EP0329704B1 - Metallglasslegierungen mit sehr kleiner magnetostriktion für hochfrequenzanwendungen - Google Patents
Metallglasslegierungen mit sehr kleiner magnetostriktion für hochfrequenzanwendungen Download PDFInfo
- Publication number
- EP0329704B1 EP0329704B1 EP87907699A EP87907699A EP0329704B1 EP 0329704 B1 EP0329704 B1 EP 0329704B1 EP 87907699 A EP87907699 A EP 87907699A EP 87907699 A EP87907699 A EP 87907699A EP 0329704 B1 EP0329704 B1 EP 0329704B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ranges
- formula
- magnetic alloy
- alloys
- atom percent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/07—Alloys based on nickel or cobalt based on cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
- C22C45/04—Amorphous alloys with nickel or cobalt as the major constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15316—Amorphous metallic alloys, e.g. glassy metals based on Co
Definitions
- This invention relates to glassy metal alloys with near-zero magnetostriction which are especially suited for use in high frequency applications.
- Saturation magnetostriction ⁇ s is related to the fractional change in length of ⁇ l/l that occurs in a magnetic material on going from the demagnetized to the saturated, ferromagnetic state.
- the value of magnetostriction is often given in units of microstrains (i.e., a microstrain is a fractional change in length of one part per million).
- Ferromagnetic alloys of low magnetostriction are desirable for several interrelated reasons:
- Zero magneto-strictive alloys based on the binaries but with small additions of other elements such as molybdenum, copper or aluminum to provide specific property changes. These include, for example, 4% Mo, 79% Ni, 17% Fe (sold under the designation Moly Permalloy) for increased resistivity and permeability; permalloy plus varying amounts of copper (sold under the designation Mumetal) for magnetic softness and improved ductility; and 85 wt. % Fe, 9 wt. % Si, 6 wt. % Al (sold under the designation Sendust) for zero anisotropy.
- the alloys included in category (1) are the most widely used of the three classes listed above because they combine zero magnetostriction with low anisotropy and are, therefore, extremely soft magnetically; that is they have a low coercivity, a high permeability and a low core loss. These permalloys are also relatively soft mechanically and their excellent magnetic properties, achieved by high temperature (above 1000°C) anneal, tend to be degraded by relatively mild mechanical shock.
- Category (2) alloys such as those based on Co90Fe10 have a much higher saturation induction (B s about 1.9 Tesla) than the permalloys. However, they also have a strong negative magnetocrystalline anisotropy, which prevents them from being good soft magnetic materials. For example, the initial permeability of Co90Fe10 is only about 100 to 200.
- Category (3) alloys such as Fe/6 wt% Si and the related ternary alloy Sendust (mentioned above) also show higher saturation inducations (B s about 1.8 Tesla and 1.1 Tesla, respectively) than the permalloys.
- these alloys are extremely brittle and have, therefore, found limited use in powder form only.
- compositional dependence of the magnetostriction is very strong in these materials, difficult precise tayloring of the alloy composition to achieve near-zero magnetostriction.
- glassy metal alloys of zero magnetostriction Such alloys might be found near the compositions listed above. Because of the presence of metalloids which tend to quench the magnetization by the transfer of charge to the transition-metal d-electron states, however, glassy metal alloys based on the 80 nickel permalloys are either non-magnetic at room temperature or have unacceptably low saturation inductions.
- the glassy alloy Fe40Ni40P14B6 (the subscripts are in atom percent) has a saturation induction of about 0.8 Tesla, while the glassy alloy Ni49Fe29P14B6Si2 has a saturation induction of about 0.46 Tesla and the glassy alloy Ni80P20 is non-magnetic.
- No glassy metal alloys having a saturation magnetostriction approximately equal to zero have yet been found near the iron-rich Sendust composition.
- a number of near-zero magnetostrictive glassy metal alloys based on the Co-Fe crystalline alloy mentioned above in (2) have been reported in the literature. These are, for example, Co72Fe3P16B6AL3 (AIP Conference Proceedings, No. 24, pp.
- the glassy alloys with B s ⁇ 1.2 Tesla tend to have their ferromagnetic Curie temperatures ( ⁇ f ) near or above their first crystallization temperatures (T cl ). This makes heat-treatment of these materials very difficult to achieve desired soft magnetic properties because such annealing is most effective when carried out at temperatures near ⁇ f .
- EP-A-84 138 describes a new series of glassy metal alloys with near-zero magnetostriction is disclosed.
