceleration required in the direction of flow.

In der ersten Betriebsweise nach den Ausführungsformen der Fig. 9 bis 12B wird das beschichtete Trägermaterialband 4 in unmittelbarer Nähe der vertikalen Kanalgrundfläche 3 geführt und die Strömungsbeschleunigung durch die in Strömungsrichtung zur Kanalgrundfläche konvergierende Kanaldeckfläche 7 herbeigeführt. Die Form des Kanalquerschnitts ist rechteckförmig, und die Kanalbreite verkleinert sich linear von der Kanalauslaßbreite b2 auf die Kanaleinlaßbreite b1. Der gleiche Effekt wird beispielsweise mit den in den Figuren 4A und B gezeigten trompetenförmigen Geometrien des Trocknungskanals 2 erzielt. Daneben sind noch andere Kanalgeometrien möglich, solange diese eine in Strömungsrichtung erforderliche Beschleunigung herbeiführen.In the first mode of operation according to the embodiments of FIGS. 9 to 12B, the coated carrier material strip 4 is guided in the immediate vicinity of the vertical channel base surface 3 and the flow acceleration is brought about by the channel cover surface 7 converging in the direction of flow toward the channel base surface. The shape of the channel cross-section is rectangular, and the channel width decreases linearly from the channel outlet width b2 to the channel inlet width b1. The same effect is achieved, for example, with the trumpet-shaped geometries of the drying duct 2 shown in FIGS. 4A and B. In addition, other channel geometries are possible as long as they bring about the acceleration required in the direction of flow.

Bei der zweiten Betriebsweise ergeben sich insbesondere gute Trocknungsergebnisse, wenn bei rechteckförmigem Kanalquerschnitt die horizontal bzw. vertikal verlaufende Kanaldeckfläche 7 als durchgehendes, gasdurchlässiges Filter ausgelegt wird. Bei konstantem Kanalquerschnitt über die Länge des Trocknungskanals, d.h. mit anderen Worten, bei horizontal bzw. vertikal und parallel zur Kanalgrundfläche verlaufender Kanaldeckfläche stellt sich bei konstanter Filterpermeabilität längs des Trocknungskanals aufgrund des ansteigenden Gasmengenstroms von sich aus die gewünschte Beschleunigung der Strömung ein, die zusätzlich noch durch die sich ändernde Durchlässigkeit des durchgehenden Filters gesteuert werden kann. Die Kanaldeckfläche 7 muß nicht aus einem durchgehenden Filter bestehen, sondern kann vielmehr auch aus aneinandergereihten, gleichdicken Filtermatten 26 (vgl. Fig. 5A und 12A) mit unterschiedlicher Durchlässigkeit bestehen. Diese kann auch dadurch erreicht werden, daß die Filtermatten gleiche Konsistenz bzw. gleichen Aufbau besitzen, jedoch unterschiedliche Dicken aufweisen. Eine andere Möglichkeit besteht darin, die Filtermatten mit gleicher Dicke, jedoch mit unterschiedlichem Aufbau bzw. unterschiedlicher Konsistenz auszugestalten.In the second mode of operation, good drying results are obtained in particular if the horizontal or vertical channel cover surface 7 is designed as a continuous, gas-permeable filter with a rectangular channel cross section. With a constant channel cross-section over the length of the drying channel, ie in other words, with a channel cover surface running horizontally or vertically and parallel to the channel base surface, there is a constant filter permeability along the drying channel due to the increasing gas flow, the desired acceleration of the flow, which can also be controlled by the changing permeability of the continuous filter. The channel cover surface 7 does not have to consist of a continuous filter, but rather can also consist of lined-up, equally thick filter mats 26 (see FIGS. 5A and 12A) with different permeability. This can also be achieved in that the filter mats have the same consistency or structure, but have different thicknesses. Another possibility is to design the filter mats with the same thickness, but with a different structure or different consistency.

Bei geneigter Kanaldeckfläche 7 wird der Gasmengenstrom und damit die Strömungsbeschleunigung durch die Neigung der Kanaldeckfläche bestimmt. Falls die geneigte Kanaldeckfläche 7 aus einem durchgehenden Filter oder aus Filtermatten besteht, besitzen diese zweckmäßigerweise gleichmäßigen Aufbau bzw. gleichmäßige Konsistenz und damit gleichbleibende Durchlässigkeit über die Länge des Trocknungskanals 2.If the duct cover surface 7 is inclined, the gas flow rate and thus the flow acceleration is determined by the inclination of the duct cover surface. If the inclined duct cover surface 7 consists of a continuous filter or of filter mats, these expediently have a uniform structure or uniform consistency and thus constant permeability over the length of the drying duct 2.

Die kombinierte Anwendung der ersten und zweiten Betriebsweise hat vor allem dann Vorteile, wenn bereits bei der Beschichtung, die in der Regel unmittelbar vor der Trocknungsvorrichtung 1 durch die Breitschlitzdüse 34 durchgeführt wird, freiwerdende Lösungsmitteldämpfe abgesaugt werden müssen.The combined use of the first and second modes of operation has advantages particularly when solvent vapors which have already been released have to be suctioned off during the coating, which is generally carried out immediately before the drying device 1 through the slot die 34.

Die beschleunigte Strömung sowohl bei der ersten als auch bei der zweiten Betriebsweise trägt offenbar in mehrfacher Weise zum schnellen Trocknen der Flüssigkeitsschicht und zur strukturfreien Oberflächenausgestaltung der beschichteten Trägermaterialbänder bei. Durchgeführte Untersuchungen zeigen, daß makroskopische Strömungsturbulenzen, die beispielsweise durch die Zugabestellen des Gas- bzw. Luftstromes erzeugt werden, im Trocknungskanal 2 bei richtiger Einstellung der ersten oder zweiten Betriebsweise so gedämpft werden, daß keine Störungen des Trocknungsvorganges unmittelbar nach den Zugabestellen mehr auftreten, d.h. die Strömung wird bereits in unmittelbarer Nähe des Entstehungsortes der Turbulenzen laminar. Beobachtungen zeigen, daß dies durch die herbeigeführte Beschleunigung der turbulenten Teilbereiche der Gas- bzw. Luftströmung bei gleichzeitiger Längsausrichtung bzw. Längsdeformation dieser turbulenten Bereiche erzwungen wird.The accelerated flow in both the first and the second mode of operation apparently contributes in several ways to the rapid drying of the liquid layer and to the structure-free surface design of the coated carrier material strips. Investigations carried out show that macroscopic flow turbulences, which are generated, for example, by the addition points of the gas or air flow, are damped in drying channel 2 with the correct setting of the first or second mode of operation so that no disturbances in the drying process occur immediately after the addition points, i.e. the flow becomes laminar already in the immediate vicinity of the point of origin of the turbulence. Observations show that this is enforced by the acceleration of the turbulent partial areas of the gas or air flow with simultaneous longitudinal alignment or longitudinal deformation of these turbulent areas.

Die beschleunigte Gas- bzw. Luftströmung verläuft in Bandnähe parallel zum Trägermaterialband und ist gleich- oder gegensinnig zu dessen Laufrichtung gerichtet, so daß durch die relativ zum Flüssigkeitsfilm immmer schneller werdende Gas-/Luftströmung und deren Grenzschichtströmung in der Nähe des Flüssigkeitsfilms die Diffusionswege des verdampfenden Lösungsmittels klein gehalten werden und somit bei hoher Endgeschwindigkeit der Gas-/Luftströmung, jedoch kleiner Trocknungskanallänge, ein großer Wärme- und Stoffübergang von der Flüssigkeitsschicht zu dem Trocknungsmedium ermöglicht wird.The accelerated gas or air flow runs near the belt parallel to the carrier material belt and is directed in the same direction or in the opposite direction to its direction of travel, so that the gas / air flow, which is getting faster and faster relative to the liquid film and its boundary layer flow in the vicinity of the liquid film, the diffusion paths of the evaporating Solvent are kept small and thus a large heat and mass transfer from the liquid layer to the drying medium is made possible at a high final velocity of the gas / air flow, but with a small drying channel length.

In einem konvergenten Trocknungskanal, bei Luftströmung von oben nach unten und gegensinnig zur Bandlaufrichtung, werden Schichten ohne Verblasungen erzeugt, wobei die Luftströmung und die Lösemitteldämpfe der Schwerkraft folgen.In a convergent drying channel, with air flow from top to bottom and in the opposite direction to the belt running direction, layers without blowing are created, whereby the air flow and the solvent vapors follow the force of gravity.

Die über die Breite des zu trocknenden, flüssigkeitsbeschichteten Trägermaterialbandes 4 vorliegende konstante Geschwindigkeit der Strömung ergibt eine sehr gleichmäßige Trocknung des Flüssigkeitsfilms quer zur Bahnlaufrichtung. Dies bedeutet, daß die Geschwindigkeitsverteilung der Gas-/Luftströmung in den einzelnen Querschnitten der Trocknungszone bzw. des Trocknungskanals quer zur Laufrichtung des Trägermaterialbandes konstant gehalten werden muß.The constant velocity of the flow across the width of the liquid-coated carrier material strip 4 to be dried results in very uniform drying of the liquid film transverse to the direction of web travel. This means that the velocity distribution of the gas / air flow in the individual cross sections of the drying zone or the drying channel must be kept constant across the running direction of the carrier material strip.

Figur 5A zeigt eine schematische Schnittansicht einer dritten Ausführungsform der Trocknungsvorrichtung 1, bei der der Trocknungskanal 2 eine horizontal verlaufende Kanaldeckfläche 7 besitzt, die parallel zu der Kanalgrundfläche 3 verläuft. Die horizontale Kanaldeckfläche 7 besteht aus aneinandergereihten, gleichdicken Filtermatten 26, die unterschiedliche Durchlässigkeit für ein Gas bzw. Luft aufweisen. In Figur 5A ist die unterschiedliche Durchlässigkeit durch unterschiedlich starke Schraffuren der einzelnen Filtermatten 26 angedeutet, in der Weise, daß die Filtermatte nahe dem Kanaleinlaß stärker schraffiert ist, entsprechend ihrer geringeren Durchlässigkeit, und die Schraffuren der Filtermatten 26 in Richtung des Kanalauslasses abnehmen, um anzuzeigen, daß die Durchlässigkeit der Filtermatten in Laufrichtung des Trägermaterialbandes 33 zunimmt. Die übrigen Bauteile der Trocknungsvorrichtung, die mit den Bauteilen der ersten und zweiten Ausführungsform der Trocknungsvorrichtung übereinstimmen, sind mit den gleichen Bezugszahlen wie in den Figuren 1 bis 3 belegt. Vor dem Kanaleinlaß 27 des Trocknungskanals 2 befindet sich eine Abdichtmatte 36. Die Kanalquerschnitte sind über die Länge des Trocknungskanals 2 gleichbleibend. Wegen der unterschiedlichen Durchlässigkeiten der Filtermatten 26 strömt jeweils eine unterschiedliche Gas-/Luftmenge durch die einzelne Filtermatte 26, was durch die Größe der gebogenen Pfeile P₁ bis P₅, die den einzelnen Filtermatten 26 zugeordnet sind, angedeutet wird. Durch die in Richtung des Kanalaustritts erfolgte Zunahme der zugeführten Gas-/Luftmenge ergibt sich eine Beschleunigung der Strömung in Laufrichtung des Trägermaterialbandes 33. Diese Beschleunigung bzw. dieser Geschwindigkeitszuwachs der Strömung auf den Kanalauslaß hin ist durch die größer werdenden Geschwindigkeitspfeile vi, die parallel zu dem Trägermaterialband 33 eingezeichnet sind, angedeutet.FIG. 5A shows a schematic sectional view of a third embodiment of the drying device 1, in which the drying duct 2 has a horizontally running duct cover surface 7 which runs parallel to the duct base surface 3. The horizontal channel cover surface 7 consists of lined up, equally thick filter mats 26, which have different permeability to a gas or air. 5A, the different permeability is indicated by hatchings of different strengths of the individual filter mats 26, in such a way that the filter mat near the channel inlet is hatched more, corresponding to its lower permeability, and the hatchings of the filter mats 26 decrease in the direction of the channel outlet. to indicate that the permeability of the filter mats increases in the running direction of the carrier material band 33. The remaining components of the drying device, which correspond to the components of the first and second embodiments of the drying device, are given the same reference numbers as in FIGS. 1 to 3. A sealing mat 36 is located in front of the channel inlet 27 of the drying channel 2. The channel cross sections are constant over the length of the drying channel 2. Because of the different permeability of the filter mats 26, a different amount of gas / air flows through the individual filter mat 26, which is indicated by the size of the curved arrows P₁ to P₅, which are assigned to the individual filter mats 26. The increase in the amount of gas / air supplied in the direction of the channel outlet results in an acceleration of the flow in the running direction of the carrier material band 33. This acceleration or this increase in speed of the flow towards the channel outlet is due to the increasing speed arrows v i , which are parallel to the carrier material band 33 are indicated.

