EP0329611B1 - Process for continuously coating a filamentary steel article by immersing the article in a bath of the molten coating metal - Google Patents

Process for continuously coating a filamentary steel article by immersing the article in a bath of the molten coating metal Download PDF

Info

Publication number
EP0329611B1
EP0329611B1 EP89810103A EP89810103A EP0329611B1 EP 0329611 B1 EP0329611 B1 EP 0329611B1 EP 89810103 A EP89810103 A EP 89810103A EP 89810103 A EP89810103 A EP 89810103A EP 0329611 B1 EP0329611 B1 EP 0329611B1
Authority
EP
European Patent Office
Prior art keywords
substrate
steel
temperature
wire
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89810103A
Other languages
German (de)
French (fr)
Other versions
EP0329611A1 (en
Inventor
Michel Kornmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Battelle Memorial Institute Inc
Original Assignee
Battelle Memorial Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Battelle Memorial Institute Inc filed Critical Battelle Memorial Institute Inc
Publication of EP0329611A1 publication Critical patent/EP0329611A1/en
Application granted granted Critical
Publication of EP0329611B1 publication Critical patent/EP0329611B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/44Methods of heating in heat-treatment baths
    • C21D1/48Metal baths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/58Continuous furnaces for strip or wire with heating by baths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/64Patenting furnaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0035Means for continuously moving substrate through, into or out of the bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0036Crucibles
    • C23C2/00361Crucibles characterised by structures including means for immersing or extracting the substrate through confining wall area
    • C23C2/00362Details related to seals, e.g. magnetic means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/38Wires; Tubes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a process for the continuous coating of a threadlike steel substrate by immersion of this substrate in a bath of molten coating metal, according to which a coating metal is chosen whose melting point is greater than the austenization temperature of the steel, the steel substrate is preheated to a temperature lower than that of said bath, it is passed through this bath to coat it and bring it at the same time to its austenization temperature.
  • the continuous coating of a filiform substrate by immersion involves the rapid passage of this substrate, whose temperature is lower than that of the molten coating metal, through a spout of a crucible filled with this molten metal which solidifies quickly in contact with this relatively cooler substrate.
  • This technique has already been used to form a coating on a wire whose cross section is greater than that desired, this wire then being re-woven once coated to bring it to the final section.
  • this wire it is necessary that the crystal structure of the steel is sufficiently softened, which implies that this wire has previously undergone heating to its austenization temperature followed by controlled cooling as a function of the composition of the steel in order to give it the desired crystalline structure.
  • this technique has been applied with coating metals whose melting point was below the temperature austenizing the steel, so that the steel wire was subjected to the heat treatment intended to form the structure necessary to make it drawable, prior to coating, since this coating was carried out at a temperature below that of austenization.
  • the cooling of the wire after coating can be carried out very quickly by passage through a liquid, without modifying the crystalline structure of the steel obtained prior to coating. Since the coating process occurs by passing the wire vertically from bottom to top, rapid cooling of the wire makes it possible to reduce the height of the installation, especially with high speeds of advance of the wire.
  • JP-5782467 It has also been proposed in JP-5782467 to carry out the austenization of a steel strip by passing this strip through a bath of a molten metal such as copper whose temperature is higher than the temperature d austenization.
  • the subject of this invention is a process for the continuous coating of a filiform steel substrate, by immersion of this substrate in a bath of molten coating metal according to claim 1.
  • Figure 1 is an elevational view of an installation for the implementation of this method.
  • Figures 2 and 3 are T.T.T. (transformation-temperature-time) of two types of steels.
  • the installation illustrated in FIG. 1 comprises a supply coil 1 of steel wire 2.
  • This steel wire 2 passes over a first guide roller 3 to go through different treatment stations 4, 5 and 6 intended respectively for cleaning, rinsing and drying the wire 2.
  • a drawing capstan 3a brings the steel wire 2 to the below a graphite tank 7 of a crucible 8 containing a bath 9 of molten metal heated by a heating body 10 housed in the wall of the crucible 8.
  • the steel wire 2 Before crossing the spout 7 of the crucible provided with two openings 11 and 12 aligned vertically for this purpose, the steel wire 2 passes through a tubular conduit 13 whose entry is controlled by a seal 14.
  • This tubular conduit is connected to a source of protective gas 15 for example H2 + N2 and is surrounded by an electric coil 16 for preheating supplied by a high frequency HF source.
  • the maximum wire temperature is a function of the preheating temperature and the thickness of the deposited layer.
  • cooling is carried out relatively quickly for mild steels with less than 0.1% carbon.
  • too rapid cooling is not acceptable since these steels must be maintained at a temperature of the order of 550 ° C., corresponding to the maximum temperature of the TTT curve, for ten seconds to obtain the desired fine-grained ferrite-perlite crystal structure.
  • this temperature is obtained by passing the steel wire coated with copper or brass in a bath of molten lead.
  • this solution is difficult to implement, this is the reason why it is proposed to use a fluidized bed 17, which can be supplied by an air circuit 18 associated with a heating device 19. Part of the heat required comes directly from the wire 2 itself.
  • a thermal probe 20 makes it possible to regulate the temperature of the air as a function of the quantity of heat necessary to maintain the temperature of the fluidized bed at 540 ° C.
  • a second cooling system 21 with circulation of water is disposed above the fluidized bed 17 to complete the cooling of the wire 2 before it passes over a guide roller 3b which is suspended by means of a elastic tension regulation system 22 of wire 2 which is used to regulate the drawing capstan 3a, so as to obtain a low tension during coating. From this roller, the wire 2 is led to a storage drum 23. Since a mild steel wire heated to 700 ° C-800 ° C becomes very fragile in contact with molten copper in particular, the tension exerted by the voltage regulator 22 must not exceed 15 MPa.
  • FIGS. 2 and 3 respectively show and schematically the T.T.T. (transformation-time-temperature) of mild steel and steel with higher carbon content.
  • the curve for controlled cooling of the steel wire coated with a metal whose melting point is higher than the austenization temperature of the steel is plotted on each of these diagrams.
  • three metals and alloys are used, namely, copper, brass and silver.
  • the mild steel wire coated with copper finds applications in the electrical field, as telephone wire, electrically conductive spring, ground wire of an electrical transmission conduit for example.
  • the 0.7% carbon steel wire covered with brass finds particular application as a reinforcement wire for tires with radial carcass.
  • the mild steel wire coated with silver finds electronic applications.
  • the coated wire has a section substantially greater than that of the finished wire so that the thickness of the coating metal decreases at the same time as the diameter of the wire during the re-drawing of this wire. This operation does not cause deterioration of the deposited metal layer if it adheres well to this wire.
  • This example relates to the deposition of a layer of copper on a mild steel wire.
  • a steel wire with less than 0.1% carbon, 1 mm in diameter, is used for this purpose.
  • the first operation consists of an alkaline electrochemical degreasing at 60 ° C followed by an attack in an HCl bath and drying.
  • the actual coating phase which consists of preheating the wire 2 using the coil 16 supplied with high frequency current, the wire 2 passing at this time the tubular conduit 13 in which prevails an atmosphere of 20% H2 + N2 at a pressure of 5 mm of water column.
  • the temperature of the steel wire 2 is thus brought to 740 ° C. at the moment when it enters the beak 7 of the crucible 8 through the opening 11.
  • the beak of the crucible contains 70 g of liquid Cu at the temperature of 1120 ° C. corresponding to a 5 mm thick liquid bath.
  • the wire is cooled in air for 10 seconds before entering the water cooling enclosure 21.
  • the running speed of the wire 2 is 30 m / min.
  • the copper layer obtained is a 200 ⁇ m concentric layer adhering around the steel wire 2.
  • the wire can then be drawn with an 80% reduction in its section.
  • the steel wire used in this example is a 0.7% carbon steel wire with a diameter of 1 mm.
  • the preparation of this wire is identical to that of the wire of Example 1 as well as its preheating.
  • the spout 7 of the crucible 8 contains a layer of 40 mm of brass comprising 60% Cu and 40% Zn at a temperature of 1000 ° C.
  • the brass-coated wire enters the fluidized bed 17, the temperature of which is maintained at 540 ° C.
  • the wire feed speed is 30 m / min and the fluidized bed offers a path length of 5 m so that the wire is kept at this temperature of the order of 550 ° C for 10 s, the time to bring this steel in the fine-grained ferrite-cementite zone.
  • the layer obtained at a thickness of 15 ⁇ m formed concentrically around the steel wire is adhered to its surface.
  • a mild steel wire with less than 0.1% carbon 1 mm in diameter is coated with a layer of Ag.
  • This wire is cleaned and preheated under the same operating conditions as those of the previous examples.
  • the spout 7 of the crucible contains 70 g of liquid Ag at 990 ° C in an atmosphere of 10% H2 + N2.
  • Example 2 The cooling takes place in air as in Example 1 and an adherent and concentric layer of Ag 50 ⁇ m thick is obtained.
  • Each of the wires obtained according to one of the preceding examples has a diameter several times greater than the desired diameter.
  • the wire of Example 2 is then re-drawn to be brought to a final diameter of 0.25 mm.

