EP0340832A1 - Tube neutronique scellé, à haut flux - Google Patents

Tube neutronique scellé, à haut flux Download PDF

Info

Publication number
EP0340832A1
EP0340832A1 EP89201010A EP89201010A EP0340832A1 EP 0340832 A1 EP0340832 A1 EP 0340832A1 EP 89201010 A EP89201010 A EP 89201010A EP 89201010 A EP89201010 A EP 89201010A EP 0340832 A1 EP0340832 A1 EP 0340832A1
Authority
EP
European Patent Office
Prior art keywords
tube
parts
neutron
target
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89201010A
Other languages
German (de)
English (en)
Other versions
EP0340832B1 (fr
Inventor
Serge Société Civile S.P.I.D. Cluzeau
Gérard Société Civile S.P.I.D. Verschoore
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SODERN SA
Koninklijke Philips NV
Original Assignee
SODERN SA
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SODERN SA, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical SODERN SA
Publication of EP0340832A1 publication Critical patent/EP0340832A1/fr
Application granted granted Critical
Publication of EP0340832B1 publication Critical patent/EP0340832B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H3/00Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
    • H05H3/06Generating neutron beams

Definitions

  • the invention relates to a device for improving the life and reliability of a high flux sealed neutron tube containing a deuterium-tritium gas mixture and in which an ion source provides a high energy beam projected onto a target to produce a fusion reaction generating an emission of neutrons.
  • High flux sealed neutron tubes are used in fast, thermal, epithermal or cold neutron examination techniques.
  • the tubes currently available have an insufficient lifespan at the level of the emission necessary to obtain their full effectiveness in the various nuclear techniques: neutronography, analysis by activation, analysis by ⁇ spectrometry of inelastic diffusions or radiative captures, neutron scattering. ..
  • T (d, n) 4He reaction delivering 14 MeV neutrons is usually the most used due to its large cross-section for relatively low deutron energies but any other reaction considered adequate can be used.
  • Another risk of initiation of discharges in the gas results from the surface effect of the electrodes subjected to a high electric field. This effect is initiated by electric particles emitted from a part of the negative potential tube playing the role of cathode placed opposite another part of the positive potential tube and therefore behaving like an anode and which should not be confuse with parts of the tube having identical names such as for example the anode and the cathode of the ion source.
  • the resistance to breakdown on the surface of the insulators is markedly improved on the one hand by increasing the inter-electrode distances and by dividing the tube into two parts respectively constituting the anode and the cathode so as to reduce the potential by half in each part of the tube and on the other hand by giving the insulating parts a suitable inclination relative to the direction of the electric field (see for example the article entitled “Metal / ceramic X-ray tubes for non-destructive testing "by W.Harth et al. published in Philips Technical Review, vol.41, 1983/1984, N ° 1, pages 24-29).
  • the values of the cold emission current density calculated by the Fowler-Nordheim formula show, according to the surface conditions of the electrodes, a high amplification coefficient of this current density for a given potential difference. As a result, a small voltage variation can produce a strong growth or a sharp decrease in the current depending on the direction of this variation. Qualitatively, there is such a high sensitivity of the current to the voltage for all the parasitic phenomena leading to the existence of a current between the electrodes.
  • the object of the invention is to provide a neutron tube device supplied at voltages much higher than 200 kV and allowing, with satisfactory maintained reliability, the increase in the lifetime mentioned above.
  • the device of the invention is remarkable in that said neutron tube comprises a first part and a second part separated by means of an acceleration electrode forming a screen between said parts, said first part containing the ion source carried at a positive potential of adjustable value and said second part containing the target brought to a negative potential of value also adjustable with respect to the zero value of the potential of said acceleration electrode grounded by the external envelope of the tube of which it is united.
  • the intensity of the ion beam is reduced by the possibility of doubling the potential difference between source and target without increasing the risks of initiation in the deuterium-tritium mixture by collision of the ions with the gas molecules, because the material separation of said neutron tube into two parts by means of said screen keeps unchanged the travel distances of the ions in each of said parts. It is remarkable that this arrangement allows a significant reduction in the critical value of the product P ⁇ d along the electric field lines joining the electrodes.
  • said external envelope and said ion source respectively constitute the cathode and the anode of said first part of the tube on the one hand
  • said target and said external envelope constitute respectively the cathode and the anode of said second part of the tube on the other hand.
  • Said cold emission currents thus developed in each of said parts of the tube by surface effect of the facing electrodes are assigned a high reduction factor of up to 106 depending on the nature and the surface condition of said electrodes, because the potential difference required for the acceleration of the ion beam is distributed in halves between said first and second parts of the tube.
  • This distribution of the overall potential difference of the tube can be asymmetrical between the two parts of the tube - either because of the applied potentials, or because of the geometric distances separating the electrodes - which gives the interesting possibility of varying the spaces of acceleration between the separating electrode and the ion source on the one hand and between this same electrode and the target on the other hand, so as to better control the focusing of the ion beam in order to improve the lifetime of the tube .
  • Figures 1 and 2 show respectively in longitudinal section, a first and a second variant of neutron tubes according to the prior art.
  • Figures 3 and 4 respectively show the same longitudinal section of a first and a second variant of neutron tubes according to the invention.
  • an envelope 1 contains a gaseous mixture of deuterium and tritium coming from a reservoir 2. This mixture is ionized in the ion source 3 brought to ground potential. An ion beam 4 is extracted therefrom by the acceleration electrode 5 secured to the target 6 and brought to the negative potential of very high voltage (-THT).
  • the wall part 7 opposite the acceleration space is necessarily made of an insulating material.
  • the path metallic sprays from the ion source delimits the zone 8 of this part of the wall exposed to metallization, which constitutes the major drawback of this first variant.
  • the ion source 9 is brought to a positive very high voltage potential + THT via the cable 10, the end of which is surrounded by the insulating sleeves 11 and 12 between which is provided a space intended to allow the circulation of an insulating cooling fluid.
  • the acceleration electrode 13 cooled at 14 by a liquid circuit is brought to ground potential which allows it to be made integral with the metal wall 15. This arrangement which avoids metal spraying on the insulating parts of the tube constitutes the nearest prior art.
  • the gaseous mixture of deuterium and tritium is supplied via a pressure regulator 16.
  • the gas pressure is controlled using an ionization pressure gauge 17.
