EP0321819B1 - Method for the massspectrometric analysis of a gas mixture, and mass sprectrometer for carrying out the method - Google Patents

Method for the massspectrometric analysis of a gas mixture, and mass sprectrometer for carrying out the method Download PDF

Info

Publication number
EP0321819B1
EP0321819B1 EP88120710A EP88120710A EP0321819B1 EP 0321819 B1 EP0321819 B1 EP 0321819B1 EP 88120710 A EP88120710 A EP 88120710A EP 88120710 A EP88120710 A EP 88120710A EP 0321819 B1 EP0321819 B1 EP 0321819B1
Authority
EP
European Patent Office
Prior art keywords
quistor
annular electrode
distance
apex
ion trap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88120710A
Other languages
German (de)
French (fr)
Other versions
EP0321819A2 (en
EP0321819B2 (en
EP0321819A3 (en
Inventor
Jochen Dr. Franzen
Reemt-Holger Dr. Gabling
Gerhard Heinen
Gerhard Weiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker Daltonics GmbH and Co KG
Original Assignee
Bruken Franzen Analytik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6343365&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0321819(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bruken Franzen Analytik GmbH filed Critical Bruken Franzen Analytik GmbH
Publication of EP0321819A2 publication Critical patent/EP0321819A2/en
Publication of EP0321819A3 publication Critical patent/EP0321819A3/en
Publication of EP0321819B1 publication Critical patent/EP0321819B1/en
Application granted granted Critical
Publication of EP0321819B2 publication Critical patent/EP0321819B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/424Three-dimensional ion traps, i.e. comprising end-cap and ring electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/426Methods for controlling ions
    • H01J49/427Ejection and selection methods
    • H01J49/429Scanning an electric parameter, e.g. voltage amplitude or frequency

Definitions

  • the invention relates to a method for mass spectroscopic examination of a gas mixture using a mass spectrometer with an ion trap, which is designed as a quistor with a ring electrode and two end electrodes closing the chamber delimited by the ring electrode, of which end electrodes at least one with an extension of the axis of rotation of the ring electrode arranged perforation, in which method the following steps are carried out:
  • the invention also relates to a mass spectrometer.
  • a special property of the quistor is that the ions in the center of the RF field are not exposed to any field strength that could give them a movement component to leave the ion trap.
  • a collision gas is admitted into the ion trap, the pressure of which is set in such a way that the ions are driven far enough from the center of the ion trap by the optimal number of impacts that they can leave the ion trap. Since this gas simultaneously increases the yield by damping the ion movement transverse to the direction of expulsion, it is also called "damping gas".
  • the line shape is also affected by space charge effects if there are too many ions in the quistor. As a work by J.W. Eichelberger et al in "Analytical Chemistry" 59, page 2732, 1987, can be seen, this space charge effect even leads increasingly to scientific misinterpretations.
  • the invention has for its object to further develop the method of the type mentioned in such a way that an improvement in the line shape and thus an improvement tion of the resolving power is achieved in the mass spectrometric examination of gas mixtures using such a mass spectrometer.
  • the measure according to the invention not only shortens the time which the ions need to leave the trap, but also improves the line shape, increases sensitivity and detection capacity by improving the signal / noise ratio and reduces the influence of the space charge.
  • the shortening of the time it takes for the ions to leave the ion trap allows an increase in the number of spectra recordings per unit of time, which again increases the sensitivity.
  • the distance r o of the apex of the ring electrode from the center of the quistor has a value which ensures that the amplitude of the RF voltage applied to the ring electrode has the value largest mass of interest is still captured by means of the storage field
  • the values r o and Q which are particularly important for the behavior of the quistor are preselected and the other values are determined taking into account the rules given, whereby for the choice of R e and R r there are freedoms that take into account other influencing factors, especially
  • the quistor shown in FIG. 1 has a ring electrode 4 and two end electrodes 3, 5, each arranged on one side of the ring electrode, which terminate the chamber delimited by the ring electrode 4 on both sides of the ring electrode.
  • the end electrodes 3 and 5 are each supported on the ring electrode 4 by ring-shaped insulators 7, 8.
  • the ring-shaped insulators 7, 8 also form a tight connection between the outer sections of the ring electrode 4 and the end electrodes 3, 5.
  • An inlet line 11 opens into the ring electrode 8 and makes it possible to introduce a damping gas into the ion trap.
  • the lower end electrode 5 in FIG. 1 has a perforation 9 in the area of its center, through which ions can leave the quistor.
  • a secondary electron multiplier 6 is arranged on the outside of the lower end electrode 5 and makes it possible to detect the ions leaving the quistor through the perforation 9.
  • Both the ring electrode 4 and the end electrodes 3 and 5 have strictly hyperbolic surfaces, which means that their contours are hyperbolas in the cross section shown in FIG. 1.
  • the asymptotic angle of both the ring electrode 4 and the hyperbola producing the end electrodes 3, 5 is 1: 1.360.
  • the end electrodes 3, 5 are at ground potential, an RF voltage with a frequency of 1.0 MHz is applied to the ring electrode 4, which can be varied in the range from 0 V to 7.5 kV.
  • the range of the charge / mass ratio of the ions that are captured and stored by the quistor, with a simple ionization includes ions with mass numbers 1 to 500 ⁇ , where u is the atomic mass unit. Accordingly, by changing the RF voltage in the range from 0 V to 7.5 kV, a mass range from 1 to 500 ⁇ can be covered in one scan.
  • the device for generating an electron beam provided in the quistor according to FIG. 1 allows the ions to be generated in the quistor itself by in the ionization phase, the duration of which can be determined by means of the blocking lens 2, an electron beam from the hot cathode 1 through the opening 10 is focused in the quistor.
  • Typical ionization times for an electron beam of 100 ⁇ A strength are in the range from 10 ⁇ s to 100 ms, depending on the concentration of the substance to be examined.
  • the diagram according to FIG. 3 illustrates the time it takes for ions to leave the quistor and accordingly manifests itself as a line width as a function of the distance-related circular ratio Q.
  • the three curves of the diagram according to FIG. 3 correspond to different scanning speeds speeds indicated at the bottom of Fig. 3. Damping gas was used under optimal pressure conditions. It is readily apparent that the release capability increases significantly for Q ⁇ 4,000.
  • Fig. 4 shows the spectrum of the molecular ion group of tetrachloroethene for different values of the distance-related ratio circuit Q.
  • the spectra were recorded as Dampfungsgas mbar with different scanning speeds over each 300 mass units using air at a pressure of 4.10- 4.
  • the scan time was 100 ms each, while in the lower spectra b, d, and f the scan time was 20 ms each.
  • the quistors used had the dimensions shown in the following table (in cm):
  • Another advantage is that the influence of the space charge is significantly reduced for values of Q ⁇ 4.000. Even if the signal strengths were reduced by a factor of 100, no significant change in line shape and line width could be observed.
  • the reason for the observable improvements is the occurrence of a resonance of the secular movement of the ions exactly at the instability limit, which accelerates the increase in the amplitude of the secular movement and thus increases the speed of the ion ejection.
  • the ejection is therefore only partly due to the instability of the orbits and partly due to the additional energy absorption of the ions from the storing HF field, which is made possible by the resonance.
  • a preferred embodiment therefore provides for the omission of the DC voltage field. In principle, however, it would also be possible to use a DC voltage field and to vary the DC voltage field in order to change the stability range.

