EP0321469B1 - Wiedereingliederung mit pcb verunreinigter elektrischer apparate - Google Patents

Wiedereingliederung mit pcb verunreinigter elektrischer apparate Download PDF

Info

Publication number
EP0321469B1
EP0321469B1 EP87905135A EP87905135A EP0321469B1 EP 0321469 B1 EP0321469 B1 EP 0321469B1 EP 87905135 A EP87905135 A EP 87905135A EP 87905135 A EP87905135 A EP 87905135A EP 0321469 B1 EP0321469 B1 EP 0321469B1
Authority
EP
European Patent Office
Prior art keywords
pcb
fluid
transformer
leaching fluid
electrical apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87905135A
Other languages
English (en)
French (fr)
Other versions
EP0321469A1 (de
Inventor
Michael J. Massey
David R. Hopper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENSR Corp (A DELAWARE CORPORATION)
Original Assignee
ENSR Corp (a Delaware Corporation)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENSR Corp (a Delaware Corporation) filed Critical ENSR Corp (a Delaware Corporation)
Priority to AT87905135T priority Critical patent/ATE76766T1/de
Publication of EP0321469A1 publication Critical patent/EP0321469A1/de
Application granted granted Critical
Publication of EP0321469B1 publication Critical patent/EP0321469B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/006Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents of waste oils, e.g. PCB's containing oils
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/20Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by hydropyrolysis or destructive steam gasification, e.g. using water and heat or supercritical water, to effect chemical change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • H01F27/14Expansion chambers; Oil conservators; Gas cushions; Arrangements for purifying, drying, or filling

