EP0331692A1 - Substrats de culture a base de laine minerale - Google Patents
Substrats de culture a base de laine mineraleInfo
- Publication number
- EP0331692A1 EP0331692A1 EP19880907336 EP88907336A EP0331692A1 EP 0331692 A1 EP0331692 A1 EP 0331692A1 EP 19880907336 EP19880907336 EP 19880907336 EP 88907336 A EP88907336 A EP 88907336A EP 0331692 A1 EP0331692 A1 EP 0331692A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fibers
- elements
- substrate
- breads
- bread
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 48
- 239000011490 mineral wool Substances 0.000 title description 7
- 235000008429 bread Nutrition 0.000 claims abstract description 44
- 239000000835 fiber Substances 0.000 claims abstract description 35
- 239000002557 mineral fiber Substances 0.000 claims abstract description 9
- 239000002344 surface layer Substances 0.000 claims description 3
- 230000001143 conditioned effect Effects 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 10
- 239000002689 soil Substances 0.000 abstract 1
- 241000196324 Embryophyta Species 0.000 description 14
- 238000005520 cutting process Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000009826 distribution Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- 230000008635 plant growth Effects 0.000 description 5
- 230000012010 growth Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 235000013399 edible fruits Nutrition 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 206010039509 Scab Diseases 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 230000035764 nutrition Effects 0.000 description 2
- 230000000050 nutritive effect Effects 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- 235000009849 Cucumis sativus Nutrition 0.000 description 1
- 240000008067 Cucumis sativus Species 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000012656 cationic ring opening polymerization Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 238000009828 non-uniform distribution Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G24/00—Growth substrates; Culture media; Apparatus or methods therefor
- A01G24/10—Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material
- A01G24/18—Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material containing inorganic fibres, e.g. mineral wool
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G24/00—Growth substrates; Culture media; Apparatus or methods therefor
- A01G24/40—Growth substrates; Culture media; Apparatus or methods therefor characterised by their structure
- A01G24/44—Growth substrates; Culture media; Apparatus or methods therefor characterised by their structure in block, mat or sheet form
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G24/00—Growth substrates; Culture media; Apparatus or methods therefor
- A01G24/50—Growth substrates; Culture media; Apparatus or methods therefor contained within a flexible envelope
Definitions
- the invention relates to mineral wool substrates used for above-ground cultivation.
- mineral wool in particular rock wool (based on volcanic rocks or blast furnace slag) or glass wool for what is commonly called the above-ground culture 0 has experienced a great expansion in recent years.
- rock wool based on volcanic rocks or blast furnace slag
- glass wool for what is commonly called the above-ground culture 0 has experienced a great expansion in recent years.
- These products indeed have very interesting characteristics. They are relatively inexpensive, easy to implement and * offer for culture itself, interesting properties: safety for plants, sterilized medium, good water retention ...
- the mineral wool substrates used hitherto are products directly derived from those intended for thermal insulation. These are products in the form of felts, the fibers of which are maintained by ut) binder product based on resin. With respect to traditional insulation felts, the main difference
- the mode of production determines for an important part the structure of the felt.
- the fi ⁇ tres are made from fibers coming directly from the drawing from molten material. These fibers are transported by gas streams to a gas permeable receiving conveyor. On this conveyor the fibers are retained while the gases are evacuated.
- the felt is gradually formed by the accumulation of fibers on top of each other.
- the fibers are arranged in a privileged manner along planes parallel to the receiving conveyor. For felts intended for Insulation this arrangement is advantageous insofar as it corresponds to good thermal resistance.
- the "horizontal" arrangement of the fibers is found in the soilless growing substrates that have been proposed so far.
- the substrates are marketed and used in the form of "breads", that is to say parailissepilvesdiques blocks whose dimensions, and in particular the width, are determined by the cultivation techniques. Users want to be able to have breads whose width varies according to the case but can exceed 200 mm or even 300 mm. To obtain these dimensions on felts ordinarily conditioned to the dimensions of the insulation products, it has been the practice to cut the loaves so that the fibers during use are arranged substantially horizontally, that is to say ie approximately parallel to the ground or to the support on which the bread rests.
- cubes or clods intended for plant growth.
- the cubes are usually made of the same material as bread, but their dimensions are much smaller, they are of the order of 100 mm per side.
- the cubes are often prepared so that the fibers in the position of use lie in substantially vertical planes.
- the reason for this difference is also due to the packaging method of these cubes. These are obtained from felts cut first into transversa ⁇ bands and then these bands themselves cut in their width to the dimensions of the desired cubes.
- felts cut first into transversa ⁇ bands and then these bands themselves cut in their width to the dimensions of the desired cubes.
- the object of the invention is to provide a culture substrate in the form of breads, that is to say substrates on which the culture is completed, in contrast to the cubes used only for the growth of plants, substrate having new properties compared to those of traditional breads, properties which improve the conditions for plant growth.
- the breads according to the invention consist of mineral fiber felts and are characterized by the fact that the fibers are placed essentially in vertical planes in the position of use. It is remarkable, as will be seen in the examples, to note that this modification of arrangement results in a substantial improvement in crop yields. The reasons for this improvement are not yet fully understood. It is however possible to compare this result with the particularities observed in the "vertical" use of the fibers, in particular with regard to the water retention properties of these substrates.