Description

Die Erfindung betrifft ein Verfahren zur massenspektroskopischen Untersuchung eines Gasgemisches unter Verwendung eines Massenspektrometers mit einer lonenfalle, die als Quistor mit einer Ringelektrode und zwei die von der Ringelektrode begrenzte Kammer abschließenden Endelektroden ausgebildet ist, von welchen Endelektroden wenigstens eine mit einer in Verlängerung der Rotationsachse der Ringelektrode angeordneten Perforation versehen ist, bei welchem Verfahren die folgenden Schritte ausgeführt werden:The invention relates to a method for mass spectroscopic examination of a gas mixture using a mass spectrometer with an ion trap, which is designed as a quistor with a ring electrode and two end electrodes closing the chamber delimited by the ring electrode, of which end electrodes at least one with an extension of the axis of rotation of the ring electrode arranged perforation, in which method the following steps are carried out:

Anlegen einer HF-Spannung solcher Amplitude und Frequenz sowie ggf. einer solchen Gleichspannung an die Ringelektrode, daß innerhalb der lonenfalle ein dreidimensionales HF-Quadrupolfeld erzeugt wird, das dazu geeignet ist, lonen, deren Ladungs/Massen-Verhältnis in einem vorgegebenen Bereich liegt, zu fangen und in der lonenfalle zu speichern,Applying an RF voltage of such amplitude and frequency and possibly such a DC voltage to the ring electrode that a three-dimensional RF quadrupole field is generated within the ion trap, which is suitable for ions whose charge / mass ratio is in a predetermined range, to catch and save in the ion trap,

Einführen oder Erzeugen von Ionen des Gasgemisches in die bzw. innerhalb der lonenfalle und Speichern derjenigen Ionen in der lonenfallle, deren Ladung/Massen-Verhältnis in dem vorgegebenen Bereich liegt,Introducing or generating ions of the gas mixture into or within the ion trap and storing those ions in the ion trap whose charge / mass ratio is in the predetermined range,

Ändern mindestens von einem der von der Amplitude, der Frequenz und gegebenenfalls der Gleichspannung gebildeten Feldparameter in solcher Weise, daß nacheinander Ionen mit sich monoton änderndem Ladungs/Massen-Verhältnis instabil werden und die lonenfalle in Richtung der Rotationsachse ihrer Ringelektrode durch die genannte Perforation in der Endelektrode verlassen, undChanging at least one of the field parameters formed by the amplitude, the frequency and possibly the DC voltage in such a way that ions with a monotonically changing charge / mass ratio become unstable one after the other and the ion trap in the direction of the axis of rotation of its ring electrode through said perforation in the Leave end electrode, and

Messen und Aufzeichnen der Intensität des die Ionenfalle verlassenden lonenstromes als Funktion der Änderung der Feldparameter.Measuring and recording the intensity of the ion current leaving the ion trap as a function of the change in the field parameters.

Die Erfindung betrifft auch einen Massenspectrometer.The invention also relates to a mass spectrometer.

Grundlegende Ausführungen über die Verwendung eines Quistors bei der Massenspektrometrie finden sich in einem von P. H. Dawson herausgegebenen Buch mit dem Titel: "Quadrupol mass spectrometry and its applications", Amsterdam-Oxford-New York 1976, insbesondere Seiten 181 bis 190 und Seiten 203 bis 219. Das spezielle Verfahren, von dem die Erfindung ausgeht, ist in der EP-A-0 113 207 beschrieben. Bei diesem bekannten Verfahren werden durch Variation der Amplitude der HF-Spannung die Grenzen des Bereiches des Ladung/Massen-Verhaltnisses, für den im Quistor stabile Speicherbedingungen herrschen, verschoben, so daß nacheinander für Ionen mit zunehmender oder auch abnehmender Masse die Fangbedingungen verschwinden und die Ionen in die Lage versetzt werden, den Quistor in Richtung der Rotationsachse der Ringelektrode zu verlassen. Die den Quistor verlassenden Ionen werden mittels eines Elektronen-Vervielfachers registriert, um so das Spektrum der in dem Quistor enthaltenen Gasprobe zu gewinnen.Basic explanations about the use of a quistor in mass spectrometry can be found in a book published by PH Dawson with the title: "Quadrupol mass spectrometry and its applications", Amsterdam-Oxford-New York 1976, in particular pages 181 to 190 and pages 203 to 219 The specific process from which the invention is based is described in EP-A-0 113 207. In this known method, the limits of the range of the charge / mass ratio, for which stable storage conditions prevail in the quistor, are shifted by varying the amplitude of the HF voltage, so that the trapping conditions disappear one after the other for ions with increasing or decreasing mass and the Ions are able to leave the quistor in the direction of the axis of rotation of the ring electrode. The ions leaving the quistor are registered by means of an electron multiplier so as to obtain the spectrum of the gas sample contained in the quistor.

Eine besondere Eigenschaft des Quistors besteht darin, daß die Ionen im Zentrum des HF-Feldes keiner Feldstärke ausgesetzt sind, die ihnen eine Bewegungskomponente zum Verlassen der Ionenfalle erteilen könnte. Um diesem Mangel abzuhelfen, wird in die Ionenfalle ein Stoßgas eingelassen, dessen Druck so eingestellt ist, daß die Ionen durch Stöße optimaler Anzahl weit genug aus dem Zentrum der Ionenfalle getrieben werden, um die Ionenfalle verlassen zu können. Da dieses Gas gleichzeitig durch eine Dämpfung der lonenbewegung quer zur Austreibungsrichtung einer Erhöhung der Ausbeute bewirkt, wird es auch "Dämpfungsgas" genannt.A special property of the quistor is that the ions in the center of the RF field are not exposed to any field strength that could give them a movement component to leave the ion trap. To remedy this deficiency, a collision gas is admitted into the ion trap, the pressure of which is set in such a way that the ions are driven far enough from the center of the ion trap by the optimal number of impacts that they can leave the ion trap. Since this gas simultaneously increases the yield by damping the ion movement transverse to the direction of expulsion, it is also called "damping gas".

