EP0319468A2 - Method and installation for the purification of exhaust air from a tenter or a singing machine - Google Patents

Method and installation for the purification of exhaust air from a tenter or a singing machine Download PDF

Info

Publication number
EP0319468A2
EP0319468A2 EP88810777A EP88810777A EP0319468A2 EP 0319468 A2 EP0319468 A2 EP 0319468A2 EP 88810777 A EP88810777 A EP 88810777A EP 88810777 A EP88810777 A EP 88810777A EP 0319468 A2 EP0319468 A2 EP 0319468A2
Authority
EP
European Patent Office
Prior art keywords
air
exhaust
burner
excess
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88810777A
Other languages
German (de)
French (fr)
Other versions
EP0319468A3 (en
EP0319468B1 (en
Inventor
Arthur Natter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT88810777T priority Critical patent/ATE101254T1/en
Publication of EP0319468A2 publication Critical patent/EP0319468A2/en
Publication of EP0319468A3 publication Critical patent/EP0319468A3/en
Application granted granted Critical
Publication of EP0319468B1 publication Critical patent/EP0319468B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C3/00Stretching, tentering or spreading textile fabrics; Producing elasticity in textile fabrics
    • D06C3/02Stretching, tentering or spreading textile fabrics; Producing elasticity in textile fabrics by endless chain or like apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply

Definitions

  • VDI guidelines 2442 of June 1987 suggest heating the exhaust air in a post-combustion system to about 750 ° to 900 ° C using a burner and then cooling it again with a heat exchanger.
  • the exhaust air to be cleaned is heated in counterflow so that the fuel consumption can be kept as low as possible.
  • Such an locations are extremely expensive and, apart from reducing the environmental impact, have no benefit.
  • the waste heat still contained in the gas is rarely economically usable.
  • the gas-gas heat exchanger operated at high temperature also poses considerable material problems, so that a desired temperature above 800 ° C is often not allowed to be driven.
  • the invention has for its object to provide a method and a system for cleaning the exhaust air of a tenter or scab, with which the exhaust air can be cleaned as completely as possible and its heat content can be recovered as possible. This object is achieved by the combination of features according to claims 1 and 6.
  • Textile finishing companies with tenter frames or scabs usually have steam boilers of sufficient size to clean the entire exhaust air from the tenter frame or scabs in the manner according to the invention.
  • these companies there is only a thermally insulated exhaust air line between the stenter and the boiler as well as a change of the boiler control, possibly also of the burner.
  • the waste heat can be recovered and the fuel costs reduced significantly.
  • the high excess of air in the process according to the invention also results in a marked reduction in the NO x content in the exhaust gas.
  • a tenter frame 1 has a housing 2, which is closed on all sides, with an inlet slot 3 and with an outlet slot 4 for a fabric web 5.
  • the interior of the housing 2 is connected to a suction blower 7 via an exhaust air line 6.
  • the fan 7 promotes the exhaust air in a thermally insulated connection Line 10.
  • the insulation of line 10 serves on the one hand to avoid heat losses, and on the other hand to avoid condensation of water and pollutants from the exhaust air.
  • the connecting line 10 is connected to the combustion air supply opening 12 of a burner 13 of a steam boiler 21.
  • a further thermally insulated line 11 extends between the opening 12 and the burner 13.
  • the combustion air is fed to the burner 13 via a burner fan 14.
  • a compensating chimney 15 branches off from the line 10.
  • a fresh air intake 22 branches off from the line 11. Controlled by a flap 23, the combustion air is obtained either from the line 10 or from the nozzle 22.
  • the burner 13 has a fuel nozzle 24 with a fuel feed line 25.
  • a fuel valve 26 for regulating the fuel flow is arranged in the feed line 25.
  • a steam line 27 and an exhaust gas line 28 are connected to the steam boiler 21.
  • Three heat exchangers 29, 30, 31 are arranged in the exhaust line 28, the first heat exchanger 29 cooling the exhaust gas and thus preheating the boiler feed water conveyed by a pump 34 from a feed water tank 32.
  • the preheated feed water is fed to the boiler 21 via a feed line 33.
  • the tank 32 is fed with fresh water via a line 35.
  • the fresh water is preheated by the second heat exchanger 30.
  • the heat exchanger 31 is used to heat process or heating water.
  • the cooled exhaust gas escapes through a chimney 36.
  • the fuel valve 26 is regulated by a regulator 40.
  • the controller is given the setpoint e.g. the steam pressure of the boiler 21 measured by a sensor 41 is predetermined. When the vapor pressure drops, the valve 26 opens proportionally.
  • the regulator 40 regulates a flap 42 in the combustion air supply duct 43 of the burner 13.
  • Natural gas is expediently used as fuel.
  • the exhaust gas in the heat exchangers 29, 30, 31 can be cooled below the dew point and thus both the sensible and the latent waste heat of the stenter exhaust air can be largely recovered.
  • the upper calorific value of the fuel and the pollutants in the exhaust air is used. Due to the high excess of air, the combustion is reduced material requirements reached up to around 20%.
  • the heat exchangers 30 and 31 are expediently omitted.
  • the burner 13 ' is supplied with primary and secondary air controlled by the flap 42 as a function of the boiler load, the excess air again increasing as the boiler load decreases.
  • Another channel 50 branches off from channel 43 upstream of flap 42. This opens into an annular space 51 around the channel 43.
  • An annular channel 52 leads from the annular space 51 to the burner head in the boiler 21. Via this annular channel 52, tertiary air can be fed to the burner head.
  • a flap 53 is arranged in the channel 50. The flap 53 is controlled by a further controller 54.
  • the controller 54 receives the difference between the exhaust air temperature upstream and downstream of the compensating chimney 15 as a setpoint.
  • a temperature sensor 55 is arranged in each of the lines 10, 11.
  • the temperature difference is set to 5 ° C., for example, so that a small amount of fresh air always flows in through the chimney 15. If the temperature difference increases, the controller 54 reacts and proportionally closes the flap 53. When the temperature difference decreases, the flap 53 is opened.
  • FIG. 3 shows a third embodiment of the invention, the same reference numerals being used for the same parts.
  • the burner 13 ⁇ in turn has a tertiary air duct 50, 51, 52.
  • the flap 42 for primary and secondary air is decoupled from the fuel control valve 26 and is controlled by a servomotor 60.
  • a second servomotor 61 controls the tertiary air damper 53.
  • the two servomotors 61 are regulated by a temperature sensor 62 in the compensation chimney 15. This regulation works analogously to that with the two temperature sensors 55 in FIG. 2: the setpoint value of the temperature of the sensor 62 is set, for example, about 10 ° C. above the outside temperature.
  • the signal from the sensor 62 is applied to the two servomotors 60, 61 via two controllers 63, 64.
  • a variable upper limit of the opening cross section is provided in the controller 64.
  • the upper limit is given to the controller 64 by a temperature sensor 66 at the end of the flame tube of the boiler 21. At this point, the temperature should not fall below 800 ° so that the safe combustion of all pollutants is guaranteed and the emission of CO is avoided.
  • This configuration achieves an optimal efficiency over the entire load range of the boiler 21 with minimal fresh air intake.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Treating Waste Gases (AREA)
  • Air Supply (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Cleaning In General (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Incineration Of Waste (AREA)
  • Nozzles For Electric Vacuum Cleaners (AREA)