- the fibers of which are arranged in vertical planes, it can be seen that the distribution of the solutions in the height of the substrate is much more homogeneous, and that in particular saturation is avoided even in the lowest parts.
- the crop breads according to the invention provide better drainage.
- This better control of the distribution of solutions does not only eliminate the risk of saturation, it also allows, for example, a good distribution of nutritive constituents and in particular avoids the accumulation of localized salts.
- the tests carried out also show that the roots develop and penetrate more easily from the cube into the bread. The reason for this better passage of the roots when the fibers of the bread are in vertical planes probably comes from the very texture of the felts which constitute them.
- the culture breads according to the invention also make it possible to minimize the difficulties encountered when the ground or the support on which the bread is placed is not perfectly horizontal.
- the use of traditional substrates with horizontal fibers requires a support which is also very horizontal, otherwise the solutions tend to saturate the lower parts, neglecting the upper parts, leading to a complete imbalance in the hydration of the plants.
- the substrates according to the invention are much less sensitive to these level variations.
- the mineral fiber substrates according to the invention are produced from felts obtained under usual conditions.
- the felts from which the loaves are cut have fibers in planes substantially parallel to the faces of the felts.
- the cutting of the felt is made so that the edges, or if the thickness is desired, become the upper and lower faces of the cultivation bread.
- felts are obtained by collecting fibers conveyed by a gas stream, on a conveyor serving as a filter. To facilitate the deposition of fibers and the elimination of carrier gases it is necessary to maintain an energetic suction under the conveyor. The energy required for this suction is all the more important as the gases have more difficulty in filtering through the conveyor and the mass of fibers already deposited. It is understood under these conditions that in order to be able to operate economically, it is necessary to limit the thickness of the felt being formed on the conveyor.
- the thickness is determined by compliance with very precise standards, felts more than 300 mm thick are not usually produced and the the most usual thicknesses are of the order of 75, 100 and 150 mm.
- the assembly of several thicknesses by bringing the parts corresponding to the upper faces into contact.
- the assembly can have two or more parts depending on the desired width. All combinations are obviously possible starting from elements coming from the same felt and therefore of the same thickness or from several felts of different thicknesses.
- FIG. 1 is a diagram showing the arrangement of the fibers in a traditional substrate
- FIG. 2 schematically shows the succession of steps leading to the formation of a cube for growing plants in which the fibers are arranged vertically
- FIG. 3 schematically shows the structure of a bread according to the invention
- FIG. 4 schematically shows the structure of a bread formed from several juxtaposed elements
- FIG. 5 shows the two stages leading to the assembla ⁇ ge of two elements by means of a sheath of a shrinkable material.
- FIG. 1 The mode of cultivation on traditional substrate is illustrated in FIG. 1.
- the substrate (1) rests flat on the ground or a support (not shown) which is substantially horizontal.
- the culture can be directly done on the substrate (1) but more usually we proceed in two stages.
- the plans are developed in a first step on cubes (2) and when their growth is sufficient and requires a volume of additional substrate, the cubes are placed on the substrate (1) in which the roots are propagated.
- This culture method often uses other elements, not shown, such as nutrient solution supply systems, tanks on which the substrates (1) are deposited to recover the excess drained liquids ...
- the unsheathed substrate (1) has been shown to show the arrangement of the fibers along traditionally substantially horizontal planes (3). It is common to coat the loaves of substrate with an envelope as indicated above.
- Figure 1 also shows the cubes (2) coated with a sheath.
- a protective film without being absolutely dispensable is very general and is due to the way in which they are usually produced, which is illustrated in FIG. 2.
- 2a the transverse cutting of a felt strip (4) from production. As previously in this strip of felt, the fibers are oriented in parallel planes, to the faces of this strip.
- the transverse cutting can be carried out for example using a circular saw (5) as shown diagrammatically or by any other equivalent traditional means for cutting the felts of mineral fibers.
- the first cutting of the strip results in the production of long parallé ⁇ lepipeds (6).
- These parallelepiped elements must then be cut into smaller elements. Due to their relative fragility, the cubes are, as indicated, coated with a plastic film.
- the sheathing operation for obvious reasons of convenience is advantageously carried out on the elements (6).
- the sheathing makes it possible to properly maintain the cubes (7) during their formation by cutting out the elements (6) as shown in 2a. As can be seen, this succession of operations results in the production of cubes (7) sheathed on four sides.
- the sheathed faces are shown hatched.
- the two free faces (8) are normally used to place the plants. Under these conditions it is understood that according to the most convenient technique abou ⁇ tit cubes in which the fibers are arranged in vertical planes, but this arrangement owes nothing to considerations concerning the culture itself.
- FIG. 3 shows the arrangement and the structure of a culture loaf (10) according to the invention.
- the use of this bread is analogous to that indicated in connection with FIG. 1.
- the fundamental difference the resides in the arrangement of the fibers. This has been shown diagrammatically so that the vertical planes appear, for example in (9).