  • the ion source 9 of the Penning type in the example described (but which could be of a different type without harming the invention) comprises an anode 18 to which the potential + THT is applied, two cathodes 19 and 20 brought to a same negative potential of the order of 5 kV relative to the anode 18 and a permanent magnet 21 creating an axial magnetic field and the magnetic circuit of which is closed by the ferromagnetic socket 22 which envelops the ion source 9.
  • the ion beam 23 extracted from the ion source passes through the suppressor electrode 24 and strikes the target 25 cooled at 26 by a circulation of a liquid.
  • a similar neutron generator is described in more detail in French Patent No. 2,438,153.
  • Breakdown phenomena can occur in the enclosure of a gas tube under the effect of high voltage applied between the electrodes and whose initiation process in the case of the neutron tube of Figure 2 is as follows.
  • the envelope of the ion source 9 constituted by the magnetic circuit 22 is at a high positive potential relative to that of the envelope 15 of the tube brought to the zero potential of the mass.
  • the envelope 22 of the ion source will therefore play the role of an anode and the envelope 15 of the neutron tube will play the role of a cathode at the level of which a macroscopic electric field develops.
  • the micro-asperities presented on the surface of this cathode are capable, according to their geometry, of microscopically amplifying the value of this field; there is then the possibility of cold emission of electrons.
  • This electronic current also causes ionization of the molecules of the gas contained in the tube. This results in an avalanche effect which risks leading to an accidental short-circuit, that is to say a breakdown between electrodes.
  • the simplified Fowler-Nordheim formula makes it possible to assess the density of the cold emission current.
  • the amplification factor ⁇ can be estimated from curves according to the shape of the end of the microspheres (spherical, ellipsoidal) and their height h above the surface of the electrode.
  • ⁇ ⁇ 102 for a ratio h / r 102, r being the radius of a microasperity whose end is spherical in shape.
  • the cold emission current density J is given as a function of the microscopic field E for different values of the output work W varying from 1.6 to 5 eV.
  • the output work is 2.5 eV.
  • the macroscopic electric field is of the order of 2105 V / cm in the usual neutron tubes. If we accept an amplification factor of 102 caused by the existence of micro-roughness we find a cold emission current density of the order of 4 103 ⁇ A / ⁇ m2. For a macroscopic electric field of 105V / cm, that is to say reduced by half, the density of the cold emission current becomes approximately 3.10 ⁇ 3 ⁇ A / ⁇ m2, that is to say that it is reduced in a ratio close to 106. This considerable reduction practically eliminates the risks of original F-N breakdown between electrodes and thus ensures good reliability of the tube.
  • the device of the invention provides the best possible compromise between the lifetime and reliability of a neutron tube by making it possible to increase the acceleration voltage of the ion beam while maintaining the electric field values between acceptable values. the tube electrodes.
  • Figure 3 shows the diagram of a first variant of this device which is presented as two parts similar to the part of the tube of Figure 2 between the accelerator electrode 13 and the THT supply cable 10.
  • One of these parts always contains the ion source 18, 19, 20, 21 inside the envelope 15 while the other part contains the suppressor electrode 27 and the target 28 inside the envelope 15 ′.
  • These two parts are joined by their face having the acceleration electrode 13 which is common to them and therefore arranged symmetrically with respect to the median plane of this electrode.
  • the elements of the first part of the tube identical to those of Figure 2 are indicated by the same reference numbers.
  • the elements of the second part of the tube having a character of symmetry with respect to those of said first part are indicated by the same reference number assigned to the sign ′: thus 10 and 10 ′ for the cable, ... 22 and 22 ′ For the ferromagnetic socket.
  • the pressure regulator 16 and the ionization manometer 17 are carried over to the end of this second part of the tube comprising the target.
  • FIG. 2 allows the tube to be fed by means of a single positive polarity, ie + V.
  • FIG. 3 allows the use of a generator with two polarities + V transmitted to the ion source by the cable 10 and - V transmitted to the target by the cable 10 ′. These two polarities are referenced with respect to the mass to which the accelerator electrode 13 is attached, integral with the outer envelopes 15 and 15 ′.
  • the electric fields at the cathode 15 of the first part of the tube on the one hand and at the cathode 22 ′ of the second part of the tube on the other hand are maintained at values compatible with acceptable reliability, so that the potential difference regulating the acceleration is equal to 2V in order to increase the service life of the tube by reduction of the target current, as already mentioned above.
  • Such a mode of supply of the neutron tube making it possible to double the difference in the potential of acceleration of the ion beam thus offers the possibility of compensating for the reduction in the neutron emission which would have resulted only from the reduction of the target current.
  • the device of the invention has an additional advantage from the point of view of reliability by the fact that the reduction in the target current is obtained by a correlative reduction in the current of the ion source by means of a reduction in the operating pressure.
  • This same device also makes it possible to reduce sprays originating from the ion source, as well as those resulting from parasitic ionizations on the path of the beam.
  • the accelerating electrode 13 also plays the role of a "screen" between the ion source and the target, which appreciably reduces the possible paths of the ions in the gas and therefore further limits the risks of breakdown in the prospect of even greater reliability.
  • the symmetrical feeding mode of the neutron tube offers another interesting possibility which is to be able to vary the acceleration spaces between the two parts of the tube and thus to achieve an ion optic making it possible to improve the adjustment of the focusing of the beam. . This amounts to reacting to the electric field values in each part of the tube.
  • the envelope 1 which is cathode.
  • This envelope constituting the outer wall of the tube has a high radius of curvature and an electric field E1 is developed between this envelope and the envelope 11 of the ion source playing the role of anode.
  • the envelope 11 ′ of the target which is cathode.
  • This envelope has a radius of curvature smaller than that of the wall because it is inside the tube and an electric field E2 is developed between this envelope and the external envelope 1 ′ of the tube playing the role of anode.
  • a second variant of the device of the invention shown schematically in Figure 4 defines the geometry of the insulating walls of the neutron tube so as to minimize the effect of "flash-over" along said walls. This effect is manifested by successive secondary emissions which develop on the surface of the insulator from the impact of a particle coming to strike this surface. This results in a damaging surface effect for the insulator which can be counteracted by tilting the insulating surfaces at an angle to the electric field so that rebounding does not occur.
  • the geometry of the insulators can be different depending on the polarity.
  • the second part of the neutron tube containing the target is identical to that of FIG. 3.
  • the content of the ferromagnetic socket 11 is also identical to that of FIG. 3.
  • the insulating sleeves 12 ′ and 12 ⁇ which correspond in the active areas of the tube have their surfaces inclined at a certain angle relative to the direction of the ionic flow indicated by arrow 29.
  • the sleeve 11 ⁇ of the cable 10 ⁇ supplying the THT anode has been designed to adapt to this arrangement.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Particle Accelerators (AREA)

