EP0327691A2 - Process for permanent disposal of radioactive waste - Google Patents

Process for permanent disposal of radioactive waste Download PDF

Info

Publication number
EP0327691A2
EP0327691A2 EP88119450A EP88119450A EP0327691A2 EP 0327691 A2 EP0327691 A2 EP 0327691A2 EP 88119450 A EP88119450 A EP 88119450A EP 88119450 A EP88119450 A EP 88119450A EP 0327691 A2 EP0327691 A2 EP 0327691A2
Authority
EP
European Patent Office
Prior art keywords
potassium permanganate
cement
container
waste
carrier material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88119450A
Other languages
German (de)
French (fr)
Other versions
EP0327691B1 (en
EP0327691A3 (en
Inventor
Herbert Lammertz
Kornelius Dr. Kroth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Kernforschungsanlage Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH, Kernforschungsanlage Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Priority to JP1017809A priority Critical patent/JPH01267499A/en
Publication of EP0327691A2 publication Critical patent/EP0327691A2/en
Publication of EP0327691A3 publication Critical patent/EP0327691A3/en
Application granted granted Critical
Publication of EP0327691B1 publication Critical patent/EP0327691B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/16Processing by fixation in stable solid media
    • G21F9/162Processing by fixation in stable solid media in an inorganic matrix, e.g. clays, zeolites
    • G21F9/165Cement or cement-like matrix
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/301Processing by fixation in stable solid media
    • G21F9/302Processing by fixation in stable solid media in an inorganic matrix
    • G21F9/304Cement or cement-like matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S376/00Induced nuclear reactions: processes, systems, and elements
    • Y10S376/90Particular material or material shapes for fission reactors
    • Y10S376/901Fuel
    • Y10S376/902Fuel with external lubricating or absorbing material

Definitions

  • the invention relates to a method for the storage of radioactive waste materials, in which the waste materials are solidified or pressed and then enclosed in a container.
  • Radioactive waste - solidified or compressed - is enclosed in containers for storage in order to avoid radioactive contamination of the environment. It has been shown that hydrogen is generated in the waste material by chemical and radiolytic processes, which is undesirable for reasons of final storage.
  • radioactive wastes for example those from the reprocessing of fuel elements, such as structural parts, Zirkaloy cladding tubes and insoluble residues from the fuel solution (feed sewage sludge) are cemented for final storage in containers.
  • the waste / cement mixture is usually placed in 140 l so-called insert drums, which in turn are placed in 200 l drums. After the cement has set, these insert drums are placed in 200-liter drums and sealed with rubber seals and lids.
  • the water contained in the cement matrix is broken down into hydrogen and oxygen by radiolysis.
  • the oxygen reacts with the materials of the waste container and is therefore usually not found in the empty space of the 200 l drums, which contains about 70 l of free gas volume.
  • the potassium permanganate is expediently used in dissolved form. To do this, to apply the potassium permanganate to the surface of the carrier material, proceed according to the procedure of claim 3.
  • a particularly simple and yet effective embodiment of the method according to the invention consists in adding the potassium permanganate in solid form to the cement before it sets (claim 2) or admixing it to the carrier material (claim 4).
  • Ceramic materials such as Al2O3 or chamotte, are suitable as carrier material.
  • oxidizing agent used Since the oxidizing agent used is consumed in the conversion of the hydrogen, a sufficient amount thereof must be used to convert the total hydrogen produced during the storage period.
  • the amount of oxidizing agent used on the other hand, in the event that it is added to the cement, must not lead to a reduction in the strength of the cement. In this regard, potassium permanganate has been found to be suitable.
  • potassium permanganate 10 g to 100 g of potassium permanganate are expediently used per liter of cement stone, concrete and / or carrier material used. If you mix the cement with saturated potassium permanganate solution, then about 35 g KMnO4 / liter cement stone are reached. In total, more potassium permanganate can be contained in the wrapping material, which is filled into the annular gap volume of the 200 l drums (up to 100 g / liter) can be used. If aluminum oxide is used as a carrier material for the coating material, approximately 15-30 g of potassium permanganate per kg of aluminum oxide will be applied to it. With a uniform mixture of aluminum oxide and solid potassium permanganate, 100 g per liter of carrier material can be easily adjusted.
  • the H2-reactivity of potassium permanganate was compared in parallel on two samples of the same composition with and without radiation.
  • two samples were made from cement stone bodies and two samples from Al2O3 (each mixed with potassium permanganate).
  • the cement stone samples and the Al2O3 samples were sealed gas-tight in the 1.65-liter vessels, evacuated and charged with a gas mixture consisting of 20% H2 and 80% Kr.
  • sample 1 and 2 Portland cement 35; pH 12.5
  • 1270 g of cement, 575 g of water and 15 g of KMnO4 0.095 mol
  • the mass of sample 1 was 1755 g
  • the mass of sample 2 was 1765 g.
  • One of the parallel samples was irradiated for 5 days up to a dose of 1.5 - 2.5 x 106 rad.
  • the other parallel sample was stored in the laboratory at room temperature without irradiation.
  • the H2 volume in the cement stone samples would be 10 - 20 ml must have arisen as a result of the radiation.
  • the H2 portion of the original gas filling in the case of cement stone samples is approximately 180 ml H2.
  • samples No. 1 and 2 practically completely devour the H2 volume and the hydrogen released in sample 2 by irradiation during the test period. At the same time, there is presumably a certain release of O2 by elimination from the KMnO4, the O2 elimination being increased in the irradiated sample.
  • insert drums (140 l) with cemented radioactive structural parts, fuel element sleeves and feed sewage sludge were removed from the larger containers (200 l drum) and sealed in specially made measuring containers.
  • the empty volume of the measuring container was approx. 47 l.
  • the release of radiolysis hydrogen from the cemented waste was determined by observing the internal pressure of the container and by taking gas samples with subsequent gas chromatographic analysis of the gas components.
  • the H2 release was first observed over a period of 300 days and an average release rate of approx. 77 Nml H2 / day was determined.
  • the measuring container was then opened and a drip tray with approx. 2.5 kg Al2O3, which had been impregnated with approx. 40 g KMnO4 in the manner indicated in Example 1, admitted.
  • the measuring container was closed again gas-tight and flushed with synthetic air before the measuring phase.
  • the internal pressure after the addition of the Al2O3 sample fell continuously from about 1000 mbar to about 860 mbar within 120 days.
  • gas samples were taken after 56 and 120 days.
  • the analyzes showed 0.4% H2, 7.2% O2, 89.5% N2 and 0.5% CH4 for the first sample, and 2.5% H2, 1.0% O2, 91, for the second sample. 4% N2 and 1.2% CH4.
  • the increased H2 content at the end of the service life is due to the fact that the potassium permanganate was almost exhausted.
  • 100 g KMnOprobe in crystal form was added to a freshly mixed cement sample of approx. 1 liter with a water / cement ratio of 0.43 and mixed in evenly.
  • the cylindrical sample was shaped after 24 hours, placed in a sealed vessel and kept under a hydrogen partial pressure of 500-600 mbar for 32 days. During this time the vessel was in a thermostat at 50 ° C.
  • the whole container was tightly closed and was kept at 50 ° C under 500 - 600 mbar hydrogen partial pressure for 8 days.