Alle bekannt gewordenen Ausführungsformen der Ionenfalle folgen in ihrer Konstruktion dem sogenannten "idealen" Quistor. Die Konstruktion eines solchen "idealen" Quistors besteht aus einer Ringelektrode in Form eines hyperbolischen Toroids und zwei rotations-hyperbolischen Endelektroden, wobei der Asymptotenwinkel der Hyperbeln genau 1 : √2 ist. Ein Quistor mit diesem Aufbau zeichnet sich dadurch aus, daß die lonenbahnen im Quistor durch Lösung der Matthieu'schen Differenzialgleichungen berechenbar sind. Die lonenbahnen für andere Formen der Ionenfalle sind dagegen bisher nicht berechenbar. Es ist bis heute nicht einmal möglich, die exakte Potentialverteilung in anders geformten Ionenfallen so zu berechnen, daß eine erträglich schnelle Computer-Simulation der Bewegungen möglich wird.All known embodiments of the ion trap follow the so-called "ideal" quistor in their construction. The construction of such an "ideal" quistor consists of a ring electrode in the form of a hyperbolic toroid and two rotating hyperbolic end electrodes, the asymptotic angle of the hyperbolas being exactly 1: √2. A quistor with this structure is characterized in that the ion trajectories in the quistor can be calculated by solving the Matthieu differential equations. The ion trajectories for other forms of the ion trap, however, have not yet been predictable. To date, it is not even possible to calculate the exact potential distribution in differently shaped ion traps in such a way that a tolerably fast computer simulation of the movements is possible.

Die Ergebnisse mit diesen "idealen" Ionenfallen zeigen, daß die Ionen während der Spektrenaufnahme unter optimalen Druckbedingungen des Dämpfungsgases und optimalen Scanbedingungen etwa 200 Perioden der HF-Spannung benötigen, um zu etwa 95% die Ionenfalle verlassen zu können. Die Linienform zeigt daher nach einem steilen Anstieg zu einem Maximum ein langsames Auslaufen (tailing), was einer optimalen Auflösung des Spektrums entgegensteht.The results with these "ideal" ion traps show that the ions need about 200 periods of the HF voltage during the spectra recording under optimal pressure conditions of the damping gas and optimal scanning conditions in order to be able to leave the ion trap by about 95%. The line shape therefore shows a slow tailing after a steep increase to a maximum, which prevents optimal resolution of the spectrum.

Die Linienform wird ferner durch Raumladungs-Effekte beeinträchtigt, wenn sich zu viele Ionen in dem Quistor befinden. Wie einer Arbeit von J.W. Eichelberger et al in "Analytical Chemistry" 59, Seite 2732, 1987, entnommen werden kann, führt dieser Raumladungs-Effekt sogar zunehmend zu wissenschaftlichen Fehlinterpretationen.The line shape is also affected by space charge effects if there are too many ions in the quistor. As a work by J.W. Eichelberger et al in "Analytical Chemistry" 59, page 2732, 1987, can be seen, this space charge effect even leads increasingly to scientific misinterpretations.

Demgemäß liegt der Erfindung die Aufgabe zugrunde, das Verfahren der eingangs genannten Art in solcher Weise weiterzuentwickeln, daß eine Verbesserung der Linienform und damit auch eine Verbesserung des Auflösungsvermögens bei der massenspektroskopischen Untersuchung von Gasgemischen mittels eines solchen Massenspektrometers erzielt wird.Accordingly, the invention has for its object to further develop the method of the type mentioned in such a way that an improvement in the line shape and thus an improvement tion of the resolving power is achieved in the mass spectrometric examination of gas mixtures using such a mass spectrometer.

Diese Aufgabe wird nach der Erfindung gelöst durch das Verfahren gemäß Anspruch 1. Zur Durchführung des Verfahrens wird ein Quistor verwendet, bei dem das abstandsbezogene Verhältnis Q der Radien der eingeschriebenen Elektroden-Scheitelkreise der Bedingung Q ≦ 3,990 genügt, wobei

Figure imgb0001
mit

  • Re = Radius des Scheitelquerschnittes der Endelektroden
  • Rr = Radius des Scheitelquerschnittes der Ringelektrode
  • Zo = Abstand der Scheitel der Endelektroden vom Zentrum des Quistors
  • ro = Abstand des Scheitels der Ringelektrode vom Zentrum des Quistors.
This object is achieved according to the invention by the method according to claim 1. To implement the method, a quistor is used in which the distance-related ratio Q of the radii of the inscribed electrode apexes satisfies the condition Q ≦ 3,990, where
Figure imgb0001
With
  • R e = radius of the apex cross section of the end electrodes
  • R r = radius of the apex cross section of the ring electrode
  • Zo = distance of the apices of the end electrodes from the center of the quistor
  • r o = distance of the apex of the ring electrode from the center of the quistor.

Bei dem oben beschriebenen "idealen" Quistor hat das abstandsbezogene Verhältnis Q der Radien der eingeschriebenen Elektroden-Scheitelkreise genau den Wert Q = 4. Es ist überraschend, daß sich durch eine Verminderung des Verhältnisses Q auf einen Wert Q 3,990 die massenselektive Ejektion der Ionen durch sequentielles Instabilwerden der lonenbahnen entscheidend verbessern läßt. Bisher wurde nämlich als selbstverständlich angenommen, daß sich der "ideale" Quistor nicht nur durch seine Berechenbarbeit auszeichnet, sondern auch in bezug auf seine Speichereigenschaften und sein sonstiges Verhalten als ideal erweisen würde. So ist es beispielsweise aus dem eingangs genannten Buch von Dawson bekannt, daß sogenannte Summen-Resonanzen der lonenbewegungen im Quistor, die zu Speicherverlusten führen, auf außerordentlich geringfügige Abweichungen der Quistor-Konfiguration von der "idealen" Form zurückzuführen sind.In the "ideal" quistor described above, the distance-related ratio Q of the radii of the inscribed electrode apexes has exactly the value Q = 4. It is surprising that the reduction in the ratio Q to a value Q 3.990 results in the mass-selective ejection of the ions sequential instability of the ion pathways can be decisively improved. So far it has been taken for granted that the "ideal" quistor is not only characterized by its calculability, but would also prove to be ideal in terms of its memory properties and its other behavior. For example, it is known from the Dawson book mentioned at the outset that so-called sum resonances of the ion movements in the quistor, which lead to memory losses, are due to extremely small deviations of the quistor configuration from the "ideal" form.

