EP0337825A1 - Filtre coupe-bande hyperfréquence en technologie micro-bande - Google Patents

Filtre coupe-bande hyperfréquence en technologie micro-bande Download PDF

Info

Publication number
EP0337825A1
EP0337825A1 EP89400632A EP89400632A EP0337825A1 EP 0337825 A1 EP0337825 A1 EP 0337825A1 EP 89400632 A EP89400632 A EP 89400632A EP 89400632 A EP89400632 A EP 89400632A EP 0337825 A1 EP0337825 A1 EP 0337825A1
Authority
EP
European Patent Office
Prior art keywords
filter
microstrip
varactor
potential
tunable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89400632A
Other languages
German (de)
English (en)
Other versions
EP0337825B1 (fr
Inventor
Daniel Auffray
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0337825A1 publication Critical patent/EP0337825A1/fr
Application granted granted Critical
Publication of EP0337825B1 publication Critical patent/EP0337825B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters

Definitions

  • the present invention relates to a microwave band cut filter in micro-band technology.
  • Tunable microwave notch filters are used in particular in instantaneous very broadband microwave receivers generally having many signals to be processed simultaneously, typically radar signal receivers. Because of the very large instantaneous band, the signals are very often disturbed by the presence of strong parasitic signals which saturate the reception chains. The function of a notch filter is thus to attenuate the disturbing signals in order to be able to analyze and identify the signals of lower amplitudes. These disturbing signals generally having neither a frequency known in advance nor a stable frequency, it is necessary to provide a notch filter which is tunable.
  • a YIG filter (Yttrium-Iron Garnet: yttrium-iron garnet) has been used for this purpose, polarized appropriately to tune it to the frequency to be eliminated.
  • This technique despite its interesting performance (high rejection rate, low attenuated bandwidth), has the disadvantage of significantly increasing the dimensions and mass of the circuit and presenting a transition time ("rallying time”). ) relatively long, on the order of 10 to 20 ms, and to require a complex control circuit.
  • One of the aims of the present invention is to provide a tunable microwave notch filter which has electrical properties comparable to YIG filters, but which eliminates the aforementioned drawbacks.
  • the invention makes it possible to combine the following advantages: - low rejection out-of-band insertion losses, - broadband operation, compatible with the performance of current reception channels (typically, bandwidth from 2 to 18 GHz), - large frequency tuning range, - high rejection at the tuning frequency, - tuning system without power consumption, - very short rally time, - very small dimensions, allowing easy integration into microelectronics.
  • the present invention uses the basic structure known as coupled lines, that is to say comprising a transmission line in the form of a microstrip associated with at least one filtering cell comprising a microstrip segment disposed parallel to the line of transmission and at a distance therefrom, this microstrip segment having one of its ends in open circuit and the other connected to the ground potential.
  • connection to the ground potential is carried out for each cell with the interposition of a tunable LC resonant circuit.
  • the capacitive element of the tunable resonant circuit LC comprises a varactor, the anode of which is brought to an adjustable DC potential, so that the control of this DC potential allows the variation of the central rejection frequency of the notch filter. .
  • the inductive element of the tunable LC resonant circuit is produced in the form of a wire connecting the microstrip segment to the varactor, that being placed on the same dielectric substrate as this microstrip segment; - the continuous potential is applied to the anode of the varactor with the interposition of a low-pass filter; - the ratio of possible extreme rejection frequencies is at least equal to 1.5; the filter further comprises switching means for selectively placing said other end of each microstrip segment in open circuit instead of connecting it to the ground potential;
  • FIG. 1 shows the structure, in itself known, of a notch filter of the type known as "with coupled lines" produced in microstrip technology: such a filter comprises a transmission line 1 in the form of a microstrip connecting a microwave signal generator 2 to a load impedance 3, and there is provided at least one filter cell (five, in the example illustrated) formed by a microstrip segment 4 arranged parallel to the transmission line , and having an electrical length corresponding substantially to a quarter of the wavelength at the central rejection frequency which it is desired to give to the filter. Each of the segments 4 has one of its ends in open circuit and the other directly connected to the ground potential.