- Figure 3 shows a monobloc bread obtained by cutting a felt thick enough to give a sufficient width to this bread, the thickness of the felt constituting the width of the bread.
- Figure 4 shows the two identical elements meeting, it is possible the same way to bring together elements of differentiated thicknesses thy or more than two elements to arrive at a full range of 'lar ⁇ geur breads.
- the faces of the felts (4) may have a surface layer which is denser in fibers and therefore less permeable to liquids or even to the roots. If this surface layer constitutes too great an obstacle, it is preferable to remove it in the assemblies such as that represented in FIG. 4 at least on the faces of the elements 11 and 12 brought into contact in (13). This removal is done by peeling equivalent to cutting the felt in its thickness and can be carried out for example by means of suitably arranged band saws.
- FIG. 5 A mode of assembly is shown in Figure 5. This involves joining the two elements (11, 12) by means of a sheath (14). To obtain a very stable assembly, it is proposed, for example, to form the sheath by means of a film of heat-shrinkable plastic material. In this case the two elements (11) and (12) are arranged in a sleeve (15) of the chosen film (FIG. 5a). This installation is very easy, the section of the sleeve being very large compared to that of the two elements. The assembly is spent a few moments in a heat treatment enclosure and the sheath retracts against the elements which it keeps tightly pressed against each other (FIG. 5b).
- the sheath used is usually black or white.
- the black color is preferably used when it is necessary to limit the heat losses at the level of the substrate. This is particularly the case for winter crops. When on the contrary it is necessary to preserve the substrate against an excessive temperature, white films are preferred.
- the density of the felt is approximately 40 kg / m 3 .
- the irrigation and temperature nutrition conditions “5 are those traditionally implemented by the station. Harvesting takes place between September 1 and September 30.
- the improvement observed in production can be explained by a better rooting of the plants itself resulting from a better environment, that is to say from a better adapted substrate.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Cultivation Of Plants (AREA)
- Hydroponics (AREA)
Abstract
Le substrat pour culture hors-sol, selon l'invention est à base de feutre de fibres minérales et conditionné sous forme de pains (10) capables de supporter une pluralité de plants. Ce substrat est caractérisé en ce que la structure des pains est telle qu'en position d'utilisation les fibres sont disposées essentiellement suivant des plans verticaux (9). Le substrat selon l'invention permet d'améliorer la production des plants. Abstract A substrate for cultivation without soil is based on mineral fibre felt and packaged into the form of cakes (10) capable of supporting a plurality of plants. The structure of the cakes is such that in the position of use the fibers are arranged essentially in vertical planes (9). Plant production is improved by the invention.
Description
SUBSTRATS DE CULTURE A BASE DE LAINE MINERALE
10
,c L'invention concerne des substrats en laine minérale servant à la culture hors-sol.
L'utilisation de laine minérale, notamment de laine de roche (â base de roches volcaniques ou de laitiers de hauts fourneaux) ou de laine de verre pour ce qu'il est convenu de nommer la culture hors-sol 0 a connu une grande expansion dans ces dernières années. Ces produits présentent en effet des caractéristiques très intéressantes. Ils sont relativement peu coûteux, faciles à* mettre en oeuvre et offrent pour la culture elle-même, des propriétés intéressantes : innocuité pour les plantes, milieu stérilisé, bonne rétention d'eau...
«5 Les substrats en laine minérale utilisés jusqu'à présent sont des produits directement dérivés de ceux destinés â l'isolation thermique. Il s'agit de produits se présentant sous forme de feutres dont les fibres sont maintenues par ut) produit liant à base de résine. Vis â vis des feutres d'isolation traditionnels, la principale diffé-
30 rence tient au fait que les substrats doivent être facilement mouilla- bles par les solutions aqueuses utilisées pour l'hydratation et la nutrition des plantes. Dans ce but il est fréquent d'incorporer dans ces substrats des agents tensio-actifs favorisant la pénétration de l'eau. En dehors de cette modification éventuelle, on s'est efforcé
35 pour des raisons d'économie, de faire en sorte que les produits d'isolation et ceux destinés à la culture hors-sol soient aussi sembla¬ bles que possible. Ceci permet notamment d'utiliser les mêmes installa¬ tions de production des feutres.
On sait par ailleurs que le mode de production détermine pour
une part importante la structure du feutre. De façon générale les feu¬ tres sont constitués à partir de fibres provenant directement de l'étirage à partir de matériau fondu. Ces fibres sont transportées par des courants gazeux jusqu'à un convoyeur de réception perméable aux gaz. Sur ce convoyeur les fibres sont retenues tandis que les gaz sont évacués. Le feutre se constitue progressivement par accumulation des fibres les unes sur les autres. On constate à l'expérience que dans le feutre les fibres se disposent de façon privilégiée suivant des plans parallèles au convoyeur de réception. Pour les feutres destinés à l'Isolation cette disposition est avantageuse dans la mesure où elle correspond â une bonne résistance thermique.
