EP0335193A2 - Process for making preforms - Google Patents

Process for making preforms Download PDF

Info

Publication number
EP0335193A2
EP0335193A2 EP89104699A EP89104699A EP0335193A2 EP 0335193 A2 EP0335193 A2 EP 0335193A2 EP 89104699 A EP89104699 A EP 89104699A EP 89104699 A EP89104699 A EP 89104699A EP 0335193 A2 EP0335193 A2 EP 0335193A2
Authority
EP
European Patent Office
Prior art keywords
layer
base body
chamber
mbar
hip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89104699A
Other languages
German (de)
French (fr)
Other versions
EP0335193A3 (en
Inventor
Hartmut Dr.-Ing. Kaiser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thyssen Guss AG
Original Assignee
Thyssen Guss AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thyssen Guss AG filed Critical Thyssen Guss AG
Publication of EP0335193A2 publication Critical patent/EP0335193A2/en
Publication of EP0335193A3 publication Critical patent/EP0335193A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Definitions

  • the invention relates to a method for producing molded parts and components, which are composed of a base body and a layer applied to this body, which are connected to one another by the hot isostatic press method (HIP method), the layer comprising a same or different material as the base body.
  • HIP method hot isostatic press method
  • the present invention is therefore based on the object of applying the thickest possible layer with a small pore volume without disturbing foreign phases, which can then be subjected directly to the HIP process in order to obtain a homogeneous base and layer material of the same type, or a heterogeneous one with different base and To produce layer material, molded body or a component, in the latter case both materials are homogeneous in themselves. In any case, the transition area should have a diffusive bond.
  • the diffusion zone is set by optimizing the HIP parameters, whereby the properties are to be harmonized.
  • the solution to this problem is that on the base body at a temperature of at least 600 ° C by means of plasma spraying at a chamber pressure of 140-180 mbar, which is set to at least 10-2 mbar after evacuation of the chamber more than 5 mm thick are sprayed on and the layer is connected to the base body by the HIP process at least 500 ° C. and at least 500 bar diffusively and without pores.
  • a reducing gas is advantageously added in addition to the inert gas.
  • the advantage of the method according to the invention is above all that a vacuum atmosphere in the chamber and an optimal base body and layer temperature of more than 600 ° C can be maintained during the coating process without a disturbing oxygen influence taking place, which in the sprayed layer, an optimal residual porosity of less than 3% is achieved, so that the subsequent HIP process makes a pore-free molded body possible, the two starting components - base body and layer with a thickness of more than 5 mm - are diffusively connected to one another.
  • a base body A) is produced, which is also produced by powder metallurgy by means of encapsulation using the HIP process can be and which consists of a nickel-based superalloy.
  • the base body A) is provided with a layer C) of Ni-based superalloy in a vacuum chamber, in which inert gas and a reducing gas are present, at a pressure of approx. 160 mbar after the plasma spraying process
  • the chamber was evacuated to at least 10 ⁇ 2 mbar and the necessary reducing atmosphere was then created by flooding with the appropriate gas mixture.
  • the special spray parameters for the plasma gases of 40 to 60 l argon per minute and 7 to 12 l hydrogen gas per minute are also prerequisites for producing these high-quality, technologically demanding layers.
  • the surface of the hot basic body is then coated with known powder conveying of the plasma spraying process, without interruption by cooling or heat compensation phases up to a minimum layer thickness of 26 mm.
  • This sprayed layer C) adheres adhesively to the carrier material A) in the transition phase B).
  • the targeted procedure thus enables a low-pore and foreign phase-free layer production, which results in a shaped body by the subsequent hot isostatic pressing (HIP).
  • the HIP process takes place at a temperature of at least 500 ° C and a pressure of at least 500 bar.
  • Figures 1 and 2 show a molded article produced according to this process, Figure 1 showing a micro-grinding in 500x magnification of a layer C) made of a heat-resistant Ni-base superalloy on a base body A) made of the same material with a pronounced transition zone B) before the implementation of the HIP process and Figure 2 shows the same part as Figure 1 but after the HIP process has been carried out.
  • the transition phase B) has disappeared and the base body and layer form a homogeneous, completely dense structure without Pores D), a diffusive bond being present in the transition phase B) which can no longer be determined, which forms the basis of high strength in the entire material composite.