  • the attenuation provided by such a filter is illustrated in FIG. 2, the central frequency FO being determined by the length of each segment 4 and the bandwidth rejected depending on the number of cells and the coupled line impedance of each d 'between them.
  • the direct connection to earth of one of the ends of each segment is replaced by a resonant LC circuit formed by an inductor 5 in series with an adjustable capacity 6, this circuit constituting therefore a charge for the coupled line.
  • the adjustable capacity 6 consists of a varactor, the cathode of which is connected to ground and the anode of which is connected on the one hand to one of the terminals of the inductor 5 and on the other hand to a negative continuous potential source -V (the respective potentials -V1, -V2, ...
  • the tuning frequency of the resonant circuit LC will vary with the control voltage of the varactor, the operation of the filter will then be modified and its tuning in frequency will essentially depend on the DC voltage ap plicated with the varactor (of course, for a filter with several cells, all the potentials -V1, -V2, etc.
  • FIG. 4 The attenuation provided by such a filter is illustrated in FIG. 4, where it can be seen that the attenuation curve is similar to that of FIG. 2, but that its central frequency can move between a value FOmin and a value FOmax as a function of the potential applied to the cathode of the varactor, the minimum frequency being obtained for the maximum capacity of the varactor, itself corresponding to the lowest control potential.
  • the control circuits of the tuning frequency of the filter will become particularly simple, in particular compared to the tuning circuits currently used for filters tunable to YIG.
  • a five-cell filter has been shown of which all the LC circuits are similar, this number of five cells is in no way limiting, and essentially depends on the selectivity that is desired for the filter (by increasing the number of cells, we restrict the width of the ejected strip), the space available on the substrate to integrate the cells, etc.
  • FIG. 5 shows how it is possible without difficulty to produce the filter of the present invention with the integration techniques known in microelectronics.
  • the filter is for example produced on a dielectric substrate 7 of alumina (relative permittivity of 9.8) of small thickness, the lower face 8 of which is metallized so as to constitute both the ground plane and the mechanical support of the circuit .
  • Transmission line 1 is a conventional transmission line, with an impedance close to 50 ⁇ , comprising a microstrip extending between an entry point 9 and an exit point 10.
  • each segment 4 On either side of this line 1, five microstrip segments 4 have been distributed forming a coupled line; the tunable filter was therefore produced with five cells but, as we have just indicated, this number largely depends on the final electrical characteristics that one wishes to obtain. Opposite these segments 4 are provided throttles 11, 11 and 12, 12 allowing, in known manner, to adjust the impedances (in even and in odd mode) of each of the coupled lines. One end of each segment 4 is in open circuit, while the other end is connected by a connecting wire 5 to the cathode of a varactor 6, this connecting wire forming the inductance 5 of the diagram of the figure 3.
  • the varactor 6 is preferably a component produced in the form of a micropave carried over to the surface; the cathode of the varactor is connected to ground by means of a metallized via 16 connecting the circuit area on which the micropavé is welded to the underlying ground plane 8.
  • the continuous potential -V is applied to the anode of the varactor by means of a low-pass filter comprising a decoupling capacitor of high capacity 13 and a connecting wire 14 of considerable length constituting an impedance of high value, passing above a trench 15 delimiting the microwave circuits proper and the dielectric alumina substrate; the voltage control circuit of the varactors is thus made completely neutral in the microwave domain.
  • the filter switchable by replacing the series resonant circuit with a parallel resonant circuit and by varying the polarity of the voltage applied to the varactors.
  • a five-cell filter was produced with the layout of FIG. 5, intended to operate under the following operating conditions: - characteristic impedance 50 - bandwidth (excluding rejected frequency): 2 to 18 GHz, - possible tuning range: 7 to 10 GHz, - bandwidth attenuated to - 25 dB: 300 MHz.
  • FIGS. 6 and 7 both represent the response of the filter (FIG. 6 for the entire width W of the operating band; FIG. 7 in the range of variation of the filter).
  • the frequency of the filter can vary, substantially logarithmically as a function of the voltage applied to the varactor, between approximately 6.5 and 9.8 GHz, with an attenuated bandwidth w from 240 MHz to -25 dB and a maximum rejection of around -40 dB, values substantially constant whatever the tuning frequency.