- the glassy alloys have the composition CO a Fe b Ni c Mo d B e Si f , where a ranges from about 58 to 70 atom percent, b ranges from about 2 to 7.5 atom percent, c ranges from about 0 to 8 atom percent, d ranges from about 1 to 2 atom percent, e ranges from about 11 to 15 atom percent and f ranges from about 9 to 14 atom percent with the proviso that the sum of a, b, c ranges from about 72 to 76 atom percent and the sum of e and f ranges from about 23 to 26 atom percent.
- the magnetostriction of these alloys ranges from about -1 ⁇ 10 ⁇ 6 to +1 ⁇ 10 ⁇ 6 and the saturation induction is between about 0.6 and 0.8 Tesla.
- the transition metal content is responsible for the low magnetostriction in these alloys.
- the metalloid content strongly affects the saturation induction. Curies temperature, and magnetic stability. Magnetostriction is mildly affected by the metalloid composition and a particular range of Si/B ratio for certain iron, cobalt containing alloys wherein the magnetostriction is near-zerao and relatively insensitive to the Si/B ratio. The same Si/B ratios also provide high magnetic stability.
- a magnetic alloy that is at least 70% glassy, and which has a near-zero magnetostriction, high magnetic and thermal stability and excellent soft magnetic properties at high frequencies.
- the glassy metal alloy has the composition Co a Fe b Ni c M d B e Si f , where subscripts are in atom percents and "a" ranges from 65.5 to 70.5, “b” ranges from 3.8 to 4.5, “c” ranges from 0 to 3, “d” ranges from 1 to 2, “e” ranges from 10 to 12 and “f” ranges from 14 to 15 when M is selected from a group consisting of vanadium, chromium, molybdenum, niobium and tungsten; when M is manganese, "a” ranges from 68.0 to 70.0, “b” ranges from 2.5 to 4.0, “c” ranges from 0 to 3, “d” ranges from 1 to 4, “e” ranges from 10 to 12 and “f” ranges from 14 to
- the glassy alloy has a value of saturation magnetostriction ranging from -1 x 10 ⁇ 6 to + 1 x 10 ⁇ 6, a saturation induction of at least 0.65 Tesla, a Curie temperature ranging from 245 to 310°C and the first crystallization temperature ranging from 530 to 575°C.
- a magnetic alloy that is at least 70% glassy and which has an outstanding combination of properties, including a near-zero magnetostriction, high magnetic and thermal stability and such soft magnetic properties as high permeability, low ac core loss and low coercivity.
- Examples of essentially zero magnetostrictive glassy metal alloys of the invention include Co 65.7 Fe 4.4 Ni 2.9 Mo2B11Si14 and Co 68.13 Fe 4.0 Ni 1.37 Mo 1.5 B10Si15. These glassy alloys possess saturation induction between about 0.65 and 0.70 Tesla, Curie temperature of about 270°C and the first crystallization temperature of about 530°C. Some magnetic and thermal properties of other near-zero magnetostrictive glassy alloys of the present invention are listed in Table II.
- the presence of the metal element M is to increase T cl and hence the thermal stability of the alloy system.
- the glassy alloys of Table II exhibiting the saturation magnetostriction value ranging from -1 x 10 ⁇ 6 to + 10 ⁇ 6 may qualify.
- the value of the magnetostriction is essentially determined by the ratio of Fe/(Co+Fe) or (Fe+Mn)/(Co+Fe+Mn). These ratios are about 0.06 and 0.07-0.09 respectively.
- the small amount of the element Ni and the metal M excepting Mn which is present in the glassy alloys of the present invention is relatively ineffective to alter the magnetostriction of these alloys.
- the glassy alloy of the invention are conveniently prepared by techniques readily available elsewhere; see, e.g., U.S. Patent 3,845,805, issued November 5, 1974 and 3,856,513, issued December 24, 1974.
- the glassy alloys, in the form of continuous ribbon, wire, etc. are rapidly quenched from a melt of the desired composition at a rate of at least about 105K/sec.
- a metalloid content of boron and silicon in the range of about 24 to 27 atom percent of the total alloy composition is sufficient for glass formation, with boron ranging from about 10 to 12 atom percent and silicon ranging from about 14 to about 15 atom percent.
- Tables III and IV give ac core loss (L), exciting power (P8) and permeability ( ⁇ ) at 0.1 Tesla induction and at 50 kHz of the near-zero magnetostrictive glassy alloys of the present invention annealed at different temperature (T o ).
- the above properties, achieved in the glassy alloys of the present invention, may be obtained in low induction glassy alloys of the prior art.