Abstract

Dispositif d'amélioration de la durée de vie et de la fiabilité d'un tube neutronique scellé à haut flux compor­tant une première partie et une seconde partie séparées par l'intermédiaire de l'électrode d'accélération (13) formant écran entre lesdites parties et solidaire de l'enveloppe ex­terne (15) mise à la masse.
Lesdites première et seconde parties du tube contiennent respectivement la source d'ions (9) portée à un potentiel positif de valeur réglable et la cible (28) portée à un potentiel négatif de valeur également réglable par rapport à la valeur zéro de la masse.
Application : neutronographie.

Description

  • L'invention concerne un dispositif d'amélioration de la durée de vie et de la fiabilité d'un tube neutronique scellé à haut flux contenant un mélange gazeux deutérium-tri­tium et dans lequel une source d'ions fournit un faisceau de grande énergie projeté sur une cible pour y produire une réac­tion de fusion engendrant une émission de neutrons.
  • Les tubes neutroniques scellés à haut flux sont utilisés dans les techniques d'examen de la matière par neu­trons rapides, thermiques, épithermiques ou froids.
  • Les tubes actuellement disponibles ont une durée de vie insuffisante au niveau de l'émission nécessaire pour obte­nir leur pleine efficacité dans les différentes techniques nu­cléaires : neutronographie, analyse par activation, analyse par spectrométrie γ des diffusions inélastiques ou des captu­res radiatives, diffusion des neutrons...
  • La réaction T(d,n)⁴He délivrant des neutrons de 14 MeV est habituellement la plus utilisée en raison de sa grande section efficace pour des énergies de deutrons relati­vement faibles mais tout autre réaction jugée adéquate peut être utilisée.
  • Toutefois, quelle que soit cette réaction, le nom­bre de neutrons obtenus par unité de charge transitant dans le faisceau est toujours croissant au fur et à mesure que l'éner­gie des ions dirigés vers une cible épaisse est elle-même croissante et ceci très au delà des énergies des ions obtenus dans les tubes scellés actuellement disponibles et alimentés par une THT (très haute tension) excédant rarement 200 kV, tant pour des raisons de définition de tube que de fiabilité des générateurs THT et des organes de connexion.
  • Parmi les phénomènes les plus importants venant li­miter la durée de vie du tube neutronique, on doit citer les défauts d'irradiation de la cible par les ions incidents et les métallisations des parois isolantes du tube.
  • Ces deux phénomènes étant d'autant plus importants que l'intensité du faisceau est elle-même importante, on au­rait intérêt à limiter au maximum ce paramètre et donc, pour une émission neutronique donnée à utiliser de grandes tensions d'accélération.
  • Malheureusement, contrairement au cas des tubes à vide (rayons X par exemple), en pratique dans un tube neutro­nique scellé de conception classique, il n'est pas possible d'augmenter les dimensions du tube ce qui aurait pour consé­quence, d'une part, de faire baisser le rendement neutronique et, d'autre part de provoquer l'amorçage de décharges confor­mément à la loi de Paschen dans la gamme des basses pressions.
  • Un autre risque d'amorçage de décharges dans le gaz résulte de l'effet de surface des électrodes soumises à un champ électrique élevé. Cet effet est initié par des particu­les électriques émises d'une partie du tube à potentiel néga­tif jouant le rôle de cathode placée en regard d'une autre partie du tube à potentiel positif et donc se comportant comme une anode et qu'il ne faut pas confondre avec des parties du tube ayant des dénominations identiques telles que par exemple l'anode et la cathode de la source d'ions. Ces particules ve­nant frapper d'autres molécules de matière dans le gaz ou sur les électrodes peuvent entraîner par émission secondaire une certaine amplification de l'émission et parvenir ainsi de pro­che en proche à un courant électrique suffisamment important pour établir un claquage par rupture des qualités diélectri­ques du milieu, soit en surface des parties isolantes du tube, soit à travers l'espace gazeux du tube lui-même. Dans les cas d'utilisation de la réaction T(d,n)⁴He déjà citée, la présence de tritium -émetteur β⁻- accroît encore ce type de risque, de même que les différents rayonnements ionisants associés à la réaction nucléaire (X,α,γ,n) ou à ses conséquences (rayonnements induits par activation neutronique du tube lui-même ou de son environnement).
  • Dans les tubes à vide tels que par exemple les tu­bes à rayons X, on améliore notablement la tenue au claquage en surface des isolants d'une part en augmentant les distances interélectrodes et en scindant le tube en deux parties consti­tuant respectivement l'anode et la cathode de manière à rédui­re le potentiel de moitié dans chaque partie du tube et d'au­tre part en donnant aux parties isolantes une inclinaison adaptée par rapport à la direction du champ électrique (voir par exemple l'article intitulé "Metal/ceramic X-ray tubes for non-destructive testing" par W.Harth et al. paru dans Philips Technical Review, vol.41, 1983/1984, N°1, pages 24-29).
  • Dans le cas des tubes neutroniques, il s'agit de tubes à gaz dont le contenu est à des basses pressions de sor­te que le produit P×d de la pression par la distance interé­lectrodes se situe sur la partie gauche de la courbe de Paschen. Dans ce cas, il peut se produire des phénomènes de décharge particulière du type à avalanche Townsend, pouvant être évités par une réduction de la distance interélectrodes, ce moyen étant limité, à contrario, par le seuil d'apparition d'une forte émission froide d'origine électronique selon la loi de Fowler-Nordheim (F-N).