Die in Fig. 5B gezeigte vierte Ausführungsform stimmt, mit Ausnahme der Deckfläche, mit der dritten Ausführungsform überein. Die Deckfläche 7 der vierten Ausführungsform besitzt gleichbleibende Permeabilität über die Kanallänge. Da der über die Deckfläche zugeführte Gasmengenstrom in Richtung Auslaßquerschnitt auch bei konstanter Permeabilität der Deckfläche zunimmt, erfolgt eine Beschleunigung der Strömung in Laufrichtung des Trägermaterialbandes 33.The fourth embodiment shown in FIG. 5B is the same as the third embodiment except for the top surface. The top surface 7 of the fourth embodiment has constant permeability over the channel length. Since the gas volume flow supplied via the top surface increases in the direction of the outlet cross section even with constant permeability of the top surface, this takes place an acceleration of the flow in the running direction of the carrier material strip 33.

Selbstverständlich ist es auch möglich, daß die aus Filtermatten 26 aufgebaute gas-/luftdurchlässige Kanaldeckfläche 7 nicht horizontal, d.h. parallel zu der Kanalgrundfläche 3, verläuft, sondern, ebenso wie bei der ersten und zweiten Ausführungsform der erfindungsgemäßen Trocknungsvorrichtung, zu der Kanalgrundfläche 3 geneigt ist. Die Kanaldeckfläche 7 kann ferner aus aneinandergereihten Filtermatten gleicher Struktur und gleicher Konsistenz, jedoch unterschiedlicher Dicken, bestehen, wobei die Dicke der Filtermatten in Laufrichtung des Trägermaterialbandes 33 abnimmt, d.h. mit anderen Worten, die Durchlässigkeit der Filtermatten in Richtung des Kanalauslasses zunimmt.Of course, it is also possible that the gas / air-permeable channel cover surface 7 constructed from filter mats 26 is not horizontal, i.e. runs parallel to the channel base 3, but, like in the first and second embodiment of the drying device according to the invention, is inclined to the channel base 3. The channel cover surface 7 may also consist of filter mats of the same structure and consistency, but of different thicknesses, which are lined up, the thickness of the filter mats decreasing in the running direction of the carrier material band 33, i.e. in other words, the permeability of the filter mats increases in the direction of the channel outlet.

Bei dem Filter bzw. den Filtermatten handelt es sich um handelsübliche sogenannte Laminardurchflußfilter, wie sie beispielsweise in Zuluftfilteranlagen von Rein-Räumen eingesetzt werden. Derartige Filterelemente filtern einerseits Schmutzpartikel aus dem Gas-/Luftstrom heraus und sorgen andererseits für eine sehr gleichmäßige laminare Strömung durch die einzelnen Filterelemente hindurch in den Trocknungskanal hinein.The filter or filter mats are commercially available so-called laminar flow filters, such as those used in supply air filter systems in clean rooms. Such filter elements on the one hand filter dirt particles out of the gas / air flow and on the other hand ensure a very uniform laminar flow through the individual filter elements into the drying channel.

Figur 6 zeigt eine fünfte Ausführungsform der Trocknungsvorrichtung nach der Erfindung im Schnitt, bei der die Kanaldeckfläche 7 gegenüber der horizontalen Kanalgrundfläche 3 geneigt ist. Die Kanaldeckfläche 7 ist gas-/luftdurchlässig und besteht aus einem durchgehenden Filter kann aber auch aus aneinandergereihten Filtermatten gefertigt sein, wie sie in Figur 5A dargestellt sind. Oberhalb der Kanaldeckfläche 7 befinden sich Dosiereinrichtungen 24, die Lamellen 25 enthalten, welche zueinander verstellbar sind. Die einzelne Lamelle liegt parallel zu der Kanaldeckfläche 7 und ist entlang ihrer Längsachse verstellbar. Die Anordnung der Lamellen 25 und ihre Verstellbarkeit ist in etwa vergleichbar mit Sonnenblenden, die aus Lamellen aufgebaut sind und ist in Fig. 6 angedeutet, in der die Lamellen 25 nahe dem Einlaßquerschnitt A₁ parallel und nahe dem Auslaßquerschnitt A₂ senkrecht zur Deckfläche 7 dargestellt sind.FIG. 6 shows a fifth embodiment of the drying device according to the invention in section, in which the channel cover surface 7 is inclined with respect to the horizontal channel base surface 3. The channel cover surface 7 is gas / air permeable and consists of a continuous filter but can also be made of strung filter mats, as shown in Figure 5A. Dispensing devices 24 containing lamellae 25, which are mutually adjustable, are located above the channel cover surface 7. The individual lamella lies parallel to the channel cover surface 7 and is adjustable along its longitudinal axis. The arrangement of the slats 25 and their adjustability is roughly comparable to sun visors which are made up of slats and is indicated in Fig. 6, in which the slats 25 near the inlet cross section A 1 are shown in parallel and near the outlet cross section A 2 perpendicular to the top surface 7.

Die übrigen Bauteile der fünften Ausführungsform stimmen mit den entsprechenden Bauteilen der ersten bis dritten Ausführungsform der Trocknungsvorrichtung überein, und ihre Beschreibung wird daher nicht wiederholt.The remaining components of the fifth embodiment are the same as the corresponding components of the first to third embodiments of the drying device, and their description will therefore not be repeated.

Die Figuren 7 und 8 zeigen ein Geschwindigkeitsprofil der Gas-/Luftströmung bzw. ein Druckprofil, nämlich den statischen Unterdruck der Strömung gegenüber dem Atmosphärendruck, jeweils in Abhängigkeit von der Kanallänge des Trocknungskanals. Der Verlauf des Geschwindigkeitsprofils ähnelt sehr stark dem Verlauf des Druckprofils über der Kanallänge. Bis zur Mitte der Kanallänge, die im vorliegenden Fall etwa 5,4 m beträgt, steigt die Geschwindigkeit der Strömung bzw. der Unterdruck in etwa linear mit der Kanallänge an, während in der zweiten Hälfte des Trocknungskanals ein starker exponentieller Anstieg dieser Größen auftritt.FIGS. 7 and 8 show a velocity profile of the gas / air flow or a pressure profile, namely the static negative pressure of the flow relative to the atmospheric pressure, in each case as a function of the channel length of the drying channel. The course of the speed profile is very similar to the course of the pressure profile over the channel length. Up to the middle of the channel length, which in the present case is approximately 5.4 m, the speed of the flow or the vacuum increases approximately linearly with the channel length, while in the second half of the drying channel a strong exponential increase of these variables occurs.

In Figur 9 ist in schematischer Schnittansicht eine sechste Ausführungsform der Trocknungsvorrichtung 1 nach der Erfindung dargestellt. Das Trägermaterialband 4, beispielsweise ein Metallband aus Aluminium oder ein Folienband, läuft an der Breitschlitzdüse 34 vorbei, von der eine Flüssigkeitsschicht auf das Trägermaterialband 4 aufgetragen wird, die verdampfbare Lösungsmittelkomponenten und nichtverdampfbare Komponenten enthält. Das Trägermaterialband 4 wird um die Umlenkrolle 35 herumgeführt und läuft senkrecht nach oben durch einen Kanaleinlaß 27, der eine Kanaleinlaßbreite b1 aufweist, in den Trocknungskanal 2 ein. Dabei läuft das Trägermaterialband 4 im Trocknungskanal 2 auf Tragrollen 6, die versenkt in der vertikalen Kanalgrundfläche 3 bzw. im Kanalboden eingelassen sind. Die Trocknungsvorrichtung 1 kann auch als Trockner ausgebildet sein, in welchem das Trägermaterialband 4 über Lufttragedüsen freischwebend geführt ist. Das Trägermaterialband kann im Kanaleinlaßbereich auch durch Unterdruck an dem Kanalboden anliegend und anschließend über Stützwalzen durch den Trocknungskanal 2 geführt werden.FIG. 9 shows a sixth embodiment of the drying device 1 according to the invention in a schematic sectional view. The carrier material strip 4, for example a metal strip made of aluminum or a foil strip, runs past the slot die 34, from which a liquid layer is applied to the carrier material strip 4, which contains evaporable solvent components and non-evaporable components. The carrier material strip 4 is guided around the deflection roller 35 and runs vertically upwards through a duct inlet 27, which has a duct inlet width b1, into the drying duct 2. The carrier material strip 4 runs in the drying duct 2 on support rollers 6, which are recessed in the vertical duct base 3 or in the duct bottom. The drying device 1 can also be designed as a dryer in which the carrier material strip 4 is guided so as to float over air-carrying nozzles. The carrier material band can also be in contact with the channel bottom by negative pressure in the channel inlet area and then be guided through the drying channel 2 via support rollers.

Die Kanaldeckfläche 7 ist als gasdurchlässige Fläche ausgebildet, die gegenüber der vertikal verlaufenden Kanalgrundfläche 3 geneigt ist, wobei die Kanaleinlaßbreite b1 des Kanaleinlasses 27 des Trocknungskanals 2 kleiner als die Kanalauslaßbreite b2 des Kanalauslasses 28 ist. Die Kanaldeckfläche 7 erstreckt sich beispielsweise, beginnend an dem Kanaleinlaß 27, über die Gesamtlänge des Trocknungskanals 2.The channel cover surface 7 is designed as a gas-permeable surface which is inclined with respect to the vertically running channel base surface 3, the channel inlet width b1 of the channel inlet 27 of the drying channel 2 being smaller than the channel outlet width b2 of the channel outlet 28. The channel cover surface 7 extends, for example, starting at the channel inlet 27, over the entire length of the drying channel 2.