Abstract

The invention relates to a process for the disposal of radioactive wastes, in which the wastes are consolidated or compressed and then enclosed in a container. The object of the invention is to improve the process so that the formation of a hydrogen atmosphere in the free gas volume of the container is prevented. This is achieved, according to the invention, by a method in which the wastes are at least partially surrounded by cement containing potassium permanganate in order to eliminate the hydrogen formed during storage. Porous, non-reducing substrate material on the surface of which potassium permanganate is applied is used as an alternative covering material. The waste material and the covering material are placed in a common container.

Description

Die Erfindung bezieht sich auf ein Verfahren zur Einlagerung von radioaktiven Abfallstoffen, bei dem die Abfallstoffe verfestigt oder verpreßt und an­schließend in einem Behältnis eingeschlossen werden.The invention relates to a method for the storage of radioactive waste materials, in which the waste materials are solidified or pressed and then enclosed in a container.

Radioaktive Abfälle werden - verfestigt oder ver­preßt - zur Lagerung in Behältnisse eingeschlossen, um eine radioaktive Kontamination der Umwelt zu ver­meiden. Dabei hat sich gezeigt, daß im Abfallmate­rial durch chemische und radiolytische Vorgänge Was­serstoff entsteht, der aus Gründen der Endlagerung unerwünscht ist.Radioactive waste - solidified or compressed - is enclosed in containers for storage in order to avoid radioactive contamination of the environment. It has been shown that hydrogen is generated in the waste material by chemical and radiolytic processes, which is undesirable for reasons of final storage.

Zur Verfestigung werden radioaktive Abfälle, bei­spielsweise solche aus der Wiederaufarbeitung von Brennelementen, wie Strukturteile, Zirkaloy-Hüllrohre und unlösliche Rückstände aus der Brennstofflösung (Feed-Klärschlamm) zur Endlagerung in Behältnissen einzementiert. Die Abfallstoffe/Zement-Mischung wird dabei üblicherweise in 140 l fassende sog. Einsatz­trommeln, die ihrerseits in 200-l-Fässer eingebracht werden, gegeben. Diese Einsatztrommeln werden nach dem Abbinden des Zements in 200-l-Fässer eingesetzt und mit Gummidichtungen und Deckeln verschlossen.For solidification, radioactive wastes, for example those from the reprocessing of fuel elements, such as structural parts, Zirkaloy cladding tubes and insoluble residues from the fuel solution (feed sewage sludge) are cemented for final storage in containers. The waste / cement mixture is usually placed in 140 l so-called insert drums, which in turn are placed in 200 l drums. After the cement has set, these insert drums are placed in 200-liter drums and sealed with rubber seals and lids.

Wie sich gezeigt hat, wird das in der Zementmatrix enthaltene Wasser durch Radiolyse in Wasserstoff und Sauerstoff zerlegt. Der Sauerstoff reagiert mit den Materialien des Abfallgebindes und wird daher üblicherweise im Leerraum der 200-l-Fässer, der etwa 70 l freies Gasvolumen umfaßt, nicht gefunden.As has been shown, the water contained in the cement matrix is broken down into hydrogen and oxygen by radiolysis. The oxygen reacts with the materials of the waste container and is therefore usually not found in the empty space of the 200 l drums, which contains about 70 l of free gas volume.