  • Les valeurs de la densité de courant d'émission froide calculées par la formule de Fowler-Nordheim font appa­raître selon les états de surface des électrodes, un fort coefficient d'amplification de cette densité de courant pour une différence de potentiel donnée. Il en résulte qu'une fai­ble variation de tension peut produire sur le courant une for­te croissance ou une forte décroissance selon le sens de cette variation. Qualitativement, on observe une telle forte sensi­bilité du courant à la tension pour tous les phénomènes para­sites amenant à l'existence d'un courant entre les électrodes.
  • Ainsi, au delà d'un certain seuil de tension, il devient difficile d'éviter l'amorçage dans le gaz soit par effet de surface des électrodes soumises à un champ électrique élevé, soit par collision des ions avec les molécules de gaz si l'on accroît la distance d'isolement pour réduire ce même champ électrique.
  • Le but de l'invention est de proposer un dispositif de tube neutronique alimenté sous des tensions beaucoup plus élevées que 200 kV et permettant, à fiabilité maintenue satis­faisante, l'augmentation de la durée de vie précédemment évo­quée.
  • Le dispositif de l'invention est remarquable en ce que ledit tube neutronique comporte une première partie et une seconde partie séparées par l'intermédiaire d'une électrode d'accélération formant écran entre lesdites parties, ladite première partie contenant la source d'ions portée à un poten­tiel positif de valeur réglable et ladite seconde partie con­tenant la cible portée à un potentiel négatif de valeur égale­ment réglable par rapport à la valeur zéro du potentiel de la­dite électrode d'accélération mise à la masse par l'enveloppe externe du tube dont elle est solidaire.
  • Ainsi pour un même niveau d'émission neutronique, l'intensité du faisceau d'ions se trouve réduite par la possi­bilité de doubler la différence de potentiel entre source et cible sans augmenter les risques d'amorçage dans le mélange deutérium-tritium par collision des ions avec les molécules de gaz, car la séparation matérielle dudit tube neutronique en deux parties par l'intermédiaire dudit écran conserve inchan­gées les distances de parcours des ions dans chacune desdites parties. Il est remarquable que cette disposition permet une réduction importante de la valeur critique du produit P×d le long des lignes de champ électrique joignant les électrodes.
  • Lors du processus de formation des courants d'émis­sion froide dans le tube neutronique, ladite enveloppe externe et ladite source d'ions constituent respectivement la cathode et l'anode de ladite première partie du tube d'une part, ladi­te cible et ladite enveloppe externe constituent respectivement la cathode et l'anode de ladite seconde partie du tube d'autre part. Lesdits courants d'émission froide ainsi développés dans chacune desdites parties du tube par effet de surface des électrodes en regard sont affectés d'un facteur de réduction élevé pouvant atteindre 10⁶ selon la nature et l'état de surface desdites électrodes, du fait que la diffé­rence de potentiel requise pour l'accélération du faisceau d'ions se trouve répartie par moitiés entre lesdites première et seconde parties du tube.
  • Cette répartition de la différence de potentiel globale du tube peut être dissymétrique entre les deux parties du tube -soit du fait des potentiels appliqués, soit du fait des distances géométriques séparant les électrodes- ce qui donne la possibilité intéressante de faire varier les espaces d'accélération entre l'électrode séparatrice et la source d'ions d'une part et entre cette même électrode et la cible d'autre part, de manière à mieux contrôler la focalisation du faisceau ionique en vue d'améliorer la durée de vie du tube.
  • La description suivante en regard des dessins anne­xés, le tout donné à titre d'exemple non limitatif, fera bien comprendre comment l'invention peut être réalisée.
  • Les figures 1 et 2 représentent respectivement en coupe longitudinale, une première et une seconde variante de tubes neutroniques selon l'art antérieur.
  • Les figures 3 et 4 montrent respectivement la même coupe longitudinale d'une première et d'une seconde variante de tubes neutroniques selon l'invention.
  • Dans la première variante de modèle connu représen­tée sur la figure 1, une enveloppe 1 contient un mélange ga­zeux de deutérium et de tritium en provenance d'un réservoir 2. Ce mélange est ionisé dans la source d'ions 3 portée au po­tentiel masse. Un faisceau ionique 4 en est extrait par l'électrode d'accélération 5 solidaire de la cible 6 et portée au potentiel négatif de très haute tension (-THT).
  • La partie de paroi 7 en regard de l'espace d'accé­lération est obligatoirement en un matériau isolant. Le trajet des pulvérisations métalliques issues de la source d'ions dé­limite la zone 8 de cette partie de paroi exposée à la métal­lisation, ce qui constitue l'inconvénient majeur de cette pre­mière variante.
  • Dans la seconde variante de modèle connu représen­tée sur la figure 2, la source d'ions 9 est portée à un poten­tiel de très haute tension positif +THT par l'intermédiaire du câble 10 dont l'extrémité est entourée par les manchons iso­lants 11 et 12 entre lesquels est ménagé un espace destiné à permettre la circulation d'un fluide isolant de refroidisse­ment. L'électrode d'accélération 13 refroidie en 14 par un circuit liguide est portée au potentiel de la masse ce qui permet de la rendre solidaire de la paroi métallique 15. Cette disposition qui évite la pulvérisation métallique sur les par­ties isolantes du tube constitue l'art antérieur le plus pro­che.