Definitions

  • This invention relates to an apparatus and method for cleaning or reclassifying electrical apparatus, such as transformers and capacitors, designed to use as a liquid dielectric fluid polychlorinated byphenyls, and a porous internal construction.
  • electrical apparatus such as transformers and capacitors
  • Such apparatus is characterized by the adsorption of the liquid into the pores of structural support media, thereby rendering difficult the complete removal of said liquid.
  • PCB polychlorinated byphenyls
  • PCB's polychlorinated byphenyls
  • Dielectric fluids containing such PCB's have often been generically called askarels where the PCB is often present as a mixture in a chlorinated benzene solvent.
  • PCB's were hazardous environmental contaminants and their use was discontinued; however, by that time many pieces of electrical apparatus had been build using the PCB'S as an insulation media.
  • a primary use of PCB is an electrical transformers and electrical capacitors as a coolant dielectric fluid.
  • This invention relates to cleaning PCB'S from such apparatus and eventual reclassification of it as non-PCB equipment. For reclassification it is presently necessary that tests demonstrate a contamination of less than 50 ppm of PCB in the dielectric fluid after three months of operation succeeding the completion of cleaning.
  • Transformers designed for PCB use all have a major similarity in that they contain a cellulosic material as insulation, usually a paper wrap, on the wire comprising the core of the transformer. Included in the transformer may be wooden structures acting as insulators. Because of these two major items, the interior of the transformer acts somewhat like a sponge and PCB's become impregnated into these materials. They are contained in such a manner that simple washing will not remove them, and that, over a period of time, the PCB's will leach out of the cellulosic material and come to an equilibrium level in the transformer even if it had been filled with clean, non-PCB, oil. Transformers which use a mineral oil dielectric are different and the invention does not apply.
  • the present invention relates to apparatus for cleaning and reclassifying liquid filled electric apparatus designed to use PCB dielectric fluid to meet at least the present U.S. government EPA standards as "non-PCB" equipment. cleaned hereby.
  • an apparatus for cleaning fluids contaminated with polychlorinated biphenyls from an electrical apparatus preferably with minimal interruption in the operation of said electrical apparatus prior to reclassification thereof characterized in that for ease of operation in a simplified, unattended manner said cleaning apparatus includes means connectible to said electrical apparatus for removing and conducting a leaching fluid contaminated with polychlorinated biphenyls from said electrical apparatus to a first single-stage distillation column, said first single-stage column being configured to form an overhead vapor stream consisting essentially of the leaching fluid and a bottoms stream contaminated with polychlorinated biphenyls, condensing means receiving said overhead stream for condensing the vapor therein consisting essentially of the leaching fluid from said first single-stage column, means for returning the condensed leaching fluid to the electrical apparatus, means for withdrawing the bottoms stream from said first single-stage column and conducting said bottoms stream to a second single-stage column, said second single-stage column being configured to form a
  • the means for conducting leaching fluid from the electrical apparatus may comprise a loop including a siphon breaker means between the electrical apparatus and the first single-stage distillation column.
  • the condensing means which receives the overhead strean from the first single-stage column may be an atmospheric condenser as may the second condensing means.
  • This invention allows cleaning of electrical apparatus designed for PCB use, such as a transformer, while the apparatus is energized and operating on line. Normally only a single discontinuance of service of the electrical apparatus is necessary, and occurs to initially drain a PCB, or PCB contaminated, fluid from the electrical apparatus. Maintenance can then be performed. During this time the apparatus can be modified if necessary and connected to the cleaning apparatus, which includes a distillation arrangement.
  • the apparatus is filled with a leaching fluid chosen both to leach PCB's from the core, or cellulosic material insulation on the core wiring of a transformer and to serve as the insulating dielectric fluid coolant for maintaining the electric apparatus on line and energized while the method of reclassification is being performed.
  • Leaching fluid is circulated from the electric apparatus through the distillation unit, where it is separated from PCB's being removed from the electrical apparatus, and recirculated back through the transformer.
  • the concentrated PCB's are accumulated on site for disposal.
  • the figure shows apparatus embodying the present invention which is being applied to an electrical power transformer.
  • the transformer was previously insulated with a PCB coolant fluid.
  • the primary advantage of the present invention is that is allows onsite, un termed reclassification of electrical apparatus in a manner which is capable of being conducted without substantial periods of interruption of operations of such equipment. This can be done either continuously or in a periodic, batch mode as described herein where operation is not continuous but is positioned in a batch mode and carried out in such a manner that operation of the apparatus could proceed without interruption. In the batch mode the equipment may also be placed near the electrical apparatus the contaminated fluid may be transported to the equipment.
  • the equipment here a transformer
  • the equipment is first drained to remove the bulk of the PCB's therefrom.
  • the transformer is then preferably washed with an amount of solvent, or leaching fluid, of from about one to about ten percent of its volume to remove any major gross puddles of PCB's.
  • the liquid solvent, or leaching fluid is dispersed throughout the case to flush out radiators and other parts of the transformer.
  • This solvent is then either removed from the transformer and stored for further processing at the site or run through the distillation unit as hereinafter described in the practice of the invention to separate it from the PCB's. Maintenance would be preferably performed on the apparatus to change gaskets and the like during this period.
  • the electrical apparatus here a transformer
  • a transformer has been processed in the manner which is normal to the industry in preparation for refilling with a non-PCB liquid.
  • Bulk liquid has been drained, and significant pools have been removed so that the residual PCB's available for contaminating the new fluid amounts to small amounts relative to the total liquid capacity of the transformer.
  • significant amount of PCB's remain absorbed in the core of the transformer, available to leach out once the transformer is refilled with dielectric fluid and placed back-on-line.