Abstract

Die durch ein Gebläse (7) geförderte Abluft des Spannrahmes (1) wird als Verbrennungsluft dem Brenner (13) eines Dampfkessels (21) zugeleitet. Der Brenner (13) wird mit variablem hohem Luftüberschuss von λ = 1,5 bis λ = 3,5 betrieben. Die Kesselleistung wird durch die Brennstoffzufuhr geregelt. Bei geringer Kessellast wird der Luftüberschuss erhöht. Das Kesselabgas wird über drei Wärmetauscher (29,30,31) unter den Taupunkt abgekühlt. Damit wird eine vollständige Verbrennung der organischen Schadstoffe der Spannrahmenabluft und zugleich eine gut nutzbare Rückgewinnung der Spannrahmenabwärme und eine Senkung des Brennstoffbedarfes des Dampfkessels erreicht. Das gleiche Verfahren eignet sich auch zur Reinigung der Abluft von Sengen.The exhaust air from the clamping frame (1), which is conveyed by a blower (7), is fed as combustion air to the burner (13) of a steam boiler (21). The burner (13) is operated with a variable high excess of air from λ = 1.5 to λ = 3.5. The boiler output is regulated by the fuel supply. If the boiler load is low, the excess air is increased. The boiler exhaust gas is cooled down below the dew point via three heat exchangers (29, 30, 31). This results in complete combustion of the organic pollutants in the stenter frame exhaust air and at the same time a usable recovery of the stenter frame waste heat and a reduction in the fuel requirement of the steam boiler. The same procedure is also suitable for cleaning the exhaust air from Sengen.