Abstract

Ce filtre coupe-bande hyperfréquence en technologie microbande est du type à lignes couplées, c'est à dire comportant une ligne de transmission sous forme de microruban (1) associée à au moins une cellule de filtrage comprenant un segment de microruban (4) disposé parallèlement à la ligne de transmission et à distance de celle-ci, ce segment de microruban ayant l'une de ses extrémités en circuit ouvert et l'autre reliée au potentiel de la masse.
La liaison au potentiel de la masse est réalisée pour chaque cellule avec interposition d'un circuit résonnant LC (5,6) accordable. Avantageusement, l'élément capacitif du circuit résonnant LC accordable comprend un varactor (6) dont l'anode est portée à un potentiel continu (-V) ajustable, de sorte que la commande de ce potentiel continu permette la variation de la fréquence centrale de réjection du filtre coupe-bande, et l'élément inductif du circuit résonnant LC accordable est réalisé sous forme d'un fil de liaison (5) du segment de microruban (4) au varactor (6), celui étant disposé sur le même substrat diélectrique (7) que ce segment de microruban.

Description

  • La présente invention concerne un filtre coupe-bande hyperfréquence en technologie micro-bande.
  • Les filtres coupe-bande hyperfréquences accordables sont en particulier utilisés dans les récepteurs hyperfréquences à très large bande instantanée ayant généralement de nombreux signaux à traiter simultanément, typiquement les récepteurs de signaux radar.
    Du fait de la très large bande instantanée, les signaux sont très souvent perturbés par la présence de signaux forts parasites qui saturent les chaînes de réception. La fonction d'un filtre coupe-bande est ainsi d'atténuer les signaux perturbants pour pouvoir analyser et identifier les signaux de plus faibles amplitudes.
    Ces signaux perturbants n'ayant généralement ni une fréquence connue à l'avance ni une fréquence stable, il est nécessaire de prévoir un filtre coupe-bande qui soit accordable.
  • Jusqu'à présent, on utilisait à cet effet un filtre à YIG (Yttrium-Iron Garnet : grenat d'yttrium-fer) polarisé de manière appropriée pour l'accorder sur la fréquence à éliminer.
    Cette technique, malgré ses performances intéressantes (taux de réjection élevé, faible largeur de bande atténuée), a l'inconvénient d'accroître les dimensions et la masse du circuit de façon importante, de présenter un temps de transition ("temps de ralliement") relativement long, de l'ordre de 10 à 20 ms, et de nécessiter un circuit de commande complexe.
  • L'un des buts de la présente invention est de proposer un filtre coupe-bande hyperfréquence accordable qui présente des propriétés électriques comparables aux filtres à YIG, mais qui élimine les inconvénients précités.
  • Plus précisément, comme on le verra par la suite, l'invention permet de cumuler les avantages suivants :
    - faibles pertes d'insertion hors bande réjectée,
    - fonctionnement en large bande, compatible avec les perfor­mances des chaînes de réception actuelles (typiquement, largeur de bande de 2 à 18 GHz),
    - plage d'accord en fréquence importante,
    - réjection élevée à la fréquence d'accord,
    - système d'accord sans consommation électrique,
    - temps de ralliement très faible,
    - dimensions très réduites, permettant une intégration aisée en micro-électronique.
  • A cet effet, la présente invention utilise la structure de base dite à lignes couplées, c'est à dire comportant une ligne de transmission sous forme de microruban associée à au moins une cellule de filtrage comprenant un segment de microruban disposé parallèlement à la ligne de transmission et à distance de celle-ci, ce segment de microruban ayant l'une de ses extrémités en circuit ouvert et l'autre reliée au potentiel de la masse.