Description

La présente invention se rapporte à un procédé de revêtement en continu d'un substrat filiforme d'acier par immersion de ce substrat dans un bain de métal de revêtement en fusion selon lequel on choisit un métal de revêtement dont le point de fusion est supérieur à la température d'austénisation de l'acier, on préchauffe le substrat d'acier à une température inférieure à celle dudit bain, on le fait passer dans ce bain pour le revêtir et l'amener en même temps à sa température d'austénisation.The present invention relates to a process for the continuous coating of a threadlike steel substrate by immersion of this substrate in a bath of molten coating metal, according to which a coating metal is chosen whose melting point is greater than the austenization temperature of the steel, the steel substrate is preheated to a temperature lower than that of said bath, it is passed through this bath to coat it and bring it at the same time to its austenization temperature.

Le revêtement en continu d'un substrat filiforme par immersion implique le passage rapide de ce substrat, dont la température est inférieure à celle du métal de revêtement en fusion, à travers un bec d'un creuset rempli de ce métal en fusion qui se solidifie rapidement au contact de ce substrat relativement plus froid.The continuous coating of a filiform substrate by immersion involves the rapid passage of this substrate, whose temperature is lower than that of the molten coating metal, through a spout of a crucible filled with this molten metal which solidifies quickly in contact with this relatively cooler substrate.