Description

Bei der Texilveredelung werden Stoffbahnen z.B. zum thermo­fixieren in Spannrahmen auf etwa 180° erwärmt. Die Abluft solcher Spannrahmen wird mittels eines Gebläses abgesaugt und üblicherweise über ein Kamin ins Freie geleitet. Diese Abluft ist erheblich mit Kohlenwasserstoffen, unter anderem Paraphinen, belastet und riecht übel. Ausserdem enthält sie wegen ihrer hohen Temperatur von etwa 140° C erhebliche Energiemengen. Versuche diese Energie in einem Wärmetauscher rückzugewinnen, sind bisher gescheitert, weil diese Wärmetauscher sehr rasch verschmutzen und kaum zu reinigen sind.In textile finishing, webs of fabric e.g. heated to about 180 ° for heat setting in stenter. The exhaust air from such stenter frames is extracted by means of a blower and usually passed outside through a chimney. This exhaust air is heavily contaminated with hydrocarbons, including paraphines, and smells bad. It also contains considerable amounts of energy due to its high temperature of around 140 ° C. Attempts to recover this energy in a heat exchanger have so far failed because these heat exchangers get dirty very quickly and are difficult to clean.

Zur Beseitigung von Schadstoffen in Abluft wird in den VDI-­Richtlinien 2442 vom Juni 1987 vorgeschlagen, in einer Nach­verbrennungsanlage die Abluft mittels eines Brenners auf etwa 750° bis 900° C zu erhitzen und anschliessend mit einem Wärme­tauscher wieder abzukühlen. Im Wärmetauscher wird dabei die zu reinigende Abluft im Gegenstrom erhitzt, damit der Brenn­stoffaufwand möglichst gering gehalten werden kann. Solche An­ lagen sind ausserordentlich teuer und bringen ausser der Reduktion der Umweltbelastung keinen Nutzeffekt. Die im Gas noch enthaltene Abwärme ist selten sinnvoll wirtschaftlich nutzbar. Der auf hoher Temperatur betriebene Gas-Gas-Wärme­tauscher stellt ausserdem erhebliche Materialprobleme, so dass häufig eine an sich erwünschte Temperatur über 800° C nicht gefahren werden darf.In order to remove pollutants in exhaust air, VDI guidelines 2442 of June 1987 suggest heating the exhaust air in a post-combustion system to about 750 ° to 900 ° C using a burner and then cooling it again with a heat exchanger. In the heat exchanger, the exhaust air to be cleaned is heated in counterflow so that the fuel consumption can be kept as low as possible. Such an locations are extremely expensive and, apart from reducing the environmental impact, have no benefit. The waste heat still contained in the gas is rarely economically usable. The gas-gas heat exchanger operated at high temperature also poses considerable material problems, so that a desired temperature above 800 ° C is often not allowed to be driven.

In Melliand Textilberichte 8/1985, Seiten 603 bis 604 wird von Peter ter Duis vorgeschlagen, einen Teil der Abluft eines Spannrahmens einem Dampfkessel als Verbrennungsluft zuzuführen. Dabei wird die Ansaugleitung des Brenners an das Abluftkamin des Spannrahmens angeschlossen. Bei der beschriebenen Anlage kann bei Volllast des Dampfkessels in gewissen Fällen die ge­samte Abluft des Spannrahmens gereinigt werden. Gleichzeitig kann der Wirkungsgrad der Feuerungsanlage verbessert werden, weil ihre heisse Verbrennungsluft zugeführt wird. Bei Voll­last des Kessels wird über das Kamin zusätzlich Frischluft an­gesaugt, bei reduzierter Last entweicht hingegen der über­schüssige Teil der Spannrahmenabluft über das Kamin ins Freie. Ein erheblicher Nachteil dieser Anlage ist demzufolge, dass bei Teillastbetrieb des Kessels nur ein Bruchteil der Spann­rahmenabluft gereinigt werden kann und die Umweltbelastung so­mit im erheblichen Ausmass weiter besteht.In Melliand Textile Reports 8/1985, pages 603 to 604, Peter ter Duis suggests that part of the exhaust air from a tenter be fed to a steam boiler as combustion air. The burner's suction line is connected to the exhaust chimney of the stenter. In the system described, the full exhaust air of the stenter can be cleaned in certain cases at full steam boiler load. At the same time, the efficiency of the combustion system can be improved because its hot combustion air is supplied. When the boiler is at full load, fresh air is also sucked in through the chimney, while the excess part of the stenter exhaust air escapes through the chimney when the load is reduced. A significant disadvantage of this system is therefore that only a fraction of the stenter exhaust air can be cleaned when the boiler is operating at partial load and the environmental impact therefore continues to exist to a considerable extent.