  • De façon caractéristique de la présente invention, la liaison au potentiel de la masse est réalisée pour chaque cellule avec interposition d'un circuit résonnant LC accordable.
  • Très avantageusement, l'élément capacitif du circuit résonnant LC accordable comprend un varactor dont l'anode est portée à un potentiel continu ajustable, de sorte que la commande de ce potentiel continu permette la variation de la fréquence centrale de réjection du filtre coupe-bande.
  • Selon d'autres caractéristiques préférentielles de la présente invention :
    - l'élément inductif du circuit résonnant LC accordable est réalisé sous forme d'un fil de liaison du segment de microruban au varactor, celui étant disposé sur le même substrat diélectrique que ce segment de microruban ;
    - le potentiel continu est appliqué à l'anode du varactor avec interposition d'un filtre passe-bas ;
    - le rapport des fréquences de réjection extrêmes possibles est au moins égal à 1,5 ;
    - le filtre comprend en outre des moyens de commutation pour mettre sélectivement en circuit ouvert ladite autre extré­mité de chaque segment de microruban au lieu de la relier au potentiel de la masse ;
  • Dans le dernier cas indiqué, on peut très avantageusement réaliser un filtre complexe comprenant une pluralité de tels filtres montés en cascade, les moyens de commutation de chaque filtre étant commandés sélectivement de manière à ne commuter que le(s) filtre(s) élémentaire(s) dont la plage de variation de la fréquence de réjection contient la (les) fréquence(s) à éliminer.
  • D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description détaillée ci-dessous, faite en référence aux figures annexées sur lesquelles :
    • - la figure 1 montre la structure de base d'un filtre coupe-bande à lignes couplées de l'art antérieur, dont la fréquence d'accord, fixée par construction, n'est pas ajustable,
    • - la figure 2 est un diagramme atténuation/fréquence correspondant au filtre de la figure 1,
    • - la figure 3 est homologue de la figure 1, pour le filtre accordable selon la présente invention,
    • - la figure 4 est homologue de la figure 2, pour le filtre accordable selon la présente invention, les courbes d'atténuation ayant été représentées pour les deux fréquences extrêmes d'accord de ce filtre,
    • - la figure 5 représente, en perspective, une réalisation du filtre de la présente invention montrant la manière dont on peut l'intégrer avec les techniques de la micro-électronique,
    • - la figure 6 est la courbe de réponse en fonction de la fréquence, mesurée pour un exemple pratique de filtre réalisé selon les enseignements de la présente invention,
    • - la figure 7 est une vue agrandie de la bande de fréquences centrale de la figure 6, montrant les courbes de réponse obtenues pour diverses valeurs d'accord s'étendant à l'intérieur de la plage de réglage du filtre.
  • Sur la figure 1, on a représenté la structure, en elle-même connue, d'un filtre coupe-bande du type dit " à lignes couplées" réalisé en technologie microbande : un tel filtre comprend une ligne de transmission 1 sous forme d'un microruban reliant un générateur 2 de signaux hyperfréquences à une impédance de charge 3, et il est prévu au moins une cellule de filtrage (cinq, dans l'exemple illustré) formée d'un segment de microruban 4 disposé parallèlement à la ligne de transmission, et ayant une longueur électrique correspondant sensiblement à un quart de la longueur d'onde à la fréquence centrale de réjection que l'on veut donner au filtre. Chacun des segments 4 a l'une de ses extrêmités en circuit ouvert et l'autre reliée directement au potentiel de la masse.