Durch die erfindungsgemäße Maßnahme wird nicht nur die Zeit verkürzt, die die Ionen zum Verlassen der Falle benötigen, sondern es werden auch die Linienform verbessert, die Empfindlichkeit und das Nachweisvermögen durch Verbesserung des Signal/Rausch-Verhältnisses gesteigert und der Einfluß der Raumladung vermindert. Die Verkürzung der Zeit, die die Ionen zum Verlassen der Ionenfalle benötigen, erlaubt eine Erhöhung der Anzahl der Spektrenaufnahmen pro Zeiteinheit, wodurch nochmals eine Steigerung der Empfindlichkeit erreicht werden kann.The measure according to the invention not only shortens the time which the ions need to leave the trap, but also improves the line shape, increases sensitivity and detection capacity by improving the signal / noise ratio and reduces the influence of the space charge. The shortening of the time it takes for the ions to leave the ion trap allows an increase in the number of spectra recordings per unit of time, which again increases the sensitivity.

Die Wirkung der erfindungsgemäßen Maßnahme läßt sich dadurch erklären, daß im Inneren des Quistors auf die Ionen das Potential am stärksten einwirkt, das sich an denjenigen Stellen auf den Elektroden befindet, die sich am nächsten zum Zentrum, also zum Speicherraum für die lonen, befinden. Diese Stellen sind die Scheitelpunkte der Endelektroden sowie die Scheitellinie der Ringelektrode. Bei hyperbolischen Elektroden weisen diese Stellen zugleich jeweils die stärkste Krümmung auf. Daher sind die Verhältnisse der Krümmungsradien der Elektroden an den Scheitelpunkten und die Abstände dieser Scheitelpunkte, wie es in dem oben definierten Verhältnis Q zum Ausdruck kommt, das kurz als abstandsbezogenes Kreisverhältnis bezeichnet werden kann, für das Verhalten des Quistors von entscheidender Bedeutung. Dabei sind schon relativ geringe Abweichungen von dem Verhältnis Q = 4,000, wie es bei dem idealen Quistor herrscht, von starkem Einfluß.The effect of the measure according to the invention can be explained by the fact that the potential acting most strongly on the ions inside the quistor is located at those points on the electrodes which are closest to the center, ie to the storage space for the ions. These points are the apexes of the end electrodes and the apex line of the ring electrode. In the case of hyperbolic electrodes, these points each have the greatest curvature. Therefore, the ratios of the radii of curvature of the electrodes at the vertices and the distances between these vertices, as expressed in the ratio Q defined above, which can be briefly referred to as the distance-related circular ratio, are of crucial importance for the behavior of the quistor. Relatively small deviations from the ratio Q = 4.000, as is the case with the ideal quistor, are of great influence.

Gegenstand der Erfindung ist auch ein Massenspektrometer, das zur Untersuchung eines Gasgemisches nach dem erfindungsgemäßen Verfahren geeignet ist und eine Ionenfalle aufweist, die als Quistor mit einer Ringelektrode und zwei die von der Ringelektrode begrenzte Kammer abschließende Endelektroden ausgebildet ist, von welchen Endelektroden wenigstens eine mit einer in Verlängerung der Rotationsachse der Ringelektrode angeordneten Perforation versehen ist. Bei diesem Massenspektrometer genügt wiederum das abstandsbezogene Verhältnis Q der Radien der eingeschriebenen Elektroden-Scheitelkreise der Bedingung Q 3,990, wobei

Figure imgb0002
mit

  • Re = Radius des Scheitelquerschnittes der Endelektroden
  • Rr = Radius des Scheitelquerschnittes der Ringelektrode
  • Zo = Abstand der Scheitel der Endelektroden vom Zentrum des Quistors
  • ro = Abstand des Scheitels der Ringelektrode vom Zentrum des Quistors.
The invention also relates to a mass spectrometer which is suitable for examining a gas mixture according to the method according to the invention and has an ion trap which is designed as a quistor with a ring electrode and two end electrodes closing the chamber delimited by the ring electrode, of which end electrodes at least one with one perforation arranged in the extension of the axis of rotation of the ring electrode. With this mass spectrometer, the distance-related ratio Q of the radii of the inscribed electrode apexes again satisfies the condition Q 3.990, where
Figure imgb0002
With
  • R e = radius of the apex cross section of the end electrodes
  • R r = radius of the apex cross section of the ring electrode
  • Zo = distance of the apices of the end electrodes from the center of the quistor
  • r o = distance of the apex of the ring electrode from the center of the quistor.

Die vorstehend angegebene Beziehung läßt viele Gestaltungsmöglichkeiten zu. Bei einer bevorzugten Ausführungsform der Erfindung hat von den das abstandsbezogene Verhältnis Q bestimmenden Abmessungen des Quistors der Abstand ro des Scheitels der Ringelektrode vom Zentrum des Quistors einen Wert, bei dem gewährleistet ist, daß bei der Amplitude der an der Ringelektrode anliegenden HF-Spannung die größte interessierende Masse noch mittels des Speicherfeldes eingefangen wird, der Abstand Zo der Scheitel der Endelektroden vom Zentrum des Quistors beträgt bei vorgegebenem Wert des Verhältnisses Q zo = ro/4√Q und es sind endlich die Radien Re und Rr der Scheitelquerschnitte so gewählt, daß Re x Rr = ro x zoo Bei dieser Art des Aufbaues des Quistors werden also die für das Verhalten des Quistors besonders wichtigen Werte ro und Q vorgewählt und die anderen Werte unter Beachtung der angegebenen Regeln bestimmt, wobei für die Wahl von Re und Rr Freiheiten bestehen, die die Berüchsichtigung anderer Einflußgrößen, insbesondere in fertigungstechnischer Hinsicht, gestatten.The relationship given above allows many design options. In a preferred embodiment of the invention, of the dimensions of the quistor which determine the distance-related ratio Q, the distance r o of the apex of the ring electrode from the center of the quistor has a value which ensures that the amplitude of the RF voltage applied to the ring electrode has the value largest mass of interest is still captured by means of the storage field, the distance Z o of the apex of the end electrodes from the center of the quistor is given the value of the ratio Q z o = r o / 4√Q and there are finally the radii R e and R r Vertex cross sections selected so that R e x R r = r o xz oo With this type of quistor design, the values r o and Q which are particularly important for the behavior of the quistor are preselected and the other values are determined taking into account the rules given, whereby for the choice of R e and R r there are freedoms that take into account other influencing factors, especially in manufacturing from a technical point of view.