Aehnliche Probleme bestehen beim Betrieb einer Senge, wobei hier die Geruchsprobleme verschärft sind, die Abluft aber weniger feucht ist und deshalb weniger Wärmeinhalt hat. Die Abluft einer Senge enthält mehr Feststoffanteile als jene eines Spannrahmens.Similar problems exist when operating a scab, whereby the odor problems are exacerbated, but the exhaust air is less humid and therefore has less heat content. The exhaust air one Senge contains more solids than that of a stenter.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Anlage zur Reinigung der Abluft eines Spannrahmens oder einer Senge zu schaffen, mit welchem die Abluft möglichst voll­ständig gereinigt und ihr Wärmeinhalt möglichst zurückge­wonnen werden kann. Diese Aufgabe wird durch die Merkmals­kombination gemäss den Ansprüchen 1 und 6 gelöst.The invention has for its object to provide a method and a system for cleaning the exhaust air of a tenter or scab, with which the exhaust air can be cleaned as completely as possible and its heat content can be recovered as possible. This object is achieved by the combination of features according to claims 1 and 6.

Herkömmliche Wärmeversorgungseinrichtungen (z.B. Dampf-, Heiz-, Wärmeträgerölkessel, usw.) werden immer mit einem möglichst geringen und über den gesamten Leistungsbereich konstanten Luftüberschuss betrieben, weil ein höherer Luftüberschuss den Wirkungsgrad reduziert und zu Verlusten führt. Die an der Verbrennung nicht beteiligte Luft muss ja von der Ansaug­temperatur auf die Abgastemperatur erhitzt werden. Beim er­findungsgemässen Verfahren wird dieser allgemein gültige Grund­satz verletzt. Ueberraschenderweise hat der grosse Luftüber­schuss beim erfindungsgemässen Verfahren im Teillastbetrieb der Wärmeversorgungseinrichtung keine oder nur eine unbedeutende Wirkungsgradverminderung zur Folge, auch wenn die Abgaswärme nicht ausgenützt wird. Es hat sich nämlich gezeigt, dass die Verbrennung der Schadstoff-Fracht in der Abluft des Spannrahmens im Fixierbetrieb zur Erwärmung dieser Luft um etwa 50 bis 100° C ausreicht. Im Gegensatz zu allen bekannten Wärmeversorgungs­einrichtungen kann also beim erfindungsgemässen Verfahren ohne Wirkungsgradeinbusse mit einem grossen Luftüberschuss gearbeitet werden. Daher kann, im Gegensatz zur zuvor beschreibenen An­lage nach ter Duis,bei der erfindungsgemässen Anlage auch im Teillastbetrieb der Wärmeversorgungseinrichtung die ge­samte Abluft des Spannrahmens oder der Senge gereinigt werden.Conventional heat supply systems (e.g. steam, heating, heat transfer oil boilers, etc.) are always operated with the smallest possible excess of air, which is constant over the entire performance range, because a higher excess of air reduces the efficiency and leads to losses. The air not involved in the combustion must be heated from the intake temperature to the exhaust gas temperature. This generally applicable principle is violated in the method according to the invention. Surprisingly, the large excess of air in the method according to the invention in partial-load operation of the heat supply device results in no or only an insignificant reduction in efficiency, even if the exhaust gas heat is not used. It has been shown that the combustion of the pollutant in the exhaust air of the tenter frame in the fixing mode is sufficient to heat this air by about 50 to 100 ° C. In contrast to all known heat supply devices, a large excess of air can be used in the method according to the invention without loss of efficiency will. Therefore, in contrast to the previously described system according to ter Duis, in the system according to the invention, the entire exhaust air of the stenter or the scythe can also be cleaned in the partial load operation of the heat supply device.