On a déjà proposé de nombreuses solutions basées sur ce principe par exemple dans le GB-982.051 ou dans le FR 1.584.626. Ces procédés ont généralement en commun de traverser le bec du creuset contenant le métal en fusion en se déplaçant de bas en haut, la vitesse, la section du passage et la mouillabilité du bec empêchant l'écoulement du métal en fusion.Many solutions have already been proposed based on this principle, for example in GB-982.051 or in FR 1,584,626. These methods generally have in common that they cross the beak of the crucible containing the molten metal by moving from bottom to top, the speed, the cross-section of the passage and the wettability of the beak preventing the flow of the molten metal.

On a déjà utilisé cette technique pour former un revêtement sur un fil dont la section est supérieure à celle désirée, ce fil étant alors retréfilé une fois revêtu pour l'amener à la section finale. Dans le cas de fils d'acier, il est nécessaire que la structure cristalline de l'acier soit suffisamment adoucie, ce qui implique que ce fil ait subi préalablement un chauffage à sa température d'austénisation suivi d'un refroidissement contrôlé en fonction de la composition de l'acier en vue de lui conférer la structure cristalline recherchée. Jusqu'ici, cette technique a été appliquée avec des métaux de revêtement dont le point de fusion était inférieur à la température d'austénisation de l'acier, de sorte que l'on soumettait le fil d'acier au traitement thermique destiné à former la structure nécessaire pour le rendre tréfilable, préalablement au revêtement, étant donné que ce revêtement était réalisé à une température inférieure à celle d'austénisation. Dans ces conditions, le refroidissement du fil après revêtement peut être réalisé très rapidement par passage dans un liquide, sans modifier la structure cristalline de l'acier obtenu préalablement au revêtement. Etant donné que le processus de revêtement se produit par le passage du fil verticalement de bas en haut, un refroidissement rapide du fil permet de réduire la hauteur de l'installation surtout avec des vitesse élevées d'avance du fil.This technique has already been used to form a coating on a wire whose cross section is greater than that desired, this wire then being re-woven once coated to bring it to the final section. In the case of steel wires, it is necessary that the crystal structure of the steel is sufficiently softened, which implies that this wire has previously undergone heating to its austenization temperature followed by controlled cooling as a function of the composition of the steel in order to give it the desired crystalline structure. So far, this technique has been applied with coating metals whose melting point was below the temperature austenizing the steel, so that the steel wire was subjected to the heat treatment intended to form the structure necessary to make it drawable, prior to coating, since this coating was carried out at a temperature below that of austenization. Under these conditions, the cooling of the wire after coating can be carried out very quickly by passage through a liquid, without modifying the crystalline structure of the steel obtained prior to coating. Since the coating process occurs by passing the wire vertically from bottom to top, rapid cooling of the wire makes it possible to reduce the height of the installation, especially with high speeds of advance of the wire.

Il existe cependant des applications importantes du point de vue économique où il serait nécessaire de produire des fils d'acier de faible section, revêtus de métaux dont le point de fusion est sensiblement supérieur à la température d'austénisation de l'acier. D'une part, la section est trop faible pour que le fil d'acier puisse résister mécaniquement à chaud aux efforts de tractions nécessaires pour le faire défiler à travers le bain de métal en fusion; d'autre part, avec une section suffisante pour résister aux conditions opératoires, le refroidissement non contrôlé du fil revêtu engendrerait dans le fil d'acier une structure cristalline qui le rendrait inapte à subir un tréfilage ultérieur, de sorte que ce fil ne pourrait plus être amené à la section désirée.There are however important applications from the economic point of view where it would be necessary to produce steel wires of small section, coated with metals whose melting point is significantly higher than the austenization temperature of steel. On the one hand, the section is too small for the steel wire to be able to mechanically resist hot the tensile forces necessary to make it pass through the bath of molten metal; on the other hand, with a section sufficient to withstand the operating conditions, the uncontrolled cooling of the coated wire would generate in the steel wire a crystalline structure which would render it incapable of undergoing further drawing, so that this wire could no longer be brought to the desired section.

On a déjà proposé dans le EP-A-60.225 de revêtir en continu un fil d'acier à 0,7 % de carbone par immersion dans un bain de métal en fusion dont le point de fusion est supérieur à la température d'austénisation de l'acier, notamment dans un bain de laiton et dans un bain de cuivre, le fil d'acier étant préalablement chauffé à 500°C.It has already been proposed in EP-A-60,225 to continuously coat a steel wire with 0.7% carbon by immersion in a bath of molten metal whose melting point is higher than the austenization temperature of steel, in particular in a brass bath and in a copper bath, the steel wire being previously heated to 500 ° C.

Il a également été proposé dans le JP-5782467 d'effectuer l'austénisation d'une bande d'acier en faisant passer cette bande dans un bain d'un métal en fusion tel que le cuivre dont la température est supérieure à la température d'austénisation.It has also been proposed in JP-5782467 to carry out the austenization of a steel strip by passing this strip through a bath of a molten metal such as copper whose temperature is higher than the temperature d austenization.

Aucun de ces documents n'envisage d'effectuer un refroidissement contrôlé du substrat d'acier ainsi revêtu, en vue de lui conférer une structure cristalline adoucie permettant de réduire la section du substrat revêtu par re-tréfilage ou re-laminage. Tel est précisément le but de la présente invention.None of these documents envisages carrying out a controlled cooling of the steel substrate thus coated, with a view to it confer a softened crystal structure making it possible to reduce the section of the coated substrate by re-drawing or re-rolling. This is precisely the aim of the present invention.