  • Le mélange gazeux de deutérium et de tritium est fourni par l'intermédiaire d'un régulateur de pression 16. La pression gazeuse est contrôlée à l'aide d'un manomètre d'ioni­sation 17.
  • La source d'ions 9 de type Penning dans l'exemple décrit (mais qui pourraît être de type différent sans nuire à l'invention) comporte une anode 18 à laquelle est appliqué le potentiel +THT, deux cathodes 19 et 20 portées à un même po­tentiel négatif de l'ordre de 5 kV par rapport à l'anode 18 et un aimant permanent 21 créant un champ magnétique axial et dont le circuit magnétique est fermé par la douille ferroma­gnétique 22 qui enveloppe la source d'ions 9.
  • Le faisceau d'ions 23 extraits de la source d'ions passe par l'électrode suppresseuse 24 et frappe la cible 25 refroidie en 26 par une circulation d'un liquide. Un généra­teur de neutrons du même genre est décrit plus en détail dans le brevet français N° 2 438 153.
  • Des phénomènes de claquages peuvent se produire dans l'enceinte d'un tube à gaz sous l'effet de la haute tension appliquée entre les électrodes et dont le processus d'initiation dans le cas du tube neutronique de la figure 2 est le suivant. L'enveloppe de la source d'ions 9 constituée par le circuit magnétique 22 est à un potentiel positif élevé par rapport à celui de l'enveloppe 15 du tube porté au poten­tiel zéro de la masse. L'enveloppe 22 de la source d'ions va donc jouer le rôle d'une anode et l'enveloppe 15 du tube neu­tronique va jouer le rôle d'une cathode au niveau de laquelle se développe un champ électrique macroscopique. Les microaspé­rités présentées à la surface de cette cathode sont capables selon leur géométrie d'amplifier microscopiquement la valeur de ce champ ; il y a alors possibilité d'émission froide d'électrons. Ce courant électronique provoque en outre une io­nisation des molécules du gaz contenu dans le tube. Il en ré­sulte un effet d'avalanche qui risque d'aboutir à un court-­circuit accidentel, c'est-à-dire à un claquage entre électro­des.
  • La formule simplifiée de Fowler-Nordheim permet d'apprécier la densité du courant d'émission froide. Cette formule est la suivante (dans le vide, donc sans tenir compte de l'éventuelle amplification due à la présence du gaz) :
    Figure imgb0001
    avec E = βE₀
    E = champ électrique microscopique en V/cm
    E₀ = champ électrique macroscopique en V/cm
    β = facteur d'amplification dépendant de la géométrie des microaspérités.
    W = énergie nécessaire en eV à un électron pour s'échap­per de la surface du solide (Travail de sortie). Cet­te quantité dépend principalement de la nature du ma­tériau constituant l'électrode ou des impuretés de surface.
    J = densité de courant d'émission froide en A/cm².
  • Le facteur d'amplification β peut être estimé à partir de courbes selon la forme de l'extrémité des microaspérités (sphérique, ellipsoïdale) et leur hauteur h au-dessus de la surface de l'électrode. β ≈ 10² pour un rapport h/r = 10², r étant le rayon d'une microaspérité dont l'extrémité est de forme sphérique.
  • La densité de courant d'émission froide J est don­née en fonction du champ microscopique E pour différentes va­leurs du travail de sortie W variant de 1,6 à 5 eV.
  • Pour des électrodes portant en surface des impure­tés de métaux alcalins, le travail de sortie vaut 2,5 eV. Le champ électrique macroscopique est de l'ordre de 210⁵ V/cm dans les tubes neutroniques usuels. Si l'on admet un facteur d'amplification de 10² causé par l'existence de microaspérités on trouve une densité de courant d'émission froide de l'ordre de 4 10³µA/µm². Pour un champ électrique macroscopique de 10⁵V/cm c'est-à-dire réduit de moitié, la densité de courant d'émission froide devient environ 3.10⁻³µA/µm² c'est-à-dire qu'elle est réduite dans un rapport voisin de 10⁶. Cette ré­duction considérable élimine pratiquement les risques de cla­quage d'origine F-N entre électrodes et assure ainsi une bonne fiabilité du tube.
  • On sait par ailleurs que l'amélioration de la durée de vie d'un tube neutronique par réduction de l'intensité du faisceau ionique nécessite l'augmentation de la différence de potentiel appliqué entre source et cible, ce qui augmente beaucoup les risques de claquages au-delà d'une THT voisine de 200 kV. Si l'on accroît les distances d'isolement pour réduire le champ électrique il va en résulter une plus grande probabi­lité d'amorçage dans le gaz par collision des ions avec les molécules dudit gaz.
  • Le dispositif de l'invention assure le meilleur compromis possible entre durée de vie et fiabilité d'un tube neutronique en permettant d'augmenter la tension d'accéléra­tion du faisceau d'ions tout en maintenant à des valeurs ac­ceptables les valeurs de champ électrique entre les électrodes du tube.
  • La figure 3 montre le schéma d'une première varian­te de ce dispositif qui se présente comme deux parties sembla­bles à la partie du tube de la figure 2 comprise entre l'élec­trode accélératrice 13 et le câble d'alimentation en THT 10. L'une de ces parties contient toujours la source d'ions 18, 19, 20, 21 à l'intérieur de l'enveloppe 15 tandis que l'autre partie contient l'électrode suppresseuse 27 et la cible 28 à l'intérieur de l'enveloppe 15′. Ces deux parties sont accolées par leur face présentant l'électrode d'accélération 13 qui leur est commune et donc disposées symétriquement par rapport au plan médian de cette électrode.