Da beim erfindungsgemässen Verfahren die organischen Schad­stoffe der Abluft vollständig verbrannnt werden, ist es möglich, das Abgas erheblich abzukühlen und somit die fühlbare Wärme der Spannrahmenabluft zurückzugewinnen. Eine besonders grosse Energierückgewinnung ist möglich, wenn als Brennstoff im Brenner Erdgas verwendet und das Abgas unter den Taupunkt abgekühlt wird. Dabei wird sowohl der obere Heizwert des Brennstoffes und der Schadstoffe der Abluft ausgenützt, als auch zusätzlich die latente Abwärme der Spannrahmenabluft zu einem grossen Teil rückgewonnen. Da die Spannrahmenabluft meist einen hohen Wasser­dampfgehalt hat, kann damit erheblich Energie rückgewonnen werden. Die rückgewonnene Wärme lässt sich bei einem Dampf­kessel sehr gut zur Speisewasservorwärmung verwerten. Bei dieser Betriebsweise führt eine Erhöhung des Luftüberschusses zu einer Steigerung des Wirkungsgrades und einer Reduktion des Brenn­stoffbedarfs.Since the organic pollutants of the exhaust air are completely burnt off in the method according to the invention, it is possible to cool the exhaust gas considerably and thus to recover the sensible heat of the stenter exhaust air. A particularly large amount of energy can be recovered if natural gas is used as the fuel in the burner and the exhaust gas is cooled below the dew point. Both the upper calorific value of the fuel and the pollutants in the exhaust air are used, and the latent waste heat from the stenter exhaust air is also largely recovered. Since the stenter exhaust air usually has a high water vapor content, considerable energy can be recovered. The recovered heat can be used very well in a steam boiler for preheating the feed water. In this mode of operation, an increase in excess air leads to an increase in efficiency and a reduction in fuel consumption.

Textilveredelungsbetriebe mit Spannrahmen oder Sengen haben meistens Dampfkessel von hinreichender Grösse, um die gesamte Abluft des Spannrahmes oder der Senge auf die erfindungsgemässe Art zu reinigen. Bei diesen Betrieben ist nur eine thermisch isolierte Abluftleitung zwischen den Spannrahmen und dem Kessel sowie eine Aenderung der Kesselsteuerung, allenfalls noch des Brenners erforderlich. Mit geringen Investitionskosten kann daher nebst einer vollständigen Reinigung der Abluft eine Rückgewinnung der Abwärme und eine wesentliche Reduktion der Brennstoffkosten erreicht werden. Dabei werden auch noch bei sehr hohem Luftüberschuss von z.B. λ = 3 Verbrennungstemperaturen über 1000°C erzielt, so dass eine sichere Verbrennung sämtlicher Schadstoffe erreicht wird.Textile finishing companies with tenter frames or scabs usually have steam boilers of sufficient size to clean the entire exhaust air from the tenter frame or scabs in the manner according to the invention. In these companies there is only a thermally insulated exhaust air line between the stenter and the boiler as well as a change of the boiler control, possibly also of the burner. With low investment costs, in addition to a complete cleaning of the exhaust air, the waste heat can be recovered and the fuel costs reduced significantly. Here, even with a very high air excess of, for example, λ = 3 combustion temperatures above 1000 ° C, so that a safe combustion of all pollutants is achieved.

Der hohe Luftüberschuss beim erfindungsgemässen Verfahren hat ausserdem eine markante Reduktion des NOx-Gehaltes im Abgas zur Folge.The high excess of air in the process according to the invention also results in a marked reduction in the NO x content in the exhaust gas.

Nachfolgend werden Ausführungsbeispiele der Erfindung anhand der Zeichnung erläutert. Darin zeigt:

  • Fig. 1 ein Schema einer ersten Ausführungsform,
  • Fig. 2 ein Schema einer zweiten Ausführungsform, und
  • Fig. 3 ein Schema einer dritten Ausführungsform.
Exemplary embodiments of the invention are explained below with reference to the drawing. It shows:
  • 1 is a diagram of a first embodiment,
  • Fig. 2 is a schematic of a second embodiment, and
  • Fig. 3 is a schematic of a third embodiment.