Abstract

The invention relates to a process for the production of mouldings and structural elements, in which the substrate and a layer sprayed thereon are bonded to one another by the high-temperature isostatic moulding process and layers more than 5 mm thick are sprayed onto the substrate at a temperature of at least 600 DEG C by means of plasma spraying at a chamber pressure of 140 - 180 mbar, which is adjusted to at least 10<-><2> mbar after evacuation of the chamber , and the layer is bonded to the substrate diffusively and without pores by the high- temperature isostatic moulding process at at least 500 DEG C and at least 500 bar. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Formteilen und Bauelementen, welche aus einem Grundkörper und einer auf diesen Körper aufgebrachten Schicht zusammen­gesetzt sind, die mit dem Heiß-Isostatischen-Press-Verfahren (HIP-Verfahren) miteinander verbunden werden, wobei die Schicht aus einem gleichen oder ungleichen Material wie der Grund­körper besteht.The invention relates to a method for producing molded parts and components, which are composed of a base body and a layer applied to this body, which are connected to one another by the hot isostatic press method (HIP method), the layer comprising a same or different material as the base body.

Nach den bisher bekannten Methoden und Verfahren, insbesondere nach dem DE-PS 34 34 529 und GB-PS 20 25 469, ist es nicht möglich, eine Plasma-Spritzschicht von mehr als 5 mm Schicht­dicke auf einen Grundkörper aufzubringen, um ein Formteil oder Bauelement zu erhalten. Plasma-Spritzschichten besitzen verfahrensbedingt Eigenspannungen, die mit steigender Schicht­dicke ebenfalls größer werden und ihren Grenzwert bei Erreichen der Haftzugfestigkeit zwischen Grundkörper und aufgebrachter Schicht haben. Dies bedeutet, daß in Abhängigkeit vom Werkstoff die aufgebrachte Schicht als Funktion der Schichtdicke abplatzt. Weiterhin sind verfahrensbedingt bei den konventionellen Beschichtungsweisen bei den zum Einsatz kommenden Schichten geringer Dicke Poren vorhanden, die insbesondere bei dynamischer und/oder korrosiver Beanspruchung des Bauteils zu desen Ausfall führen.According to the previously known methods and processes, in particular according to DE-PS 34 34 529 and GB-PS 20 25 469, it is not possible to apply a plasma spray layer of more than 5 mm layer thickness to a base body in order to form a molded part or component to obtain. Due to the process, plasma sprayed coatings have residual stresses that also increase with increasing layer thickness and have their limit value when the adhesive tensile strength between the base body and the applied layer is reached. This means that, depending on the material, the applied layer flakes off as a function of the layer thickness. Furthermore, due to the process involved, conventional layers have thin pores in the layers that are used, which lead to failure particularly when the component is subjected to dynamic and / or corrosive stress.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine möglichst dicke Schicht mit geringem Porenvolumen ohne störende Fremdphasen aufzubringen, die anschließend unmittelbar dem HIP-Verfahren unterworfen werden kann, um einen homogenen bei artgleichem Grund- und Schichtwerkstoff, oder einen heterogenen bei unterschiedlichem Grund- und Schichtwerkstoff, Formkörper oder ein Bauelement herzustellen, wobei im letzteren Fall beide Werkstoffe in sich homogen sind. Der Übergangs­bereich soll in jedem Fall eine diffusive Bindung aufweisen.The present invention is therefore based on the object of applying the thickest possible layer with a small pore volume without disturbing foreign phases, which can then be subjected directly to the HIP process in order to obtain a homogeneous base and layer material of the same type, or a heterogeneous one with different base and To produce layer material, molded body or a component, in the latter case both materials are homogeneous in themselves. In any case, the transition area should have a diffusive bond.

Die Diffusionszone wird durch Optimierung der HIP-Parameter eingestellt, wodurch die Angleichung der Eigenschaften erreicht werden soll.The diffusion zone is set by optimizing the HIP parameters, whereby the properties are to be harmonized.

Die Lösung dieser Aufgabe besteht darin, daß auf den Grund­körper bei einer Temperatur von mind. 600 °C mittels Plasma-­Spritzen bei einem Kammerdruck von 140 - 180 mbar, welcher nach Evakuieren der Kammer auf mind. 10⁻² mbar eingestellt ist, Schichten von mehr als 5 mm Dicke aufgespritzt werden und die Schicht mit dem Grundkörper durch das HIP-Verfahren bei mind. 500 °C und mind. 500 bar diffusiv und porenfrei verbunden wird.The solution to this problem is that on the base body at a temperature of at least 600 ° C by means of plasma spraying at a chamber pressure of 140-180 mbar, which is set to at least 10-2 mbar after evacuation of the chamber more than 5 mm thick are sprayed on and the layer is connected to the base body by the HIP process at least 500 ° C. and at least 500 bar diffusively and without pores.