La disposition "horizontale" des fibres se retrouve dans les substrats de culture hors-sol qui onté été proposés jusqu'à présent. Les substrats sont commercialisés et utilisés sous forme de "pains" c'est-à-dire de blocs parailélépipédiques dont les dimensions, et no¬ tamment la largeur, sont déterminées par les techniques de cultures. Les utilisateurs veulent pouvoir disposer de pains dont la largeur va¬ rie selon les cas mais peut dépasser 200 mm ou même 300 mm. Pour obte¬ nir ces dimensions sur des feutres ordinairement conditionnés aux dimensions des produits d'isolation, l'habitude a été prise de découper les pains de telle sorte que les fibres lors de l'utilisation soient disposées de manière sensiblement horizontale, c'est-à-dire approxima¬ tivement parallèle au terrain ou au support sur lequel le pain repose. Par ailleurs, toujours dans le domaine des substrats de cul- ture en fibres minérales, on trouve dans le commerce des "cubes" ou mottes destinés â la croissance des plants. Ces cubes lorsque le plant atteint une taille suffisante sont placés sur le pain de culture pro¬ prement dit. Les cubes sont ordinairement constitués du même matériau que le pain, mais leurs dimensions sont beaucoup plus réduites, elles sont de l'ordre de 100 mm de côté.
Contrai ement â ce que Ton trouve pour les pains, les cubes sont souvent préparés de sorte que les fibres en position d'utilisation se trouvent dans des plans sensiblement verticaux. La raison de cette différence tient aussi au mode de conditionnement de ces cubes. Ceux-ci sont obtenus â partir de feutres découpés d'abord en bandes transversa¬ les puis ces bandes elles-mêmes découpées dans leur largeur aux dimen¬ sions des cubes voulus. Pour limiter les pertes de matériau et surtout faciliter l'opération de gainage des cubes, comme on l'expliquera plus en détail plus loin en se reportant aux dessins annexés, on est conduit
à cette disposition verticale des fibres dans les cubes, sans, se ble- t-11, qu'il ait été constaté une Influence particulière de cette dispo¬ sition sur les résultats de la culture.
L'invention a pour but de proposer un substrat de culture sous forme de pains, c'est-à-dire des substrats sur lesquels la culture est menée â son terme par opposition aux cubes ne servant qu'à la croissance des plants, substrat présentant des propriétés nouvelles par rapport I celles des pains traditionnels, propriétés qui améliorent les conditions de croissance des plants. Les pains selon l'invention sont constitués de feutres de fi¬ bres minérales et se caractérisent par le fait que les fibres sont dis¬ posées essentiellement dans des plans verticaux en position d'utilisa¬ tion. Il est remarquable comme on le verra dans les exemples de constater que cette modification de disposition entraîne une améliora- tion substantielle des rendements de cultures. Les raisons de cette amélioration ne sont pas encore parfaitement élucidées. Il est cepen¬ dant possible de rapprocher ce résultat des particularités constatées de l'utilisation "verticale" des fibres notamment en ce qui concerne les propriétés de rétention de l'eau de ces substrats. Dans la recherche de substrats en fibres minérales on s'est d'abord attaché I leurs qualités d'inertie et â leur capacité à rete¬ nir l'eau nécessaire à la croissance. On sait cependant que la teneur en eau du substrat n'est pas la seule condition à surveiller pour assu¬ rer une bonne croissance des plantes. Il faut assurer également une bonne aération ce qui nécessite un équilibre difficile à maintenir de façon satisfaisante. Il est semble-t-il peu favorable â la croissance des plantes de maintenir en permancence des parties du substrat satu¬ rées d'eau. L'étude des substrats fibreux dans lesquels les fibres sont disposées horizontalement aurait tendance à montrer une distribution de Veau (ou des solutions nutritives) non-uniforme dans la hauteur du pain les zones les plus basses étant les plus chargées. Dans ces conditions, même pour une teneur globale en solution adéquate, la dis¬ tribution de cette solution peut ne pas être satisfaisante.
En mettant en oeuvre des substrats selon l'invention dont les fibres sont disposées dans des plans verticaux, on constate que la dis¬ tribution des solutions dans la hauteur du substrat est beaucoup plus homogène, et qu'en particulier on évite la saturation même dans les parties les plus basses. En d'autres termes les pains de cultures selon l'invention assurent un meilleur drainage. Ce meilleur contrôle de la
distribution des solutions ne fait pas qu'éliminer le risque de saturation, il permet aussi par exemple une bonne distribution des constituants nutritifs et évite notamment les accumulations de sels l ocal isées. Les essais effectués montrent par ailleurs que les racines se développent et pénètrent plus aisément du cube dans le pain. La raison de ce meilleur passage des racines lorsque les fibres du pain sont dans des pl ans verticaux vient probablement de la texture même des feutres qui les constituent. On sait ainsi que dans la fabrication des feutres d'où sont tirés les pains de culture les faces inférieures et supérieu¬ res forment un réseau plus serré de fibres et de l iant par suite du "l issage" qui s'effectue lors de la mise en dimension dans Vétuve de cuisson du l iant. Il apparaît ainsi sur les deux faces du feutre une sorte de "croûte" que les racines des plants ont une certaine diffi- cul te à traverser. Lorsque selon l ' invention on util ise des pains pré¬ sentant les fibres dans des plans verticaux les "croûtes" sont situées sur les faces latérales du pain, les racines ne sont donc pas entravées dans leur croissance du cube vers le pain.