Ein Spannrahmen 1 hat ein allseits geschlossenes Gehäuse 2 mit einem Eintrittschlitz 3 und mit einem Austrittsschlitz 4 für eine Stoffbahn 5. Das Innere des Gehäuses 2 ist über eine Abluftleitung 6 mit einem Sauggebläse 7 verbunden. Das Gebläse 7 fördert die Abluft in eine thermisch isolierte Verbindungs­ leitung 10. Die Isolation der Leitung 10 dient einerseits der Vermeidung von Wärmeverlusten, andererseits um Kondensation von Wasser und Schadstoffen aus der Abluft zu vermeiden. Die Verbindungsleitung 10 ist mit der Verbrennungsluftzufuhröffung 12 eines Brenners 13 eines Dampfkessels 21 verbunden. Zwischen der Oeffnung 12 und dem Brenner 13 erstreckt sich eine weitere thermisch isolierte Leitung 11. Die Verbrennungsluft wird dem Brenner 13 über ein Brennergebläse 14 zugeführt. Bei der Zu­fuhröffnung 12 zweigt von der Leitung 10 ein Ausgleichskamin 15 ab. Um den Betrieb des Kessels 21 auch unabhängig vom Spann­rahmen 1 zu ermöglichen, zweigt von der Leitung 11 ein Frisch­luftansaugstutzen 22 ab. Gesteuert durch eine Klappe 23 wird die Verbrennungsluft entweder von der Leitung 10 oder vom Stutzen 22 bezogen. Der Brenner 13 hat eine Brennstoffdüse 24 mit einer Brennstoffzuleitung 25. In der Zuleitung 25 ist ein Brennstoff­ventil 26 zur Regelung des Brennstoffdurchflusses angeordnet. Am Dampfkessel 21 ist eine Dampfleitung 27 sowie eine Abgas­leitung 28 angeschlossen. In der Abgasleitung 28 sind drei Wärme­tauscher 29, 30, 31 angeordnet, wobei der erste Wärmetauscher 29 das Abgas abkühlt und damit das mittels einer Pumpe 34 von einem Speisewassertank 32 geförderte Kesselspeisewasser vor­wärmt. Das vorgewärmte Speisewasser wird dem Kessel 21 über eine Zuleitung 33 zugeführt. Der Tank 32 wird über eine Leitung 35 mit Frischwasser gespeist. Das Frischwasser wird durch den zweiten Wärmetauscher 30 vorgewärmt. Der Wärmetauscher 31 dient zur Er­wärmung von Prozess- oder Heizungswasser. Schliesslich entweicht das abgekühlte Abgas über ein Kamin 36.A tenter frame 1 has a housing 2, which is closed on all sides, with an inlet slot 3 and with an outlet slot 4 for a fabric web 5. The interior of the housing 2 is connected to a suction blower 7 via an exhaust air line 6. The fan 7 promotes the exhaust air in a thermally insulated connection Line 10. The insulation of line 10 serves on the one hand to avoid heat losses, and on the other hand to avoid condensation of water and pollutants from the exhaust air. The connecting line 10 is connected to the combustion air supply opening 12 of a burner 13 of a steam boiler 21. A further thermally insulated line 11 extends between the opening 12 and the burner 13. The combustion air is fed to the burner 13 via a burner fan 14. At the feed opening 12, a compensating chimney 15 branches off from the line 10. In order to enable the operation of the boiler 21 independently of the stenter 1, a fresh air intake 22 branches off from the line 11. Controlled by a flap 23, the combustion air is obtained either from the line 10 or from the nozzle 22. The burner 13 has a fuel nozzle 24 with a fuel feed line 25. A fuel valve 26 for regulating the fuel flow is arranged in the feed line 25. A steam line 27 and an exhaust gas line 28 are connected to the steam boiler 21. Three heat exchangers 29, 30, 31 are arranged in the exhaust line 28, the first heat exchanger 29 cooling the exhaust gas and thus preheating the boiler feed water conveyed by a pump 34 from a feed water tank 32. The preheated feed water is fed to the boiler 21 via a feed line 33. The tank 32 is fed with fresh water via a line 35. The fresh water is preheated by the second heat exchanger 30. The heat exchanger 31 is used to heat process or heating water. Finally, the cooled exhaust gas escapes through a chimney 36.