A cet effet, cette invention a pour objet un procédé de revêtement en continu d'un substrat filiforme d'acier, par immersion de ce substrat dans un bain de métal de revêtement en fusion selon la revendication 1.To this end, the subject of this invention is a process for the continuous coating of a filiform steel substrate, by immersion of this substrate in a bath of molten coating metal according to claim 1.

Le dessin annexé illustre, schématiquement et à titre d'exemple, une forme d'exécution d'une installation pour la mise en oeuvre du procédé.The accompanying drawing illustrates, schematically and by way of example, an embodiment of an installation for implementing the method.

La figure 1 est une vue en élévation d'une installation pour la mise en oeuvre de ce procédé.Figure 1 is an elevational view of an installation for the implementation of this method.

Les figures 2 et 3 sont des diagrammes T.T.T. (transformation-température-temps) de deux types d'aciers.Figures 2 and 3 are T.T.T. (transformation-temperature-time) of two types of steels.

L'installation illustrée par la figure 1 comprend une bobine d'alimentaiton 1 en fil d'acier 2. Ce fil d'acier 2 passe sur un premier galet de guidage 3 pour se diriger à travers différents postes de traitement 4, 5 et 6 destinés respectivement au nettoyage, au rinçage et au séchage du fil 2. Un cabestan de tirage 3a ramène le fil d'acier 2 au- dessous d'un bac en graphite 7 d'un creuset 8 contenant un bain 9 de métal en fusion chauffé par un corps de chauffe 10 logé dans la paroi du creuset 8.The installation illustrated in FIG. 1 comprises a supply coil 1 of steel wire 2. This steel wire 2 passes over a first guide roller 3 to go through different treatment stations 4, 5 and 6 intended respectively for cleaning, rinsing and drying the wire 2. A drawing capstan 3a brings the steel wire 2 to the below a graphite tank 7 of a crucible 8 containing a bath 9 of molten metal heated by a heating body 10 housed in the wall of the crucible 8.

Avant de traverser le bec 7 du creuset muni de deux ouvertures 11 et 12 alignées verticalement à cet effet, le fil d'acier 2 passe dans un conduit tubulaire 13 dont l'entrée est contrôlée par un joint 14. Ce conduit tubulaire est relié à une source de gaz protecteur 15 par exemple du H₂+N₂ et est entouré par un bobinage électrique 16 de préchauffage alimenté par une source de haute fréquence HF. La température maximale du fil est fonction de la température de préchauffage et de l'épaisseur de la couche déposée.Before crossing the spout 7 of the crucible provided with two openings 11 and 12 aligned vertically for this purpose, the steel wire 2 passes through a tubular conduit 13 whose entry is controlled by a seal 14. This tubular conduit is connected to a source of protective gas 15 for example H₂ + N₂ and is surrounded by an electric coil 16 for preheating supplied by a high frequency HF source. The maximum wire temperature is a function of the preheating temperature and the thickness of the deposited layer.

Suivant le type d'acier utilisé pour constituer le substrat filiforme 2, le refroidissement est réalisé relativement rapidement pour des aciers doux à moins de 0,1% de carbone. Pour des aciers à plus forte teneur en carbone, le refroidissement trop rapide n'est pas acceptable étant donné que ces aciers doivent être maintenus à une température de l'ordre de 550°C, correspondant à la température maximum de la courbe TTT, pendant une dizaine de secondes pour obtenir la structure cristalline ferrite-perlite à grain fin désirée. Généralement, cette température est obtenue en faisant passer le fil d'acier revêtu de cuivre ou de laiton dans un bain de plomb fondu. Toutefois, compte tenu du fait que le processus de revêtement selon l'invention se déroule le long d'une trajectoire verticale, cette solution est difficile à mettre en oeuvre, c'est la raison pour laquelle il est proposé d'utiliser un lit fluidisé 17, qui peut être alimenté par un circuit d'air 18 associé à un dispositif de chauffage 19. Une partie de la chaleur nécessaire provient directement du fil 2 lui-même. Une sonde thermique 20 permet de réguler la température de l'air en fonction de la quantité de chaleur nécessaire pour maintenir la température du lit fluidisé à 540°C.Depending on the type of steel used to form the filiform substrate 2, cooling is carried out relatively quickly for mild steels with less than 0.1% carbon. For steels with a higher carbon content, too rapid cooling is not acceptable since these steels must be maintained at a temperature of the order of 550 ° C., corresponding to the maximum temperature of the TTT curve, for ten seconds to obtain the desired fine-grained ferrite-perlite crystal structure. Generally, this temperature is obtained by passing the steel wire coated with copper or brass in a bath of molten lead. However, given the fact that the coating process according to the invention takes place along a vertical path, this solution is difficult to implement, this is the reason why it is proposed to use a fluidized bed 17, which can be supplied by an air circuit 18 associated with a heating device 19. Part of the heat required comes directly from the wire 2 itself. A thermal probe 20 makes it possible to regulate the temperature of the air as a function of the quantity of heat necessary to maintain the temperature of the fluidized bed at 540 ° C.