L'util isation de fibres dans des pl ans verticaux présente en- core l 'avantage d'une meilleure tenue mécanique et ce d'autant plus que le feutre présente une masse volu ique plus légère. Pour les produits traditionnels les plus légers par exemple ceux dont la masse volumique est inférieure à 30 kg/m3 ou même inférieure à 20 kg/m3 leur résistance â l 'écrasement est relativement faible au point que lorsqu' ils sont im- bibés de l iquide il s ont une certaine tendance à s'écraser sous leur propre poids et celui du liquide. La disposition des fibres dans les plans verticaux confère, au contraire, aux produits selon l ' invention, une résistance â la compression dans le sens de ces plans bien supérieure. Pour cette raison les produits selon l 'invention ne mani- feste pas de tencance S l 'affaissement même lorsqu'i l s sont de faible masse volumique.
De façon subsidiaire les pains de culture selon l ' invention permettent aussi de minimiser les difficultés que Ton rencontre lors¬ que que le sol ou le support sur lequel le pain est posé n'est pas par- faitement horizontal . L'utilisation des substrats traditionnel s présentant des fibres horizontales nécessite un support également bien horizontal faute de quoi les solutions tendent â saturer les parties basses en délaissant les parties hautes aboutissant à un déséquil ibre complet de Thydratation des plantes. Les substrats selon l ' invention
sont beaucoup moins sensibles â ces variations de niveau.
Les substrats de fibres minérales selon l'invention sont pro¬ duits à partir de feutres obtenus dans des conditions usuelles. Autre¬ ment dit les feutres dans lesquels sont découpés les pains présentent des fibres dans des plans sensiblement parallèles aux faces des feutres. Pour obtenir les pains selon l'invention, la découpe du feutre est faite de façon que les chants, ou si Ton veut l'épaisseur, devien¬ nent les faces supérieures et inférieures du pain de culture.
Les conditions de production dès feutres tendent à en limiter l'épaisseur. Comme nous l'avons indiqué, ces feutres sont obtenus en collectant des fibres véhiculées par un courant gazeux, sur un con¬ voyeur servant de filtre. Pour faciliter le dépôt des fibres et l'élimination des gaz porteurs il est nécessaire d'entretenir une éner¬ gique aspiration sous le convoyeur. L'énergie nécessaire pour cette as- piration est d'autant plus importante que les gaz ont plus de difficulté â filtrer à travers le convoyeur et la masse de fibres déjà déposée. On comprend dans ces conditions que pour pouvoir opérer de façon économique 11 soit nécessaire de limiter l'épaisseur du feutre en voie de formation sur le convoyeur. Pour cette raison et également par- ce que dans les utilisations en tant qu'isolant, l'épaisseur est déter¬ minée par le respect de normes bien précises, on ne produit pas ordinairement de feutres de plus de 300 mm d'épaisseur et les épais¬ seurs les plus usuelles sont de Tordre de 75, 100 et 150 mm. Dans le cas de feutres dont l'épaisseur est insuffisante pour constituer les pains dont la largeur est convenable pour les cultures envisagées il est bien entendu procédé â l'assemblage de plusieurs épaisseurs en met¬ tant en contact les parties correspondant aux faces supérieures et in¬ férieures du feutre. L'assemblage peut comporter deux parties ou davantage selon la largeur voulue. Toutes les combinaisons sont évide - ment possibles I partir, d'éléments provenant du même feutre et donc de même épaisseur ou de plusieurs feutres d'épaisseurs différentes.
Les substrats â base de fibres minérales traditionnels sont habituellement présentés enveloppés dans une gaine formée d'un film d'un matériau plastique. Le rôle de cette gaine est varié. Elle protège les pains lors de leur transport et évite aussi des contaminations par des produits étrangers lors du transport ou du stockage. Elle joue aus¬ si un rôle dans la conduite de la culture en évitant une évaporation trop intense de Teau des solutions nutritives. En règle générale, néanmoins, cette gaine n'est pas maintenue étanche. On y fait des enco-
ches pour assurer un certain drainage. Quoiqu'il en soit dans ces dif¬ férentes fonctions, la gaine des produits tradi ionnels est relativement mince et n'a pas besoin d'être ajustée. Au contraire, une certaine am¬ pleur autour du pain peut être préférée pour faciliter le drainage. - Selon l'invention il est proposé, lorsque plusieurs épaisseurs de feutres doivent être assemblées pour constituer un pain, de les en¬ velopper dans une gaine suffisamment résistante et ajustée pour mainte¬ nir en position les différents éléments constituant le pain. Cette fonction de siaintien peut être combinée avec celles rappelées ci-dessus 0 pour les produits traditionnels.