  • Sur cette figure les éléments de la première partie du tube identiques à ceux de la figure 2 sont indiqués par les mêmes chiffres de référence. Les éléments de la deuxième par­tie du tube présentant un caractère de symétrie vis à vis de ceux de ladite première partie sont indiqués par le même chif­fre de référence affecté du signe ′ : ainsi 10 et 10′ pour le câble, ... 22 et 22′ pour la douille ferromagnétique. Dans cette version, le régulateur de pression 16 et le manomètre d'ionisation 17 sont reportés à l'extrémité de cette deuxième partie du tube comportant la cible.
  • La disposition de la figure 2 permet l'alimentation du tube au moyen d'une seule polarité positive soit + V.
  • La disposition de la figure 3 permet l'utilisation d'un générateur à deux polarités + V transmise à la source d'ions par le câble 10 et - V transmise à la cible par le câ­ble 10′. Ces deux polarités sont référencées par rapport à la masse à laquelle est portée l'électrode accélératrice 13 soli­daire des enveloppes externes 15 et 15′.
  • Ainsi les champs électriques au niveau de la cathode 15 de la première partie du tube d'une part et au ni­veau de la cathode 22′ de la deuxième partie du tube d'autre part sont maintenus à des valeurs compatibles avec une fiabi­lité acceptable, alors que la différence de potentiel réglant l'accélération est égale à 2V afin d'augmenter la durée de vie du tube par réduction du courant cible, comme cela a déjà été mentionné précédemment.
  • Un tel mode d'alimentation du tube neutronique per­mettant de doubler la différence de potentiel d'accélération du faisceau d'ions offre ainsi la possibilité de compenser la réduction de l'émission neutronique qu'aurait entraîné la seu­le réduction du courant cible.
  • Le dispositif de l'invention présente un avantage supplémentaire du point de vue de la fiabilité par le fait que la diminution du courant cible est obtenue par une diminution corrélative du courant de la source d'ions par l'intermédiaire d'une diminution de la pression de fonctionnement.
  • Ce même dispositif permet en outre de réduire les pulvérisations ayant pour origine la source d'ions, ainsi que celles résultant des ionisations parasites sur le parcours du faisceau.
  • Par ailleurs l'électrode accélératrice 13 joue de plus le rôle d'un "écran" entre la source d'ions et la cible, ce qui réduit sensiblement les parcours possibles des ions dans le gaz et limite donc encore davantage les risques de claquage dans la perspective d'une fiabilité encore accrue.
  • Le mode d'alimentation symétrique du tube neutroni­que offre une autre possibilité intéressante qui est de pou­voir faire varier les espaces d'accélération entre les deux parties du tube et donc de réaliser ainsi une optique ionique permettant d'améliorer le réglage de la focalisation du fais­ceau. Cela revient à réagir sur les valeurs de champ électri­que dans chaque partie du tube.
  • Ainsi dans la première partie du tube, c'est l'en­veloppe 1 qui est cathode. Cette enveloppe constituant la pa­roi externe du tube présente un rayon de courbure élevé et un champ électrique E₁ est développé entre cette enveloppe et l'enveloppe 11 de la source d'ions jouant le rôle d'anode.
  • Dans la deuxième partie du tube, c'est l'enveloppe 11′ de la cible qui est cathode. Cette enveloppe présente un rayon de courbure plus faible que celui de la paroi du fait qu'elle se trouve à l'intérieur du tube et un champ électrique E₂ est développé entre cette enveloppe et l'enveloppe externe 1′ du tube jouant le rôle d'anode.
  • Si l'alimentation en tension de la source d'ions et de la cible est symétrique, on a l'inégalité E₂>E₁ du fait de la différence des rayons de courbure au niveau des deux élec­trodes jouant le rôle de cathode dans chaque partie du tube neutronique.
  • Pour obtenir un fonctionnement équivalent de chacu­ne des parties du tube, il faut rééquilibrer les champs élec­triques (E₂= E₁) en réajustant la valeur de la THT appliquée du côté de la cible.
  • Une deuxième variante du dispositif de l'invention représentée schématiquement sur la figure 4 définit la géomé­trie des parois isolantes du tube neutronique de façon à ré­duire au maximum l'effet de "flash-over" le long desdites pa­rois. Cet effet se manifeste par des émissions secondaires successives qui se développent à la surface de l'isolant à partir de l'impact d'une particule venant frapper cette surfa­ce. Il en résulte pour l'isolant un effet de surface dommagea­ble qui peut être contrecarré en inclinant les surfaces iso­lantes d'un certain angle par rapport au champ électrique, afin que le rebondissement ne se produise plus. La géométrie des isolants peut être différente selon la polarité.
  • Sur la figure 4, la seconde partie du tube neutro­nique contenant la cible est identique à celle de la figure 3. Dans la première partie du tube contenant la source, le contenu de la douille ferromagnétique 11 est également identi­que à celui de la figure 3.
  • Par contre les manchons isolants 12′ et 12˝ qui se correspondent dans les zones actives du tube ont leurs surfa­ces inclinées d'un certain angle par rapport à la direction du flux ionique indiqué par la flèche 29.
  • Le manchon 11˝ du câble 10˝ alimentant l'anode en THT a été conçu pour s'adapter à cette disposition.