Der durch Radiolyse entstehende Wasserstoff dagegen verbleibt im Gasraum. Je nach Aktivitätsinhalt eines Fasses kann im Verlauf der ersten Jahrzehnte Wasser­stoff bis zur Größenordnung von 1 m³ gebildet wer­den, was aus Gründen der Endlagerung unerwünscht ist.By contrast, the hydrogen generated by radiolysis remains in the gas space. Depending on the activity content of a barrel, hydrogen up to the order of 1 m³ can be formed in the course of the first decades, which is undesirable for reasons of final storage.

Es ist Aufgabe der Erfindung, das eingangs bezeich­nete Verfahren dahingehend zu verbessern, daß die Bildung einer Wasserstoffatmosphäre im freien Gas­volumen des Behälters verhindert wird.It is an object of the invention to improve the method described in the introduction in such a way that the formation of a hydrogen atmosphere in the free gas volume of the container is prevented.

Diese Aufgabe wird erfindungsgemäß durch die Maß­nahmen gemäß dem Kennzeichen des Anspruchs 1 gelöst. Dabei wird der Wasserstoff, unabhängig von seiner Entstehung, im Umhüllungsmaterial gebunden.This object is achieved by the measures according to the characterizing part of claim 1. The hydrogen is bound in the coating material, regardless of its origin.

Für den Fall, daß die Abfälle durch Einzementieren verfestigt werden, hat sich als vorteilhaft erwiesen, das Kaliumpermanganat dem Zement in gelöster oder fester Form vor dessen Abbinden zuzugeben. Der durch Radiolyse gebildete Wasserstoff wird dann noch im Zement zu Wasser oxidiert und gelangt erst gar nicht in das Leervolumen des Behälters.In the event that the waste is solidified by cementing, it has proven to be advantageous to add the potassium permanganate to the cement in dissolved or solid form before it sets. The hydrogen formed by radiolysis is then oxidized to water in the cement and does not even get into the empty volume of the container.

Soll eine homogene Verteilung des Kaliumpermanganats im Zement, im Beton oder im Umhüllungsmaterial erzielt werden, wird das Kaliumpermanganat zweckmäßi­gerweise in gelöster Form eingesetzt. Dazu wird, um das Kaliumpermanganat auf der Oberfläche des Träg­ermaterials aufzubringen, nach der Verfahrensweise gemäß Anspruch 3 vorgegangen.If a homogeneous distribution of the potassium permanganate in the cement, in the concrete or in the cladding material is to be achieved, the potassium permanganate is expediently used in dissolved form. To do this, to apply the potassium permanganate to the surface of the carrier material, proceed according to the procedure of claim 3.

Eine besonders einfache und dennoch effektive Aus­führungsform des Verfahrens gemäß der Erfindung be­steht darin, daß das Kaliumpermanganat in fester Form dem Zement vor dessen Abbinden beigegeben (Anspruch 2) oder dem Trägermaterial beigemischt wird (Anspruch 4).A particularly simple and yet effective embodiment of the method according to the invention consists in adding the potassium permanganate in solid form to the cement before it sets (claim 2) or admixing it to the carrier material (claim 4).

Als Trägermaterial sind keramische Materialien, wie Al₂O₃ oder Schamotte, geeignet.Ceramic materials, such as Al₂O₃ or chamotte, are suitable as carrier material.

Da das eingesetzte Oxidationsmittel bei der Umsetzung des Wasserstoffs verbraucht wird, ist davon eine hinreichende Menge einzusetzen, um den insgesamt während der Dauer der Lagerung entstehenden Wasser­stoff umzusetzen. Die eingesetzte Menge an Oxidations­mittel darf andererseits - für den Fall, daß es dem Zement beigegeben wird - nicht zu einer Verminderung der Festigkeit des Zements führen. In dieser Hinsicht hat sich Kaliumpermanganat als geeignet erwiesen.Since the oxidizing agent used is consumed in the conversion of the hydrogen, a sufficient amount thereof must be used to convert the total hydrogen produced during the storage period. The amount of oxidizing agent used, on the other hand, in the event that it is added to the cement, must not lead to a reduction in the strength of the cement. In this regard, potassium permanganate has been found to be suitable.

Zur Bindung des insgesamt während der Endlagerung entstehenden Wasserstoffs werden zweckmäßigerweise pro Liter verwendetem Zementstein, Beton und/oder Trägermaterial 10 g bis 100 g Kaliumpermanganat ein­gesetzt. Vermischt man den Zement mit gesättig­ter Kaliumpermanganatlösung, dann werden etwa 35 g KMnO₄/Liter Zementstein erreicht. Im Umhüllungsmate­rial, das in das Ringspaltvolumen der 200-l-Fässer gefüllt wird, kann insgesamt mehr Kaliumpermanganat (bis zu 100 g/Liter) eingesetzt werden. Bei Verwen­dung von Aluminiumoxid als Trägermaterial für das Umhüllungsmaterial wird man etwa 15 - 30 g Kalium­permanganat pro kg Aluminiumoxid auf dieses aufbrin­gen. Bei einer gleichmäßigen Mischung aus Aluminium­oxid und festem Kaliumpermanganat sind 100 g pro Liter Trägermaterial ohne weiteres einstellbar.To bind the total hydrogen produced during final storage, 10 g to 100 g of potassium permanganate are expediently used per liter of cement stone, concrete and / or carrier material used. If you mix the cement with saturated potassium permanganate solution, then about 35 g KMnO₄ / liter cement stone are reached. In total, more potassium permanganate can be contained in the wrapping material, which is filled into the annular gap volume of the 200 l drums (up to 100 g / liter) can be used. If aluminum oxide is used as a carrier material for the coating material, approximately 15-30 g of potassium permanganate per kg of aluminum oxide will be applied to it. With a uniform mixture of aluminum oxide and solid potassium permanganate, 100 g per liter of carrier material can be easily adjusted.