Il va de soi que si Ton souhaite utiliser un substrat non gainé il est possible de remplacer la gaine indiquée ci-dessus par des liens ou tout autre moyen d'assemblage laissant libre la quasi totalité des faces des pains. 5 Dans le cas d'un gainage des produits il est commode pour as¬ surer un "serrage" de la gaine sur les éléments de feutre d'utiliser un manchon constitué d'un film d'un matériau plastique thermorétractable. Dans ce cas les éléments étant Introduits dans un manchon de dimensions légèrement supérieures à l'ensemble des éléments.1 réunir, et l'ensemble 0 est passé dans une étuve pour rétracter le film qui vient s'appliquer au contact étroit des éléments.
L'invention est décrite de façon plus, détaillée dans ce qui suit en faisant référence aux planches annexées dans lesquelles :
- la figure 1 est un schéma montrant la disposition des fi- bres dans un substrat traditionnel,
- la figure 2 montre schëmatiquement la succession des étapes aboutissant S la formation d'un cube de culture des plants dans lequel les fibres sont disposées verticalement,
- la figure 3 montre de façon schématique la structure d'un 0 pain selon l'invention,
- la figure 4 montre de façon schématique la structure d'un pain formé de plusieurs éléments juxtaposés,
- la figure 5 montre les deux étapes conduisant à l'assembla¬ ge de deux éléments au moyen d'une gaine d'un matériau rétractable.
3 . Le mode de culture sur substrat traditionnel est illustré à la figure 1. Le substrat (1) repose a plat sur le sol ou un support non représenté qui est sensiblement horizontal. La culture peut être direc¬ tement faite sur le substrat (1) mais plus habituellement on procède en deux étapes. Les plans sont développés dans une première étape sur des
cubes (2) et lorsque leur croissance est suffisante et nécessite un vo¬ lume de substrat complémentaire, les cubes sont placés sur le substrat (1) dans lequel se propagent les racines. Ce mode de culture met souvent en oeuvre d'autres éléments non représentés tels que des systèmes d'alimentation en solution nutritive, des bacs sur lesquels sont dépo¬ sés les substrats (1) pour récupérer les liquides excédentaires drainés...
Sur la figure 1 on a représenté le substrat (1) non gainé pour montrer la disposition des fibres selon des plans traditionnelle- ment sensiblement horizontaux (3). Il est courant de revêtir les pains de substrat par une enveloppe comme indiqué plus haut.
La figure 1 montre encore les cubes (2) revêtus d'une gaine. Pour ces éléments l'usage d'un film protecteur sans être absolument in¬ dispensable est très générale et tient a la manière dont ils sont habi- tuellement produits ce qui est illustré à la figure 2. En 2a est schématisée la découpe transversale d'une bande de feutre (4) venant de la production. Comme précédemment dans cette bande de feutre les fibres sont orientées suivant des plans parallèles, aux faces de cette bande.
La découpe transversale peut être opérée par exemple à Taide d'une scie circulaire (5) comme schématisée ou par tout autre moyen équivalent traditionnel pour couper les feutres de fibres minérales. Là première découpe de la bande aboutit â la production de longs parallé¬ lépipèdes (6). Ces éléments parallélépipëdiques doivent être ensuite découpés en éléments plus petits. En raison de leur fragilité relative les cubes sont, comme on Ta indiqué, gainés d'un film plastique. L'opération de gainage pour des raisons évidentes de commodité s'opère avantageusement sur les éléments (6). De même, le gainage permet de bien maintenir les cubes (7) lors de leur formation par découpe des éléments (6) comme figuré en 2a. Comme on peut le voir cette succession d'opérations aboutit â la production de cubes (7) gainés sur quatre faces. Les faces gainées sont représentées hachurées. Les deux faces libres (8) sont normalement utilisées pour placer les plants. Dans ces conditions on comprend que selon la technique la plus commode on abou¬ tit â des cubes dans lesquels les fibres sont disposées suivant des plans verticaux, mais cette disposition ne doit rien â des considéra¬ tions concernant la culture elle-même.
La figure 3 montre la disposition et la structure d'un pain de culture (10) selon l'invention. L'utilisation de ce pain est analo¬ gue à celle indiquée à propos de la figure 1. La différence fondamenta-
le réside dans la disposition des fibres. On a schématisé celle-ci de manière I faire apparaître les plans verticaux par exemple en (9).
La figure 3 présente un pain monobloc obtenu par découpe d'un feutre suffisamment épais pour conférer une largeur suffisante à ce pain, l'épaisseur du feutre constituant la largeur du pain. Lorsqu'il n'est pas possible d'obtenir l'épaisseur nécessaire, on procède comme représenté a la figure 4, à la réunion de plusieurs éléments (11, 12). La figure 4 présente la réunion de deux éléments identiques, il est possible de la même façon de réunir des éléments d'épaisseurs diffëren- tes ou plus de deux éléments pour aboutir â une gamme complète de'lar¬ geur de pains.
Comme nous l'avons signalé plus haut, les faces des feutres (4) peuvent présenter une couche superficielle plus dense en fibres et par conséquent moins perméable aux liquides ou même aux racines. Si cette couche superficielle constitue un obstacle trop important, il est préférable de l'éliminer dans les assemblages tel que celui représenté â la figure 4 au moins sur les faces des éléments 11 et 12 mises en contact en (13). Cette élimination se fait par un pelage équivalent à une découpe du feutre dans son épaisseur et peut s'effectuer par exe - pie au moyen de scies à ruban convenablement disposées.