Claims (6)

1. Dispositif d'amélioration de la durée de vie et de la fiabilité d'un tube neutronique scellé à haut flux conte­nant un mélange gazeux deutérium-tritium et dans lequel la source d'ions fournit un faisceau de grande énergie projeté sur une cible pour y produire une réaction de fusion entraî­nant une émission de neutrons, caractérisé en ce que ledit tu­be neutronique comporte une première partie et une seconde partie séparées par l'intermédiaire d'une électrode d'accélé­ration formant écran entre lesdites parties, ladite première partie contenant la source d'ions portée à un potentiel posi­tif de valeur réglable et ladite seconde partie contenant la cible portée à un potentiel négatif de valeur également régla­ble par rapport à la valeur zéro du potentiel de ladite élec­trode d'accélération mise à la masse par l'enveloppe externe du tube dont elle est solidaire.
2. Dispositif selon la revendication 1, caractérisé en ce que la possibilité de doubler la différence de potentiel entre source et cible entraîne, tout en maintenant constant le niveau d'émission neutronique, la réduction de l'intensité du faisceau d'ions et par conséquent l'accroissement de la durée de vie du tube sans augmenter les risques d'amorçage dans le mélange deutérium-tritium par collision des ions avec les mo­lécules de gaz, du fait que la séparation dudit tube neutroni­que en deux parties par l'intermédiaire dudit écran diminue les distances de parcours des ions dans chacune desdites par­ties.
3. Dispositif selon la revendication 1, caractérisé en ce que ladite enveloppe externe et ladite source d'ions cons­tituant respectivement la cathode et l'anode de ladite premiè­re partie du tube, ladite cible et ladite enveloppe externe constituant respectivement la cathode et l'anode de ladite se­conde partie du tube, les courants d'émission froide dévelop­pés par effet de surface des électrodes en regard dans chacune desdites parties du tube, sont affectées d'un facteur de réduction élevé favorable à la fiabilité, du fait que la dif­férence de potentiel requise pour l'accélération du faisceau d'ions se trouve répartie par moitiés entre lesdites première et seconde parties du tube.
4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que les champs électriques dans lesdites première et seconde parties du tube neutronique se trouvent répartis de façon dissymétrique soit du fait des potentiels appliqués, soit du fait des distances géométriques séparant les électrodes, lorsqu'on effectue le réglage des espaces d'accélération de manière à mieux contrôler la focalisation du faisceau d'ions et/ou les courants d'émission froide dans cha­cune desdites parties.
5. Dispositif selon l'une des revendications 1 à 4, caractérisé en ce que lesdites première et seconde parties du tube neutronique sont disposées symétriquement par rapport au plan médian passant par ladite électrode d'accélération for­mant écran.
6. Dispositif selon l'une des revendications 1 à 4, caractérisé en ce que les surfaces des parois isolantes qui se correspondent dans chacune desdites première et seconde par­ties du tube neutronique ont une inclinaison de même sens par rapport à la direction du faisceau d'ions.
EP89201010A 1988-04-26 1989-04-20 Tube neutronique scellé, à haut flux Expired - Lifetime EP0340832B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8805510A FR2630576B1 (fr) 1988-04-26 1988-04-26 Dispositif d'amelioration de la duree de vie et de la fiabilite d'un tube neutronique scelle a haut flux
FR8805510 1988-04-26

Publications (2)

Publication Number Publication Date
EP0340832A1 true EP0340832A1 (fr) 1989-11-08
EP0340832B1 EP0340832B1 (fr) 1993-12-29

Family

ID=9365678

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89201010A Expired - Lifetime EP0340832B1 (fr) 1988-04-26 1989-04-20 Tube neutronique scellé, à haut flux

Country Status (5)

Country Link
US (1) US5053184A (fr)
EP (1) EP0340832B1 (fr)
JP (1) JPH0213900A (fr)
DE (1) DE68911741T2 (fr)
FR (1) FR2630576B1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6441569B1 (en) 1998-12-09 2002-08-27 Edward F. Janzow Particle accelerator for inducing contained particle collisions
US6797701B2 (en) 1998-11-19 2004-09-28 Pfizer Inc. Antiparasitic formulations
EP2347654A1 (fr) 2001-09-17 2011-07-27 Eli Lilly and Company Compositions pesticides

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7176469B2 (en) * 2002-05-22 2007-02-13 The Regents Of The University Of California Negative ion source with external RF antenna
US6975072B2 (en) * 2002-05-22 2005-12-13 The Regents Of The University Of California Ion source with external RF antenna
KR20160072846A (ko) 2008-05-02 2016-06-23 샤인 메디컬 테크놀로지스, 인크. 의료용 동위원소를 생산하는 디바이스 및 방법
US10978214B2 (en) 2010-01-28 2021-04-13 SHINE Medical Technologies, LLC Segmented reaction chamber for radioisotope production
US10734126B2 (en) 2011-04-28 2020-08-04 SHINE Medical Technologies, LLC Methods of separating medical isotopes from uranium solutions
CN102226406B (zh) * 2011-05-10 2013-09-18 中铁十二局集团第一工程有限公司 超长超前锚杆施工方法
CN104321623B (zh) 2012-04-05 2018-11-30 阳光医疗技术公司 水性组件及控制方法
CN111739674B (zh) * 2020-05-26 2022-08-05 中国原子能科学研究院 一种用于负高压加速的小型中子发生器的靶电极

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2907884A (en) * 1955-06-14 1959-10-06 High Voltage Engineering Corp Compact neutron source
US2985760A (en) * 1958-09-12 1961-05-23 High Voltage Engineering Corp Compact neutron source
FR2167619A1 (fr) * 1972-01-03 1973-08-24 Philips Nv
US4119858A (en) * 1976-08-11 1978-10-10 Lawrence Cranberg Compact long-lived neutron source
NL7707357A (en) * 1977-07-04 1979-01-08 Philips Nv Anode for neutron generator ion source - has holes aligned to outlets in cathode converging beams on target