- these alloys of the prior art such as Co 31.2 Fe 7.8- Ni 39.0- B14Si8 tend to be magnetically unstable at relatively low temperature of about 150°C as pointed out earlier.
- Table V shows the magnetic properties of some of the representative glassy alloys of the composition Co a Fe b Ni c M d B e Si f (M is selected from the group consisting of V, Cr, Mn, Mo, Nb and W), in which at least one of a, b, c, d, e and f is outside the composition range defined in the present invention.
- M is selected from the group consisting of V, Cr, Mn, Mo, Nb and W
- the table indicates that the alloys with at least one of the constituents outside the defined ranges exhibit either Curie temperature or saturation induction too low to be practical in many magnetic applications
- the glassy alloys listed in Tables II-VII were rapidly quenched (about 106 K/sec) from the melt following the techniques taught by Chen and Polk in U.S Patent 3,856,513.
- the resulting ribbons typically 25 to 30 ⁇ m thick and 0.5 to 2.5 cm wide, were determined to be free of significant crystallinity by x-ray diffractometry (using CuK radiation) and scanning calorimetry. Ribbons of the glassy metal alloys were strong, shiny, hard and ductile.
- Continuous ribbons of the glassy metal alloys prepared in accordance with the procedure described in Example I were wound onto bobbins (3.8 cm O.D.) to form closed-magnet-path toroidal samples. Each sample contained from 1 to 3 g of ribbon. Insulated primary and secondary windings (numbering at least 10 each) were applied to the toroids. These samples were used to obtain hysteresis loops (coercivity and remanence) and initial permeability with a commercial curve tracer and core loss (IEEE Standard 106-1972).
- the ferromagnetic Curie temperature ( ⁇ f ) was measured by inductance method and also monitored by differential scanning calorimetry, which was used primarily to determine the crystallization temperatures.
- the first or primary crystallization temperature (T cl ) was used to compare the thermal stability of various glassy alloys of the present and prior art inventions.
- Magnetic stability was determined from the reorientation kinetics of the magnetization, in accordance with the method described in Journal of Applied Physics, Vol. 49, p. 6510 (1978), which method is incorporated herein by reference thereto.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Soft Magnetic Materials (AREA)
Claims (19)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US92614786A | 1986-11-03 | 1986-11-03 | |
US926147 | 1986-11-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0329704A1 EP0329704A1 (de) | 1989-08-30 |
EP0329704B1 true EP0329704B1 (de) | 1992-01-02 |
Family
ID=25452815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87907699A Expired - Lifetime EP0329704B1 (de) | 1986-11-03 | 1987-10-27 | Metallglasslegierungen mit sehr kleiner magnetostriktion für hochfrequenzanwendungen |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0329704B1 (de) |
JP (2) | JPH0625399B2 (de) |
DE (1) | DE3775778D1 (de) |
WO (1) | WO1988003699A1 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5015992A (en) * | 1989-06-29 | 1991-05-14 | Pitney Bowes Inc. | Cobalt-niobium amorphous ferromagnetic alloys |
EP0429022B1 (de) * | 1989-11-17 | 1994-10-26 | Hitachi Metals, Ltd. | Magnetlegierung mit ultrakleinen Kristallkörnern und Herstellungsverfahren |
DE19533362A1 (de) * | 1995-09-09 | 1997-03-13 | Vacuumschmelze Gmbh | Längsgestreckter Körper als Sicherungsetikett für elektromagnetische Diebstahlsicherungssysteme |
EP1114429B1 (de) * | 1998-09-17 | 2003-11-12 | Vacuumschmelze GmbH | Stromwandler mit gleichstromtoleranz |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5358576A (en) * | 1979-06-09 | 1994-10-25 | Matsushita Electric Industrial Co., Ltd. | Amorphous materials with improved properties |
JPS5719361A (en) * | 1980-07-11 | 1982-02-01 | Hitachi Ltd | Amorphous alloy for core of magnetic head and magnetic head for video using it |
JPS5825449A (ja) * | 1981-08-05 | 1983-02-15 | Toshiba Corp | 磁気ヘツド用非晶質磁性合金 |
EP0160166A1 (de) * | 1981-11-26 | 1985-11-06 | Allied Corporation | Amorphe Legierungen von Metallen mit niedriger Magnetostriktion |