    L'atténuation procurée par un tel filtre est illustrée sur la figure 2, la fréquence centrale FO étant déterminée par la longueur de chaque segment 4 et la largeur de bande réjectée dépendant du nombre de cellules et de l'impédance de ligne couplée de chacune d'entre elles.
  • Selon l'invention, on remplace, comme illustré figure 3, la liaison directe à la masse de l'une des extrémités de chaque segment par un circuit LC résonnant formé d'une inductance 5 en série avec une capacité ajustable 6, ce circuit constituant donc une charge pour la ligne couplée.
    Très avantageusement, la capacité ajustable 6 est constituée d'un varactor dont la cathode est reliée à la masse et dont l'anode est reliée d'une part à l'une des bornes de l'inductance 5 et d'autre part à une source de potentiel continu négatif -V (les potentiels -V1, -V2, ... respectifs appliqués aux varactors des différentes cellules ne sont en fait pas tout à fait identiques, le calcul théorique montrant que, même en présence de composants présentant une dispersion nulle, il est nécessaire de calibrer préalablement les potentiels -V1, -V2, ... à des valeurs différentes (de quelques pourcents seulement, toutefois) pour accorder toutes les cellules sur la même fréquence centrale. La capacité du varactor étant fonction du potentiel continu appliqué à ses bornes, la fréquence d'accord du circuit résonnant LC variera avec la tension de commande du varactor. Le fonctionnement du filtre se trouvera alors modifié et son accord en fréquence dépendra essentiellement de la tension continue appliquée au varactor (bien entendu, pour un filtre à plusieurs cellules, on fait varier simultanément et de la même manière tous les potentiels -V1, -V2, ... pour conserver l'accord correct du filtre).
    L'atténuation procurée par un tel filtre est illustrée sur la figure 4, où l'on voit que la courbe d'atténuation est similaire à celle de la figure 2, mais que sa fréquence centrale peut se déplacer entre une valeur FOmin et une valeur FOmax en fonction du potentiel appliqué à la cathode du varactor, la fréquence minimale étant obtenue pour la capacité maximale du varactor, correspondant elle-même au potentiel de commande le plus faible.
    En outre, si l'on se souvient que la fréquence d'accord d'un circuit LC dont l'élément capacitif est un varactor varie de façon sensiblement logarithmique avec la tension appliquée, on conçoit que les circuits de commande de la fréquence d'accord du filtre deviendront particulièrement simples, notamment par rapport aux circuits d'accord utilisés actuellement pour les filtres accordables à YIG.
    Par ailleurs, bien que l'on ait représenté un filtre à cinq cellules dont tous les circuits LC sont semblables, ce nombre de cinq cellules n'est en aucune façon limitatif, et dépend essentiellement de la sélectivité que l'on souhaite pour le filtre (en augmentant le nombre de cellules, on restreint la largeur de la bande réjectée), de la place dont on dispose sur le substrat pour intégrer les cellules, etc.
  • On a décrit figure 5 un exemple d'implantation des composants, qui montre la manière dont on peut sans difficulté réaliser le filtre de la présente invention avec les techniques d'intégration connues en micro-électronique.
    Le filtre est par exemple réalisé sur un substrat diélectrique 7 d'alumine (permittivité relative de 9,8) de faible épaisseur, dont la face inférieure 8 est métallisée de manière à constituer à la fois le plan de masse et le support mécanique du circuit.
    La ligne de transmission 1 est une ligne de transmission classique, d'impédance voisine de 50 Ω, comportant un microruban s'étendant entre un point d'entrée 9 et un point de sortie 10.