Die Kanaldeckfläche 7 besteht aus einem durchgehenden Filter mit konstanter Permeabilität. Die Querschnitte des Trocknungskanals 2 sind rechteckförmig, wobei sich die Kanalbreite von dem Kanaleinlaß 27 nach oben hin linear auf die Kanalauslaßbreite b2 vergrößert. Seitlich von dem Trocknungskanal 2 befindet sich ein Luftraum 67 der Trocknungsvorrichtung 1. In der senkrechten Seitenwand des Luftraumes 67 sind Einströmkanäle 44, 45, 46 angeordnet, durch die Trocknungsgas, insbesondere erwärmte Luft, einströmt und durch die Kanaldeckfläche 7 in Richtung der Pfeile P in den Trocknungskanal 2 eintritt. Nach oben hin ist der Kanalauslaß 28 des Trocknungskanals 2 durch einen Einströmkasten 39 mit einer Filtermatte 48 abgeschlossen, durch den Trocknungsgas in Strömungsrichtung B nach unten, gegensinnig zur Laufrichtung A des Trägermaterialbandes 4, durch den Kanaleinlaß 27 in einen Absaugkasten 37 strömt, der den Kanaleinlaß nach unten hin abschließt. Der Absaugkasten 37 ist mit einer Filtermatte 47 und einem diagonal angeordneten gelochten Prallblech 49 ausgestattet, das eine Wirbelbildung in der Gasströmung verhindert. Ebenfalls kann der Einströmkasten 39 mit einem gelochten Prallblech 73 ausgestattet sein. Das Prallblech 49 kann auch weggelassen werden, falls die Filtermatte 47 allein dazu ausreicht, eine Wirbelbildung zu unterdrücken. Für den Fall, daß die über den Kanalauslaß eintretende Gasströmung im konvergenten Trocknungskanal 2 allein zum Trocknen ausreicht, kann die Kanaldeckfläche 7 aus undurchlässigem Material gefertigt werden, und das Einblasen eines Trocknungsgases durch die Seitenwand entfällt, so daß die Einströmkanäle in der senkrechten Seitenwand der Trocknungsvorrichtung 1 wegfallen können.The channel cover surface 7 consists of a continuous filter with constant permeability. The cross sections of the drying duct 2 are rectangular, the duct width increasing linearly upwards from the duct inlet 27 to the duct outlet width b2. An air space 67 of the drying device 1 is located to the side of the drying channel 2. Inflow channels 44, 45, 46 are arranged in the vertical side wall of the air space 67, through which drying gas, in particular heated air, flows and through the channel cover surface 7 in the direction of the arrows P in the drying channel 2 enters. At the top, the channel outlet 28 of the drying channel 2 is closed off by an inflow box 39 with a filter mat 48, through the drying gas in the flow direction B downwards, in the opposite direction to the running direction A of the carrier material strip 4, through the channel inlet 27 into a suction box 37 which flows the channel inlet closes at the bottom. The suction box 37 is equipped with a filter mat 47 and a diagonally arranged perforated baffle plate 49 which prevents eddy formation in the gas flow. The inflow box 39 can also be equipped with a perforated baffle plate 73. The baffle plate 49 can also be omitted if the filter mat 47 alone is sufficient to suppress vortex formation. In the event that the gas flow entering the convergent drying channel 2 through the channel outlet is sufficient for drying alone, the channel cover surface 7 can be made of impermeable material and there is no need to blow in a drying gas through the side wall, so that the inflow channels in the vertical side wall of the drying device 1 can be omitted.

Der Trocknungskanal 2 ist am Kanaleinlaß 27 und am Kanalauslaß 28 durch Lamellendichtungen 38 bzw. 40 oder Labyrinthdichtungen möglichst dicht gegen das bewegte Trägermaterialband 4 abgeschlossen. Die Lamellendichtungen 38 und 40 sind an den vertikalen Außenwänden des Absaugkastens 37 bzw. des Einströmkastens 39 angebracht, die dem Trägermaterialband 4 zugewandt sind. Am Kanaleinlaß 27 für das Trägermaterialband 4 wird das Trocknungsgas durch den Absaugkasten 37 hindurch abgezogen, wobei je nach Verengung des Kanalquerschnittes und der Menge des eingespeisten bzw. abgesaugten Trocknungsgases eine Geschwindigkeitssteigerung der Gasströmung von oben nach unten im Trocknungskanal 2 entsteht, die Turbulenzen unterdrückt. Das aus dem Kanalauslaß 28 austretende Trägermaterialband 4 wird durch eine Umlenkrolle 36 aus der Vertikalrichtung in eine bestimmte Richtung zur weiteren Verarbeitung geführt.The drying duct 2 is closed at the duct inlet 27 and at the duct outlet 28 by lamellar seals 38 or 40 or labyrinth seals as tightly as possible against the moving carrier material strip 4. The lamella seals 38 and 40 are attached to the vertical outer walls of the suction box 37 and the inflow box 39, which face the carrier material band 4. At the channel inlet 27 for the carrier material strip 4, the drying gas is drawn off through the suction box 37, whereby depending on the narrowing of the channel cross section and the amount of the fed or extracted drying gas, a speed increase in the gas flow from top to bottom in the drying channel 2 arises, which suppresses turbulence. The carrier material strip 4 emerging from the channel outlet 28 is guided through a deflection roller 36 from the vertical direction in a certain direction for further processing.

Bei der zur Laufrichtung A des Trägermaterialbandes 4 gegensinnigen Strömung des Trocknungsgases zeigt sich, daß in dem nach unten konvergenten Trocknungskanal 2 die Flüssigkeitsschicht auf dem Trägermaterialband 4 ohne Verblasungen strukturfrei trocknet. Bei dieser Art von Trocknung folgen die Gasströmung und die von der Flüssigkeitsschicht herrührenden Lösungsmitteldämpfe der Schwerkraft. Die im Gegenlauf zum laminaren, nach unten beschleunigten Gasstrom getrocknete Schicht auf dem Trägermaterialband 4 zeigt keine Verblasungen, die unter Umständen durch infolge der Schwerkraft abgelöste und herabfallende Lösungsmitteldämpfe verursacht werden. Dies kann durch Stillstands-Versuche gezeigt werden, bei denen das mit der Flüssigkeitsschicht versehene Trägermaterialband 4 im Trocknungskanal 2 angehalten, und mit Hilfe von Strömungsprüfröhrchen gezeigt wird, daß Wirbel von Lösungsmitteldämpfen nicht auftreten.With the flow of the drying gas in the direction opposite to the running direction A of the carrier material strip 4, it can be seen that in the drying channel 2, which converges downward, the liquid layer on the carrier material strip 4 dries without structure, without blowing. With this type of drying, the gas flow and the solvent vapors from the liquid layer follow gravity. The layer on the carrier material belt which is dried in the opposite direction to the laminar, accelerated downward gas flow 4 does not show any blows which may be caused by solvent vapors being released and falling due to gravity. This can be shown by standstill experiments in which the carrier material strip 4 provided with the liquid layer is stopped in the drying channel 2, and it is shown by means of flow test tubes that swirls of solvent vapors do not occur.

Fig. 10 zeigt eine schematische Schnittansicht einer siebenten Ausführungsform der Trocknungsvorrichtung für die beidseitige Trocknung des Trägermaterialbandes 4, das beispielsweise auf beiden Seiten eine Flüssigkeitsschicht trägt und senkrecht von unten nach oben durch die Trocknungsvorrichtung hindurchläuft. Die beiden Trocknungskanäle 2 und 2′ sind symmetrisch zur Senkrechten ausgebildet. In Figur 10 sind die außerhalb des Trocknungskanals 2 befindlichen Bauteile, die an den Einströmkasten 39 und den Absaugkasten 37 anschließen, dargestellt, während die gleichen, am rechten Trocknungskanal 2′ angeschlossenen Bauteile zur Vereinfachung der Zeichnung weggelassen wurden.10 shows a schematic sectional view of a seventh embodiment of the drying device for drying the carrier material tape 4 on both sides, which, for example, carries a liquid layer on both sides and runs vertically from bottom to top through the drying device. The two drying channels 2 and 2 'are symmetrical to the vertical. In Figure 10, the components located outside the drying duct 2, which connect to the inflow box 39 and the suction box 37, are shown, while the same components connected to the right drying duct 2 'have been omitted to simplify the drawing.

Das Trägermaterialband 4 läuft schräg von oben nach unten in einen Behälter 50 mit der aufzubringenden Flüssigkeit aus verdampfbaren Lösungsmittelkomponenten und nicht-verdampfbaren Komponenten ein und wird um eine Umlenkrolle 51 senkrecht nach oben durch den Spalt von Abquetschwalzen 52, 53 und zwischen den Absaugkästen 37, 37′ hindurch in die Trocknungsvorrichtung geführt.The carrier material strip 4 runs obliquely from top to bottom into a container 50 with the liquid to be applied, consisting of evaporable solvent components and non-evaporable components, and is turned around a deflection roller 51 vertically upward through the gap of squeeze rollers 52, 53 and between the suction boxes 37, 37 'Passed into the drying device.

In dem Behälter 50 wird das Trägermaterialband 4 beidseitig mit Flüssigkeit beschichtet, deren Überschuß im Spalt zwischen den Abquetschwalzen 52, 53 abgequetscht wird. Selbstverständlich können auch andere bekannte Antragsverfahren zum beidseitigen Beschichten des Trägermaterialbandes 4 angewandt werden. Innerhalb der Trocknungsvorrichtung trennt das Trägermaterialband 4 die beiden Trocknungskanäle 2, 2′ voneinander und tritt zwischen den beiden Einströmkästen 39, 39′ aus der Trocknungsvorrichtung aus. Das Trocknungsgas wird über die Filtermatten bzw. Metallgewebe oder dergleichen der Einströmkästen 39, 39′ in die Trocknungskanäle 2, 2′ in die Strömungsrichtungen B, B′ vertikal nach unten, gegensinnig zur Laufrichtung A des Trägermaterialbandes 4, eingeblasen. Die Trocknungskanalquerschnitte verengen sich nach unten, wodurch es zu einer Beschleunigung der Trocknungsgasströme in Richtung der Kanaleinlässe kommt. Das Trocknungsgas wird durch die Filtermatten bzw. Metallgewebe der Absaugkästen 37, 37′, welche die Kanaleinlässe nach unten hin abschließen, abgesaugt. Das durch den linken Absaugkasten 37 abgesaugte Trocknungsgas strömt durch eine Umluftleitung 54, in der eine Drosselklappe 55 angeordnet ist, in einen Lüftungskasten 56. Der Lüftungskasten 56 besitzt eine Frischluftzuleitung, in der eine Drosselklappe 58 zum Regeln der zugeführten Frischluftmenge montiert ist. Die Frischluft strömt in Strömungsrichtung C in den Lüftungskasten 56. Desweiteren ist an dem Lüftungskasten 56 eine Abluftleitung angebracht, in der in Strömungsrichtung D verbrauchte Luft abgeführt wird. In dieser Abluftleitung befindet sich eine Drosselklappe 59 zum Regeln der abgeführten Luftmenge.In the container 50, the carrier material strip 4 is coated on both sides with liquid, the excess of which is squeezed off in the gap between the squeezing rollers 52, 53. Of course, other known application methods for coating the carrier material strip 4 on both sides can also be used. Within the drying device, the carrier material strip 4 separates the two drying channels 2, 2 'from one another and emerges from the drying device between the two inflow boxes 39, 39'. The drying gas is blown over the filter mats or metal mesh or the like of the inflow boxes 39, 39 'into the drying channels 2, 2' in the flow directions B, B 'vertically downward, in the opposite direction to the running direction A of the carrier material strip 4. The drying channel cross sections narrow downwards, which leads to an acceleration of the drying gas flows in the direction of the channel inlets. The drying gas is sucked through the filter mats or metal mesh of the suction boxes 37, 37 ', which close off the channel inlets. The drying gas extracted by the left suction box 37 flows through a recirculation line 54, in which a throttle valve 55 is arranged, into a ventilation box 56. The ventilation box 56 has a fresh air supply line, in which a throttle valve 58 is mounted to regulate the quantity of fresh air supplied. The fresh air flows in the flow direction C into the ventilation box 56. Furthermore, an exhaust air line is attached to the ventilation box 56, in which air used in the flow direction D is discharged. In this Exhaust air line is a throttle valve 59 for controlling the amount of air discharged.

Von dem Lüftungskasten 56 führt die Umluftleitung durch einen Wärmetauscher 57 hindurch, in welchem die in der Umluftleitung strömende Luft erwärmt wird, bevor sie über eine Drosselklappe 60 in den Einströmkasten 39 eintritt.From the ventilation box 56, the circulating air line leads through a heat exchanger 57, in which the air flowing in the circulating air line is heated before it enters the inflow box 39 via a throttle valve 60.