DE3275492D1 (en) * | 1982-01-18 | 1987-04-02 | Allied Corp | Near-zero magnetostrictive glassy metal alloys with high magnetic and thermal stability |
JPS5985835A (ja) * | 1982-11-10 | 1984-05-17 | Toshiba Corp | 高熱安定性、低保磁力、高角形性非晶質合金及びこの合金を用いた可飽和リアクトル |
JPS61261451A (ja) * | 1985-05-15 | 1986-11-19 | Mitsubishi Electric Corp | 磁性材料とその製造方法 |
JPS61210134A (ja) * | 1985-11-16 | 1986-09-18 | Res Inst Iron Steel Tohoku Univ | 高透磁率で実効透磁率が大きく磁歪が小さく高硬度で耐摩耗性の大きい磁気ヘツド用非晶質合金の製造方法 |
-
1987
- 1987-10-27 WO PCT/US1987/002802 patent/WO1988003699A1/en active IP Right Grant
- 1987-10-27 DE DE8787907699T patent/DE3775778D1/de not_active Expired - Lifetime
- 1987-10-27 JP JP62507130A patent/JPH0625399B2/ja not_active Expired - Lifetime
- 1987-10-27 EP EP87907699A patent/EP0329704B1/de not_active Expired - Lifetime
-
1993
- 1993-07-30 JP JP5190314A patent/JP2697808B2/ja not_active Expired - Lifetime
Non-Patent Citations (4)
Title |
---|
Patent Abstracts of Japan, volume 10, no.1 (E-371)(2058), 7 January 1986, & JP-A-60165705 * |
Patent Abstracts of Japan, volume 8, no. 193 (C-241)(1630), 5 September 1984, & JP-A-5985835 * |
Patent Abstracts of Japan, volume 8, no. 243 (E-277) (1680), 8 November 1984, & JP-A-59121805 * |
Patent Abstracts of Japan, volume 9, no. 193 (E-334)(1916), 9 August 1985, & JP-A-6059708 * |
Also Published As
Publication number | Publication date |
---|---|
WO1988003699A1 (en) | 1988-05-19 |
JPH0693392A (ja) | 1994-04-05 |
DE3775778D1 (de) | 1992-02-13 |
JP2697808B2 (ja) | 1998-01-14 |
JPH02500788A (ja) | 1990-03-15 |
JPH0625399B2 (ja) | 1994-04-06 |
EP0329704A1 (de) | 1989-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4038073A (en) | Near-zero magnetostrictive glassy metal alloys with high saturation induction | |
US4150981A (en) | Glassy alloys containing cobalt, nickel and iron having near-zero magnetostriction and high saturation induction | |
US4152144A (en) | Metallic glasses having a combination of high permeability, low magnetostriction, low ac core loss and high thermal stability | |
US4268325A (en) | Magnetic glassy metal alloy sheets with improved soft magnetic properties | |
US5340413A (en) | Fe-NI based soft magnetic alloys having nanocrystalline structure | |
EP0430085B1 (de) | Magnetlegierung mit ultrakleinen Kristallkörnern und Herstellungsverfahren | |
JP2013100603A (ja) | 高周波用途のための磁性ガラス状合金 | |
JP2013168637A (ja) | 電子的物品監視のための金属ガラス合金 | |
EP0240600B1 (de) | Glasartige Legierungen mit Perminvar-Eigenschaften | |
EP0072893B1 (de) | Metallische Gläser mit einer Kombination folgender Eigenschaften: hohe Permeabilität, niedrige Koerzitivkraft, niedriger Kernverlust bei Wechselstrom, niedrige Erregerkraft, hohe thermische Stabilität | |
EP0084138B1 (de) | Metallegierungen mit Glasstruktur, einer Magnetostriktion in der Nähe von Null und hoher thermischer und magnetischer Stabilität | |
EP0088244B1 (de) | Mangan enthaltende amorphe Legierungen auf Kobaltbasis, mit einer Magnetostriktion nahe Null und mit hoher Sättigungsinduktion | |
EP0329704B1 (de) | Metallglasslegierungen mit sehr kleiner magnetostriktion für hochfrequenzanwendungen | |
US4938267A (en) | Glassy metal alloys with perminvar characteristics | |
US4834814A (en) | Metallic glasses having a combination of high permeability, low coercivity, low AC core loss, low exciting power and high thermal stability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19890426 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
17Q | First examination report despatched |
Effective date: 19910419 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALLIED-SIGNAL INC. (A DELAWARE CORPORATION) |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 3775778 Country of ref document: DE Date of ref document: 19920213 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20030915 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20031003 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Ref country code: FR Ref legal event code: CD |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041027 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20041027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050630 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20061019 Year of fee payment: 20 |