  • the transformer may be conveniently fitted with means for removing the fluid, connections and valves and the like, to provide for conducting leaching fluid in and out of the transformer without interrupting on-line, energized cleaning and reclassification in accordance with this invention.
  • the added valves allow the possibility of refilling of the transformer with a dielectric fluid different from the leaching fluid with a minimum of interruption, if any, of the operation of the transformer.
  • a distillation unit as described herein is attached to fittings, hereinafter described, on the transformer which, for purposes of this discussion, is filled with a liquid leaching fluid.
  • the liquid leaching fluid may be any fluid which is a solvent for the PCB and which has a boiling point sufficiently distant from that of the PCB to be easily separated by distillation; i.e., having a boiling point sufficiently below that of the PCB to form a sharp separation.
  • PCB compounds normally used for electrical apparatus are usually a wide range of cogeners which boil within the range of about 250° to about 500°C.
  • Commonly used PCB containing fluids were called askarels which were often mixtures of biphenyls having differing degrees of chlorination in a trichlorobenzene (TCB) solvent; for example, common mixtures contained from about 50% to about 85% mixed PCB's and corresponding from about 15% to about 50% TCB.
  • TCB trichlorobenzene
  • the leaching fluid will also have a boiling point sufficiently high to avoid special equipment requirements for condensation of vapors that are generated.
  • the leaching fluid should have the essential properties of a coolant dielectric fluid and be compatible with the internal core of the transformer such that energized operation of the transformer is possible during the steps of the cleaning and reclassification process.
  • it is important, as is well known to those skilled in the art, to avoid exposure of the core to oxygen and moisture. During operation this is assured by including a siphon leg equipped with a siphon breaking means which controls flow from the transformer to the distillation apparatus which will stop flow of leaching fluid and cause the distillation to stop in the event of danger of the core becoming exposed.
  • a preferred leaching fluid for use in the practice of this invention is perchloroethylene, boiling point about 121°C, either the pure substance having less than about 100 ppm halohydrocarbon contaminants as described in U. S. Patent No. 4,312,794 or an inhibited perchloroethylene as described in U. S. Patent No. 4,293,433, both of which are incorporated herein by reference for all purposes for the disclosure therein made.
  • Another preferred leaching liquid would be an inhibitor stabilized perchloroethylene containing from 200 ppm to about 500 ppm of trichloroethylene.
  • any of the leaching fluid containing perchloroethylene as described above may be used alone or in conjunction with a hydrocarbon diluent, preferably from about 1% to about 30% by weight thereof, preferably boiling within about 10°C of the perchloroethylene in order to provide an easy separation by distillation from the PCB's.
  • the hydrocarbon diluent preferably would be selected to preserve the non-flammable nature of the perchloroethylene fluid.
  • a distillation system can be attached on site as hereinafter described, to the transformer and operated either continuously or periodically, circulating the leaching fluid from the transformer through the distillation unit where PCB's are removed from the fluid and cleaned leaching fluid is circulated back to the transformer.
  • a transformer T2 is connected to a combination of two interconnected single stage distillation columns substantially as schematically shown.
  • the transformer T2 with the core W2 is filled with a leaching fluid F such as perchloroethylene.
  • the leaching fluid F is withdrawn from transformer T2 through nozzle 202 at or near the bottom of transformer T, line 204, valve 206 and loop 208 (the purpose of which is explained below) to line 210 through which it is introduced into a first distillation column D2.
  • Distillation column D2 preferably has a single stage distillation zone in still 214 and is operated at substantially zero reflux except for such concentration as might occur in exit overhead line 218.
  • the leaching fluid F in first distillation column D2 is heated in still 214 through the introduction of heat, shown as coils 216 preferably electric or with steam or one of any other well known heating fluids as an alternative, to a temperature sufficient to boil the leaching fluid from the PCB's.
  • this temperature will be from about 120°C to about 180°C, more preferably from about 120°C to about 150°C.
  • the overhead stream produced from first distillation column D2 will preferably be substantially free of PCB's at later stages of transformer cleaning, more preferably about 2 ppm by weight PCB's or less.
  • the PCB concentration in the bottoms 215 should be kept below about 20% by weight, preferably below about 10% by weight, still more preferably below 5% by weight.
  • bottoms 215 must be periodically drained or, preferably, discharged to a second distillation column D2a, where the bottoms stream is further distilled, usually at a higher temperature (as detailed below), to remove a susbtantial portion of the remaining leaching fluid from the PCB's.
  • This leaching fluid is then condensed and recycled back to distillation column D2, while the remaining PCB's are initially accumulated within the distillation column D2 and eventually discharged to a second distillation column D2a.
  • Level controller 230 may optionally actuate valve 206 to change the rate of flow from transformer T2 or heat coil 216 to raise the temperature of still 214 and reduce the volume of bottoms 215 by increased distillation until the PCB concentration in the bottom of D2 reaches about 20%, preferably about 10% or less, and more preferably about 5% or less. It is preferable to actuate valve 206 for the circulation of additional fluid from the transformer T2 to the first distillation unit D2. Other schemes for accomplishing basic control of D2 will be appreciated by one skilled in the art.
  • bottoms 215 are preferably drained through line 234, valve 232 and line 236 into a second distillation column D2a.
  • Distillation column D2a like distillation column D2, preferably has a single stage distillation zone and is operated as set forth above.
  • the bottoms 215 in distillation column D2a is heated in a still 214a through the introduction of heat, shown as coils 216a preferably electric or with steam or one of any other well known heating fluids as an alternative, to a temperature sufficient to boil a susbtantial amount of the leaching fluid from the PCB's.
  • this temperature will be from about 120°C to about 210°C, more preferably from about 150°C to about 180°C.
  • the leaching fluid is vaporized from the bottoms stream 215a to produce a PCB concentration of from about 70% to about 95%, more preferably from about 80% to about 95%, in the bottoms 215a. Such concentrations reduces the volume of waste for ultimate disposal to about one forth to one tenth of what it would be with only a single stage.
  • the level of bottoms 215a will be monitored and controlled by a controller (not shown) operating heater 216a or valve 232a.