    De part et d'autre de cette ligne 1, on a distribué cinq segments de microruban 4 formant une ligne couplée ; le filtre accordable a donc été réalisé avec cinq cellules mais, comme on vient de l'indiquer, ce nombre dépend largement des caractéristiques électriques finales que l'on souhaite obtenir. En regard de ces segments 4 sont prévus des étranglements 11,11 et 12,12 permettant, de manière connue, d'ajuster les impédances (en mode pair et en mode impair) de chacune des lignes couplées.
    L'une des extrémités de chaque segment 4 est en circuit ouvert, tandis que l'autre extrémité est reliée par un fil de liaison 5 à la cathode d'un varactor 6, ce fil de liaison formant l'inductance 5 du schéma de la figure 3.
    Le varactor 6 est de préférence un composant réalisé sous forme d'un micropavé reporté en surface ; la liaison de la cathode du varactor à la masse est réalisée au moyen d'un via métallisé 16 reliant la plage de circuit sur laquelle est soudé le micropavé au plan de masse 8 sous-jacent.
    On applique le potentiel continu -V à l'anode du varactor par l'intermédiaire d'un filtre passe-bas comprenant un condensateur de découplage de forte capacité 13 et un fil de connexion 14 de longueur importante constituant une impédance de forte valeur, passant au-dessus d'une tranchée 15 délimitant les circuits hyperfréquences proprement dits et le substrat diélectrique d'alumine ; on rend ainsi le circuit de commande en tension des varactors totalement neutre dans le domaine des hyperfréquences.
  • En complément, on peut prévoir de rendre le filtre commutable en remplaçant le circuit résonnant série par un circuit résonnant parallèle et en jouant sur la polarité de la tension appliquée aux varactors.
    Dans ce cas, on peut mettre avantageusement plusieurs filtres coupe-bande du même type en cascade, chacun étant accordable sur une plage de fréquences différente. Par une commutation sélective de l'un ou l'autre des filtres, on peut ainsi couvrir une plage de fréquences beaucoup plus large que celle d'un seul filtre, s'étendant typiquement sur plusieurs octaves.
  • Exemple de réalisation
  • On a réalisé un filtre à cinq cellules avec l'implantation de la figure 5, destiné à opérer dans les conditions de fonctionnement suivantes :
    - impédance caractéristique 50
    - bande passante (hors fréquence réjectée) : 2 à 18 GHz,
    - plage d'accord possible : 7 à 10 GHz,
    - largeur de bande atténuée à - 25 dB : 300 MHz.
  • Un filtre répondant à ces conditions est obtenu en prenant les caractéristiques suivantes :
    - cinq cellules,
    - impédances ZOE en mode pair et ZOO en mode impair des lignes couplées (en ohms) de chaque cellule :
    n° de cellule impédance ZOE (mode pair ) impédance ZOO (mode impair)
    1 70,14 38,8
    2 68,8 33,9
    3 71,2 31,5
    4 73,4 35,5
    5 63,8 36,1
    - capacité du varactor à -4V : C = 0,45 pF,
    - rapport maximal de variation de capacité C0/C25 = 3,7,
    - inductance du fil de connexion reliant le varactor à la ligne couplée : L = 0,73 nH.
  • Les performances du filtre ainsi réalisé sont données sur les figures 6 et 7, qui représentent toutes deux la réponse du filtre (figure 6 pour toute la largeur W de la bande de fonctionnement ; figure 7 dans la plage de variation du filtre). On constate que la fréquence du filtre peut varier, de façon sensiblement logarithmique en fonction de la tension appliquée au varactor, entre environ 6,5 et 9,8 GHz, avec une largeur de bande atténuée w de 240 MHz à -25 dB et une réjection maximale de l'ordre de -40 dB, valeurs sensiblement constantes quelle que soit la fréquence d'accord.