Die aus dem Trocknungskanal 2′ über den Absaugkasten 37′ abströmende Luftmenge zirkuliert in der gleichen Weise, wie voranstehend beschrieben ist, durch die nicht gezeigten Bauteile für die Aufbereitung der Umluft und wird über den Einströmkasten 39′ in den Trocknungskanal 2′ zurückgeführt.The amount of air flowing out of the drying duct 2 'via the suction box 37' circulates in the same manner as described above, through the components for the treatment of the circulating air, not shown, and is returned via the inflow box 39 'into the drying duct 2'.

In Fig. 11A ist der Bereich des Kanaleinlasses 27 einer weiteren Ausführungsform der Erfindung im einzelnen dargestellt. Diese Ausführungsform entspricht im wesentlichen der Ausführungsform nach Fig. 9, mit dem Unterschied, daß das Trägermaterialband 4 nicht über Rollen läuft, die in der Kanalgrundfläche eingelassen sind, sondern die Rückseite des Trägermaterialbandes 4 im Absaugbereich des Kanaleinlasses mit Unterdruck beaufschlagt wird, wodurch sichergestellt wird, daß das Trägermaterialband nicht durch die an der Oberseite entstehende Gasströmung abgelenkt wird. Es liegt eine gegensinnige Trocknungsgasströmung zu der senkrecht nach oben gerichteten Laufrichtung des Trägermaterialbandes 4 vor. Im Absaugbereich befindet sich eine Unterdruckkammer 41, die beispielsweise durch eine poröse Platte 42 gegen die Rückseite des Trägermaterialbandes 4 hin geöffnet ist. Im Inneren der Unterdruckkammer ist ein Lochblech 68 angeordnet, das für ein gleichmäßiges Abströmen des abgesaugten Gases bzw. der abgesaugten Luft sorgt. Der Kanaleinlaß 27 ist, ebenso wie im Falle der Ausführungsform nach Fig. 9, durch einen Absaugkasten 37 nach unten hin abgeschlossen. Die in Strömungsrichtung B beschleunigte Gasströmung tritt durch eine Filtermatte 47, ein Metallgewebe oder dergleichen in das Innere des Absaugkastens 37 ein, in dem noch ein diagonal angeordnetes, gelochtes Prallblech 49 vorhanden sein kann. Dieses Prallblech ist nicht unbedingt erforderlich und kann auch weggelassen werden, falls es nicht zu Wirbelbildungen innerhalb des Absaugkastens 37 kommt. Zweck des Prallbleches 49 ist es nämlich, eine Wirbelbildung innerhalb des Absaugkastens 37 zu verhindern, damit eine über die gesamte Trocknerbreite gleichmäßige Absaugung gewährleistet ist. An der senkrechten Außenseite des Absaugkastens 37, zugewandt der Vorderseite des Trägermaterialbandes 4, ist eine Lamellendichtung 38 oder eine Labyrinthdichtung angeordnet, die den Kanaleinlaß möglichst dicht, jedoch berührungsfrei, gegen das bewegte Trägermaterialband 4 abschließt. In das Innere des Trocknungskanals wird, ebenso wie im Falle der Ausführungsform nach Fig. 9, durch die geneigte Kanaldeckfläche 7 Trocknungsgas bzw. Trocknungsluft eingespeist.11A shows the area of the channel inlet 27 of a further embodiment of the invention in detail. This embodiment corresponds essentially to the embodiment according to FIG. 9, with the difference that the carrier material band 4 does not run over rollers which are embedded in the channel base surface, but rather the back of the carrier material band 4 is subjected to a vacuum in the suction region of the duct inlet, thereby ensuring that the carrier material band is not deflected by the gas flow arising at the top. There is a flow of drying gas in the opposite direction to the direction of upward travel of the carrier material strip 4. In the suction area there is a vacuum chamber 41, which is opposed, for example, by a porous plate 42 Back of the carrier tape 4 is open. A perforated plate 68 is arranged in the interior of the vacuum chamber and ensures a uniform outflow of the extracted gas or the extracted air. As in the case of the embodiment according to FIG. 9, the channel inlet 27 is closed at the bottom by a suction box 37. The gas flow accelerated in the direction of flow B enters the interior of the suction box 37 through a filter mat 47, a metal mesh or the like, in which a diagonally arranged, perforated baffle plate 49 may also be present. This baffle plate is not absolutely necessary and can also be omitted if there is no formation of vortices within the suction box 37. The purpose of the baffle plate 49 is namely to prevent vortex formation within the suction box 37, so that a uniform suction is ensured over the entire dryer width. On the vertical outside of the suction box 37, facing the front of the carrier material band 4, a lamellar seal 38 or a labyrinth seal is arranged, which closes the channel inlet as tightly as possible, but without contact, against the moving carrier material band 4. As in the case of the embodiment according to FIG. 9, drying gas or drying air is fed into the interior of the drying channel through the inclined channel top surface 7.

In Figur 11B ist der Absaugbereich einer Ausführungsform dargestellt, die weitgehend der Ausführungsform nach Fig. 11A entspricht, mit dem einzigen Unterschied, daß anstelle der Lamellendichtung eine Rakeldichtung 43 an der senkrechten Außenseite des Absaugkastens 37 angebracht ist und den Kanaleinlaß möglichst dicht gegen das Trägermaterialband 4 abschließt. An der Rückseite des Trägermaterialbandes 4 befindet sich wieder eine Unterdruckkammer 41, die eine Ablenkung des Trägermaterialbandes 4 durch die an der Oberseite entstehende Gasströmung verhindert.FIG. 11B shows the suction area of an embodiment which largely corresponds to the embodiment according to FIG. 11A, with the only difference that instead of the lamella seal, a doctor seal 43 is attached to the vertical outside of the suction box 37 and closes the channel inlet as tightly as possible against the carrier material strip 4. On the back of the carrier material band 4 there is again a vacuum chamber 41, which prevents the carrier material band 4 from being deflected by the gas flow which arises at the top.

Figur 12A zeigt eine schematische Schnittansicht einer achten Ausführungsform der Trocknungsvorrichtung 1, bei der der Trocknungskanal 2 eine senkrecht verlaufende Kanaldeckfläche 7 besitzt, die parallel zu der senkrechten Kanalgrundfläche 3 verläuft. Die Kanaldeckfläche 7 besteht aus aneinandergereihten, gleichdicken Filtermatten 26, die unterschiedliche Durchlässigkeit für ein Gas bzw. Luft aufweisen. In Figur 12A ist die unterschiedliche Durchlässigkeit durch unterschiedlich starke Schraffuren der einzelnen Filtermatten 26 angedeutet, in der Weise, daß die Filtermatte nahe dem Kanalauslaß stärker schraffiert ist, entsprechend ihrer geringeren Durchlässigkeit, und die Schraffuren der Filtermatten 26 in Richtung des Kanaleinlasses abnehmen, um anzuzeigen, daß die Durchlässigkeit der Filtermatten entgegen der Laufrichtung A des Trägermaterialbandes 33 zunimmt. Die übrigen Bauteile der Trocknungsvorrichtung, die mit den Bauteilen der Ausführungsformen der Trocknungsvorrichtung nach den Fig. 9 und 11A übereinstimmen, sind mit den gleichen Bezugszahlen wie in den Figuren 9 und 11A belegt. Vor dem Kanaleinlaß 27 des Trocknungskanals 2 befindet sich ein Absaugkasten 37 mit einer Filtermatte 47. Die Kanalquerschnitte sind über die Länge des Trocknungskanals 2 gleichbleibend. Wegen der unterschiedlichen Durchlässigkeiten der Filtermatten 26 strömt jeweils eine unterschiedliche Gas-/Luftmenge durch die einzelne Filtermatte 26, was durch die Größe der gebogenen Pfeile P₁ bis P₄, die den einzelnen Filtermatten 26 zugeordnet sind, angedeutet wird. Über den Einströmkasten 39 mit der Filtermatte 48 strömt von oben Luft bzw. Gas in den Trocknungskanal 2. Durch die in Richtung des Kanaleinlasses erfolgte Zunahme der zugeführten Gas-/Luftmenge ergibt sich eine Beschleunigung der Strömung entgegen der Laufrichtung des Trägermaterialbandes 33. Diese Beschleunigung bzw. dieser Geschwindigkeitszuwachs der Strömung auf den Kanaleinlaß hin ist durch die größer werdenden Geschwindigkeitspfeile vi, die parallel zu dem Trägermaterialband 33 eingezeichnet sind, angedeutet. Die seitliche Zufuhr von Trocknungsgas bzw. Luft durch die Kanaldeckfläche 7 erfolgt über Einströmkanäle 61 der Trocknungsvorrichtung 1.FIG. 12A shows a schematic sectional view of an eighth embodiment of the drying device 1, in which the drying duct 2 has a vertically running duct cover surface 7 which runs parallel to the vertical duct base surface 3. The channel cover surface 7 consists of lined up, equally thick filter mats 26, which have different permeability to a gas or air. In FIG. 12A, the different permeability is indicated by different hatching of the individual filter mats 26, in such a way that the filter mat near the sewer outlet is more hatched, corresponding to its lower permeability, and the hatching of the filter mats 26 decrease in the direction of the sewer inlet to indicate that the permeability of the filter mats increases counter to the running direction A of the carrier material band 33. The remaining components of the drying device, which correspond to the components of the embodiments of the drying device according to FIGS. 9 and 11A, are given the same reference numbers as in FIGS. 9 and 11A. In front of the channel inlet 27 of the drying channel 2 there is a suction box 37 with a filter mat 47. The channel cross sections are constant over the length of the drying channel 2. Because of the different permeability of the filter mats 26, a different amount of gas / air flows through the individual filter mat 26, which is indicated by the size of the curved arrows P₁ to P₄, which are assigned to the individual filter mats 26. Air or gas flows from above into the drying duct 2 via the inflow box 39 with the filter mat 48. The increase in the amount of gas / air supplied in the direction of the duct inlet results in an acceleration of the flow against the direction of travel of the carrier material band 33. This acceleration or This increase in speed of the flow towards the channel inlet is indicated by the increasing speed arrows v i , which are drawn in parallel to the carrier material band 33. The lateral supply of drying gas or air through the channel cover surface 7 takes place via inflow channels 61 of the drying device 1.

Die in Fig. 12B gezeigte neunte Ausführungsform stimmt, mit Ausnahme der Deckfläche, mit der achten Ausführungsform überein. Die Deckfläche 7 der neunten Ausführungsform besitzt gleichbleibende Permeabilität über die Kanallänge. Da der über die Deckfläche zugeführte Gasmengenstrom in Richtung Kanaleinlaß auch bei konstanter Permeabilität der Deckfläche zunimmt, erfolgt eine Beschleunigung der Strömung entgegen der Laufrichtung des Trägermaterialbandes 33.The ninth embodiment shown in FIG. 12B is the same as the eighth embodiment except for the top surface. The top surface 7 of the ninth embodiment has constant permeability over the channel length. Since the gas volume flow supplied via the cover surface increases in the direction of the channel inlet even with a constant permeability of the cover surface, the flow is accelerated counter to the running direction of the carrier material strip 33.

Der Einström- und der Absaugkasten sind mittels Labyrinthdichtungen 40 bzw. 38 gegen das Trägermaterialband 33 abgedichtet, und eine Unterdruckkammer 41 sorgt für Unterdruck auf der Rückseite des Trägermaterialbandes 33 im Bereich des Kanaleinlasses, um eine Bandablenkung an der Vorderseite des Bandes 33 durch die Strömung zu verhindern.The inflow and suction boxes are sealed against the carrier tape 33 by means of labyrinth seals 40 and 38, respectively, and a vacuum chamber 41 provides negative pressure on the back of the carrier tape 33 in the region of the channel inlet in order to deflect the tape at the front of the tape 33 due to the flow prevent.