  • the bottoms 215a rich in PCB's may be either accumulated throughout the cleaning period or removed periodically to purge the PCB's from distillation column D2a through line 234a, valve 232a and line 236a to storage and/or further disposal.
  • bottoms from D2 are fed to D2a through valve 232 and line 236 until the controller 230a signals that D2a is full through its high level switches (HLS).
  • HLS high level switches
  • Valve 232 is then closed and heat is applied to D2a to boil leaching fluid away from PCB's. This proceeds until the level of liquid in the bottom of second column D2a falls enough to trigger the low level switch (LLS).
  • the controller optionally can open valve 232 to receive more fluid from first column D2 or temporarily turn off the heat source to second column D2a.
  • the majority of the PCB's in the bottom of first column D2 is transferred to second column D2a.
  • Second distillation zone D2a can be designed to accommodate up to about 50% PCB's and chlorinated benzenes (i.e., TCB solvent) preferably up to about 80% PCB's and chlorinated benzenes, and more preferably up to about 90% PCB's and chlorinated benzenes.
  • PCB's and chlorinated benzenes i.e., TCB solvent
  • the overhead stream produced by distillation column D2a exits through line 218a as a vapor and proceeds to a condensing means C2a, where the vapor is condensed into liquid through heat exchange, preferably in a finned heat exchanger exposed to atmospheric air for reducing the temperature of the overhead stream.
  • the condensate exits condenser C2a through line 220a and is recycled into the bottom of distillation column D2 wherein it commingles with bottoms 215 and fluid entering from line 210 for further treatment therein.
  • the overhead stream produced by distillation column D2 exits through line 218 as a vapor and proceeds to a condenser C2, where the vapor is condensed into liquid through heat exchange, preferably in a finned heat exchanger exposed to atmospheric air for reducing the temperature of the overhead stream.
  • the condensate exits condenser C2 through line 220 and valve 222 and proceeds through line 224 for return through valve 226 and nozzle 228 to the transformer T2.
  • leaching fluid make-up may be added, for example, through line 240, valve 242 and line 244 into line 224 and thus to transformer T2 as previously described. Very little leaching fluid will be removed from still 214a, however, due to the high PCB concentration and low volume of bottoms 215a. Leaching fluid can additionally be removed, if desired, from line 220 through line 252, valve 250 and line 254. When draining transformer T2 for the replacement of the leaching fluid with a permanent fluid, the leaching fluid can be drained from line 210 through line 258, valve 256 and line 266.
  • a loop 208 is preferably installed between line 204 and 210, and a siphon breaker 272 is installed above fluid level at nozzle 268 and valve 270 (optional) in loop 208 which operators to open if fluid F drops below the limits of level controller 273.
  • Loop 208 is an arched section between lines 204 and 210, with the apex 209 of the arch being higher in elevation than the top of core W2 and below the surface of fluid F normally present in transformer T2.
  • the entrance of line 210 into first distillation zone D2 is usually below the level fluid F in transformer T2 to provide gravity feed.
  • leaching fluid level drops in transformer T2 exposing the apex 209 of loop 208 to a liquid free void in transformer T2 a potential siphon is broken. This stops the draining of transformer T2 and protects the core W2.
  • the level of fluid in transformer T2 exceeds the level of the apex 209 the flow of fluid F again starts to the first distillation unit D2. Since transformer often have sediment which invades the leaching fluid F the siphon breaker is a protection against the consequences of valve 206 becoming stuck in the open position.
  • the embodiment as depicted in the drawing 1 and discussed above provides several operational advantages.
  • the dual distillation zones provide the effectiveness of multistage distillation without the process complications attendant to such.
  • the apparatus of shown in the drawing requires no more than on/off process control, whereas a multistage unit would require substantially more and complex proportional or proportional/integral controls, as well as additional equipment in the form of reflux tanks, reflux pumps, flow monitors and controls. Many situations can arise during the operation of this equipment which would require an automatic pause or temporary shutdown of the equipment. Due to the simplified process control of the system of the preferred embodiment, these interruptions in service are easily handled by the on/off nature of the process control. Achievement of such control with a multistage unit is, as is well known by one skilled in the art, at best costly and complicated.
  • Table 1 shows results comparing a single stage processor without a second distillation zone and a first single stage distillation zone combined with a second bottom distillation zone as depicted in the drawing.
  • the combination includes the ability to concentrate PCB's in second bottoms D2a, stream, control PCB concentration in column D2 at desired range and ability to control PCB accumulation at less thand 2ppm in the holding tank for recycle to the first distillation zone.
  • the first distillation unit D2 was configured to draw fluid from the simulated transformer periodically as fluid boiled, thereby lowering the liquid level in the still 214.
  • the temperature in the still 214 varied with the concentration of PCB's, ranging from about 121°C (minimal PCB content) to about 135 to 140°C (40% to 50% PCB's).
  • Condenser leaching fluid was accumulated in holding tank 119 not shown and recirculated to the transformer.
  • regular increments of askarel were added to D2. Due to the boiling and clean recycle action of D2, the level of PCB's in the still 214 rose rapidly, leveling out when additions of askarel to the transformer were stopped and rising again when additions of askarels resumed.
  • the second single stage distillation unit D2a was connected to first distillation unit D2 and portions of the contents of the first still 214 were periodically fed to second distillation zone D2a where they concentration of PCB's, ranging from about 125°C (about 10% PCB's) to about 190 to 210°C (about 90% PCB's).
  • PCB's were accumulated in second distillation zone D2a and boiled fluids were recycled to the boiling chamber of first distillation zone D2.
  • Table 1 immediately following the startup of second distillation zone D2a, the PCB concentration of the boiling chamber in D2 begins to fall while PCB concentration of the still 214a begins to rise. The decline in PCB concentration in the still 214 occurs despite the steady addition of PCB's to the transformer.
  • the concentration of PCB's in the still 214 falls, the residual PCB content of condensed fluid in the holding tank 119 rapidly falls to less than 2 ppm and remains there. At the same time, the concentration of PCB's in the still 214a rises rapidly. At steady state, with no addition of PCB's to the transformer, the concentration of PCB's in the first distillation zone D2 falls to about 0.1% and all of the PCB's collect in the still 214a.