Das Verfahren gemäß der Erfindung wird im folgenden anhand von vier Ausführungsbeispielen näher erläutert.The method according to the invention is explained in more detail below using four exemplary embodiments.

Ausführungsbeispiel 1Embodiment 1 Versuchsreihe mit Meßproben aus Zementstein und Al₂O₃.Test series with test samples made of cement stone and Al₂O₃.

Das H₂-Umsetzungsvermögen von Kaliumpermanganat wur­de parallel an jeweils zwei Proben gleicher Zusammen­setzung mit und ohne Bestrahlung vergleichend unter­sucht. Hierzu wurden zwei Proben aus Zementsteinkör­per und zwei Proben aus Al₂O₃ (jeweils mit Kaliumper­manganat versetzt) hergestellt.The H₂-reactivity of potassium permanganate was compared in parallel on two samples of the same composition with and without radiation. For this purpose, two samples were made from cement stone bodies and two samples from Al₂O₃ (each mixed with potassium permanganate).

Die Zementsteinproben und die Proben aus Al₂O₃ wur­den für die Versuche in 1,65-l-Gefäße gasdicht ver­schlossen, evakuiert und mit einem Gasgemisch, be­stehend aus 20 % H₂ und 80 % Kr, beaufschlagt.The cement stone samples and the Al₂O₃ samples were sealed gas-tight in the 1.65-liter vessels, evacuated and charged with a gas mixture consisting of 20% H₂ and 80% Kr.

Zur Herstellung der Zementsteinkörper (Proben 1 und 2; Portlandzement 35; pH 12,5) wurden zum Ansatz des Zementleims 1270 g Zement, 575 g Wasser und 15 g KMnO₄ verwendet (KMnO₄ = 0,095 Mol). Die Masse der Probe 1 betrug 1755 g, die Masse der Probe 2 1765 g.To prepare the cement stone bodies (samples 1 and 2; Portland cement 35; pH 12.5), 1270 g of cement, 575 g of water and 15 g of KMnO₄ (KMnO₄ = 0.095 mol) were used to prepare the cement paste. The mass of sample 1 was 1755 g, the mass of sample 2 was 1765 g.

Zur Herstellung der Proben 3 und 4 wurde Al₂O₃-Pulver mit Kaliumpermanganatlösung beaufschlagt und das behandelte Pulver anschließend vakuumgetrocknet. Die Masse der Proben 3 und 4 betrugen je 1 kg.To prepare samples 3 and 4, Al₂O₃ powder was charged with potassium permanganate solution and the treated powder was then vacuum-dried. The masses of samples 3 and 4 were 1 kg each.

Jeweils eine der Parallelproben wurde über 5 Tage bis zu einer Dosis von 1,5 - 2,5 x 10⁶ rad bestrahlt. Die andere Parallelprobe wurde ohne Bestrahlung im Labor bei Raumtemperatur aufbewahrt.One of the parallel samples was irradiated for 5 days up to a dose of 1.5 - 2.5 x 10⁶ rad. The other parallel sample was stored in the laboratory at room temperature without irradiation.

Anschließend wurden die Druckmessungen und die Gas­probennahmen mit nachfolgender Gasanalyse an allen Proben durchgeführt. Die Ergebnisse sind in der Ta­belle angegeben.The pressure measurements and gas sampling with subsequent gas analysis were then carried out on all samples. The results are shown in the table.

Legt man einen GH₂-Wert für die radiolytische Erzeu­gung von Wasserstoff von 0,45 µMol/g H₂O x Mrad (0,45 ml H₂/10⁸ rad g Zementstein) zugrunde, so hät­te in den Zementsteinproben ein H₂-Volumen von 10 - 20 ml infolge der Bestrahlung entstanden sein müs­sen. Demgegenüber beträgt der H₂-Anteil an der ur­sprünglichen Gasfüllung im Falle der Zementsteinpro­ben ca. 180 ml H₂.If one assumes a G H₂ value for the radiolytic generation of hydrogen of 0.45 µmol / g H₂O x Mrad (0.45 ml H₂ / 10⁸ rad g cement stone), the H₂ volume in the cement stone samples would be 10 - 20 ml must have arisen as a result of the radiation. In contrast, the H₂ portion of the original gas filling in the case of cement stone samples is approximately 180 ml H₂.

Die beiden Zementsteinproben (Proben Nr. 1 und 2) zehren während der Versuchszeit das vorgelegte H₂-­Volumen und den in Probe 2 durch Bestrahlung zusätz­lich freigesetzten Wasserstoff praktisch vollstän­dig auf. Gleichzeitig kommt es vermutlich durch Ab­spaltung aus dem KMnO₄ zu einer gewissen O₂-Frei­setzung, wobei die O₂-Abspaltung in der bestrahlten Probe verstärkt ist.The two cement block samples (samples No. 1 and 2) practically completely devour the H₂ volume and the hydrogen released in sample 2 by irradiation during the test period. At the same time, there is presumably a certain release of O₂ by elimination from the KMnO₄, the O₂ elimination being increased in the irradiated sample.