Die Kanaldeckfläche 7 kann ferner aus aneinandergereihten Filtermatten gleicher Struktur und gleicher Konsistenz, jedoch unterschiedlicher Dicken, bestehen, wobei die Dicke der Filtermatten entgegen der Laufrichtung des Trägermaterialbandes 33 abnimmt, d.h. mit anderen Worten, die Durchlässigkeit der Filtermatten in Richtung des Kanaleinlasses zunimmt.The channel cover surface 7 can also consist of filter mats of the same structure and consistency, but of different thicknesses, which are lined up, the thickness of the filter mats decreasing counter to the running direction of the carrier material band 33, i.e. in other words, the permeability of the filter mats increases in the direction of the channel inlet.

Figur 13 zeigt eine zehnte Ausführungsform der Trocknungsvorrichtung nach der Erfindung im Schnitt, bei der die Kanaldeckfläche 7 gegen die vertikale Kanalgrundfläche 3 in Richtung Kanalauslaß konvergiert. Die Kanaldeckfläche 7 ist gas-/luftdurchlässig und besteht aus einem durchgehenden Filter, kann aber auch aus aneinandergereihten Filtermatten gefertigt sein, wie sie in Figur 12A dargestellt sind.FIG. 13 shows a tenth embodiment of the drying device according to the invention in section, in which the channel cover surface 7 converges towards the vertical channel base surface 3 in the direction of the channel outlet. The channel cover surface 7 is permeable to gas / air and consists of a continuous filter, but can also be made of filter mats strung together, as shown in FIG. 12A.

Der Kanaleinlaß des Trocknungskanals 2 ist größer als der Kanalauslaß. Die Querschnitte des Trocknungskanals 2 sind rechteckförmig, wobei sich die Kanalbreite von dem Kanaleinlaß nach oben hin linear auf die Breite des Kanalauslasses verkleinert. Seitlich von dem Trocknungskanal befindet sich ein Luftraum 69 der Trocknungsvorrichtung. In der senkrechten Seitenwand des Luftraumes 69 sind Einströmkanäle 62 angeordnet, durch die Trocknungsgas, beispielsweise erwärmte Luft, einströmt und durch die Kanaldeckfläche 7 in Richtung der Pfeile P1 bis P4 in den Trocknungskanal 2 eintritt. Die zunehmende Größe der Pfeile P1 bis P4 zeigt an, daß die Strömung des Trocknungsgases innerhalb des Trocknungskanals 2 von unten nach oben hin zunimmt, das heißt mit anderen Worten, daß die Strömungsgeschwindigkeit in Richtung Kanalauslaß anwächst.The channel inlet of the drying channel 2 is larger than the channel outlet. The cross sections of the drying channel 2 are rectangular, the channel width decreasing linearly upwards from the channel inlet to the width of the channel outlet. Laterally from the drying channel there is an air space 69 of the drying device. In the vertical side wall of the air space 69, inflow channels 62 are arranged through which drying gas, for example heated air, flows in and enters the drying channel 2 through the channel cover surface 7 in the direction of the arrows P1 to P4. The increasing size of the arrows P1 to P4 indicates that the flow of the drying gas within the drying channel 2 increases from bottom to top, in other words that the flow speed increases in the direction of the channel outlet.

Das Trägermaterialband 4 ist um eine Umlenkrolle 35 herumgeführt, der eine Breitschlitzdüse 34 in 7-Uhr-Stellung mit geringem Spalt gegenüberliegt. Durch die Breitschlitzdüse 34 wird eine Flüssigkeitsschicht aus verdampfbaren Lösungsmittelkomponenten und nicht-verdampfbaren Komponenten auf die Vorderseite des Trägermaterialbandes 4 aufgetragen, das senkrecht nach oben durch den Kanaleinlaß in den Trocknungskanal 2 einläuft. Dabei läuft das Trägermaterialband 4 über Tragrollen 6, die seitlich im geringen Abstand von der Kanalgrundfläche 3 angeordnet sind.The carrier material strip 4 is guided around a deflection roller 35 which is opposite a slot die 34 in the 7 o'clock position with a small gap. Through the slot die 34, a liquid layer of vaporizable solvent components and non-vaporizable components is applied to the front of the carrier material strip 4, which runs vertically upwards through the duct inlet into the drying duct 2. The carrier material strip 4 runs over support rollers 6, which are arranged laterally at a short distance from the channel base 3.

Der Kanaleinlaß ist durch einen Einströmkasten 39 mit einer Filtermatte 48 abgeschlossen, und das gesamte oder ein Teil des Trocknungsgases strömt durch den Einströmkasten 39 und die Filtermatte 48 in Strömungsrichtung B nach oben, gleichsinnig zur Laufrichtung A des Trägermaterialbandes 4, durch den Trocknungskanal 2.The channel inlet is closed by an inlet box 39 with a filter mat 48, and all or part of the drying gas flows through the inlet box 39 and the filter mat 48 in the direction of flow B upwards, in the same direction as the direction of travel A of the carrier material band 4, through the drying channel 2.

Den Kanalauslaß schließt ein Absaugkasten 37 mit einer Filtermatte 47 ab, durch welche das Trocknungsgas abgesaugt wird.The duct outlet is closed by a suction box 37 with a filter mat 47 through which the drying gas is sucked off.

Der Trocknungskanal 2 ist am Kanaleinlaß und am Kanalauslaß durch Lamellendichtungen 40 bzw. 38 bzw. Labyrinthdichtungen möglichst dicht, jedoch ohne zu streifen, gegen das bewegte Trägermaterialband 4 abgeschlossen. Die Lamellendichtungen 38, 40 befinden sich an den senkrechten Außenwänden des Absaugkastens 37 bzw. des Einströmkastens 39, die dem Trägermaterialband 4 zugewandt sind.The drying duct 2 is sealed at the duct inlet and at the duct outlet by means of lamella seals 40 and 38 or labyrinth seals as tightly as possible, but without streaking, against the moving carrier material strip 4. The lamella seals 38, 40 are located on the vertical outer walls of the suction box 37 and the inflow box 39, which face the carrier material band 4.

Das aus dem Kanalauslaß austretende Trägermaterialband 4 wird über eine Umlenkrolle 36 geführt und aus der Senkrechtrichtung in eine schräg nach unten verlaufende Richtung zur weiteren Verarbeitung gelenkt.The carrier material strip 4 emerging from the channel outlet is guided over a deflection roller 36 and directed from the vertical direction in an obliquely downward direction for further processing.

Bei der zur Laufrichtung A des Trägermaterialbandes 4 gleichsinnigen Strömung des Trocknungsgases wird erreicht, daß am Kanaleinlaß des Senkrechttrockners eine Laminarströmung mit einer Mindestgeschwindigkeit erzeugt werden muß, die das Herabfallen der aus der Flüssigkeitsschicht auf dem Trägermaterialband 4 austretenden Lösemitteldämpfe verhindert. Um die Lösemitteldämpfe in Laufrichtung des Trägermaterialbandes 4 mitzuführen, wird die Strömungsgeschwindigkeit am Kanaleinlaß so hoch eingestellt, daß der Schwerkrafteinfluß durch die Strömungsgeschwindigkeit des Trocknungsgases überwunden wird. Dies geschieht in der Weise, daß am Kanaleinlaß des Trocknungsgases durch entsprechende Maßnahmen am Einströmkasten 39, wie das Anbringen der Filtermatte 48 und eines Lochblechs 70 im Inneren des Einströmkastens, das Trocknungsgas schon laminar einströmt. Dadurch können dann die Lösemitteldämpfe mit der erforderlichen Geschwindigkeit nach oben abgeführt werden. Dadurch wird die Gefahr des Auftretens von Verblasungsstrukturen an der beschichteten Vorderseite des Trägermaterialbandes 4 vermieden.With the flow of the drying gas in the same direction as the running direction A of the carrier material strip 4, it is achieved that a laminar flow must be generated at the channel inlet of the vertical dryer at a minimum speed which prevents the solvent vapors emerging from the liquid layer on the carrier material strip 4 from falling down. In order to carry the solvent vapors in the direction of travel of the carrier material strip 4, the flow rate at the channel inlet is set so high that the influence of gravity is overcome by the flow rate of the drying gas. This happens in such a way that on Channel inlet of the drying gas by appropriate measures on the inflow box 39, such as attaching the filter mat 48 and a perforated plate 70 inside the inflow box, the drying gas flows in already laminar. This allows the solvent vapors to be discharged upwards at the required speed. This avoids the risk of blown structures occurring on the coated front side of the carrier material strip 4.

Bei der elften Ausführungsform der Erfindung nach Figur 14 verlaufen der Trocknungskanal 2, ein Obertrum 65 und ein Untertrum 66 des Trägermaterialbandes 4 horizontal. Bei dieser Ausführungsform ist die Strömungsrichtung B des Trocknungsgases, das durch den Einströmkasten 39 in den Trocknungskanal 2 einströmt und durch den Absaugkasten 37 abströmt, gegensinnig zu der Laufrichtung A des Untertrums des Trägermaterialbandes 4 durch den Trocknungskanal 2, und die Strömung wird in Strömungsrichtung B beschleunigt.In the eleventh embodiment of the invention according to FIG. 14, the drying channel 2, an upper run 65 and a lower run 66 of the carrier material strip 4 run horizontally. In this embodiment, the flow direction B of the drying gas, which flows through the inflow box 39 into the drying channel 2 and flows out through the suction box 37, is opposite to the running direction A of the lower run of the carrier material band 4 through the drying channel 2, and the flow is accelerated in the flow direction B. .

Diese Ausführungsform wird beispielsweise beim Aufbringen einer zweiten Schicht S2 auf eine getrocknete erste Schicht S1 auf dem Trägermaterialband 4 eingesetzt. Beispielsweise ist die Oberseite des Obertrums 65 schon mit einer getrockneten ersten Flüssigkeitsschicht versehen und wird über eine Umlaufrolle 63 herumgeführt. Eine Breitschlitzdüse 64 ist in der 11-Uhr-Stellung und in geringem Abstand zu der Umlenkrolle 63 angeordnet. Durch die Breitschlitzdüse 64 wird die zweite Flüssigkeitsschicht auf die getrocknete erste Flüssigkeitsschicht auf dem Trägermaterialband 4 appliziert. Die zweite Flüssigkeitsschicht durchläuft, hängend an der Unterseite des horizontal geführten Untertrums 66, den Trocknungskanal 2. Das Trägermaterialband 4 wird unterhalb und entlang einer horizontalen Kanaldecke 72 des Trocknungskanals 2 geführt. Ein Kanalboden 71 des Trocknungskanals 2 konvergiert in Strömungsrichtung B des Trocknungsgases. Der Kanaleinlaß des Trocknungskanals 2 für das Trägermaterialband 4 besitzt eine geringere Höhe als der Kanalauslaß, den der vertikal ausgerichtete Einströmkasten 39, der eine Filtermatte 48 aufweist, abschließt. Der Kanaleinlaß wird von dem Absaugkasten 37 und dessen Filtermatte 47 abgeschlossen. Sowohl der Einström- als auch der Absaugkasten tragen auf ihren horizontalen Oberseiten Labyrinthdichtungen, die den Kanalauslaß und den Kanaleinlaß gegen das Untertrum 66 des Trägermaterialbandes 4 abdichten.This embodiment is used, for example, when applying a second layer S2 to a dried first layer S1 on the carrier material strip 4. For example, the top of the upper run 65 is already provided with a dried first layer of liquid and is guided around by a revolving roller 63. A slot die 64 is arranged in the 11 o'clock position and at a short distance from the deflection roller 63. The second liquid layer becomes through the slot nozzle 64 applied to the dried first liquid layer on the carrier material tape 4. The second liquid layer runs through the drying channel 2, hanging on the underside of the horizontally guided lower run 66. The carrier material strip 4 is guided below and along a horizontal channel ceiling 72 of the drying channel 2. A channel bottom 71 of the drying channel 2 converges in the flow direction B of the drying gas. The channel inlet of the drying channel 2 for the carrier material band 4 has a lower height than the channel outlet which the vertically oriented inflow box 39, which has a filter mat 48, closes. The channel inlet is closed by the suction box 37 and its filter mat 47. Both the inflow and the suction box carry labyrinth seals on their horizontal upper sides, which seal the channel outlet and the channel inlet against the lower run 66 of the carrier material strip 4.