Vorteilhaft wird bei Verwendung von Cobalt- oder Nickel-Basis-­Superlegierungen, Refraktärmetallen der Nebengruppe IVa bis VIa des periodischen Systems der Elemente und bei Karbiden, Nitriden und Boriden in der Atmosphäre der Kammer zusätzlich zu dem Inertgas ein reduzierendes Gas zugegeben.When using cobalt or nickel-based superalloys, refractory metals from subgroup IVa to VIa of the periodic system of the elements and with carbides, nitrides and borides in the atmosphere of the chamber, a reducing gas is advantageously added in addition to the inert gas.

Der Vorteil des erfindungsgemäßen Verfahren besteht vor allem darin, daß eine Vakuum-Atmosphäre in der Kammer und eine optimale Grundkörper- und Schichttemperatur von mehr als 600 °C während des Beschichtungsablaufs gehalten werden kann, ohne daß ein störender Sauerstoff-Einfluß stattfindet, wodurch in der gespritzten Schicht eine optimale Restporosität von weniger als 3 % erreicht wird, so daß der nachfolgende HIP-Prozess einen porenfreien Formkörper möglich macht, dessen beide Aus­gangskomponenten - Grundkörper und Schicht mit mehr als 5 mm Dicke - diffusiv miteinander verbunden sind. Hierdurch entfällt eine aufwendige Kapselung bei pulvermetallurgisch hergestellten Form- und Bauteilen, die nur unter Reinraumbedingungen bei der vorliegenden Werkstoffauswahl durchgeführt werden kann.The advantage of the method according to the invention is above all that a vacuum atmosphere in the chamber and an optimal base body and layer temperature of more than 600 ° C can be maintained during the coating process without a disturbing oxygen influence taking place, which in the sprayed layer, an optimal residual porosity of less than 3% is achieved, so that the subsequent HIP process makes a pore-free molded body possible, the two starting components - base body and layer with a thickness of more than 5 mm - are diffusively connected to one another. This eliminates the need for expensive encapsulation in the case of molded parts and components manufactured using powder metallurgy, which can only be carried out under clean room conditions in the case of the present selection of materials.

Nachfolgend ist anhand eines Beispiels die vorliegende Erfindung beschrieben.
Zuerst wird ein Grundkörper A) gefertigt, der auch pulver­metallurgisch mittels Kapselung im HIP-Verfahren hergestellt werden kann und der aus einer Nickel-Basis-Superlegierung besteht. Der Grundkörper A) wird in einer Vakuum-Kammer, in der Inertgas und ein reduzierendes Gas vorhanden ist, bei einem Druck von ca. 160 mbar nach dem Plasma-Spritzverfahren mit einer Schicht C) aus Ni-Basis-Superlegierung versehen, nachdem vorher eine Evakuierung der Kammer auf mind. 10⁻² mbar erfolgt ist und anschließend durch Fluten mit den entsprechenden Gasgemisch die notwendige reduzierende Atmosphäre hergestellt wurde. Auch die speziellen Spritzparameter für die Plasmagase von 40 bis 60 l Argon pro Minute und 7 bis 12 l Wasserstoffgas pro Minute sind Voraussetzung zur Erzeugung dieser hochwert­igen, technologisch anspruchsvollen Schichten. Unter Konstant­haltung einer Grundkörpertemperatur von mind. 600 °C wird anschließend bei bekannter Pulverförderung des Plasmaspritz­prozesses die Oberfläche des heißen Grundkörpers beschichtet und zwar ohne Unterbrechung durch Abkühl- oder Wärmeausgleichs­phasen bis zu einer Mindestschichtdicke von 26 mm. Diese gespritzte Schicht C) haftet in der Übergangsphase B) adhäsiv am Trägerwerkstoff A). Wie das Schliffbild 1 zeigt, sind nur wenig Poren D) in der aufgespritzten Schicht C) vorhanden. Die gezielte Vorgehensweise ermöglicht also eine porenarme und fremdphasenfreie Schichtherstellung, die einen Formkörper durch das nachfolgende Heiß-Isostatische-Pressen (HIP) ergibt. Der HIP-Prozess erfolgt bei einer Temperatur von mind. 500 °C und einem Druck von mind. 500 bar.
The present invention is described below using an example.
First, a base body A) is produced, which is also produced by powder metallurgy by means of encapsulation using the HIP process can be and which consists of a nickel-based superalloy. The base body A) is provided with a layer C) of Ni-based superalloy in a vacuum chamber, in which inert gas and a reducing gas are present, at a pressure of approx. 160 mbar after the plasma spraying process The chamber was evacuated to at least 10⁻² mbar and the necessary reducing atmosphere was then created by flooding with the appropriate gas mixture. The special spray parameters for the plasma gases of 40 to 60 l argon per minute and 7 to 12 l hydrogen gas per minute are also prerequisites for producing these high-quality, technologically demanding layers. While maintaining a basic body temperature of at least 600 ° C, the surface of the hot basic body is then coated with known powder conveying of the plasma spraying process, without interruption by cooling or heat compensation phases up to a minimum layer thickness of 26 mm. This sprayed layer C) adheres adhesively to the carrier material A) in the transition phase B). As the micrograph 1 shows, there are only a few pores D) in the sprayed-on layer C). The targeted procedure thus enables a low-pore and foreign phase-free layer production, which results in a shaped body by the subsequent hot isostatic pressing (HIP). The HIP process takes place at a temperature of at least 500 ° C and a pressure of at least 500 bar.