Claims (7)

1. Filtre coupe-bande hyperfréquence en technologie microbande du type à lignes couplées, comportant une ligne de transmission sous forme de microruban (1) associée à au moins une cellule de filtrage comprenant un segment de microruban (4) disposé parallèlement à la ligne de transmission et à distance de celle-ci, ce segment de microruban ayant l'une de ses extrémités en circuit ouvert et l'autre reliée au potentiel de la masse, caractérisé en ce que, pour chaque cellule, la liaison au potentiel de la masse est réalisée avec interposition d'un circuit résonnant LC (5,6) accordable.
2. Filtre selon la revendication 1, caractérisé en ce que l'élément capacitif du circuit résonnant LC accordable comprend un varactor (6) dont l'anode est portée à un potentiel continu (-V) ajustable, de sorte que la commande de ce potentiel continu permette la variation de la fréquence centrale de réjection du filtre coupe-bande.
3. Filtre selon la revendication 2, caractérisé en ce que l'élément inductif du circuit résonnant LC accordable est réalisé sous forme d'un fil de liaison (5) du segment de microruban (4) au varactor (6), celui étant disposé sur le même substrat diélectrique (7) que ce segment de microruban.
4. Filtre selon l'une des revendications 2 ou 3, caractérisé en ce que le potentiel continu est appliqué à l'anode du varactor avec interposition d'un filtre passe-bas (13,14).
5. Filtre selon l'une des revendications précédentes, caractérisé en ce que le rapport des fréquences de réjection extrêmes possibles est au moins égal à 1,5.
6. Filtre selon l'une des revendications précédentes, caractérisé en ce qu'il comprend en outre des moyens de commutation pour mettre sélectivement en circuit ouvert ladite autre extrémité de chaque segment de microruban (4) au lieu de la relier au potentiel de la masse.
7. Filtre coupe-bande hyperfréquence en technologie microbande, caractérisé en ce qu'il comprend une pluralité de filtres selon la revendication 6 montés en cascade, les moyens de commutation de chaque filtre étant commandés sélectivement de manière à ne commuter que le(s) filtre(s) élémentaire(s) dont la plage de variation de la fréquence de réjection contient la (les) fréquence(s) à éliminer.
EP19890400632 1988-03-11 1989-03-07 Filtre coupe-bande hyperfréquence en technologie micro-bande Expired - Lifetime EP0337825B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8803187 1988-03-11
FR8803187A FR2628571B1 (fr) 1988-03-11 1988-03-11 Filtre coupe-bande hyperfrequence en technologie micro-bande

Publications (2)

Publication Number Publication Date
EP0337825A1 true EP0337825A1 (fr) 1989-10-18
EP0337825B1 EP0337825B1 (fr) 1993-11-18

Family

ID=9364182

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890400632 Expired - Lifetime EP0337825B1 (fr) 1988-03-11 1989-03-07 Filtre coupe-bande hyperfréquence en technologie micro-bande

Country Status (3)

Country Link
EP (1) EP0337825B1 (fr)
DE (1) DE68910719T2 (fr)
FR (1) FR2628571B1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0454992A2 (fr) * 1990-05-04 1991-11-06 International Business Machines Corporation Suppression des parasites électriques d'un circuit électronique
FR2678450A1 (fr) * 1991-06-27 1992-12-31 Dassault Electronique Dispositif de filtrage coupe-bande hyperfrequence.
JP2008078734A (ja) * 2006-09-19 2008-04-03 Mitsubishi Electric Corp 周波数可変rfフィルタ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004257A (en) * 1975-07-09 1977-01-18 Vitek Electronics, Inc. Transmission line filter
US4467296A (en) * 1982-08-23 1984-08-21 Loral Corporation Integrated electronic controlled diode filter microwave networks
US4468644A (en) * 1982-09-23 1984-08-28 General Instrument Corp. Tunable reject filter for radar warning receiver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004257A (en) * 1975-07-09 1977-01-18 Vitek Electronics, Inc. Transmission line filter
US4467296A (en) * 1982-08-23 1984-08-21 Loral Corporation Integrated electronic controlled diode filter microwave networks
US4468644A (en) * 1982-09-23 1984-08-28 General Instrument Corp. Tunable reject filter for radar warning receiver