Diese Ausführungsform des Trocknungskanals ist in ihrer Anordnung und Wirkungsweise vergleichbar mit der rechten Hälfte der Ausführungsform nach Figur 10, wenn in Betracht gezogen wird, daß der Trocknungskanal 2 horizontal und nicht vertikal, wie bei der Ausführungsform nach Figur 10, angeordnet ist, und daß es sich um das Aufbringen und Trocknen einer zweiten Schicht auf einer ersten Schicht des Trägermaterialbandes handelt.This embodiment of the drying duct is comparable in its arrangement and mode of operation to the right half of the embodiment according to FIG. 10, if it is taken into account that the drying duct 2 is arranged horizontally and not vertically, as in the embodiment according to FIG. 10, and that it is the application and drying of a second layer on a first layer of the carrier material band.

Im folgenden werden drei Ausführungsbeispiele und zwei Vergleichsbeispiele von Trägermaterialbahnen angeführt, auf denen zu trocknende Flüssigkeitsschichten aufgebracht sind.Three exemplary embodiments and two comparative examples of carrier material webs are given below, on which layers of liquid to be dried are applied.

Ausführungsbeispiel 1Embodiment 1

Auf eine für Offsetdruck-Zwecke vorbehandelte Aluminiumbahn 4 von 0,1 mm Dicke wird bei einer Laufgeschwindigkeit von 8 m/min der Aluminiumbahn 4 die Lösung eines lichtempfindlichen Polymermaterials in einem organischen Lösungsmittel durch ein geeignetes Beschichtungsverfahren gleichmäßig aufgetragen. Die Lösung hat eine dynamische Viskosität von 1,4 mPas, und die Dicke des Flüssigkeitsfilms beträgt 27 µm.The solution of a light-sensitive polymer material in an organic solvent is uniformly applied to an aluminum web 4 of 0.1 mm thickness pretreated for offset printing purposes at a running speed of 8 m / min by an appropriate coating method. The solution has a dynamic viscosity of 1.4 mPas and the thickness of the liquid film is 27 µm.

Unmittelbar nach der Breitschlitzdüse 34 läuft die Aluminiumbahn in eine Trocknungsvorrichtung 1 gemäß einer der Ausführungsformen gemäß den Figuren 1 bis 4 oder 6 ein. Die Kanalauslaßhöhe h2 im Kanalauslaß beträgt 2 cm, die Kanaleinlaßhöhe h1 im Kanaleinlaß ist 30 cm. Bei einer Gesamtlänge des Trocknungskanals 2 von 1,2 m ist die Kanaldeckfläche 7 gegen die Bahnebene in einem Winkel von 13,1° geneigt. Das Umluftgebläse 12 ist nicht eingeschaltet und die Drosselklappe 13 geschlossen. Die Leistung des Sauggebläses 9 wird so eingestellt, daß am Eingang des Trocknungskanals 2 eine Luftgeschwindigkeit von v₁ gleich 0,3 m/sec herrscht. Daraus resultiert im Auslaußquerschnitt A2 des Trocknungskanals 2 eine Luftgeschwindigkeit von v₂ gleich 4,5 m/sec. Zum vollständigen Entfernen von Lösungsmittelresten aus dem nahezu getrockneten Flüssigkeitsfilm auf der Aluminiumbahn 4 ist ein Düsentrockner entsprechend dem Stand der Technik nachgeschaltet, bei dem die Luftströmung im allgemeinen stark turbulent ist.Immediately after the slot die 34, the aluminum web runs into a drying device 1 according to one of the embodiments according to FIGS. 1 to 4 or 6. The duct outlet height h2 in the duct outlet is 2 cm, the duct inlet height h1 in the duct inlet is 30 cm. With a total length of the drying duct 2 of 1.2 m, the duct cover surface 7 is inclined at an angle of 13.1 ° to the web plane. The circulating air blower 12 is not switched on and the throttle valve 13 is closed. The performance of the suction fan 9 is adjusted so that at the entrance of the drying duct 2 there is an air speed of v 1 equal to 0.3 m / sec. This results in the outlet cross section A2 of the drying channel 2 an air speed of v₂ equal to 4.5 m / sec. For the complete removal of solvent residues from the almost dried liquid film on the aluminum web 4 is followed by a nozzle dryer according to the prior art, in which the air flow is generally very turbulent.

Die erhaltene fotoempfindliche Schicht der Aluminiumbahn 4, die anschließend zu Druckplatten konfektioniert wird, ist sehr gleichmäßig in ihrer Dicke und in ihrem optischen Erscheinungsbild. Mit einem Auflichtdensitometer wird auf der gesamten beschichteten Plattenfläche eine einheitliche optische Dichte von 1,47 gemessen.The photosensitive layer of the aluminum web 4 obtained, which is subsequently made into printing plates, is very uniform in its thickness and in its optical appearance. With a reflected light densitometer, a uniform optical density of 1.47 is measured on the entire coated plate surface.

Vergleichsbeispiel 1 (zu dem Ausführungsbeispiel 1)Comparative Example 1 (to Example 1)

Die Versuchsdurchführung entspricht im großen und ganzen derjenigen des Ausführungsbeispiels 1, jedoch ist in der Trocknungsvorrichtung 1 das Sauggebläse 9 nicht eingeschaltet, so daß die beschichtete Aluminiumbahn 4 beim Durchlauf durch den ersten Trocknungsbereich nur durch Verdunsten eines kleinen Teils der Lösungsmittel geringfügig angetrocknet wird. Die eigentliche Trocknung des Flüssigkeitsfilms erfolgt in dem nachgeschalteten Düsentrockner.The experiment is largely the same as that of embodiment 1, but in the drying device 1 the suction fan 9 is not switched on, so that the coated aluminum web 4 is only slightly dried by evaporation of a small part of the solvent as it passes through the first drying area. The actual drying of the liquid film takes place in the downstream nozzle dryer.

Es wird eine Schicht mit einer wolkigen bzw. melierten Struktur erhalten. Dünn- und Dickstellen mit einer Flächenausdehnung von 5 bis 20 mm Durchmesser sind dabei unregelmäßig über die Gesamtfläche verteilt. Die densitometrische Messung ergibt keine einheitliche optische Dichte, diese schwankt vielmehr in ihrer Größe je nach Meßort zwischen 1,43 und 1,50.A layer with a cloudy or mottled structure is obtained. Thin and thick spots with a surface area of 5 to 20 mm in diameter are distributed irregularly over the entire surface. The densitometric measurement does not result in a uniform optical density, but its size fluctuates between 1.43 and 1.50 depending on the measurement location.

Ausführungsbeispiel 2Embodiment 2

Auf eine Polyesterfolie von 125 µm Dicke wird durch ein geeignetes Beschichtungsverfahren eine Vesikularfilmlösung, gelöst in einem organischen Lösungsmittel, aufgetragen. Die Beschichtungsgeschwindigkeit beträgt 5 m/min. Die Lösung hat eine dynamische Viskosität von 5,5 mPas, die Dicke des aufgetragenen Flüssigkeitsfilms ist 40 µm. Der Flüssigkeitsfilm wird in gleicher Weise, wie dies anhand des Ausführungsbeispiels 1 beschrieben ist, getrocknet.A vesicular film solution, dissolved in an organic solvent, is applied to a polyester film 125 μm thick by a suitable coating process. The coating speed is 5 m / min. The solution has a dynamic viscosity of 5.5 mPas, the thickness of the applied liquid film is 40 µm. The liquid film is dried in the same way as described with reference to embodiment 1.

Zum Prüfen der Gleichmäßigkeit der Schicht wird der Film großflächig in einem Kopierrahmen mit UV-Licht bestrahlt und anschließend durch kurzes Erwärmen auf 100 °C entwickelt. Die dadurch bewirkte Eintrübung der Filmschicht ist über die gesamte Fläche gleichmäßig.To check the uniformity of the layer, the film is irradiated with UV light over a large area in a copier frame and then developed by briefly heating to 100 ° C. The resulting clouding of the film layer is uniform over the entire surface.

Vergleichsbeispiel 2 (zu Ausführungsbeispiel 2)Comparative Example 2 (to Example 2)

Die Beschichtung und die Trocknung verlaufen ähnlich wie bei dem Ausführungsbeispiel 2, davon abweichend ist jedoch in der Trocknungsvorrichtung 1 das Sauggebläse 9 nicht eingeschaltet. Die eigentliche Trocknung des Flüssigkeitsfilms erfolgt wie im Vergleichsbeispiel 1 erst in dem nachgeschalteten Düsentrockner.The coating and the drying process are similar to those in the exemplary embodiment 2, but in a different way, the suction fan 9 is not switched on in the drying device 1. The actual drying of the liquid film takes place, as in comparative example 1, only in the downstream nozzle dryer.

Nach der UV-Belichtung und thermischen Entwicklung bei 120 °C zeigt sich im Durchlicht eine wolkige Struktur des Vesikularfilms auf der Polyesterfolie. Dabei sind Dünn- und Dickstellen von 5 bis 20 mm Durchmesser unregelmäßig über die Fläche verteilt.After UV exposure and thermal development at 120 ° C, a cloudy structure of the vesicular film on the polyester film appears in transmitted light. Are Thin and thick spots from 5 to 20 mm in diameter distributed irregularly over the surface.

Ausführungsbeispiel 3Embodiment 3

Auf eine für Offsetdruck-Zwecke vorbehandelte Aluminiumbahn als Trägermaterialband 4, mit einer Dicke von 0,3 mm, wird bei einer Bandgeschwindigkeit von 15 m/min eine Lösung eines lichtempfindlichen Polymermaterials gleichmäßig aufgetragen.A solution of a light-sensitive polymer material is uniformly applied to an aluminum web pretreated for offset printing purposes as a carrier material strip 4, with a thickness of 0.3 mm, at a belt speed of 15 m / min.

Der Flüssigkeitsfilm ist 33 µm dick. Die Lösung hat eine dynamische Viskosität von 2,9 mPas.The liquid film is 33 µm thick. The solution has a dynamic viscosity of 2.9 mPas.

Es wird eine Trocknungsvorrichtung 1, wie in Figur 2 gezeigt, verwendet. Die Kanaleinlaßhöhe h1 beträgt 0,5 m und die Kanalauslaßhöhe h2 = 0,1 m. Die Kanaldeckfläche 7 ist als poröses Filter ausgebildet und gegen die Aluminiumbahn bzw. das Trägermaterialband 4 in einem Winkel von 4,3° geneigt.A drying device 1 as shown in FIG. 2 is used. The duct inlet height h1 is 0.5 m and the duct outlet height h2 = 0.1 m. The channel cover surface 7 is designed as a porous filter and inclined at an angle of 4.3 ° against the aluminum web or the carrier material strip 4.