Bei den Al₂O₃-Pulverproben wird der vorgelegte Was­serstoff ebenfalls vollständig verzehrt.In the Al₂O₃ powder samples, the hydrogen is also completely consumed.

Geht man davon aus, daß das KMnO₄ bei der Umsetzung mit Wasserstoff von Mn⁷⁺ nach Mn⁴⁺ übergeht, werden pro KMnO₄-Molekül 3/2 O abgegeben. 15 g KMnO₄ ent­sprechen demnach 1,6 Nl O₂ oder 3,2 Nl H₂. In den Proben wurden jedoch nur maximal 0,2 Nl H₂ umgesetzt.If one assumes that the KMnO₄ changes from Mn⁷⁺ to Mn⁴⁺ when reacting with hydrogen, 3/2 O are released per KMnO₄ molecule. 15 g KMnO₄ correspond to 1.6 Nl O₂ or 3.2 Nl H₂. However, only a maximum of 0.2 Nl H₂ were implemented in the samples.

Ausführungsbeispiel 2Embodiment 2 Untersuchung an Einsatztrommeln mit radioaktivem Abfall.Investigation on application drums with radioactive waste.

Für die Untersuchung wurden Einsatztrommeln (140 l) mit zementierten radioaktiven Strukturteilen, Brenn­elementhülsen und Feed-Klärschlamm aus den größeren Behältern (200-l-Faß) entnommen und in hierfür eigens angefertigten Meßbehältern verschlossen. Das Leervo­lumen der Meßbehälter betrug ca. 47 l.For the investigation, insert drums (140 l) with cemented radioactive structural parts, fuel element sleeves and feed sewage sludge were removed from the larger containers (200 l drum) and sealed in specially made measuring containers. The empty volume of the measuring container was approx. 47 l.

Die Freisetzung von Radiolysewasserstoff aus den zementierten Abfällen wurde durch Beobachtung des Behälterinnendrucks und durch Gasprobennahmen mit nachfolgender gaschromatographischer Analyse der Gasbestandteile ermittelt.The release of radiolysis hydrogen from the cemented waste was determined by observing the internal pressure of the container and by taking gas samples with subsequent gas chromatographic analysis of the gas components.

Beim ersten Meßbehälter wurde zunächst über einen Zeitraum von 300 Tagen die H₂-Freisetzung beobachtet und eine mittlere Freisetzungsrate von ca. 77 Nml H₂/Tag ermittelt. Der Meßbehälter wurde sodann ge­öffnet und eine Auffangschale mit ca. 2,5 kg Al₂O₃, das mit ca. 40 g KMnO₄ in der in Ausführungsbei­spiel 1 angegebenen Weise imprägniert worden war, zugegeben. Der Meßbehälter wurde wieder gasdicht verschlossen und vor der Meßphase mit synthetischer Luft gespült.In the first measuring container, the H₂ release was first observed over a period of 300 days and an average release rate of approx. 77 Nml H₂ / day was determined. The measuring container was then opened and a drip tray with approx. 2.5 kg Al₂O₃, which had been impregnated with approx. 40 g KMnO₄ in the manner indicated in Example 1, admitted. The measuring container was closed again gas-tight and flushed with synthetic air before the measuring phase.

Beim zweiten Meßbehälter, in den kein Kaliumperman­ganat gegeben worden war, wurde über eine Standzeit von ca. 100 Tagen ein annähernd konstanter Druck von ca. 1000 mbar beobachtet. Anschließend nahm der Druck mit einer konstanten Rate zu (Beobachtungszeit insgesamt 120 Tage). Dieser Druckverlauf wird darauf zurückgeführt, daß sich in der Anfangsphase die O₂-Verlustrate und die H₂-Produktionsrate infolge Radiolyse annähernd kompensieren. Danach steigt der Druck linear an, sobald der Luftsauerstoff praktisch vollständig verbraucht ist.In the second measuring container, into which no potassium permanganate had been added, an approximately constant pressure of approximately 1000 mbar was observed over a service life of approximately 100 days. Then the pressure increased at a constant rate (observation time total 120 days). This pressure curve is attributed to the fact that in the initial phase the O₂ loss rate and the H₂ production rate due to radiolysis almost compensate. Then the pressure rises linearly as soon as the atmospheric oxygen is practically completely consumed.

Bei ersten Meßbehälter fiel der Innendruck nach Zugabe der Al₂O₃-Probe innerhalb von 120 Tagen kon­tinuierlich von ca. 1000 mbar auf etwa 860 mbar. Zusätzlich wurden nach 56 und nach 120 Tagen Gaspro­ben entnommen. Die Analysen ergaben für die erste Probe 0,4 % H₂, 7,2 % O₂, 89,5 % N₂ und 0,5 % CH₄, und für die zweite Probe 2,5 % H₂, 1,0 % O₂, 91,4 % N₂ und 1,2 % CH₄. Der erhöhte H₂-Anteil am Ende der Standzeit ist darauf zurückzuführen, daß das Kaliumpermanganat nahezu erschöpft war.In the first measuring container, the internal pressure after the addition of the Al₂O₃ sample fell continuously from about 1000 mbar to about 860 mbar within 120 days. In addition, gas samples were taken after 56 and 120 days. The analyzes showed 0.4% H₂, 7.2% O₂, 89.5% N₂ and 0.5% CH₄ for the first sample, and 2.5% H₂, 1.0% O₂, 91, for the second sample. 4% N₂ and 1.2% CH₄. The increased H₂ content at the end of the service life is due to the fact that the potassium permanganate was almost exhausted.