Un second système de refroidissement 21 à circulation d'eau est disposé au-dessus du lit fluidisé 17 pour terminer le refroidissement du fil 2 avant que celui-ci ne passe sur un galet de guidage 3b qui est suspendu par l'intermédiaire d'un système élastique de régulation de tension 22 du fil 2 qui sert à réguler le cabestan de tirage 3a, de façon à obtenir une faible tension durant le revêtement. De ce galet, le fil 2 est conduit à un tambour de stockage 23. Etant donné qu'un fil en acier doux chauffé à 700°C-800°C devient très fragile au contact du cuivre fondu en particulier, la tension exercée par le régulateur de tension 22 ne doit pas excéder 15 MPa.A second cooling system 21 with circulation of water is disposed above the fluidized bed 17 to complete the cooling of the wire 2 before it passes over a guide roller 3b which is suspended by means of a elastic tension regulation system 22 of wire 2 which is used to regulate the drawing capstan 3a, so as to obtain a low tension during coating. From this roller, the wire 2 is led to a storage drum 23. Since a mild steel wire heated to 700 ° C-800 ° C becomes very fragile in contact with molten copper in particular, the tension exerted by the voltage regulator 22 must not exceed 15 MPa.

Différents métaux et alliages ont été déposés sur des fils d'acier de différents types, le point commun entre les exemples qui vont suivre est de donner à l'acier une structure cristalline ferrite-perlite fine, grâce à un refroidissement contrôlé. Comme on le verra dans ces exemples, dans le cas d'aciers doux à moins de 0,1% de carbone, un simple refroidissement à l'air peut être suffisamment lent pour obtenir la structure cristalline désirée, de sorte que dans ce cas le lit fluidisé 17 peut être supprimé, une distance suffisante étant ménagée entre la sortie du bec 7 et le système de refroidissement 21 pour permettre d'obtenir la structrue cristalline désirée. Par contre avec des aciers à plus forte teneur en carbone, présentant une plus grande trempabilité, il est nécessaire de maintenir le fil à une température de 540°C durant quelques secondes pour éviter la trempe à l'air ambiant et pour obtenir une structure cristalline ferrite-perlite fine. Les diagrammes des figures 2 et 3 montrent respectivement et schématiquement les courbes T.T.T. (transformation-temps-température) d'un acier doux et d'un acier à plus haute teneur en carbone. On a tracé sur chacun de ces diagrammes la courbe de refroidissement contrôlé du fil d'acier revêtu d'un métal dont le point de fusion est supérieur à la température d'austénisation de l'acier.Different metals and alloys have been deposited on steel wires of different types, the common point between the examples which follow is to give the steel a fine ferrite-perlite crystal structure, thanks to controlled cooling. As will be seen in these examples, in the case of mild steels with less than 0.1% carbon, a simple air cooling can be slow enough to obtain the desired crystalline structure, so that in this case the fluidized bed 17 can be omitted, a sufficient distance being provided between the outlet of the spout 7 and the cooling system 21 to allow the desired crystalline structure to be obtained. On the other hand, with steels with a higher carbon content, having greater quenchability, it is necessary to maintain the wire at a temperature of 540 ° C. for a few seconds to avoid quenching in ambient air and to obtain a crystalline structure. fine ferrite-perlite. The diagrams of FIGS. 2 and 3 respectively show and schematically the T.T.T. (transformation-time-temperature) of mild steel and steel with higher carbon content. The curve for controlled cooling of the steel wire coated with a metal whose melting point is higher than the austenization temperature of the steel is plotted on each of these diagrams.

Dans les exemples qui vont suivre, on utilise trois métaux et alliage à savoir, le cuivre, le laiton et l'argent. Le fil d'acier doux revêtu de cuivre trouve des applications dans le domaine électrique, en tant que fil téléphonique, ressort électriquement conducteur, fil de terre d'un conduit de transmission électrique par exemple. Le fil d'acier à 0,7% de carbone recouvert de laiton trouve notamment une application en tant que fil de renforcement des pneux à carcasse radiale. Enfin le fil d'acier doux revêtu d'argent trouve des applications électroniques. Dans chacun de ces cas, le fil revêtu a une section sensiblement supérieure à celle du fil terminé de sorte que l'épaisseur du métal de revêtement diminue en même temps que le diamètre du fil lors du retréfilage de ce fil. Cette opération n'entraîne pas de détérioration de la couche de métal déposée si celle-ci adhère bien à ce fil.In the following examples, three metals and alloys are used, namely, copper, brass and silver. The mild steel wire coated with copper finds applications in the electrical field, as telephone wire, electrically conductive spring, ground wire of an electrical transmission conduit for example. The 0.7% carbon steel wire covered with brass finds particular application as a reinforcement wire for tires with radial carcass. Finally the mild steel wire coated with silver finds electronic applications. In each of these cases, the coated wire has a section substantially greater than that of the finished wire so that the thickness of the coating metal decreases at the same time as the diameter of the wire during the re-drawing of this wire. This operation does not cause deterioration of the deposited metal layer if it adheres well to this wire.

EXEMPLE 1EXAMPLE 1

Cet exemple se rapporte au dépôt d'une couche de cuivre sur un fil d'acier doux.This example relates to the deposition of a layer of copper on a mild steel wire.