Das Brennstoffventil 26 wird durch einen Regler 40 geregelt. Als Sollwert wird dem Regler z.B. der durch einen Fühler 41 gemessene Dampfdruck des Kessels 21 vorgegeben. Bei sinkendem Dampfdruck öffnet das Ventil 26 proportional. Gleichzeitig wird mit dem Regler 40 eine Klappe 42 im Verbrennungsluftzu­fuhrkanal 43 des Brenners 13 geregelt. Im Gegensatz zu her­kömmlichen Brennerregelungen wird nun beim erfindungsgemässen Verfahren die Klappe 42 so gesteuert, dass der Luftüberschuss bei abnehmender Kessellast zunimmt. Wenn der Brenner 13 z.B. bei Vollast auf einen Luftüberschuss von λ= 1,2 eingestellt ist, kann die Steuerung der Klappe 42 so ausgelegt werden, dass bei 1/3-Last des Kessels 21 der Luftüberschuss aufλ = 2,2 ansteigt. Diese Aenderung gegenüber herkömmlichen Brennerregelungen ist in Fig. 1 sympolisch dargestellt durch einen Untersetzungs­hebel 44 zwischen dem Ausgang des Reglers 40 und der Klappe 42.The fuel valve 26 is regulated by a regulator 40. The controller is given the setpoint e.g. the steam pressure of the boiler 21 measured by a sensor 41 is predetermined. When the vapor pressure drops, the valve 26 opens proportionally. At the same time, the regulator 40 regulates a flap 42 in the combustion air supply duct 43 of the burner 13. In contrast to conventional burner controls, the flap 42 is now controlled in the method according to the invention in such a way that the excess air increases as the boiler load decreases. If the burner 13 e.g. at full load is set to an air excess of λ = 1.2, the control of the flap 42 can be designed such that the air excess rises to λ = 2.2 when the boiler 21 is loaded 1/3. This change compared to conventional burner controls is shown sympolically in FIG. 1 by a reduction lever 44 between the outlet of the controller 40 and the flap 42.

Durch diese Massnahme gelingt es in den meisten Fällen, trotz schwankender Kessellast sämtliche Abluft des Spannrahmens 1 als Verbrennungsluft dem Brenner zuzuführen.This measure makes it possible in most cases, in spite of fluctuating boiler load, to supply all the exhaust air from the tenter frame 1 to the burner as combustion air.

Als Brennstoff wird zweckmässig Erdgas verwendet. In diesem Fall kann das Abgas in den Wärmetauschern 29, 30, 31 unter den Taupunkt abgekühlt und damit sowohl die fühlbare als auch die latente Abwärme der Spannrahmenabluft weitgehend zurückge­wonnen werden. Ausserdem wird damit der obere Heizwert des Brennstoffs und der Schadstoffe in der Abluft ausgenützt. Durch den hohen Luftüberschuss wird damit eine Reduktion des Brenn­ stoffbedarfs bis gegen 20% erreicht.Natural gas is expediently used as fuel. In this case, the exhaust gas in the heat exchangers 29, 30, 31 can be cooled below the dew point and thus both the sensible and the latent waste heat of the stenter exhaust air can be largely recovered. In addition, the upper calorific value of the fuel and the pollutants in the exhaust air is used. Due to the high excess of air, the combustion is reduced material requirements reached up to around 20%.

Falls als Brennstoff Heizöl verwendet wird, werden die Wärme­tauscher 30 und 31 zweckmässig weggelassen.If heating oil is used as fuel, the heat exchangers 30 and 31 are expediently omitted.

In Fig. 2 ist eine weitere Ausführungsform der Erfindung dar­gestellt. Gleiche Teile haben gleiche Bezugszeichen, so dass sich eine detaillierte Erläuterung dieser Teile erübrigt. Im Kanal 43 wird dem Brenner 13′ wie im zuvor beschriebenen Aus­führungsbeispiel Primär- und Senkundärluft gesteuert durch die Klappe 42 in Funktion der Kessellast zugeführt, wobei wieder­um mit sinkender Kessellast der Luftüberschuss steigt. Strom­aufwärts der Klappe 42 ist vom Kanal 43 ein weiterer Kanal 50 abgezweigt. Dieser mündet in einem Ringraum 51 um den Kanal 43. Vom Ringraum 51 führt ein Ringkanal 52 zum Brennerkopf im Kessel 21. Ueber diesen Ringkanal 52 kann dem Brennerkopf Tertiärluft zugeführt werden. Zur Steuerung der Tertiärluft­zufuhr ist im Kanal 50 eine Klappe 53 angeordnet. Die Klappe 53 wird gesteuert durch einen weiterern Regler 54. Der Regler 54 erhält als Sollwert die Differenz der Ablufttemperatur strom­aufwärts und stromabwärts des Ausgleichskamins 15. Dazu ist in den Leitungen 10, 11 je ein Temperaturfühler 55 angeordnet. Die Temperaturdifferenz wird z.B. auf 5° C eingestellt, so dass stets eine geringe Menge Frischluft durch das Kamin 15 ein­strömt. Falls die Temperaturdifferenz steigt, reagiert der Regler 54 und schliesst proportional die Klappe 53. Bei sinkender Temperaturdifferenz wird die Klappe 53 geöffnet.2 shows a further embodiment of the invention. The same parts have the same reference numerals, so that a detailed explanation of these parts is unnecessary. In the channel 43, the burner 13 ', as in the exemplary embodiment described above, is supplied with primary and secondary air controlled by the flap 42 as a function of the boiler load, the excess air again increasing as the boiler load decreases. Another channel 50 branches off from channel 43 upstream of flap 42. This opens into an annular space 51 around the channel 43. An annular channel 52 leads from the annular space 51 to the burner head in the boiler 21. Via this annular channel 52, tertiary air can be fed to the burner head. To control the supply of tertiary air, a flap 53 is arranged in the channel 50. The flap 53 is controlled by a further controller 54. The controller 54 receives the difference between the exhaust air temperature upstream and downstream of the compensating chimney 15 as a setpoint. For this purpose, a temperature sensor 55 is arranged in each of the lines 10, 11. The temperature difference is set to 5 ° C., for example, so that a small amount of fresh air always flows in through the chimney 15. If the temperature difference increases, the controller 54 reacts and proportionally closes the flap 53. When the temperature difference decreases, the flap 53 is opened.