Nimmt man an, daß KMnO₄ bei der Umsetzung von H₂ von Mn⁷⁺ nach Mn⁴⁺ seine Wertigkeit ändert, so lie­fern 40 KMnO₄ stöchiometrisch eine H₂-Umsetzungska­pazität von 8,6 NlH₂. Unterstellt man, daß während der Meßzeit, in der sich das Oxidationsmittel im Meßbehälter befand, die Freisetzungsrate weiterhin 77 Nml H₂/Tag betrug, so hat das Kaliumpermanganat ein H₂-Volumen von ca. 10,0 Nl H₂ umgesetzt. Diese Bilanz zeigt, daß das zugesetzte Oxidations­mittel praktisch vollständig für die Umsetzung des radiolytisch produzierten Wasserstoffs ausgenutzt worden ist.Assuming that KMnO₄ changes its value in the implementation of H₂ from Mn⁷⁺ to Mn⁴⁺, 40 KMnO₄ stoichiometrically provide an H₂ conversion capacity of 8.6 NlH₂. It is assumed that the release rate continues during the measuring time in which the oxidizing agent was in the measuring container Was 77 Nml H₂ / day, the potassium permanganate has an H₂ volume of about 10.0 Nl H₂ implemented. This balance shows that the added oxidizing agent has been used almost completely for the conversion of the radiolytically produced hydrogen.

Ausführungsbeispiel 3Embodiment 3

Einer frisch angemischten Zementprobe von ca. 1 Liter, mit einem Wasser/Zement-Verhältnis von 0,43, wurden 100 g KMnO₄ in Kristallform zugefügt und gleichmäßig untergemischt. Die zylindrische Probe wurde nach 24 h ausgeformt, in ein dichtes Gefäß eingebracht und 32 Tage unter einem Wasserstoff-Partialdruck von 500 - 600 mbar gehalten. Während dieser Zeit stand das Gefäß in einem Thermostaten bei 50°C.100 g KMnOprobe in crystal form was added to a freshly mixed cement sample of approx. 1 liter with a water / cement ratio of 0.43 and mixed in evenly. The cylindrical sample was shaped after 24 hours, placed in a sealed vessel and kept under a hydrogen partial pressure of 500-600 mbar for 32 days. During this time the vessel was in a thermostat at 50 ° C.

Nach dieser Zeit wurde die Probe zerstört und auf Kaliumpermanganat untersucht.After this time the sample was destroyed and examined for potassium permanganate.

In der Probe fand sich nur noch MnO₂; das KMnO₄ hat­te sich vollständig umgesetzt.Only MnO₂ was found in the sample; the KMnO₄ had fully implemented.

Ausführungsbeispiel 4Embodiment 4

Für die Umsetzung von H₂ mit KMnO₄-Kristallen ist eine Mindestfeuchte erforderlich. Deshalb wurde ein feuchter Zementsteinzylinder von ca. 1 Liter mit 600 mL Al₂O₃-Pulver umgeben, die 60 g KMnO₄ in Kri­stallform enthielten.A minimum moisture is required for the implementation of H₂ with KMnO₄ crystals. Therefore, a damp cement stone cylinder of about 1 liter was surrounded with 600 mL Al₂O₃ powder, which contained 60 g KMnO₄ in crystal form.

Das ganze Gebinde war dicht verschlossen und wurde 8 Tage bei 50°C unter 500 - 600 mbar Wasserstoff-­Partialdruck gehalten.The whole container was tightly closed and was kept at 50 ° C under 500 - 600 mbar hydrogen partial pressure for 8 days.

Danach war das KMnO₄ vollständig zu MnO₂ umgesetzt. Proben Nr. Inhalt Gasfüllung Fülldruck mbar Enddruck mbar Konzentration in % Dosis rad H₂ O₂ 1 PZ-35 PH 12,5 20 % H₂; 80 % Kr 1450 1154 ≦ 0,1 0,7 unbestrahlt 2 PZ-35 PH 12.5 20 % H₂; 80 % Kr 1451 1193 ≦ 0,1 4,5 ca. 2 10⁶ 3 Al₂O₃-Pulver 20 % H₂; 80 % Kr 1450 1064 ≦ 0,1 0,9 unbestrahlt 4 Al₂O₃-Pulver 20 % H₂; 80 % Kr 1447 1152 ≦ 0,1 2,4 2,5 10⁶ Ergebnis zu Ausführungsbeispiel 1 Then the KMnO₄ was completely converted to MnO₂. Sample No. content Gas filling Filling pressure mbar Final pressure mbar Concentration in% Dose rad H₂ O₂ 1 PZ-35 P H 12.5 20% H₂; 80% Kr 1450 1154 ≦ 0.1 0.7 unirradiated 2nd PZ-35 P H 12.5 20% H₂; 80% Kr 1451 1193 ≦ 0.1 4.5 about 2 10⁶ 3rd Al₂O₃ powder 20% H₂; 80% Kr 1450 1064 ≦ 0.1 0.9 unirradiated 4th Al₂O₃ powder 20% H₂; 80% Kr 1447 1152 ≦ 0.1 2.4 2.5 10⁶ Result for embodiment 1

Claims (6)