Einen nach diesem Verfahren hergestellten Formkörper zeigen die Bilder 1 und 2, wobei Bild 1 einen Mikroschliff in 500facher Vergrößerung einer Schicht C) aus einer hochwarmfesten Ni-Basis-­Superlegierung auf einem Grundkörper A) aus dem gleichen Werkstoff mit ausgeprägter Übergangszone B) vor der Durch­führung des HIP-Verfahrens darstellt und Bild 2 das gleiche Teil wie Bild 1 aber nach Durchführung des HIP-Verfahrens zeigt. Die Übergangsphase B) ist verschwunden und Grundkörper und Schicht bilden ein homogenes völlig dichtes Gefüge ohne Poren D), wobei in der nicht mehr feststellbaren Übergangs­phase B) eine diffusive Bindung vorhanden ist, was die Grundlage hoher Festigkeit im gesamten Werkstoffverbund bildet.Figures 1 and 2 show a molded article produced according to this process, Figure 1 showing a micro-grinding in 500x magnification of a layer C) made of a heat-resistant Ni-base superalloy on a base body A) made of the same material with a pronounced transition zone B) before the implementation of the HIP process and Figure 2 shows the same part as Figure 1 but after the HIP process has been carried out. The transition phase B) has disappeared and the base body and layer form a homogeneous, completely dense structure without Pores D), a diffusive bond being present in the transition phase B) which can no longer be determined, which forms the basis of high strength in the entire material composite.

Auch mit den anderen oben genannten Legierungen etc. lassen sich Schliffbilder erzielen, die Bild 2 sehr ähnlich sind. Wesentlich bleibt nur, daß die erfindungsgemäßen Schritte eingehalten werden.Cross-sectional images that are very similar to Figure 2 can also be achieved with the other alloys mentioned above. All that remains essential is that the steps according to the invention are followed.

Claims (3)