On utilise à cet effet un fil d'acier à moins de 0,1% de carbone, de 1 mm de diamètre. La première opération consiste en un dégraissage électrochimique alcalin à 60°C suivi d'une attaque dans un bain de HCl et d'un séchage. Suite à cette phase de préparation du substrat, commence la phase de revêtement proprement dit qui consiste à préchauffer le fil 2 à l'aide de la bobine 16 alimentée en courant de haute fréquence, le fil 2 traversant à ce moment le conduit tubulaire 13 dans lequel règne une atmosphère de 20% H₂ + N₂ à une pression de 5 mm de colonne d'eau. La température du fil d'acier 2 est ainsi portée à 740°C au moment où il pénètre dans le bec 7 du creuset 8 par l'ouverture 11. Le bec du creuset contient 70 g de Cu liquide à la température de 1120°C correspondant à un bain de liquide de 5 mm d'épaisseur.A steel wire with less than 0.1% carbon, 1 mm in diameter, is used for this purpose. The first operation consists of an alkaline electrochemical degreasing at 60 ° C followed by an attack in an HCl bath and drying. Following this phase of preparation of the substrate, begins the actual coating phase which consists of preheating the wire 2 using the coil 16 supplied with high frequency current, the wire 2 passing at this time the tubular conduit 13 in which prevails an atmosphere of 20% H₂ + N₂ at a pressure of 5 mm of water column. The temperature of the steel wire 2 is thus brought to 740 ° C. at the moment when it enters the beak 7 of the crucible 8 through the opening 11. The beak of the crucible contains 70 g of liquid Cu at the temperature of 1120 ° C. corresponding to a 5 mm thick liquid bath.

Ensuite le fil est refroidi à l'air pendant 10 secondes avant de pénétrer dans l'enceinte de refroidissement à eau 21. La vitesse de défilement du fil 2 est de 30m/mn. La couche de cuivre obtenue est une couche de 200 µm concentrique et adhérente autour du fil d'acier 2. Le fil peut ensuite être tréfilé avec une réduction de 80 % de sa section.Then the wire is cooled in air for 10 seconds before entering the water cooling enclosure 21. The running speed of the wire 2 is 30 m / min. The copper layer obtained is a 200 μm concentric layer adhering around the steel wire 2. The wire can then be drawn with an 80% reduction in its section.

EXEMPLE 2EXAMPLE 2

Le fil d'acier utilisé dans cet exemple est un fil d'acier à 0,7% de carbone de 1 mm de diamètre. La préparation de ce fil est identique à celle du fil de l'exemple 1 de même que son préchauffage.The steel wire used in this example is a 0.7% carbon steel wire with a diameter of 1 mm. The preparation of this wire is identical to that of the wire of Example 1 as well as its preheating.

Le bec 7 du creuset 8 contient une couche de 40 mm de laiton comprenant 60% Cu et 40% Zn à une température de 1000°C.The spout 7 of the crucible 8 contains a layer of 40 mm of brass comprising 60% Cu and 40% Zn at a temperature of 1000 ° C.

A la sortie du bec 7, le fil recouvert de laiton pénètre dans le lit fluidisé 17 dont la température est maintenue à 540°C. La vitesse d'avance du fil est de 30 m/mn et le lit fluidisé offre une longueur de cheminement de 5 m de sorte que le fil est maintenu à cette température de l'ordre de 550°C pendant 10s, le temps pour amener cet acier dans la zone ferrite-cementite à grain fin. La couche obtenue à une épaisseur de 15 µm formée concentriquement autour du fil d'acier est adhérant à sa surface.At the outlet of the spout 7, the brass-coated wire enters the fluidized bed 17, the temperature of which is maintained at 540 ° C. The wire feed speed is 30 m / min and the fluidized bed offers a path length of 5 m so that the wire is kept at this temperature of the order of 550 ° C for 10 s, the time to bring this steel in the fine-grained ferrite-cementite zone. The layer obtained at a thickness of 15 μm formed concentrically around the steel wire is adhered to its surface.

EXEMPLE 3EXAMPLE 3

On revêt un fil d'acier doux à moins de 0,1% de carbone de 1 mm de diamètre d'une couche d'Ag.A mild steel wire with less than 0.1% carbon 1 mm in diameter is coated with a layer of Ag.

On procède au nettoyage et au préchauffage de ce fil dans les mêmes conditions opératoires que celles des exemples précédents.This wire is cleaned and preheated under the same operating conditions as those of the previous examples.

Le bec 7 du creuset contient 70 g d'Ag liquide à 990°C dans une atmosphère de 10% H₂ + N₂.The spout 7 of the crucible contains 70 g of liquid Ag at 990 ° C in an atmosphere of 10% H₂ + N₂.

Le refroidissement s'effectue à l'air comme dans l'exemple 1 et on obtient une couche adhérente et concentrique d'Ag de 50 µm d'épaisseur.The cooling takes place in air as in Example 1 and an adherent and concentric layer of Ag 50 μm thick is obtained.

Chacun des fils obtenus selon l'un des exemples précédents a un diamètre plusieurs fois supérieur au diamètre désiré. C'est ainsi par exemple que le fil de l'exemple 2 est ensuite retréfilé pour être amené à un diamètre final de 0,25 mm.Each of the wires obtained according to one of the preceding examples has a diameter several times greater than the desired diameter. Thus, for example, the wire of Example 2 is then re-drawn to be brought to a final diameter of 0.25 mm.