Die Erfindung wird im folgenden anhand des in der Zeichnung dargestellten Ausführungsbeispieles näher beschrieben und erläutert. Die der Beschreibung und der Zeichnung zu entnehmenden Merkmale können bei anderen Ausführungsformen der Erfindung einzeln für sich oder zu mehreren in beliebiger Kombination Anwendung finden. Es zeigen

  • Fig. 1 einen Querschnitt durch einen nach der Erfindung ausgebildeten Quistor in schematischer Darstellung,
  • Fig. 2 das Stabilitätsdiagramm des Quistors nach Fig. 1,
  • Fig. 3 ein Diagramm, das die Zeit, welche die Ionen zum Verlassen des Quistors benötigen, als Funktion des Verhältnisses Q für drei verschiedene Scangeschwindigkeiten veranschaulicht, und
  • Fig. 4 die Wiedergabe von unter unterschiedlichen Bedingungen aufgenommenen Spektren.
The invention is described and explained in more detail below with reference to the embodiment shown in the drawing. The features to be gathered from the description and the drawing can be used in other embodiments of the invention individually or in combination in any combination. Show it
  • 1 shows a cross section through a quistor designed according to the invention in a schematic representation,
  • 2 shows the stability diagram of the quistor of FIG. 1,
  • 3 is a graph illustrating the time it takes for the ions to exit the quistor as a function of the ratio Q for three different scanning speeds, and
  • 4 shows the reproduction of spectra recorded under different conditions.

Der in Fig. 1 dargestellte Quistor weist eine Ringelektrode 4 und zwei, jeweils zu einer Seite der Ringelektrode angeordnete Endelektroden 3, 5 auf, welche die von der Ringelektrode 4 begrenzte Kammer an den beiden Seiten der Ringelektrode abschließen. Die Endelektroden 3 und 5 sind an der Ringelektrode 4 jeweils durch ringförmige Isolatoren 7, 8 abgestützt. Die ringförmigen Isolatoren 7, 8 bilden zugleich eine dichte Verbindung zwischen den äußeren Abschnitten der Ringelektrode 4 und der Endelektroden 3, 5. In die eine Ringelektrode 8 mündet eine Einlaßleitung 11, die es ermöglicht, in die Ionenfalle ein Dämpfungsgas einzuleiten. Die in Fig. 1 obere Endelektrode 3 weist eine zentrale Öffnung 10 auf, der an der Außenseite der Endelektrode 3 eine Glühkathode 1 zum Erzeugen eines Elektronenstrahles und eine zur Steuerung des Elektronenstrahles dienende Sperrlinse 2 gegenübersteht. Die in Fig. 1 untere Endelektrode 5 weist im Bereich ihrer Mitte eine Perforation 9 auf, durch welche Ionen den Quistor verlassen können. An der Außenseite der unteren Endelektrode 5 ist ein Sekundär-Elektronen-Vervielfacher6 angeordnet, der es ermöglicht, die den Quistor durch die Perforation 9 verlassenden Ionen nachzuweisen.The quistor shown in FIG. 1 has a ring electrode 4 and two end electrodes 3, 5, each arranged on one side of the ring electrode, which terminate the chamber delimited by the ring electrode 4 on both sides of the ring electrode. The end electrodes 3 and 5 are each supported on the ring electrode 4 by ring-shaped insulators 7, 8. The ring-shaped insulators 7, 8 also form a tight connection between the outer sections of the ring electrode 4 and the end electrodes 3, 5. An inlet line 11 opens into the ring electrode 8 and makes it possible to introduce a damping gas into the ion trap. The upper end electrode 3 in FIG. 1 has a central opening 10, which is opposed on the outside of the end electrode 3 by a hot cathode 1 for generating an electron beam and a blocking lens 2 serving to control the electron beam. The lower end electrode 5 in FIG. 1 has a perforation 9 in the area of its center, through which ions can leave the quistor. A secondary electron multiplier 6 is arranged on the outside of the lower end electrode 5 and makes it possible to detect the ions leaving the quistor through the perforation 9.

Sowohl die Ringelektrode 4 als auch die Endelektroden 3 und 5 haben streng hyperbolische Oberflächen, was bedeutet, daß ihre Konturen in dem in Fig. 1 dargestellten Querschnitt Hyperbeln sind. Der Asymptotenwinkel sowohl der die Ringelektrode 4 als auch der die Endelektroden 3, 5 erzeugenden Hyperbeln beträgt 1 : 1,360. Der innere Radius ro der Ringelektrode trägt 1,00 cm. Im übrigen sind die Abmessungen so gewählt, daß das oben definierte abstandsbezogene Verhältnis Q den Wert Q = 3,422 hat, also einen deutlich unter Q = 4,000 liegenden Wert. Während die Endelektroden 3, 5 auf Massepotential liegen, ist an die Ringelektrode 4 eine HF-Spannung mit einer Frequenz von 1,0 MHz angelegt, die im Bereich von 0 V bis 7,5 kV veränderbar ist. Bei einer Spannung von 7,5 kV umfaßt der Bereich des Ladungs/Massen-Verhältnissesder lonen, die von dem Quistor gefangen und gespeichert werden, bei einer einfachen Ionisierung Ionen mit den Massenzahlen 1 bis 500 u, wobei u die atomare Masseneinheit bedeutet. Demgemäß kann durch Verändern der HF-Spannung im Bereich von 0 V bis 7,5 kV ein Massenbereich von 1 bis 500u in einem Scan überstrichen werden. Das hierfür charakteristische Stabilitätsdiagramm ist in Fig. 2 dargestellt. Darin sind sie Koordinatenwerte q der Feldstärke V/m des Wechselfeldes und die Koordinatenwerte a der Feldstärke U/m des Gleichfeldes proportional. Da bei dem als Ausführungsbeispiel dargestellten Quistor die Gleichspannung U den Wert U = 0 hat, wird durch Verändern der HF-Spannung der Stabilitätsbereich längs der Linie 21 durchlaufen.Both the ring electrode 4 and the end electrodes 3 and 5 have strictly hyperbolic surfaces, which means that their contours are hyperbolas in the cross section shown in FIG. 1. The asymptotic angle of both the ring electrode 4 and the hyperbola producing the end electrodes 3, 5 is 1: 1.360. The inner radius r o of the ring electrode is 1.00 cm. Otherwise, the dimensions are chosen so that the distance-related ratio Q defined above has the value Q = 3.422, that is to say a value which is significantly below Q = 4.000. While the end electrodes 3, 5 are at ground potential, an RF voltage with a frequency of 1.0 MHz is applied to the ring electrode 4, which can be varied in the range from 0 V to 7.5 kV. At a voltage of 7.5 kV, the range of the charge / mass ratio of the ions that are captured and stored by the quistor, with a simple ionization, includes ions with mass numbers 1 to 500 µ, where u is the atomic mass unit. Accordingly, by changing the RF voltage in the range from 0 V to 7.5 kV, a mass range from 1 to 500 µ can be covered in one scan. The characteristic stability diagram for this is shown in FIG. 2. In it they are coordinate values q proportional to the field strength V / m of the alternating field and the coordinate values a of the field strength U / m of the constant field. Since the DC voltage U in the quistor shown as an exemplary embodiment has the value U = 0, the stability range is traversed along the line 21 by changing the RF voltage.