Lorsque plusieurs éléments (11, 12) sont utilisés pour cons¬ tituer un pain comme représenté à la figure 4, il est nécessaire de les solidariser. Un mode de réunion est représenté à la figure 5. Il s'agit ici de réunir les deux éléments (11, 12) au moyen d'une gaine (14). Pour obtenir un ensemble bien stable il est proposé par exeπple de for¬ mer la gaine au moyen d'un film en matériau plastique thermorëtractable. Dans ce cas les deux éléments (11) et (12) sont disposés dans un man¬ chon (15) du film choisi (figure 5a). Cette mise en place est très facile, la section du manchon étant très large par rapport â celle des deux éléments. L'ensemble est passé quelques instants dans une enceinte de traitement thermique et la gaine se rétracte contre les éléments qu'elle maintient étroitement serrés l'un contre l'autre (figure 5b).
La gaine utilisée est ordinairement noire ou blanche. On uti¬ lise de préférence la couleur noire lorsqu'il convient de limiter les pertes thermiques au niveau du substrat. C'est en particulier le cas pour les cultures hivernales. Lorsqu'au contraire il faut préserver le substrat contre une température excessive, on préfère les films blancs.
Les avantages des substrats de culture selon l'invention ont été mis en évidence dans des essais effectués en serre pour la culture
de concombres. Les essais ont été réalisés simultanément sur des pains traditionnels présentant une disposition horizontale des fibres et sur des pains selon l'invention. Dans les deux cas, les pains étaient pro¬ duits â partir du même feutre de laine de roche dont la composition 5 chimique est en poids.
Si 2 41,8 % FeO, Fe2Û3 0,8 %
CaO 41 % S 0,3 %
AI2O3 11 % Tiθ2 0,4 %
MgO 3,7 % MnO 0,5 %
20 La masse volumique du feutre est environ 40 kg/m3.
Les dimensions des pains traditionnels (A) et selon l'inven¬ tion (B, C) sont les suivantes : longueur largeur épaisseur
A 900 mm 150 mm 75 mm n II II II
15 B
C " " 110 mm
Le développement des plants est conduit sur des "cubes" du même matériau que le substrat des pains et de dimensions 100 x 100 x 65 mm. 20 La variété utilisée est Brucona (Bruinsma). Elle est semée le
10 juillet sur les cubes et plantée sur les pains le 27 juillet à rai¬ son de 2 plants par pain. Les pains sont disposés au hasard suivant un espacement correspondant à 1, 2 plants au mètre carré.
Les conditions de nutrition d'irrigation et de température «5 sont celles traditionnellement mises en oeuvre par la station. La ré¬ colte est effectuée entre le 1er et le 30 septembre.
La moyenne des résultats de la culture à la fin de la récolte s'établit comme suit :
1) nombre de fruits par plants :
30 A 12»50
B 14,25
C 14,50 soit une augmentation d'environ 15 % pour les plants cultivés sur les pains selon l'invention.
35 2) poids des fruits :
A 348,4 g
B 405,0 g
C 413,7 g soit une augmentation de Tordre de 17,5 %.
3) poids de fruits récoltés par plant :
A. 4,36 kg
B 5,77 kg
C 5,99 kg
- soit une augmentation de Tordre de 35 %.
L'amélioration constatée sur la production s'expl ique appa¬ remment par un meil leur enracinement des plants résultant lui-même d' un meil leur environnement, c'est-à-dire d' un substrat mieux adapté.
Les mesures physiques faites sur les pains font appraître un Q rapport air/eau plus élevé dans les substrats selon l ' invention condui¬ sant â une aération meilleure des racines.
L'analyse des pains après cul ture montre aussi une di stribu¬ tion pl us régul ière des racines et une croissance plus importante dans les pains selon l ' invention. 5
0
5
0
5
Claims
1. Substrat pour culture hors-sol, a base de feutre de fibres minérales conditionné sous forme de pains (10) capablesde supporter une pluralité de plants, caractérisé en ce que la structure des pains est ς telle qu'en position d'utilisation les fibres soient disposées essen¬ tiellement suivant des plans verticaux (9).
2. Substrat selon la revendication 1 formé par la réunion de plusieurs éléments (11, 12), l'épaisseur des feutres d'origine (4), d'où proviennent ces éléments, étant individuellement insuffisante pour 0 constituer un pain de largeur convenable.
3. Substrat selon la revendication 2 dans lequel les diffé¬ rents éléments (11, 12) rassemblés pour former le pain de largeur con¬ venable sont maintenus en position les uns contre les autres au moyen d'une gaine (14). 5 4. Substrat selon la revendication 3 dans lequel les éléments sont maintenus serrés par rétraction d'une gaine (14) thermorëtractable. 5. Substrat selon la revendication 2 à 4 dans lequel lorsque plusieurs éléments sont réunis pour former un pain de largeur conve¬ nable, ces éléments sont préalablement débarrassés des couches superfi- 0 cielles des feutres d'origine au moins sur les faces mettant en contact deux éléments.