Claims (5)

1. Vorrichtung zum Reinigen von mit polychlorierten Biphenylen verunreinigten Fluiden, die von einer elektrischen Vorrichtung stammen, vorzugsweise mit minimaler Unterbrechung des Betriebes der elektrischen Vorrichtung vor ihrer Umklassifizierung, dadurch gekennzeichnet, daß die Reinigungsvorrichtung (D₂, D2a, C₂, C2a) zum Erleichtern und Vereinfachen ihres bedienungsfreien Betriebes eine Einrichtung (204, 208, 210) aufweist, die mit der elektrischen Vorrichtung (T) verbindbar und geeignet ist, ein mit polychlorierten Biphenylen verunreinigtes Laugungsfluid von der elektrischen Vorrichtung (T) abzuziehen und einer ersten einstufigen Destillierkolonne (D₂) zuzuleiten, die so ausgebildet ist, daß sie einen im wesentlichen aus dem Laugungsfluid bestehenden Kopfdampfstrom (218) und einen mit polychlorierten Biphenylen verunreinigten Bodenstrom (215) erzeugt, ferner eine den Kopfstrom (218) empfangende Kondensationseinrichtung (D₂) zum Kondensieren des in dem Kopfstrom enthaltenen Dampfes, der im wesentlichen aus dem von der ersten einstufigen Kolonne (D₂) kommenden Laugungsfluid besteht, eine Einrichtung (220, 224) zum Zurückführen des kondensierten Laugungsfluids zu der elektrischen Vorrichtung (T), eine Einrichtung (232, 234, 236) zum Abziehen des Bodenstroms (215) von der ersten einstufigen Kolonne (D₂) und zum Zuleiten des Bodenstroms (215) zu einer zweiten einstufigen Kolonne (D2a), die so ausgebildet ist, daß sie einen das Laugungsmedium enthaltenden zweiten Kopfdampfstrom (218a) und einen polychlorierte Phenyle enthaltenden zweiten Bodenstrom (215a) erzeugt, eine den zweiten Kopfdampfstrom (218a) empfangende zweite Kondensationseinrichtung (C2a) zum Kondensieren des verdampften Laugungsfluids in dem Kopfstrom (218a) und eine Einrichtung (220a) zum Zuleiten des von dem Kondensator (C2a) kommenden kondensierten Laugungsfluids zu der ersten einstufigen Kolonne (D₂).
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Einrichtung zum Abziehen von Laugungsmedium von der elektrischen Vorrichtung eine Schleife (208) aufweist, die einen zwischen der elektrischen Vorrichtung und der ersten einstufigen Destillationskolonne (D₂) angeordneten Trennsiphon (272) enthält.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die den von der ersten einstufigen Kolonne (D₂) kommenden Kopfstrom (218) empfangende Kondensationseinrichtung (C₂) ein unter atmosphärischem Druck arbeitender Kondensator ist.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die zweite Kondensationseinrichtung (C2a) ein unter atmosphärischem Druck arbeitender Kondensator ist.
5. Verwendung der Vorrichtung nach einem der vorhergehenden Ansprüche zum Reinigen eines Transformators.
EP87905135A 1986-08-01 1987-07-30 Wiedereingliederung mit pcb verunreinigter elektrischer apparate Expired - Lifetime EP0321469B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87905135T ATE76766T1 (de) 1986-08-01 1987-07-30 Wiedereingliederung mit pcb verunreinigter elektrischer apparate.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US89161286A 1986-08-01 1986-08-01
US891612 1986-08-01