Die bei dem Quistor nach Fig. 1 vorgesehene Einrichtung zur Erzeugung eines Elektronenstrahles erlaubt es, die Ionen im Quistor selbst zu erzeugen, indem in der lonisierungsphase, deren Dauer mittels der Sperrlinse 2 bestimmt werden kann, ein Elektronenstrahl von der Glühkathode 1 durch die Öffnung 10 in den Quistor fokussiert wird. Typische lonisierungszeiten für einen Elektronenstrahl von 100 µA Stärke liegen im Bereich von 10 us bis zu 100 ms, je nach der Konzentration der zu untersuchenden Substanz.The device for generating an electron beam provided in the quistor according to FIG. 1 allows the ions to be generated in the quistor itself by in the ionization phase, the duration of which can be determined by means of the blocking lens 2, an electron beam from the hot cathode 1 through the opening 10 is focused in the quistor. Typical ionization times for an electron beam of 100 µA strength are in the range from 10 µs to 100 ms, depending on the concentration of the substance to be examined.

Das Diagramm nach Fig. 3 veranschaulicht die Zeit, welche Ionen für das Verlassen des Quistors benötigen und die sich demgemäß als Linienbreite äußert, als Funktion des abstandsbezogenen Kreisverhältnisses Q. Die drei Kurven des Diagrammes nach Fig. 3 entsprechen verschiedenen Scangeschwindigkeiten, die am unteren Rand von Fig. 3 angegeben sind. Dabei wurde Dämpfungsgas unter jeweils optimalen Druckbedingungen eingesetzt. Es ist ohne weiteres ersichtlich, daß für Q < 4,000 das Auslösungsvermögen beträchtlich zunimmt.The diagram according to FIG. 3 illustrates the time it takes for ions to leave the quistor and accordingly manifests itself as a line width as a function of the distance-related circular ratio Q. The three curves of the diagram according to FIG. 3 correspond to different scanning speeds speeds indicated at the bottom of Fig. 3. Damping gas was used under optimal pressure conditions. It is readily apparent that the release capability increases significantly for Q <4,000.

Fig. 4 zeigt das Spektrum der Gruppe der Molekülionen von Tetrachlorethen für verschiedene Werte des abstandsbezogenen Kreisverhältnisses Q. Die Spektren wurden unter Verwendung von Luft mit einem Druck von 4.10-4 mbar als Dampfungsgas mit verschiedenen Scangeschwindigkeiten über jeweils 300 Masseneinheiten aufgenommen. In den oberen Spektren a, c und e betrug die Scanzeit jeweils 100 ms, während bei den unteren Spektren b, d, und f die Scanzeit jeweils 20 ms betrug. Die Spektren a und b wurden in einem Quistor mit dem abstandsbezogenen Kreisverhältnis Q = 4,4, die mittleren Spektren c und d in einem Quistor mit Q = 4,0 und endlich die rechten Spektren e und f in einem Quistor mit Q = 3,6 aufgenommen. Die verwendeten Quistoren hatten die sich aus der folgenden Tabelle ergebenden Abmessungen (in cm):Fig. 4 shows the spectrum of the molecular ion group of tetrachloroethene for different values of the distance-related ratio circuit Q. The spectra were recorded as Dampfungsgas mbar with different scanning speeds over each 300 mass units using air at a pressure of 4.10- 4. In the upper spectra a, c and e the scan time was 100 ms each, while in the lower spectra b, d, and f the scan time was 20 ms each. The spectra a and b were in a quistor with the distance-related circular ratio Q = 4.4, the middle spectra c and d in a quistor with Q = 4.0 and finally the right spectra e and f in a quistor with Q = 3, 6 added. The quistors used had the dimensions shown in the following table (in cm):

Figure imgb0003
Figure imgb0003

Von diesen Abmessungen bestimmt der Abstand ro bei vorgegebener Amplitude der an der Ringelektrode anliegenden HF-Spannung die Feldstärke V/m des Wechselfeldes und damit die höchste Masse, die mit einem Scan erfaßt werden kann. Der unter diesem Gesichtspunkt für alle drei Quistoren gleich festgelegte Wert von r0 = 1 cm ermöglichte den oben erwähnten Scan über jeweils 300 Masseneinheiten. Die Werte von zo wurden zu zo = ro/4√Q berechnet, während Re und Rr so gewählt wurden, daß Re x Rr = ro x zoo From these dimensions, the distance r o determines the field strength V / m of the alternating field and thus the highest mass that can be detected with a scan, given the amplitude of the RF voltage applied to the ring electrode. From this point of view, the value of r0 = 1 cm, which was fixed for all three quistors, made the above-mentioned scan of 300 mass units possible. The values of z o were calculated to be z o = r o / 4√Q, while R e and R r were chosen such that R e x R r = r o xz oo

Die dramatische Verbesserung des Auflösungsvermögens und des Signal/Rausch-Verhältnisses zwischen den Spektren nach Fig. 4a und nach Fig. 4f unterstreicht den bedeutenden technischen Fortschritt, den die Erfindung bewirkt. Dabei ist besonders hervorzuheben, daß die Erhöhung der Scangeschwindigkeit, welche die Verminderung des abstandsbezogenen Kreisverhältnisses Q auf Werte Q < 4,000 ermöglicht, zugleich zu einem überproportionalen Anstieg des Signal/Rausch-Verhältnisses und damit zu dem bedeutend erhöhten Auflösungsvermögen führt.The dramatic improvement in the resolving power and the signal-to-noise ratio between the spectra according to FIG. 4a and FIG. 4f underlines the significant technical progress that the invention brings about. It should be particularly emphasized that the increase in the scanning speed, which enables the reduction of the distance-related circular ratio Q to values Q <4.000, also leads to a disproportionate increase in the signal / noise ratio and thus to the significantly increased resolution.

Ein weiterer Vorteil besteht darin, daß auch der Einfluß der Raumladung für Werte von Q < 4,000 wesentlich verringert ist. Selbst bei einer Verringerung der Signalstärken um einen Faktor 100 konnte keine wesentliche Veränderung von Linienform und Linienbreite beobachtet werden.Another advantage is that the influence of the space charge is significantly reduced for values of Q <4.000. Even if the signal strengths were reduced by a factor of 100, no significant change in line shape and line width could be observed.

Der Grund für die beobachtbaren Verbesserungen ist das Auftreten einer Resonanz der Sekularbewegung der Ionen genau an der Instabilitätsgrenze, die die Amplitudenvergrößerung der Sekularbewegung beschleunigt und damit die Geschwindigkeit der Ionen-Ejektion erhoht. Die Ejektion erfolgt daher nur zum Teil aufgrund des Instabilwerdens der Bahnen und zum anderen Teil durch die zusätzliche Energieaufnahme der Ionen aus dem speichernden HF-Feld, die durch die Resonanz möglich wird.The reason for the observable improvements is the occurrence of a resonance of the secular movement of the ions exactly at the instability limit, which accelerates the increase in the amplitude of the secular movement and thus increases the speed of the ion ejection. The ejection is therefore only partly due to the instability of the orbits and partly due to the additional energy absorption of the ions from the storing HF field, which is made possible by the resonance.