5
0
5
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8720289 | 1987-08-28 | ||
GB878720289A GB8720289D0 (en) | 1987-08-28 | 1987-08-28 | Mineral wools |
CA000577756A CA1338795C (fr) | 1987-08-28 | 1988-09-19 | Substrats de culture a base de laine minerale |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0331692A1 true EP0331692A1 (fr) | 1989-09-13 |
Family
ID=25672118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19880907336 Withdrawn EP0331692A1 (fr) | 1987-08-28 | 1988-08-12 | Substrats de culture a base de laine minerale |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0331692A1 (fr) |
CA (1) | CA1338795C (fr) |
WO (1) | WO1989001736A1 (fr) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2621218B1 (fr) * | 1987-10-02 | 1989-12-08 | Saint Gobain Isover | Substrat pour culture hors sol a teneur en eau controlee dans son epaisseur |
FR2644321B1 (fr) * | 1989-03-15 | 1992-04-24 | Saint Gobain Isover | Substrat pour culture hors-sol a structure macroscopiquement isotrope |
WO1995008259A1 (fr) * | 1993-09-25 | 1995-03-30 | Isover Saint-Gobain | Feuille de laine minerale destinee a soutenir des vegetaux sur les toits |
WO1996002127A1 (fr) * | 1994-07-13 | 1996-02-01 | Rockwool/Grodan B.V. | Substrat de croissance a fibres de laine minerale courtes s'etendant transversalement |
DE69510058D1 (de) | 1994-07-13 | 1999-07-08 | Rockwool Grodan Bv | Pflanzenkubus |
EP1880598A1 (fr) * | 2006-07-20 | 2008-01-23 | Rockwool International A/S | Substrats de croissance, leurs production et leur utilisation |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1202906A (fr) * | 1957-03-06 | 1960-01-14 | Fritz Homann A G | Procédé d'implantation de plantules à l'aide de tiges formées de fibres |
FR1482546A (fr) * | 1966-06-07 | 1967-05-26 | Procédé pour la culture sans terre, ainsi que les dispositifs et installations pour la mise en oeuvre du présent procédé ou procédé similaire | |
FR2208599B1 (fr) * | 1972-12-05 | 1978-03-03 | Semperit Ag | |
CA1276077C (fr) * | 1985-07-19 | 1990-11-13 | Nippon Steel Chemical Co., Ltd. | Soutiens de milieu de culture pour la culture des tissus vegetaux |
-
1988
- 1988-08-12 EP EP19880907336 patent/EP0331692A1/fr not_active Withdrawn
- 1988-08-12 WO PCT/FR1988/000414 patent/WO1989001736A1/fr not_active Application Discontinuation
- 1988-09-19 CA CA000577756A patent/CA1338795C/fr not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO8901736A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO1989001736A1 (fr) | 1989-03-09 |
CA1338795C (fr) | 1996-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0407264B1 (fr) | Elément de culture hors-sol | |
EP0201426B1 (fr) | Substrat pour culture hors-sol | |
CA1183352A (fr) | Tapis de gazon de placage | |
EP0440524B1 (fr) | Technique de culture de plantes à bulbes | |
EP0117766A1 (fr) | Substrat de culture pour les cellules, tissus, organes végétaux et plantes entières | |
CA2012594A1 (fr) | Substrat pour la culture hors-sol | |
EP0388287B1 (fr) | Substrat pour culture hors-sol | |
WO1989001736A1 (fr) | Substrats de culture a base de laine minerale | |
EP0403348B1 (fr) | Substrats de culture hors-sol | |
EP0389356B1 (fr) | Substrat pour la culture hors-sol | |
FR2703212A1 (fr) | Dispositif pour déterrer et enrouler un film plastique . | |
EP0663792B1 (fr) | Substrat de culture hors-sol | |
EP0199722B1 (fr) | Support de culture pour gazon et utilisation de ce support | |
FR2691875A1 (fr) | Substrats modulaire de culture et leur utilisation domestique. | |
FR2813750A1 (fr) | Coussins et cellules de retention d'eau, leurs procedes de fabrication et leurs applications | |
FR2661068A1 (fr) | Procede pour la culture de jeunes plants et moyens pour mettre en óoeuvre ce procede. | |
EP2201193B1 (fr) | Dalle de terreau pour la croissance de végétaux | |
FR2902287A1 (fr) | Support vegetal pour la culture hors sol des plantes maraicheres et horticoles | |
WO2009071777A1 (fr) | Procede de culture et de recolte de zoysia tenuifolia et produits obtenus | |
FR2523402A1 (fr) | Materiau complexe utilisable pour la realisation de supports de culture et nouveaux types de supports de culture realises a partir d'un tel materiau | |
EP0403346A1 (fr) | Nappe de subirrigation | |
FR2618298A1 (fr) | Procede de culture et de conditionnement de plantes, en particulier de plantes aquatiques, et produit correspondant | |
FR2678140A1 (fr) | Materiaux composites fibreux a base de fibres minerales pour la culture hors-sol. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19890524 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19901019 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DUNN, KENNETH, ROY |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: ISOVER SAINT-GOBAIN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19910702 |