Publications (2)

Publication Number Publication Date
EP0321469A1 EP0321469A1 (de) 1989-06-28
EP0321469B1 true EP0321469B1 (de) 1992-06-03

Family

ID=25398525

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87905135A Expired - Lifetime EP0321469B1 (de) 1986-08-01 1987-07-30 Wiedereingliederung mit pcb verunreinigter elektrischer apparate

Country Status (7)

Country Link
EP (1) EP0321469B1 (de)
JP (1) JPH02501342A (de)
KR (1) KR880701574A (de)
AU (2) AU602347B2 (de)
BR (1) BR8707765A (de)
CA (1) CA1332140C (de)
WO (1) WO1988000849A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9209587U1 (de) * 1992-07-17 1993-11-18 Nukem Gmbh Vorrichtung zum Reinigen von mit PCB kontaminierten elektrischen Geräten
JP4494139B2 (ja) * 2004-09-13 2010-06-30 三菱電機プラントエンジニアリング株式会社 油入電気機器の絶縁油処理方法および絶縁油処理装置
JP6017247B2 (ja) * 2012-09-27 2016-10-26 日本シーガテック株式会社 ポリ塩化ビフェニルに汚染された油が収容された変圧器の浄化方法
JP7082598B2 (ja) * 2019-09-13 2022-06-08 Jfe環境テクノロジー株式会社 Pcb汚染機器をクリーニングする方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4312794A (en) * 1980-04-02 1982-01-26 Electric Power Research Institute, Inc. Ultra pure tetrachloroethylene dielectric fluid
US4299704A (en) * 1980-05-19 1981-11-10 General Electric Company Method for removing polychlorinated biphenyls from contaminated transformer dielectric liquid
US4353798A (en) * 1980-05-19 1982-10-12 General Electric Company Apparatus for removing polychlorinated biphenyls from contaminated transformer dielectric liquid
US4425949A (en) * 1981-02-03 1984-01-17 Diamond Shamrock Corporation Process for removing undesirable substances from electrical devices
US4738780A (en) * 1984-11-27 1988-04-19 Union Carbide Corporation Method for replacing PCB-containing coolants in electrical induction apparatus with substantially PCB-free dielectric coolants