Il faut encore noter que sur le plan économique le fait de réaliser le recuit de l'acier en même temps que son revêtement permet de supprimer une opération et donc de réduire les coûts de production dans une proportion non néglieable.It should also be noted that from an economic point of view, the annealing of the steel at the same time as its coating makes it possible to eliminate an operation and therefore to reduce the production costs in a non-negligible proportion.

Claims (3)

1. A method of continuously coating a filiform steel substrate by immersing this substrate in a bath of molten coating metal, in which a coating metal is chosen which has a melting point higher than the austenitisation temperature of the steel, the steel substrate is preheated to a temperature lower than that of the said bath, it is introduced into this bath in order to coat it and at the same time to bring it to its austenitisation temperature, characterised in that the said filiform steel substrate is coated in the non-softened state and, in order to give the steel of this substrate a softened crystalline structure, this substrate thus coated is cooled at a controlled rate and drawn in order to give it the required cross-section.
2. A method according to claim 1, characterised in that a filiform substrate of soft steel with leas than 0.1 % carbon is coated and in that this substrate is then cooled at a rate chosen in order to obtain a ferrite-perlite structure.
3. A method according to claim 1, characterised in that a filiform steel substrate containing more than 0.2% carbon is coated and in that the temperature of this coated substrate is decreased rapidly to a temperature in the order of 550°C, in that the substrate is then maintained at this temperature until the transformation into a fine-grained ferrite-perlite structure and the cooling of the substrate is than brought to an end.
EP89810103A 1988-02-09 1989-02-08 Process for continuously coating a filamentary steel article by immersing the article in a bath of the molten coating metal Expired - Lifetime EP0329611B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH453/88A CH675257A5 (en) 1988-02-09 1988-02-09
CH453/88 1988-02-09

Publications (2)

Publication Number Publication Date
EP0329611A1 EP0329611A1 (en) 1989-08-23
EP0329611B1 true EP0329611B1 (en) 1992-05-20

Family

ID=4187371

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89810103A Expired - Lifetime EP0329611B1 (en) 1988-02-09 1989-02-08 Process for continuously coating a filamentary steel article by immersing the article in a bath of the molten coating metal

Country Status (7)

Country Link
US (1) US5705228A (en)
EP (1) EP0329611B1 (en)
JP (1) JP2771573B2 (en)
KR (1) KR890013206A (en)
CH (1) CH675257A5 (en)
DE (1) DE68901546D1 (en)
MY (1) MY104399A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755331B2 (en) * 1991-11-19 1995-06-14 修司 西浦 Ultra-high strength ultra-thin high-carbon steel wire manufacturing method
US5437748A (en) * 1994-09-15 1995-08-01 The Goodyear Tire & Rubber Company Process for patenting and brass plating steel wire
DE19545259A1 (en) * 1995-11-24 1997-05-28 Mannesmann Ag Method and device for producing thin metal strands
EP0885975A1 (en) * 1997-06-16 1998-12-23 M3D Société Anonyme Process for continuous heat treating metal wires and strips
US6270597B1 (en) * 1998-12-16 2001-08-07 Praxair Technology, Inc. Process for continuous heating and cleaning of wire and strip products in a stratified fluidized bed
CA2261100A1 (en) 1999-02-03 2000-08-03 The I.C.E. Group Molten metal immersion bath for wire fabrication
US6491770B1 (en) 2000-05-31 2002-12-10 James M. Knott, Sr. Strand galvanizing line
EP2360286A1 (en) 2010-02-15 2011-08-24 Bogumil Miklasz The method of production a coated wire
JP5833232B2 (en) 2011-05-27 2015-12-16 エイケイ・スチール・プロパティーズ・インコーポレイテッドAK Steel Properties, Inc. Meniscus coating apparatus and method
GB201212251D0 (en) * 2012-07-10 2012-08-22 Kts Wire Ltd Improvements in and relating to elongate products and methods of making them