Das Umluftgebläse 12 ist in Betrieb und die Drosselklappe 13 geöffnet. Die Stellung der Drosselklappe 14 wird so gewählt, daß ein Luftvolumenstrom von 1000 m³/h Frischluft in den Trocknungsraum 5 angesaugt wird. Eine gleichgroße Luftmenge wird durch das Sauggebläse 12 aus dem Trocknungskanal 2 abgesaugt, so daß es nicht zu einer Anreicherung von verdampftem Lösungsmittel in der Trocknungsluft kommen kann. Durch die exakte Einstellung des Luftvolumenstroms an dem Sauggebläse 12 wird erreicht, daß die Einströmgeschwindigkeit v₁ nahezu Null ist. Die Kanallänge des Trocknungskanals 2 beträgt ca. 5,7 m.The circulating air blower 12 is in operation and the throttle valve 13 is open. The position of the throttle valve 14 is selected so that an air volume flow of 1000 m³ / h fresh air is sucked into the drying chamber 5. An equal amount of air is sucked out of the drying duct 2 by the suction fan 12, so that there is no accumulation of evaporated solvent in the drying air. Due to the exact setting of the air volume flow on the suction fan 12 achieved that the inflow velocity v₁ is almost zero. The channel length of drying channel 2 is approx. 5.7 m.

Auf der so getrockneten Aluminiumbahnoberfläche sind keine Dick- und Dünnstellen zu erkennen. Die in Remission gemessene optische Dichte ist über die Gesamtfläche konstant.No thick and thin spots can be seen on the dried aluminum web surface. The optical density measured in remission is constant over the entire area.

In der Praxis wird mit Kanallängen der Trocknungskanäle von 10 bis 12 m gearbeitet, wobei die Kanallänge und der Volumenstrom des Trocknungsgases u.a. von der Durchlaufgeschwindigkeit des Trägermaterialbandes durch die Trocknungsvorrichtung abhängen.In practice, channel lengths of the drying channels of 10 to 12 m are used, whereby the channel length and the volume flow of the drying gas include depend on the throughput speed of the carrier material strip through the drying device.

Claims (38)

1. A process for drying a liquid layer which has been applied to a carrier material moving through a drying zone and contains vaporizable solvent components and non-vaporizable components, with a gas flowing in the longitudinal direction of the carrier material parallel to the liquid layer and being accelerated within the drying zone in the direction of flow, wherein the gas flows in the same direction as or in the opposite direction to the running direction of the flat-shaped carrier material along and parallel to the liquid layer and is accelerated within the entire drying zone in the direction of flow, wherein the inlet velocity v₁ of the gas flow is increased to a final velocity v₂ which amounts to up to 1000 times the inlet velocity v₁, and wherein the velocity distribution of the gas flow in the individual cross-sections of the drying zone transversely to the direction of running of the carrier material is adjusted to be constant.
2. The process as claimed in claim 1, wherein the gas has been heated and the total gas stream is extracted at one end of the drying zone.
3. The process as claimed in claim 1, wherein the drying zone is designed in such a way that disturbances arising in the inlet cross-section and in the drying zone, such as eddies and turbulences in the gas flow, are damped out, so that the gas flow becomes laminar.
4. The process as claimed in claim 3, wherein the flow through the drying zone takes place at a constant volumetric gas flow rate, the cross-section of the drying zone steadily decreasing in the direction of running of the carrier material.
5. The process as claimed in claim 3, wherein the volumetric gas flow rate is steadily increased in the direction of running of the carrier material, at constant cross-section of the drying zone.
6. The process as claimed in claim 3, wherein the volumetric gas flow rate is steadily increased in the direction of running of the carrier material, at decreasing cross-section of the drying zone.
7. The process as claimed in claim 1, wherein the carrier material runs vertically through the drying zone and one side of the carier material carries a liquid layer which is dried.
8. The process as claimed in claim 7, wherein the carrier material is provided on both sides with liquid layers and both sides of the carrier material are dried by means of drying gas flowing in the direction opposite to the vertical direction of running of the carrier material.
9. The process as claimed in claim 1, wherein the carrier material with a liquid layer applied to its underside runs horizontally or obliquely through the drying zone and the drying gas flows underneath the carrier material along the suspended liquid layer.
10. The process as claimed in claim 1, wherein the flow through the drying zone takes place at a constant volumetric gas flow rate, the cross-section of the drying zone steadily decreasing opposite to the direction of running of the carrier material.
11. The process as claimed in claim 1, wherein the volumetric gas flow rate is steadily increased opposite to the direction of running of the carrier material, at constant cross-section of the drying zone.
12. The process as claimed in claim 1, wherein the volumetric gas flow rate is steadily increased opposite to the direction of running of the carrier material, at decreasing cross-section of the drying zone.
13. The process as claimed in claim 11, wherein the carrier material enters the drying zone at the bottom through the drier inlet and leaves the drying zone at the top through the drier outlet, and the downward-directed total gas stream is extracted near the drier inlet.
14. A device for drying a liquid layer which has been applied to a moving carrier material and contains vaporizable solvent components and non-vaporizable components, having a drying channel comprising a channel-covering surface and a channel base surface, through which the carrier material runs in the longitudinal direction, wherein the channel-covering surface (7) extends parallel or inclined relative to the channel base surface (3; 31), over the entire length of the drying channel (2), wherein the channel-covering surface (7) is a gas-permeable surface through which a drying gas stream is directed onto the running through flat-shaped carrier material (4) and wherein the intensity of the drying gas stream in the longitudinal direction of the drying channel (2) can be varied by the variably adjustable gas permeability of the channel-covering surface (7) and/or by feeding devices (21; 24) for the gas to be supplied which are disposed on the top side of the channel-covering surface (7).
15. The device as claimed in claim 14, wherein the drying channel (2) extends horizontally and the channel inlet height (h₁) of the drying channel (2) is greater than the channel outlet height (h₂).
16. The device as claimed in claim 14, wherein the drying channel (2) is adjoined by a gas exchange chamber (15) which contains a fan (12), the fan outlet (16) of which is directed towards a heat exchanger (17) which is arranged in a partition (10) between the gas exchange chamber (15) and a drying chamber (5) located above the drying channel (2).
17. The device as claimed in claim 16, wherein the gas exchange chamber (15) has a restrictor device (13; 14) both in its bottom surface (18) and in its upper gas inlet (19).
18. The device as claimed in claim 16, wherein the fan (12) is a double flow circulation fan with return blades, and the fresh air added via the return blades is delivered into the drying chamber (5).
19. The device as claimed in claim 15, wherein the drying channel cross-sections are rectangular and the channel height decreases from the channel inlet height (h₁) linearly to the channel outlet height (h₂).
20. The device as claimed in claim 15, wherein the drying channel (2) has a trumpet-shaped geometry which tapers in the longitudinal direction and causes an acceleration of the gas stream in the direction of flow.
21. The device as claimed in claims 14 and 17, wherein the drying channel (2) merges into a passage channel (20), wherein the underside of the bottom surface (18) of the gas exchange chamber (15) is at the same time the covering surface of the passage channel, and wherein a suction fan (9), the suction opening of which is located in the covering surface and in the outlet (11) of which a restrictor device (8) is arranged, is provided downstream of the gas exchange chamber (15) above the covering surface of the passage channel.
22. The device as claimed in claim 14, wherein the feeding devices (21) comprise boxes with two mutually displaceable orifice plates (22, 23), the opening cross-sections of which are adjustable.
23. The device as claimed in claim 14, wherein the feeding devices (24) contain mutually adjustable blades (25).
24. The device as claimed in claim 14, wherein the channel-covering surface (7) comprises a continuous gas-permeable filter.
25. The devices as claimed in claim 14, wherein the channel-covering surface (7) comprises strung-up filter mats (26) having the same thickness and constant or different permeability.
26. The device as claimed in claim 14, wherein the channel-covering surface (7) comprises strung-up filter mats of the same consistency and different thicknesses.
27. The device as claimed in claim 14, wherein the drying channel (2) has a constant cross-section, the permeability of the channel-covering surface (7) increasing in the longitudinal direction from a minimum value in the region of the channel inlet (27) to a maximum value in the region of the channel outlet (28).
28. The device as claimed in claim 14, wherein, in a bottom surface (31) or in side walls of the drying device just above the bottom surface, openings (32) for extracting the gas layers present in the immediate vicinity of the side walls are provided.
29. The device as claimed in claim 16, wherein the bottom surface (31) of the drying device has, opposite the gas exchange chamber (15), an opening (32) which is subjected to the same suction pressure as that prevailing in the gas exchange chamber.
30. The device as claimed in claim 14, wherein a sealing mat (36) is located in front of the channel inlet (27) of the drying channel (2).
31. The device as claimed in claim 14, wherein the channel inlet width (b1) of the vertical drying channel (2) is smaller than the channel outlet width (b2).
32. The device as claimed in claim 31, wherein the drying channel cross-sections are rectangular and the channel width increases from the channel inlet width (b1) upwards limearly to the channel outlet width (b2).
33. The device as claimed in claim 31, wherein the drying channel (2) has a geometry which narrows downwards in the shape of a trumpet and leads to a vertically downward-increasing acceleration of the gas stream flowing in at the top.
34. The device as claimed in claim 14, wherein the drying channel (2) has a constant cross-section, the permeability of the channel-covering surface (7) increasing in the vertical direction from a minimum value near the channel outlet (28) to a maximum value near the channel inlet (27).
35. The device as claimed in claim 14, wherein the inlet gap into the channel inlet (27) is bounded on one side by a lamellar seal (38) from a moving strip (4) of carrier material, and the lamellar seal (38) is located on the vertical outside, facing the strip (4) of carrier material, of an extraction box (37) which closes the drying channel (2) downwards in the region of the channel inlet (27).
36. The device as claimed in claim 35, wherein a vacuum chamber (41), which has a porous plate (42) facing the strip (4) of carrier material, is arranged opposite the extraction box (37) on the other side of the strip of carrier material.
37. The device as claimed in claim 14, wherein the inlet gap into the channel inlet (27) is bounded on one side by a blade seal (43) from a moving strip (4) of carrier material, and the blade seal (43) is located on the vertical outside, facing the strip (4) of carrier material, of an extraction box (37).
38. The device as claimed in claim 35, wherein the channel outlet (28) is bounded by a lamellar seal (40) from the moving strip (4) of carrier material, but for a narrow gap, and the lamellar seal is located on the vertical outside, facing the strip (4) of carrier material, of an inflow box (39) which closes the drying channel (2) upwards in the region of the channel outlet (28) and through which the drying gas stream flows under pressure into the drying channel (2).
EP89108281A 1988-05-13 1989-05-09 Process and apparatus for drying a liquid layer deposited onto a moving carrier material Expired - Lifetime EP0341646B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89108281T ATE75026T1 (en) 1988-05-13 1989-05-09 METHOD AND DEVICE FOR DRYING A LIQUID LAYER APPLIED ON A MOVING SUPPORT MATERIAL.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3816414A DE3816414A1 (en) 1988-05-13 1988-05-13 Method and device for drying a fluid layer applied to a moving carrier material
DE3816414 1988-05-13
DE3900957 1989-01-14
DE3900957A DE3900957A1 (en) 1989-01-14 1989-01-14 Method and apparatus for drying a liquid layer applied to a carrier material moving through a drying zone

Publications (3)

Publication Number Publication Date
EP0341646A2 EP0341646A2 (en) 1989-11-15
EP0341646A3 EP0341646A3 (en) 1990-05-02
EP0341646B1 true EP0341646B1 (en) 1992-04-15

Family

ID=25868083

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89108281A Expired - Lifetime EP0341646B1 (en) 1988-05-13 1989-05-09 Process and apparatus for drying a liquid layer deposited onto a moving carrier material

Country Status (10)

Country Link
US (1) US4999927A (en)
EP (1) EP0341646B1 (en)
JP (1) JP3013044B2 (en)
KR (1) KR0135080B1 (en)
AU (1) AU624817B2 (en)
BR (1) BR8902224A (en)
CA (1) CA1336533C (en)
DE (1) DE58901137D1 (en)
ES (1) ES2030935T3 (en)
FI (1) FI892292A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI493070B (en) * 2012-12-07 2015-07-21 Metal Ind Res & Dev Ct Gas diffusion chamber