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1985 IEEE - MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, 4-6 juin 1985, St. Louis, Missouri, pages 531-534, IEEE, New York, US; M. MEHDIZADEH et al.: "High speed varactor tuned notch filter" *
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-30, no. 9, septembre 1982, pages 1361-1367, IEEE, New York, US; I.C. HUNTER et al.: "Electronically tunable microwave bandstop filters" *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0454992A2 (fr) * 1990-05-04 1991-11-06 International Business Machines Corporation Suppression des parasites électriques d'un circuit électronique
EP0454992A3 (en) * 1990-05-04 1991-11-21 International Business Machines Corporation Suppression of electrical interferences from an electronic circuit
FR2678450A1 (fr) * 1991-06-27 1992-12-31 Dassault Electronique Dispositif de filtrage coupe-bande hyperfrequence.
WO1993000718A1 (fr) * 1991-06-27 1993-01-07 Dassault Electronique Dispositif de filtrage coupe-bande hyperfrequence accordable
GB2263583A (en) * 1991-06-27 1993-07-28 Dassault Electronique Tunable microwave bandstop filter device
US5448210A (en) * 1991-06-27 1995-09-05 Dassault Electronique Tunable microwave bandstop filter device
GB2263583B (en) * 1991-06-27 1995-09-06 Dassault Electronique Tunable microwave bandstop filter device
JP2008078734A (ja) * 2006-09-19 2008-04-03 Mitsubishi Electric Corp 周波数可変rfフィルタ
JP4650897B2 (ja) * 2006-09-19 2011-03-16 三菱電機株式会社 周波数可変rfフィルタ

Also Published As

Publication number Publication date
DE68910719T2 (de) 1994-03-17
EP0337825B1 (fr) 1993-11-18
FR2628571A1 (fr) 1989-09-15
FR2628571B1 (fr) 1990-11-09
DE68910719D1 (de) 1993-12-23

Similar Documents

Publication Publication Date Title
EP2202838B1 (fr) Condensateur commuté compact mems
EP2184803A1 (fr) Ligne à retard bi-ruban différentielle coplanaire, filtre différentiel d'ordre supérieur et antenne filtrante munis d'une telle ligne
FR2905207A1 (fr) Filtre commutable a resonateurs.
EP0165158A1 (fr) Filtre diélectrique à fréquence centrale variable
FR2937481A1 (fr) Dispositif de commutation electronique pour signaux a haute frequence
FR2821997A1 (fr) Filtre a ondes acoustiques de surface
FR2578123A1 (fr) Reseau d'accouplement entre etages a bande changee comprenant un condensateur couple cote haut
EP1699108A1 (fr) Antenne du type à surface(s) rayonnante(s) plane(s) commutable(s) et terminal de communication comportant cette antenne
EP0337825B1 (fr) Filtre coupe-bande hyperfréquence en technologie micro-bande
FR2678450A1 (fr) Dispositif de filtrage coupe-bande hyperfrequence.
EP0424255B1 (fr) Cellule de filtrage et filtre correspondant
EP0281773A1 (fr) Filtre hyperfréquence accordable
EP1416575A1 (fr) Transformateur à changement de mode
EP0373028B1 (fr) Filtre passif passe-bande
FR2871618A1 (fr) Filtre basse-bande hyperfrequence de type finline
EP0736971A1 (fr) Circuit réjecteur à fréquence de réjection réglable
EP3485534B1 (fr) Surface sélective en fréquence commandable et multifonctionnelle
EP0487396A1 (fr) Filtre passif passe-bande
FR2612023A1 (fr) Dispositif de commande bidirectionnelle d'un signal electrique de puissance a tres haute frequence
FR2622054A1 (fr) Cavite a accord commutable pour filtre passe-bande, notamment pour duplexeur, et emetteur-recepteur pour radiotelephonie comprenant une telle cavite
FR2493632A1 (fr)
FR2778288A1 (fr) Filtre passe-bande accordable
FR2907262A1 (fr) Cellule dephaseuse a dephaseur analogique pour antenne de type"reflectarray".
FR2539933A1 (fr) Filtre commutable pour micro-ondes
FR2494929A1 (fr) Oscillateur hyperfrequence a transistor, accordable par tension

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19900207

17Q First examination report despatched

Effective date: 19920603

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

REF Corresponds to:

Ref document number: 68910719

Country of ref document: DE

Date of ref document: 19931223

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931220

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: THOMSON-CSF

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020226

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020227

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050307