1) Verfahren zur Herstellung von Formteilen und Bauelementen, welche aus einem Grundkörper und einer auf diesen Körper aufgebrachten Schicht zusammengesetzt sind, die mit dem Heiß-Isostatischen-Press-Verfahren (HIP) miteinander ver­bunden werden, wobei die Schicht aus einem gleichen oder ungleichen Material wie der Grundkörper besteht, dadurch gekennzeichnet, daß auf den Grundkörper bei einer Temperatur von mind. 600 °C mittels Plasma-Spritzen bei einem Kammer­druck von 140 bis 180 mbar, welcher nach Evakuieren der Kammer auf mind. 10⁻² mbar eingestellt ist, Schichten von mehr als 5 mm Dicke aufgespritzt werden und die Schicht mit dem Grundkörper durch das HIP-Verfahren bei mind. 500 °C und mind. 500 bar diffusiv und porenfrei verbunden wird.1) Process for the production of moldings and components, which are composed of a base body and a layer applied to this body, which are connected to one another using the hot isostatic press process (HIP), the layer being made of the same or different material like the basic body, characterized in that layers are applied to the basic body at a temperature of at least 600 ° C by means of plasma spraying at a chamber pressure of 140 to 180 mbar, which is set to at least 10⁻² mbar after the chamber has been evacuated of more than 5 mm thickness are sprayed on and the layer is connected to the base body by the HIP process at least 500 ° C. and at least 500 bar diffusively and without pores. 2) Verfahren nach Anspruch 1, dadurch gekennzeichnet,daß bei Verwendung von Cobalt- oder Nickel-Basis-Superlegierungen, Refraktärmetallen der Nebengruppe IVa bis VIa des periodischen Systems der Elemente und bei Karbiden, Nitriden und Boriden in der Atmosphäre der Kammer zusätzlich zu dem Inertgas ein reduzierendes Gas zugegeben wird.2) Method according to claim 1, characterized in that when using cobalt or nickel-based superalloys, refractory metals from subgroup IVa to VIa of the periodic system of the elements and carbides, nitrides and borides in the atmosphere of the chamber in addition to the inert gas a reducing gas is added. 3) Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Grundkörper pulvermetallurgisch mit dem HIP-Verfahren hergestellt ist.3) Method according to claim 1 or 2, characterized in that the base body is made by powder metallurgy with the HIP process.
EP89104699A 1988-03-30 1989-03-16 Process for making preforms Withdrawn EP0335193A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19883810851 DE3810851C2 (en) 1988-03-30 1988-03-30 Process for the production of molded parts
DE3810851 1988-03-30

Publications (2)

Publication Number Publication Date
EP0335193A2 true EP0335193A2 (en) 1989-10-04
EP0335193A3 EP0335193A3 (en) 1989-11-15

Family

ID=6351102

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89104699A Withdrawn EP0335193A3 (en) 1988-03-30 1989-03-16 Process for making preforms

Country Status (2)

Country Link
EP (1) EP0335193A3 (en)
DE (1) DE3810851C2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2691477A1 (en) * 1992-05-22 1993-11-26 Neyrpic Amorphous alloy coating for hydraulic machinery - having good corrosion and wear resistance with good ductility
WO1999023272A1 (en) * 1997-11-03 1999-05-14 Siemens Aktiengesellschaft Method for producing a protective coating on a base body intended to be impinged upon by a hot gas and corresponding product
EP1541705A2 (en) * 2003-11-21 2005-06-15 Seiko Epson Corporation Method for processing cylinder periphery, processes for producing development roller and photoconductor drum, and development roller and photoconductor drum

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2328441A1 (en) * 1973-06-05 1974-12-19 Arnold Muellenberg Glass spinning crucible - lined with stabilised zirconia applied by plasma spraying
GB2002420A (en) * 1977-08-03 1979-02-21 Howmet Turbine Components Process for producing elevated temperature corrosion resistant metal articles
EP0023733A1 (en) * 1979-08-03 1981-02-11 SKF Industrial Trading &amp; Development Co, B.V. Method for applying a dense, hard, adhesive and wear-resistant layer of cermets or ceramic material on a metal object
US4339271A (en) * 1971-03-15 1982-07-13 Asea Ab Method of manufacturing a sintered powder body
JPS58199855A (en) * 1982-05-18 1983-11-21 Kuroki Kogyosho:Kk Surface treatment of tuyere
GB2154614A (en) * 1984-02-22 1985-09-11 H I P Densified coatings by application of direct fluid pressure
EP0223104A1 (en) * 1985-10-29 1987-05-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Coating on a substrate and process for its manufacture
EP0237780A2 (en) * 1986-03-20 1987-09-23 Reimbold & Strick GmbH & Co. KG Method of producing graphite articles provided with an electroconductive and oxidation-resistant film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2025469A (en) * 1978-07-17 1980-01-23 United Technologies Corp Plasma sprayed MCrAlY coatings
DE3434529C2 (en) * 1983-10-21 1988-12-22 J. Wizemann Gmbh U. Co, 7000 Stuttgart Process for making a metallic composite article