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA748837A (en) * 1966-12-20 H. Baessler Karl Metal coating of long lengths of metal bodies
GB1194392A (en) * 1967-09-07 1970-06-10 Takashi Yajima Coating Ferrous Material with Copper and its Alloys
US3779056A (en) * 1971-12-28 1973-12-18 Bethlehem Steel Corp Method of coating steel wire with aluminum
CA1007356A (en) * 1972-05-16 1977-03-22 David R. Shuey Facsimile communication system
US4026731A (en) * 1974-05-06 1977-05-31 The Electric Furnace Company Method for heat treating wire
CH616351A5 (en) * 1976-07-20 1980-03-31 Battelle Memorial Institute
US4144379A (en) * 1977-09-02 1979-03-13 Inland Steel Company Drawing quality hot-dip coated steel strip
CH648601A5 (en) * 1979-07-31 1985-03-29 Battelle Memorial Institute METHOD OF CONTINUOUSLY COATING A METAL SUBSTRATE ON AT LEAST ONE OF ITS SURFACE WITH ANOTHER METAL AND DEVICE FOR CARRYING OUT SAID METHOD.
JPS5782467A (en) * 1980-11-08 1982-05-22 Nisshin Steel Co Ltd Manufacture of heat treated plated steel strip
JPS6058787B2 (en) * 1981-03-10 1985-12-21 興国鋼線索株式会社 High-speed dip coating method and device for linear bodies
JPS59170250A (en) * 1983-03-15 1984-09-26 Sumitomo Electric Ind Ltd Manufacture of copper coated steel wire
JPS6046359A (en) * 1983-08-22 1985-03-13 Kawasaki Steel Corp Surface treatment of stainless steel plate
CH655265A5 (en) * 1983-11-14 1986-04-15 Battelle Memorial Institute Method for manufacturing a wire electrode for electron discharge machining (spark erosion machining)
JPS60118343A (en) * 1983-11-29 1985-06-25 Sumitomo Electric Ind Ltd Manufacture of composite wire
JPS6016359A (en) * 1984-06-06 1985-01-28 Nobuhiko Yasui Polisher
US4655852A (en) * 1984-11-19 1987-04-07 Rallis Anthony T Method of making aluminized strengthened steel
WO1986005213A1 (en) * 1985-03-04 1986-09-12 Battelle Memorial Institute Method for selectively forming at least a coating strip of a metal or alloy on a substrate of another metal
GB8505491D0 (en) * 1985-03-04 1985-04-03 Bekaert Sa Nv Heat treatment of steel
JPH06943B2 (en) * 1985-07-31 1994-01-05 株式会社フジクラ Manufacturing method of coated steel wire
CH669186A5 (en) * 1986-12-13 1989-02-28 Battelle Memorial Institute METHOD FOR COATING AN OPTICAL FIBER WITH A METAL SLEEVE, PROTECTOR AND CORRESPONDING COATING DEVICE.
US4830683A (en) * 1987-03-27 1989-05-16 Mre Corporation Apparatus for forming variable strength materials through rapid deformation and methods for use therein

Also Published As

Publication number Publication date
MY104399A (en) 1994-03-31
CH675257A5 (en) 1990-09-14
JP2771573B2 (en) 1998-07-02
DE68901546D1 (en) 1992-06-25
US5705228A (en) 1998-01-06
EP0329611A1 (en) 1989-08-23
KR890013206A (en) 1989-09-22
JPH01225759A (en) 1989-09-08

Similar Documents

Publication Publication Date Title
CA1107577A (en) Method for high speed coating of a wire like element with a hot melt material, apparatus therefor, and wire like element thus coated
EP0329611B1 (en) Process for continuously coating a filamentary steel article by immersing the article in a bath of the molten coating metal
US3778315A (en) Coating process
CA2280405A1 (en) Metal strip galvanization process
EP0293417A1 (en) Optical fibre coated with a metal sleeve.
US3828723A (en) Galvanizing apparatus for wire and the like
EP0955396B1 (en) Method and apparatus for making wire electrodes for electric discharge machining
US5966975A (en) Method and device for zinc plating a spark erosion wire, and wire obtained in this way
CA1107179A (en) Method for making a hard steel elongated element
FR2565255A1 (en) PROCESS FOR PRODUCING ETAMES YARNS
CH655265A5 (en) Method for manufacturing a wire electrode for electron discharge machining (spark erosion machining)
FR2576323A1 (en) PROCESS FOR PROCESSING CONDUCTIVE PROFILES, PARTICULARLY METALLIC, INSTALLATION FOR ITS IMPLEMENTATION AND TREATED PROFILES SO OBTAINED
EP0126696A1 (en) Method for continuously producing an overaged steel strip coated with zinc or an aluminium-zinc alloy
EP0378036B1 (en) Method and apparatus for continuously casting thin metal wire
EP0215031B1 (en) Method for selectively forming at least a coating strip of a metal or alloy on a substrate of another metal
EP0828864A1 (en) Method and apparatus for coating a metal strip with a metal or alloy with a lower melting or liquidus point than the strip material
BE1000490A4 (en) concasting of strip or wire to produce mono-directional grain growth - by heating support substrate to above metal m.pt. prior to flowing metal onto support, preventing nuclei growth between support and metal
CH661748A5 (en) Process for coating a metal wire with an alloy or a metal
WO1986007552A1 (en) Method for fabricating a filiform electrode for electro-erosion machining
BE853456A (en) METHOD AND DEVICE FOR MAKING HARD STEEL MACHINE WIRE
EP0885975A1 (en) Process for continuous heat treating metal wires and strips
FR2461009A1 (en) Heat treatment of steel wire - where wire is quenched in liq. contg. oil, and is pref. tempered while being galvanised in molten zinc bath
EP0496678A1 (en) Process for continuous galvanizing at high temperature
BE640310A (en)
BE1011425A3 (en) Method of coating a steel strip by hot-dip galvanising

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB IT LI LU

17P Request for examination filed

Effective date: 19891216

17Q First examination report despatched

Effective date: 19910517

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI LU

REF Corresponds to:

Ref document number: 68901546

Country of ref document: DE

Date of ref document: 19920625

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EPTA Lu: last paid annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MOINAS KIEHL SAVOYE & CRONIN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960206

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960304

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19970228

Ref country code: CH

Effective date: 19970228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970208

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980226

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980227

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19980319

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980320

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990228

BERE Be: lapsed

Owner name: BATTELLE MEMORIAL INSTITUTE

Effective date: 19990228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050208