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2287619A (en) * 1939-06-09 1942-06-23 Kallmann Hartmut Israel Device for the production of slow neutrons
DE1233068B (de) * 1963-11-27 1967-01-26 Kernforschung Gmbh Ges Fuer Neutronengenerator
NL289180A (fr) * 1965-03-11
US3581093A (en) * 1968-04-23 1971-05-25 Kaman Sciences Corp Dc operated positive ion accelerator and neutron generator having an externally available ground potential target
DE1816459B1 (de) * 1968-12-21 1970-06-25 Kernforschung Gmbh Ges Fuer Neutronengenerator
US3746859A (en) * 1970-04-22 1973-07-17 Atomic Energy Commission High intensity neutron source
US3760225A (en) * 1972-06-06 1973-09-18 Atomic Energy Commission High current plasma source
NL7810299A (nl) * 1978-10-13 1980-04-15 Philips Nv Neutronengenerator met een trefplaat.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2907884A (en) * 1955-06-14 1959-10-06 High Voltage Engineering Corp Compact neutron source
US2985760A (en) * 1958-09-12 1961-05-23 High Voltage Engineering Corp Compact neutron source
FR2167619A1 (fr) * 1972-01-03 1973-08-24 Philips Nv
US4119858A (en) * 1976-08-11 1978-10-10 Lawrence Cranberg Compact long-lived neutron source
NL7707357A (en) * 1977-07-04 1979-01-08 Philips Nv Anode for neutron generator ion source - has holes aligned to outlets in cathode converging beams on target

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NUCLEAR INSTRUMENTS AND METHODS, vol. 189, 1981, pages 103-106, North-Holland Publishing Co., Amsterdam, NL; J.K. HIRVONEN et al.: "Production of high-current metal ion beams" *
PHILIPS TECHNICAL REVIEW, vol. 41, no. 1, 1983/84, pages 24-29, Eindhoven, NL; W. HARTL et al.: "Metal/ceramic X-ray tubes for non-destructive testing" *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6797701B2 (en) 1998-11-19 2004-09-28 Pfizer Inc. Antiparasitic formulations
BG65440B1 (bg) * 1998-11-19 2008-08-29 Pfizer Inc. Антипаразитни форми
US6441569B1 (en) 1998-12-09 2002-08-27 Edward F. Janzow Particle accelerator for inducing contained particle collisions
EP2347654A1 (fr) 2001-09-17 2011-07-27 Eli Lilly and Company Compositions pesticides
EP3488698A1 (fr) 2001-09-17 2019-05-29 Elanco US Inc. Formulations pesticides

Also Published As

Publication number Publication date
US5053184A (en) 1991-10-01
EP0340832B1 (fr) 1993-12-29
JPH0213900A (ja) 1990-01-18
FR2630576A1 (fr) 1989-10-27
FR2630576B1 (fr) 1990-08-17
DE68911741D1 (de) 1994-02-10
DE68911741T2 (de) 1994-06-30

Similar Documents

Publication Publication Date Title
EP0473233B1 (fr) Tube neutronique à flux élevé
EP1496727B1 (fr) Accélérateur à plasma à dérive fermée d'électrons
FR2926668A1 (fr) Source d'electrons a base d'emetteurs de champs pour radiographie multipoint.
EP0340832B1 (fr) Tube neutronique scellé, à haut flux
EP0988645A1 (fr) Tube a rayons x comportant une source d'electrons a micropointes et des moyens de guidage magnetique
WO2019011980A1 (fr) Source génératrice de rayons ionisants compacte, ensemble comprenant plusieurs sources et procédé de réalisation de la source
FR2482404A1 (fr) Tube accelerateur source de neutrons a section cible perfectionnee
Krile et al. DC flashover of a dielectric surface in atmospheric conditions
EP0362947B1 (fr) Tube neutronique scellé équipé d'une source d'ions multicellulaire à confinement magnétique
US7875857B2 (en) X-ray photoelectron spectroscopy analysis system for surface analysis and method therefor
EP0362946A1 (fr) Dispositif d'extraction et d'accélération des ions limitant la réaccélération des électrons secondaires dans un tube neutronique scellé à haut flux
US6236054B1 (en) Ion source for generating ions of a gas or vapor
EP0044239B1 (fr) Tube intensificateur d'images à micro-canaux et ensemble de prise de vues comprenant un tel tube
FR2641899A1 (fr) Canon a electrons muni d'un dispositif actif produisant un champ magnetique au voisinage de la cathode
EP0295743B1 (fr) Source d'ions à quatre électrodes
EP0362953A1 (fr) Tube neutronique scellé muni d'une source d'ions à confinement électrostatique des électrons
Korobkin et al. Hard X-ray emission in laser-induced vacuum discharge
EP0362945A1 (fr) Dispositif de perfectionnement de la source d'ions de type Penning dans un tube neutronique
WO2014095888A1 (fr) Dispositif d'optique electronique
FR2623658A1 (fr) Dispositif fonctionnant avec ionisation par contact pour l'elaboration d'un rayon d'ions acceleres
FR2647593A1 (fr) Piege a ions de faible energie
Akishev et al. Influence of the auxiliary plasma on the deuterium optical spectrum emitted from the dielectric target being irradiated by the e-beam with energy up to 25 keV
FR3098341A1 (fr) Generateur pulse de particules chargees electriquement et procede d’utilisation d’un generateur pulse de particules chargees electriquement
EP0308560A1 (fr) Canon à particules électriques permettant l'émission pulsée de particules d'énergie déterminée
Bondyakov et al. HIGH VOLTAGE NANOSECOND DISCHARGES IN AIR AT NONUNIFORM CONFIGURATION OF ELECTRIC FIELD

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19900501

17Q First examination report despatched

Effective date: 19920504

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 68911741

Country of ref document: DE

Date of ref document: 19940210

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940318

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980331

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980421

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980622

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990420

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000201