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339271A (en) * 1971-03-15 1982-07-13 Asea Ab Method of manufacturing a sintered powder body
DE2328441A1 (en) * 1973-06-05 1974-12-19 Arnold Muellenberg Glass spinning crucible - lined with stabilised zirconia applied by plasma spraying
GB2002420A (en) * 1977-08-03 1979-02-21 Howmet Turbine Components Process for producing elevated temperature corrosion resistant metal articles
EP0023733A1 (en) * 1979-08-03 1981-02-11 SKF Industrial Trading &amp; Development Co, B.V. Method for applying a dense, hard, adhesive and wear-resistant layer of cermets or ceramic material on a metal object
JPS58199855A (en) * 1982-05-18 1983-11-21 Kuroki Kogyosho:Kk Surface treatment of tuyere
GB2154614A (en) * 1984-02-22 1985-09-11 H I P Densified coatings by application of direct fluid pressure
EP0223104A1 (en) * 1985-10-29 1987-05-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Coating on a substrate and process for its manufacture
EP0237780A2 (en) * 1986-03-20 1987-09-23 Reimbold & Strick GmbH & Co. KG Method of producing graphite articles provided with an electroconductive and oxidation-resistant film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 8, Nr. 41 (C-211)[1478], 22. Februar 1984; & JP-A-58 199 855 (KUROKI KOGYOSHO K.K.) 21-11-1983 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2691477A1 (en) * 1992-05-22 1993-11-26 Neyrpic Amorphous alloy coating for hydraulic machinery - having good corrosion and wear resistance with good ductility
EP0576366A1 (en) * 1992-05-22 1993-12-29 Gec Alsthom Neyrpic Metallic coatings consisting of amorphous wear- and corrosion resistant alloys, process for obtaining these alloys and use as wear resistant coatings of hydraulic material
WO1999023272A1 (en) * 1997-11-03 1999-05-14 Siemens Aktiengesellschaft Method for producing a protective coating on a base body intended to be impinged upon by a hot gas and corresponding product
EP1541705A2 (en) * 2003-11-21 2005-06-15 Seiko Epson Corporation Method for processing cylinder periphery, processes for producing development roller and photoconductor drum, and development roller and photoconductor drum
EP1541705A3 (en) * 2003-11-21 2005-07-06 Seiko Epson Corporation Method for processing cylinder periphery, processes for producing development roller and photoconductor drum, and development roller and photoconductor drum
CN100353260C (en) * 2003-11-21 2007-12-05 精工爱普生株式会社 Method for processing cylinder periphery, development roller and photoconductor drum and producing method thereof

Also Published As

Publication number Publication date
DE3810851C2 (en) 1995-09-28
EP0335193A3 (en) 1989-11-15
DE3810851A1 (en) 1989-10-12

Similar Documents

Publication Publication Date Title
DE69730245T2 (en) METHOD FOR TREATING METAL PARTS
DE2431448A1 (en) METHOD OF COATING A SUBSTRATE
DE2357814A1 (en) GRAPHITE BODY WITH SILICON CARBIDE COATING
DE1758845B2 (en) PROCESS FOR MANUFACTURING PRECISION CASTING FORMS FOR REACTIVE METALS
DE3621184A1 (en) LAYERING MATERIAL AND METHOD FOR ITS PRODUCTION BY VACUUM PLASMA SPRAYING
EP2439306A1 (en) Method for producing a thermal insulation layer construction
DE2208250B2 (en) Process for the production of an isostatically pressure-sintered body
EP0031880A2 (en) Method for producing a reinforced product
EP2503018B1 (en) Plasma spray method for producing an ion conducting membrane
CH664377A5 (en) DECORATIVE BLACK WEAR PROTECTIVE LAYER.
DE102012108057B4 (en) Method of manufacturing a last stage steam turbine blade
DE3810851C2 (en) Process for the production of molded parts
DE2812986A1 (en) PROCESS FOR MANUFACTURING SILICON NITRIDE PARTS
DE4139421C2 (en) Process for covering a substrate surface with a sintered layer and powdered starting material therefor
WO2006128424A1 (en) Method for producing gas-tight layers and layer systems by means of thermal spraying
EP1373593A2 (en) Method and device for gas phase diffusion coating of metal components
EP3402910B1 (en) Process for producing a thin layer of porous dlc, use of a pecvd plant and workpiece coated with porous dlc
DE2357425A1 (en) METHOD OF MANUFACTURING A THIN LAYER FROM BERYLLIUM OR ITS ALLOYS
EP0220252B1 (en) Cr2o3 protective coating and process for its manufacture
EP0911423A1 (en) Method for joining workpieces
DE3814362C1 (en) Process for producing bucket tappets and similarly stressed components in internal combustion engines
EP1522603A1 (en) Method for coating an object and object
DE3726073C1 (en) Process for the production of thin-walled semi-finished products and their uses
EP0483199A1 (en) Process for producing oxide ceramic moulded bodies by thermal spraying.
EP1129231B1 (en) Method for vacuum coating metal components

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19900516