Also Published As

Publication number Publication date
CA1332140C (en) 1994-09-27
EP0321469A1 (de) 1989-06-28
AU602347B2 (en) 1990-10-11
WO1988000849A1 (en) 1988-02-11
AU7784787A (en) 1988-02-24
AU7001591A (en) 1991-05-16
KR880701574A (ko) 1988-11-03
JPH02501342A (ja) 1990-05-10
BR8707765A (pt) 1989-08-15

Similar Documents

Publication Publication Date Title
US5082535A (en) Apparatus for the extraction of oil or polychlorinated biphenyl from electrical parts through the use of solvents and for distillation of the solvents
US4425949A (en) Process for removing undesirable substances from electrical devices
KR900006534B1 (ko) 전기 유도기구내 pcb-함유 냉각액을 pcb가 거의 함유되지 않은 냉각액으로 교체시키는 방법
US4124834A (en) Electrical inductive apparatus
US5004000A (en) Apparatus for rinsing surfaces with a non-aqueous liquid
US4685972A (en) Process for removing PCB's from electrical apparatus
US4814021A (en) Apparatus and method for reclassifying electrical apparatus contaminated with PCB
US4744905A (en) Method for replacing PCB containing coolants in electrical induction apparatus with substantially PCB-free dielectric coolants
EP0098811B1 (de) Verfahren zur Dekontamination von mit Polychlorbiphenyl verunreinigter Elektro-Mechanikvorrichtung
EP0321469B1 (de) Wiedereingliederung mit pcb verunreinigter elektrischer apparate
US4699667A (en) Removing residual PCB S from transformers
US4204913A (en) Solvent recovery apparatus
US4790337A (en) Apparatus for removing PCB's from electrical apparatus
FI78367C (fi) Foerfarande foer att ersaetta pcb-haltiga askarelblandningar i elektriska induktionsanordningar med pcb-fria dielektriska kylmedel.
DE4011877A1 (de) Waermepumpenverfahren zur destillation und trocknung
US5082012A (en) Simplified apparatus for decontaminating electrical apparatus contaminated with PCBs
JP2017164687A (ja) Pcb汚染機器解体方法
JP2005103388A (ja) Pcb汚染物の洗浄処理方法および洗浄処理システム
US4913178A (en) Process and apparatus for removing PCB's from electrical apparatus
GB2220659A (en) Process and apparatus for removing pcb's from electrical apparatus
EP0109366A1 (de) Verfahren zur Entgiftung von Mineralölen und Silicone enthaltenden dielektrischen Flüssigkeiten
JP3315355B2 (ja) Pcb汚染物の洗浄剤
JPS61174705A (ja) Pcbを含有する冷媒をpcbを含有しない冷媒で置換する方法
US20010015217A1 (en) Method of decontaminating pcb transformers
AU656340B2 (en) Cleaning of articles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ENSR CORPORATION (A DELAWARE CORPORATION)

17Q First examination report despatched

Effective date: 19900417

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 76766

Country of ref document: AT

Date of ref document: 19920615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3779646

Country of ref document: DE

Date of ref document: 19920709

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EPTA Lu: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940731

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19940801

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940804

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940809

Year of fee payment: 8

Ref country code: DE

Payment date: 19940809

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940810

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940811

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940826

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940902

Year of fee payment: 8

EAL Se: european patent in force in sweden

Ref document number: 87905135.7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950730

Ref country code: GB

Effective date: 19950730

Ref country code: AT

Effective date: 19950730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950731

Ref country code: LI

Effective date: 19950731

Ref country code: CH

Effective date: 19950731

Ref country code: BE

Effective date: 19950731

BERE Be: lapsed

Owner name: ENSR CORP. (A DELAWARE CORP.)

Effective date: 19950731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950730

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960402

EUG Se: european patent has lapsed

Ref document number: 87905135.7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050730