1. Verfahren zur Einlagerung von radioaktiven Abfall­stoffen, bei dem die Abfallstoffe verfestigt oder verpreßt und anschließend in einem Behältnis einge­schlossen werden,
dadurch gekennzeichnet,
daß die Abfallstoffe zum Eliminieren des während der Lagerung entstehenden Wasserstoffs mit einem Kaliumpermanganat enthaltenden Zement wenigstens teilweise umhüllt werden oder poröses, nicht redu­zierend wirkendes Trägermaterial mit Kaliumperman­ganat als Umhüllungsmaterial verwendet wird, wobei das Abfallmaterial und das Umhüllungsmaterial in ein gemeinsames Behältnis gegeben wird.
1. a process for the storage of radioactive waste materials, in which the waste materials are solidified or compressed and then enclosed in a container,
characterized,
that the waste materials for eliminating the hydrogen formed during storage are at least partially coated with a cement containing potassium permanganate or porous, non-reducing carrier material with potassium permanganate is used as the covering material, the waste material and the covering material being placed in a common container.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß für den Fall, daß die Abfälle durch Einzemen­tieren verfestigt werden, das Kaliumpermanganat dem Zement in gelöster oder fester Form vor dessen Ab­binden beigegeben wird.
2. The method according to claim 1,
characterized,
that in the event that the waste is solidified by cementing, the potassium permanganate is added to the cement in dissolved or solid form before it sets.
3. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß das Kaliumpermanganat auf das Trägermaterial in gelöster Form aufgebracht wird und das Material danach vor seiner Verwendung als Umhüllungsmaterial getrocknet wird.
3. The method according to claim 1,
characterized,
that the potassium permanganate is applied to the carrier material in dissolved form and the material is then dried before being used as a coating material.
4. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß das Kaliumpermanganat dem Trägermaterial in fester Form beigemischt wird.
4. The method according to claim 1,
characterized,
that the potassium permanganate is admixed to the carrier material in solid form.
5. Verfahren nach Anspruch 1, 3 oder 4,
dadurch gekennzeichnet,
daß als Trägermaterial Al₂O₃ verwendet wird.
5. The method according to claim 1, 3 or 4,
characterized,
that Al₂O₃ is used as the carrier material.
6. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß zur Endlagerung der Abfälle pro Liter verwende­tem Zementstein, Beton und/oder Trägermaterial 10 g bis 100 g Kaliumpermanganat eingesetzt werden.
6. The method according to any one of the preceding claims,
characterized,
that 10 g to 100 g of potassium permanganate are used for the final storage of the waste per liter of cement stone, concrete and / or carrier material used.
EP88119450A 1988-01-30 1988-11-23 Process for permanent disposal of radioactive waste Expired - Lifetime EP0327691B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1017809A JPH01267499A (en) 1988-01-30 1989-01-30 Storage of radioactive waste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3802755A DE3802755A1 (en) 1988-01-30 1988-01-30 METHOD FOR STORING RADIOACTIVE WASTE
DE3802755 1988-01-30

Publications (3)

Publication Number Publication Date
EP0327691A2 true EP0327691A2 (en) 1989-08-16
EP0327691A3 EP0327691A3 (en) 1989-09-06
EP0327691B1 EP0327691B1 (en) 1993-09-15

Family

ID=6346299

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88119450A Expired - Lifetime EP0327691B1 (en) 1988-01-30 1988-11-23 Process for permanent disposal of radioactive waste

Country Status (4)

Country Link
US (1) US4943394A (en)
EP (1) EP0327691B1 (en)
JP (1) JPH01267499A (en)
DE (2) DE3802755A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9017038D0 (en) * 1990-08-03 1990-09-19 Alcan Int Ltd Controlled hydrogen generation from composite powder material
JP3150445B2 (en) * 1992-09-18 2001-03-26 株式会社日立製作所 Radioactive waste treatment method, radioactive waste solidified material and solidified material
US6004522A (en) * 1993-12-15 1999-12-21 Purafil, Inc. Solid filtration media incorporating elevated levels of permanganate and water
DE4343500A1 (en) * 1993-12-20 1995-06-22 Forschungszentrum Juelich Gmbh Device for avoiding overpressures in storage containers with hydrogen-developing content
US5649323A (en) * 1995-01-17 1997-07-15 Kalb; Paul D. Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes
US5942323A (en) 1995-01-27 1999-08-24 Purafil, Inc. Fiber filter and methods of use thereof
TW365009B (en) * 1996-09-24 1999-07-21 Jgc Corp Method of disposal of metallic aluminum-containing radioactive solid waste
FR2799876B1 (en) * 1999-10-15 2002-01-04 Tech Et D Entpr S Generales So PROCESS FOR PACKAGING RADIOACTIVE NON-FERROUS METAL WASTE
JP5178988B2 (en) 2000-12-11 2013-04-10 クリー インコーポレイテッド Method of manufacturing self-aligned bipolar junction transistor in silicon carbide and device made thereby
JP4615749B2 (en) * 2001-03-22 2011-01-19 日揮株式会社 Radioactive waste treatment method and apparatus
JP4040854B2 (en) * 2001-09-28 2008-01-30 株式会社神戸製鋼所 Radioactive waste disposal container, disposal facility and disposal method
FR2939700B1 (en) * 2008-12-11 2014-09-12 Commissariat Energie Atomique MATERIAL FOR HYDROGEN TRAPPING, PROCESS FOR PREPARATION AND USES
US7758836B1 (en) 2009-04-14 2010-07-20 Huggins Ronald G System and method for removing sulfur-containing contaminants from indoor air
US20130014670A1 (en) * 2010-04-01 2013-01-17 Commissariat a I'Energie Atomique et Aux Energies Altematives Use of anticorrosion agents for conditioning magnesium metal, conditioning material thus obtained and preparation process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2340907A1 (en) * 1976-02-13 1977-09-09 Belgonucleaire Sa PROCESS FOR DRYING SOLUTIONS CONTAINING BORIC ACID
FR2451617A1 (en) * 1979-03-14 1980-10-10 Kraftwerk Union Ag PROCESS FOR THE TREATMENT OF RADIO-ACTIVE SOLUTIONS