Negative Einflüsse durch Resonanzphänomene konnten bisher nicht festgestellt werden, solange im wesentlichen ohne Anwendung eines Gleichspannungsfeldes gearbeitet wurde. Daher sieht eine bevorzugte Ausführungsform das Weglassen des Gleichspannungsfeldes vor. Grundsätzlich wäre es allerdings auch möglich, ein Gleichspannungsfeld anzuwenden und das Gleichspannungsfeld zur Veränderung des Stabilitätsbereiches zu variieren.So far, negative influences due to resonance phenomena have not been found, as long as work was carried out essentially without using a DC voltage field. A preferred embodiment therefore provides for the omission of the DC voltage field. In principle, however, it would also be possible to use a DC voltage field and to vary the DC voltage field in order to change the stability range.

Es versteht sich, daß die Erfindung nicht auf das dargestellte Ausführungsbeispiel beschränkt ist, sondern viele Abweichungen davon möglich sind, ohne den Rahmen der Erfindung zu verlassen. Insbesondere ist die Anwendung einer Vielzahl unterschiedlicher Quistoren möglich, deren Abmessungen in vielfältiger Weise abgewandelt werden können, ohne daß dabei die Bedingung verletzt wird, daß das abstandsbezogene Kreisverhältnis Q stets kleiner oder höchstens gleich 3,990 ist.It is understood that the invention is not limited to the exemplary embodiment shown, but many deviations therefrom are possible without leaving the scope of the invention. In particular, the use of a large number of different quistors is possible, the dimensions of which can be modified in many ways without violating the condition that the distance-related circular ratio Q is always less than or at most equal to 3.990.

Claims (3)

1. Method for mass-spectroscopic investigation of a gas mixture by using a mass spectrometer having an ion trap which is constructed as a quistor with an annular electrode and two end electrodes which seal the chamber bounded by the annular electrode and of which at least one is provided with a perforation arranged in an extension of the axis of rotation of the annular electrode, in which method the following steps are carried out:
application of an RP voltage of such amplitude and frequency and, possibly, of such a direct voltage to the annular electrode that there is generated inside the ion trap a three-dimensional RF quadrupole field which is suitable for capturing ions, whose charge/mass ratio lies in a prescribed range, and storing them in the ion trap,
introducing or generating ions of the gas mixture into or inside the ion trap, and storing in the ion trap ions whose charge/mass ratio lies in the prescribed range,
varying at least one of the field parameters formed from the amplitude, the frequency and, possibly, the direct voltage in such a way that ions having a monotonically varying charge/mass ratio sequentially become unstable and leave the ion trap in the direction of the axis of rotation of its annular electrode through the said perforation in the end electrode and
measuring and recording the intensity of the ion current leaving the ion trap as a function of the variation in the field parameters, characterised in that
in order to carry out the method use is made of a quistor in which the distance-related ratio Q of the radii of the inscribed electrode apex circles satisfies the condition Q 3.990, it being the case that
Figure imgb0006
where
Re = radius of the apex cross-section of the end electrodes
Rr = radius of the apex cross-section of the annular electrode
Zo = distance of the apexes of the end electrodes from the centre of the quistor and
ro = distance of the apex of the annular electrode from the centre of the quistor.
2. Mass spectrometer having an ion trap which is constructed as a quistor with an annular electrode and two end electrodes sealing the chamber bounded by the annular electrode and of which at least one is provided with a perforation arranged in an extension of the axis of rotation of the annular electrode, for investigating a gas mixture according to the method according to Claim 1,
characterised in that
the distance-related ratio Q of the radii of the inscribed electrode apex circles satisfies the condition Q < 3.990, it being the case that
Figure imgb0007
where
Ro = radius of the apex cross-section of the end electrodes
Rr = radius of the apex cross-section of the annular electrode
Zo = distance of the apexes of the end electrodes from the centre of the quistor and
ro = distance of the apex of the annular electrode from. the centre of the quistor.
3. Mass spectrometer according to Claim 2, characterised in that of the dimension of the quistor which determine the distance-related ratio Q the distance ro of the apex of the annular electrode from the centre of the quistor has a value for which it in ensured that given the amplitude of the RP voltage applied at the annular electrode the largest mass of interest is still captured by means of the storage field, for a prescribed value of the ratio Q the distance zo of the apexes of the end electrodes from the centre of the quistor is zo = ro/4√Q, and, finally, the radii Re and Rr of the apex cross-sections are selected such that Re x Rr = ro x zo.
EP88120710A 1987-12-23 1988-12-12 Method for the massspectrometric analysis of a gas mixture, and mass sprectrometer for carrying out the method Expired - Lifetime EP0321819B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3743718 1987-12-23
DE3743718 1987-12-23

Publications (4)

Publication Number Publication Date
EP0321819A2 EP0321819A2 (en) 1989-06-28
EP0321819A3 EP0321819A3 (en) 1989-08-23
EP0321819B1 true EP0321819B1 (en) 1993-04-21
EP0321819B2 EP0321819B2 (en) 2002-06-19

Family

ID=6343365

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88120710A Expired - Lifetime EP0321819B2 (en) 1987-12-23 1988-12-12 Method for the massspectrometric analysis of a gas mixture, and mass sprectrometer for carrying out the method

Country Status (3)

Country Link
US (1) US5028777A (en)
EP (1) EP0321819B2 (en)
DE (1) DE3880456D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4324224C1 (en) * 1993-07-20 1994-10-06 Bruker Franzen Analytik Gmbh Quadrupole ion traps with switchable multipole components