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5158846A (en) * 1990-10-29 1992-10-27 Olin Corporation Electrostatic color printing system utilizing an image transfer belt
US5085580A (en) * 1990-11-30 1992-02-04 Glasstech, Inc. Preheater for flat glass sheets
AU3747693A (en) * 1992-03-19 1993-10-21 Reinhart Schmidt Gmbh System for drying products on a moving conveyor belt, in particular the gum strips on envelopes
DE4236299C2 (en) * 1992-10-28 2003-03-06 Emtec Magnetics Gmbh Sealing device at the inlet and / or outlet of a floating dryer for webs
DE4301023C3 (en) * 1993-01-16 2001-07-26 V I B Systems Gmbh Device for increasing the gloss and / or smoothness of a paper web
US5380644A (en) * 1993-08-10 1995-01-10 Minnesota Mining And Manufacturing Company Additive for the reduction of mottle in photothermographic and thermographic elements
US6293196B1 (en) 1993-10-06 2001-09-25 Howard W. DeMoore High velocity, hot air dryer and extractor
US5532121A (en) * 1995-03-24 1996-07-02 Minnesota Mining And Manufacturing Company Mottle reducing agent for photothermographic and thermographic elements
US5694701A (en) * 1996-09-04 1997-12-09 Minnesota Mining And Manufacturing Company Coated substrate drying system
US5581905A (en) * 1995-09-18 1996-12-10 Minnesota Mining And Manufacturing Company Coated substrate drying system
AU6722896A (en) * 1995-09-18 1997-04-09 Minnesota Mining And Manufacturing Company Component separation system including condensing mechanism
US5621983A (en) * 1996-03-29 1997-04-22 Minnesota Mining And Manufacturing Company Apparatus and method for deckeling excess air when drying a coating on a substrate
EP0890068A1 (en) * 1996-03-29 1999-01-13 Minnesota Mining And Manufacturing Company Apparatus and method for drying a coating on a substrate employing multiple drying subzones
US6015593A (en) * 1996-03-29 2000-01-18 3M Innovative Properties Company Method for drying a coating on a substrate and reducing mottle
US6018886A (en) * 1996-06-25 2000-02-01 Eastman Kodak Company Effect of air baffle design on mottle in solvent coatings
USRE38412E1 (en) 1996-09-04 2004-02-03 Imation Corp. Coated substrate drying system with magnetic particle orientation
US5813133A (en) * 1996-09-04 1998-09-29 Minnesota Mining And Manufacturing Company Coated substrate drying system with magnetic particle orientation
US5906862A (en) * 1997-04-02 1999-05-25 Minnesota Mining And Manufacturing Company Apparatus and method for drying a coating on a substrate
US6047151A (en) * 1998-05-06 2000-04-04 Imation Corp. Drying system and method for an electrophotographic imaging system
US6256904B1 (en) 1998-05-06 2001-07-10 Imation Corp. Controlling float height of moving substrate over curved plate
US6134808A (en) * 1998-05-18 2000-10-24 Minnesota Mining And Manufacturing Company Gap drying with insulation layer between substrate and heated platen
MXPA03002502A (en) * 2000-09-24 2004-05-05 3M Innovative Properties Co Extrusion method and apparatus.
US6780470B2 (en) * 2001-07-18 2004-08-24 Fuji Photo Film Co., Ltd. Method of coating a web with a solution
US6785982B2 (en) 2002-06-07 2004-09-07 Eastman Kodak Company Drying apparatus and method for drying coated webs
US6715942B1 (en) * 2002-12-02 2004-04-06 Eastman Kodak Company Photographic processing drum having a circular drying cylinder
EP2610568A1 (en) * 2003-03-26 2013-07-03 Fujifilm Corporation Drying method for a coating layer
US6954994B1 (en) * 2004-06-30 2005-10-18 Hewlett-Packard Development Company, L.P. Moisture removal mechanism
US7238006B2 (en) * 2004-09-27 2007-07-03 Studebaker Enterprises, Inc. Multiple impeller fan for a shrouded floor drying fan
KR100909730B1 (en) * 2005-07-26 2009-07-29 미쓰비시덴키 가부시키가이샤 Hand drying device
CN1984592B (en) * 2005-08-03 2011-05-11 三菱电机株式会社 Hand dryer
JP4796352B2 (en) * 2005-08-03 2011-10-19 パナソニック株式会社 Heat treatment equipment
WO2007020699A1 (en) * 2005-08-18 2007-02-22 Mitsubishi Denki Kabushiki Kaisha Hand dryer
US20070201933A1 (en) * 2006-02-24 2007-08-30 Park Namjeon Feeding system for image forming machine
US20070199206A1 (en) * 2006-02-24 2007-08-30 Park Namjeon Drying system for image forming machine
US20070200881A1 (en) * 2006-02-24 2007-08-30 Park Namjeon Height adjustment system for image forming machine
US7905947B2 (en) * 2006-05-24 2011-03-15 L.C. Eldridge Sales Co., Ltd. Method and apparatus for removing contaminates from air
WO2009012190A1 (en) * 2007-07-15 2009-01-22 Yin Wang Wood-drying solar greenhouse
JP5086721B2 (en) * 2007-07-30 2012-11-28 リンテック株式会社 Web heating and cooling apparatus and web heating and cooling method
DE102013223150A1 (en) * 2013-11-13 2015-05-28 Sandvik Materials Technology Deutschland Gmbh Dryers and methods for drying sheetlike materials
JP6531423B2 (en) * 2015-02-24 2019-06-19 セイコーエプソン株式会社 Printing device
CN108290182B (en) * 2015-10-12 2021-11-02 3M创新有限公司 Layer-by-layer coating apparatus and method
JP6595946B2 (en) * 2016-04-04 2019-10-23 株式会社市金工業社 Coating equipment
WO2018146381A1 (en) * 2017-02-08 2018-08-16 Beneq Oy Method and apparatus for coating
CN107144115A (en) * 2017-07-04 2017-09-08 金寨县云凡绿色中药材有限责任公司 A kind of drying unit processed for ganoderma lucidum
CN111156814B (en) * 2018-11-07 2024-03-29 中石化石油工程技术服务股份有限公司 Internal circulation rock debris material dehumidification device
CN112414071B (en) * 2020-11-21 2021-08-27 苏州宸浩纺织科技有限公司 Drying equipment for textile fabric

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2144919A (en) * 1937-06-24 1939-01-24 Andrews And Goodrich Inc Apparatus for and method of drying web material
US2775046A (en) * 1949-05-31 1956-12-25 Sucker Gmbh Geb Methods and apparatus for the processing of textile materials
US3012335A (en) * 1957-11-16 1961-12-12 Svenska Flaektfabriken Ab Treating web-like material by a gaseous medium
GB877266A (en) * 1959-02-13 1961-09-13 John Harold Flynn Method of drying coated webs
US3106460A (en) * 1959-05-01 1963-10-08 Calico Printers Ass Ltd Process for removing organic solvent from wet material
US3183604A (en) * 1961-01-05 1965-05-18 Gen Electric Apparatus and process for removing solvents from coatings on metal
US3183605A (en) * 1961-12-27 1965-05-18 Gen Electric Apparatus for coating metals
DE1604865B1 (en) * 1966-10-31 1971-06-03 Elektro Isolier Ind Wahn Wilhe Plant for the catalytic combustion of combustible components from exhaust gases, e.g. of paint stoving ovens
GB1216267A (en) * 1968-02-09 1970-12-16 Wilkins & Mitchell Ltd Improvements in or relating to presses
GB1239094A (en) * 1969-06-30 1971-07-14
US4589843A (en) * 1976-04-07 1986-05-20 Smith Thomas M Infra-red irradiation
AT362227B (en) * 1979-07-02 1981-04-27 Andritz Ag Maschf MATERIAL RAIL DRYER
JPS5723113A (en) * 1980-07-17 1982-02-06 Fanuc Ltd Numerical controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI493070B (en) * 2012-12-07 2015-07-21 Metal Ind Res & Dev Ct Gas diffusion chamber

Also Published As

Publication number Publication date
FI892292A0 (en) 1989-05-11
KR0135080B1 (en) 1998-06-15
AU624817B2 (en) 1992-06-25
EP0341646A2 (en) 1989-11-15
US4999927A (en) 1991-03-19
JP3013044B2 (en) 2000-02-28
AU3472589A (en) 1989-11-16
FI892292A (en) 1989-11-14
DE58901137D1 (en) 1992-05-21
ES2030935T3 (en) 1992-11-16
KR890017515A (en) 1989-12-16
CA1336533C (en) 1995-08-08
BR8902224A (en) 1990-01-02
JPH0217966A (en) 1990-01-22
EP0341646A3 (en) 1990-05-02

Similar Documents

Publication Publication Date Title
EP0341646B1 (en) Process and apparatus for drying a liquid layer deposited onto a moving carrier material
EP0414125B1 (en) Apparatus for drying a liquid coating applied onto a moving substrate
DE60225332T2 (en) METHOD AND DEVICE FOR CURTAINING
EP0528372B1 (en) Apparatus for contactless guiding of a coated web
DE3148578A1 (en) METHOD AND DEVICE IN THE PRESS OR DRY SECTION OF A PAPER MACHINE
DE69723838T2 (en) METHOD AND DEVICE FOR PRE-DRYING AND / OR AIR-DRYING A PAPER SHEET OR THE LIKE
DE69718851T2 (en) Process for drying a moving, coated sheet material while avoiding staining when coating with solvents
DE2935373A1 (en) DEVICE FOR THE HEAT TREATMENT OF FLAT SHEET SHAPES
DE3403642A1 (en) POCKET VENTILATION DEVICE FOR A PAPER MACHINE MULTI-CYLINDER DRYER
DE1474239B2 (en) PROCESS AND EQUIPMENT FOR STABILIZING THE LOCATION UNDER THE EFFECT OF A BLOW DEVICE OF FLOATING TRACKS
DE69815867T2 (en) SUSPENDED DRYER UNIT
DE4013485C2 (en) Method and device for making the web end run effective in a paper machine dryer section
DE2443395B2 (en) Device for the heat treatment of flat material webs by means of a flowing medium in a circulatory process
DE102017124280A1 (en) Curtain coater and method for applying a coating medium
DE102018110824B4 (en) Process for drying a substrate and air dryer module for carrying out the process and dryer system
CH693384A5 (en) Drying and / or fixing device.
DE4026107A1 (en) CONVECTION DRY AND / OR FIXER
DE3942029B4 (en) Device for carrying, deflecting and spreading a web
DE3816414A1 (en) Method and device for drying a fluid layer applied to a moving carrier material
DE3900957A1 (en) Method and apparatus for drying a liquid layer applied to a carrier material moving through a drying zone
DE2716613C2 (en) Device for drying printed or coated webs of material
EP0130579B1 (en) Apparatus for the continuous heat treatment, e.g. drying, of webs or ribbons of textile material
DE2156100C3 (en) Jet dryer
DE2155386A1 (en) Coating and drying device for web-shaped materials
DE60015739T2 (en) DEVICE FOR CLEANING THE DRY AIR OF A PULSE DRYER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19901005

17Q First examination report despatched

Effective date: 19910208

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 75026

Country of ref document: AT

Date of ref document: 19920515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58901137

Country of ref document: DE

Date of ref document: 19920521

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2030935

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940427

Year of fee payment: 6

EAL Se: european patent in force in sweden

Ref document number: 89108281.0

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950510

EUG Se: european patent has lapsed

Ref document number: 89108281.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19990409

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990412

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19990423

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19990510

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000531

BERE Be: lapsed

Owner name: HOECHST A.G.

Effective date: 20000531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020304

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030418

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030423

Year of fee payment: 15

Ref country code: DE

Payment date: 20030423

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030424

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041201

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20041201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050509