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4056937A (en) * 1976-01-08 1977-11-08 Kyokado Engineering Co. Ltd. Method of consolidating soils
US4049545A (en) * 1976-07-08 1977-09-20 Rocky Carvalho Chemical waste water treatment method
CA1100151A (en) * 1976-07-19 1981-04-28 William L. Prior Process and composition for forming cellular inorganic resin cements and resulting product
US4119560A (en) * 1977-03-28 1978-10-10 United Technologies Corporation Method of treating radioactive waste
WO1980000047A1 (en) * 1978-06-08 1980-01-10 Bp Chem Int Ltd Encapsulating wastes
FR2490865A1 (en) * 1980-09-19 1982-03-26 Commissariat Energie Atomique PROCESS FOR THE TREATMENT, BEFORE BITUMING, OF SOLUTIONS OR SUSPENSIONS COMPRISING REDUCING IONS
DE3110491C2 (en) * 1981-03-18 1985-02-14 Rheinisch-Westfälisches Elektrizitätswerk AG, 4300 Essen Method and system for concentrating radioactive waste water containing boric acid from a nuclear power plant
JPS57172299A (en) * 1981-04-16 1982-10-23 Mitsubishi Genshi Nenryo Kk Radioactive liquid waste processing method
BE899598A (en) * 1984-05-07 1984-08-31 Arklow S A Neutralisation and solidification of industrial waste - by mixing in acidic medium with silicate(s), neutralising the silicic acid formed and solidifying with e.g. portland cement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2340907A1 (en) * 1976-02-13 1977-09-09 Belgonucleaire Sa PROCESS FOR DRYING SOLUTIONS CONTAINING BORIC ACID
FR2451617A1 (en) * 1979-03-14 1980-10-10 Kraftwerk Union Ag PROCESS FOR THE TREATMENT OF RADIO-ACTIVE SOLUTIONS

Also Published As

Publication number Publication date
EP0327691B1 (en) 1993-09-15
US4943394A (en) 1990-07-24
EP0327691A3 (en) 1989-09-06
DE3802755A1 (en) 1989-08-10
JPH01267499A (en) 1989-10-25
DE3884180D1 (en) 1993-10-21

Similar Documents

Publication Publication Date Title
EP0327691B1 (en) Process for permanent disposal of radioactive waste
DE2819086C2 (en) Process for the solidification of radioactive, aqueous waste liquids
DE2945007A1 (en) METHOD FOR REPOSITION TIRE, ENVIRONMENTALLY FRIENDLY FASTENING OF RADIOACTIVE ION EXCHANGE RESINS
DE1113752B (en) Process for the production of self-luminous light sources
CH663680A5 (en) Sintered, flammable absorber pellet.
DE2713108C2 (en) Process for the production of ceramic plutonium uranium nuclear fuel in the form of sintered pellets
EP0054604B1 (en) Process for preparing spent solid bodies for the final disposal of radioactive wastes
DE1769563B1 (en) Neutron absorbing material and process for its manufacture
DE3142447C1 (en) Process for the production of oxidic nuclear fuel sintered bodies
DE2605192A1 (en) POLYURETHANE SEALING COMPOUNDS
EP0568903A1 (en) Process for treatment of materials containing heavy metals
US4559171A (en) Heating process for solidifying a crud
DE3219114C2 (en)
DE2917060C2 (en) Process for the solidification of tritiated water
DE2931596C2 (en) Method for introducing a getter material into the housing of an electrical component
EP0402306A1 (en) Process and active substance for solidifying and immobilising hazardous wastes in the liquid or semi-liquid phase
EP0283572A1 (en) Process for producing a solid product containing cement suitable for storing waters containing tritium in an accessible depository
DE60216114T2 (en) INCLUDING WASTE
DE19757843C1 (en) Storage containers for the intermediate and / or final storage of spent fuel elements
DE1471174A1 (en) Composite body made of metal and ceramic
DE1769563C (en) Neutron absorbing material and process for its manufacture
EP0280770B1 (en) Process for conditioning biologically harmful wastes
DE1471076B2 (en) Process for the manufacture of bodies consisting of refractory material embedded in a carbonaceous matrix
DE4141269A1 (en) Disposal of radioactive organic waste esp. from ion exchanger resins - by mixing waste with oxidising agent to decompose into water and carbon di:oxide leaving radioactive inorganic material which can be solidified
DE2322954C3 (en) Process for the production of an ionizing radiation source

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB LI SE

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB LI SE

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FORSCHUNGSZENTRUM JUELICH GMBH

17P Request for examination filed

Effective date: 19900305

17Q First examination report despatched

Effective date: 19921029

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE

REF Corresponds to:

Ref document number: 3884180

Country of ref document: DE

Date of ref document: 19931021

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001018

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702