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225141A (en) * 1988-07-11 1993-07-06 Milad Limited Partnership Process for injection molding a hollow plastic article
US5206506A (en) * 1991-02-12 1993-04-27 Kirchner Nicholas J Ion processing: control and analysis
US5182451A (en) * 1991-04-30 1993-01-26 Finnigan Corporation Method of operating an ion trap mass spectrometer in a high resolution mode
DE4142870C2 (en) * 1991-12-23 1995-03-16 Bruker Franzen Analytik Gmbh Process for in-phase measurement of ions from ion trap mass spectrometers
DE4142871C1 (en) * 1991-12-23 1993-05-19 Bruker - Franzen Analytik Gmbh, 2800 Bremen, De
DE4316738C2 (en) * 1993-05-19 1996-10-17 Bruker Franzen Analytik Gmbh Ejection of ions from ion traps using combined electrical dipole and quadrupole fields
US5420425A (en) * 1994-05-27 1995-05-30 Finnigan Corporation Ion trap mass spectrometer system and method
US5572025A (en) * 1995-05-25 1996-11-05 The Johns Hopkins University, School Of Medicine Method and apparatus for scanning an ion trap mass spectrometer in the resonance ejection mode
JP3648906B2 (en) * 1997-02-14 2005-05-18 株式会社日立製作所 Analyzer using ion trap mass spectrometer
DE19733834C1 (en) * 1997-08-05 1999-03-04 Bruker Franzen Analytik Gmbh Axially symmetric ion trap for mass spectrometric measurements
DE19751401B4 (en) * 1997-11-20 2007-03-01 Bruker Daltonik Gmbh Quadrupole radio frequency ion traps for mass spectrometers
US6124592A (en) * 1998-03-18 2000-09-26 Technispan Llc Ion mobility storage trap and method
US6239429B1 (en) 1998-10-26 2001-05-29 Mks Instruments, Inc. Quadrupole mass spectrometer assembly
US6469298B1 (en) 1999-09-20 2002-10-22 Ut-Battelle, Llc Microscale ion trap mass spectrometer
DE10028914C1 (en) * 2000-06-10 2002-01-17 Bruker Daltonik Gmbh Mass spectrometer with HF quadrupole ion trap has ion detector incorporated in one of dome-shaped end electrodes of latter
US7019289B2 (en) * 2003-01-31 2006-03-28 Yang Wang Ion trap mass spectrometry
US7034293B2 (en) * 2004-05-26 2006-04-25 Varian, Inc. Linear ion trap apparatus and method utilizing an asymmetrical trapping field
US8334506B2 (en) 2007-12-10 2012-12-18 1St Detect Corporation End cap voltage control of ion traps
US7973277B2 (en) 2008-05-27 2011-07-05 1St Detect Corporation Driving a mass spectrometer ion trap or mass filter
US9171706B1 (en) * 2014-11-06 2015-10-27 Shimadzu Corporation Mass analysis device and mass analysis method
CN110783165A (en) * 2019-11-01 2020-02-11 上海裕达实业有限公司 End cover electrode structure of ion introduction side of linear ion trap
CN115047259B (en) * 2022-04-15 2022-12-06 安徽省太微量子科技有限公司 Particle charge-to-mass ratio measuring method based on frequency-adjustable two-dimensional linear ion trap

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3527939A (en) * 1968-08-29 1970-09-08 Gen Electric Three-dimensional quadrupole mass spectrometer and gauge
US4540884A (en) * 1982-12-29 1985-09-10 Finnigan Corporation Method of mass analyzing a sample by use of a quadrupole ion trap
US4650999A (en) * 1984-10-22 1987-03-17 Finnigan Corporation Method of mass analyzing a sample over a wide mass range by use of a quadrupole ion trap
EP0202943B2 (en) * 1985-05-24 2004-11-24 Thermo Finnigan LLC Method of operating an ion trap
DE3886922T2 (en) * 1988-04-13 1994-04-28 Bruker Franzen Analytik Gmbh Method for mass analysis of a sample using a quistor and quistor developed for carrying out this method.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4324224C1 (en) * 1993-07-20 1994-10-06 Bruker Franzen Analytik Gmbh Quadrupole ion traps with switchable multipole components

Also Published As

Publication number Publication date
EP0321819A2 (en) 1989-06-28
US5028777A (en) 1991-07-02
DE3880456D1 (en) 1993-05-27
EP0321819B2 (en) 2002-06-19
EP0321819A3 (en) 1989-08-23

Similar Documents

Publication Publication Date Title
EP0321819B1 (en) Method for the massspectrometric analysis of a gas mixture, and mass sprectrometer for carrying out the method
DE112011103930B4 (en) Method for mass selection of ions and mass selector
DE102018112210B4 (en) Mass spectrometers with tandem ion mobility analyzers
DE60209132T2 (en) QUADRUPOLION TRAP, METHOD OF USE THEREOF, AND A MASS SPECTROMETER CONTAINING SUCH A JUMP
EP0459602B2 (en) Mass spectrometric high-frequency quadrupole cage with superposed multipole fields
DE3920566C2 (en)
DE3914838A1 (en) ION CYCLOTRON RESONANCE SPECTROMETER
DE102016009641B4 (en) Detector and slit configuration in an isotopic ratio mass spectrometer
DE10296794B4 (en) ion trap
DE102012008250A1 (en) Ion mobility separator for mass spectrometers
DE112014006538T5 (en) Method of targeted mass spectrometric analysis
DE3423394A1 (en) RUN TIME MASS SPECTROMETER
DE10010902A1 (en) Tandem mass spectrometer consisting of two quadrupole filters
EP1995758B1 (en) Monochromator and charged particle beam source with monochromator
DE2934408A1 (en) ION SOURCE WITH COLD CATHODE AND EQUIPPED MASS SPECTROMETER
DE102018009119A1 (en) mass spectrometry
DE19635645C2 (en) Method for the high-resolution spectral recording of analyte ions in a linear time-of-flight mass spectrometer
DE2213719A1 (en) Device for spectroscopy with charged particles
DE69725600T2 (en) RADIO FREQUENCY mass spectrometer
EP0290712B1 (en) Mass spectrometer
DE60126048T2 (en) Mass spectrometer and mass spectrometric method
DE112017002161T5 (en) IONOPTIC DEVICE
DE19751401B4 (en) Quadrupole radio frequency ion traps for mass spectrometers
EP0378648B1 (en) Icr ion trap
DE3522340A1 (en) LENS ARRANGEMENT FOR FOCUSING ELECTRICALLY CHARGED PARTICLES AND MASS SPECTROMETER WITH SUCH A LENS ARRANGEMENT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB LI SE

17P Request for examination filed

Effective date: 19890722

17Q First examination report despatched

Effective date: 19911205

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BRUKER-FRANZEN ANALYTIK GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930421

REF Corresponds to:

Ref document number: 3880456

Country of ref document: DE

Date of ref document: 19930527

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930521

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19931231

Ref country code: LI

Effective date: 19931231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: FINNIGAN CORPORATION

Effective date: 19940119

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLAA Information modified related to event that no opposition was filed

Free format text: ORIGINAL CODE: 0009299DELT

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BRUKER DALTONIK GMBH

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

27A Patent maintained in amended form

Effective date: 20020619

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): CH DE FR GB LI SE

27O Opposition rejected

Effective date: 20000820

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
ET3 Fr: translation filed ** decision concerning opposition
APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071217

Year of fee payment: 20

Ref country code: GB

Payment date: 20071220

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071215

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20081211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20081211