Durch diese Ausbildung kann der Luftüberschuss zusätzlich ge­steigert werden, so dass auch bei stark variirender Kessel­last sämtliche Spannrahmenabluft gereinigt werden kann. Ausser­dem werden Schwankungen in der anfallenden Abluftmenge auto­matisch ausgeglichen.With this design, the excess air can be additionally increased, so that all stenter exhaust air can be cleaned even with strongly varying boiler loads. In addition, fluctuations in the amount of exhaust air are automatically compensated.

In Fig. 3 ist eine dritte Ausführungsform der Erfindung dar­gestellt, wobei wiederum für gleiche Teile gleiche Bezugs­zeichen verwendet wurden. Hier hat der Brenner 13˝ wiederum einen Tertiärluftkanal 50, 51, 52. Die Klappe 42 für Primär- und Sekundärluft ist vom Brennstoffregelventil 26 entkoppelt und wird durch einen Stellmotor 60 gesteuert. Ein zweiter Stell­motor 61 steuert die Tertiärluftklappe 53. Die beiden Stell­motoren 61 werden durch einen Temperaturfühler 62 im Ausgleichs­kamin 15 geregelt. Diese Regelung wirkt analog jener mit den beiden Temperaturfühlern 55 in Fig. 2: der Sollwert der Temperatur des Fühlers 62 wird z.B. etwa 10° C über der Aussentemperatur eingestellt. Damit wird sichergestellt, dass ständig eine geringe Menge Frischluft durch das Kamin 15 eintritt und keine Spannrahmenabluft entweicht. Das Signal des Fühlers 62 wird über zwei Regler 63, 64 auf die beiden Stellmotoren 60, 61 auf­geschaltet. Der erste Regler 63 hat eine variable untere Be­grenzung des Ausgangssignals. Diese untere Begrenzung wird in Abhängigkeit des Signals eines O₂ Fühlers 65 in der Abgas­leitung 28 eingestellt. Damit wird sichergestellt, das bei Voll­last des Kessels und geringer Abluftmenge des Spannrahmens ein gewisser minimaler Luftüberschuss von z.B.λ = 1,2 nicht unterschritten wird. Diese untere Begrenzung wirkt nur auf die Klappe 42 für Primär- und Sekundärluft. Für die Klappe 53 für Tertiärluft ist im Regler 64 eine variable obere Begrenzung des Oeffnungs­querschnittes vorgsehen. Die obere Begrenzung wird dem Regler 64 durch einen Temperaturfühler 66 am Ende des Flammrohres des Kessels 21 vorgegeben. Die Temperatur soll an dieser Stelle 800° nicht unterschreiten, damit die sichere Verbrennung sämtlicher Schadstoffe gewährleistet ist und die Emission von CO vermieden wird. Diese untere Grenztemperatur entspricht einem Luftüberschuss von etwaλ = 3,5.3 shows a third embodiment of the invention, the same reference numerals being used for the same parts. Here the burner 13˝ in turn has a tertiary air duct 50, 51, 52. The flap 42 for primary and secondary air is decoupled from the fuel control valve 26 and is controlled by a servomotor 60. A second servomotor 61 controls the tertiary air damper 53. The two servomotors 61 are regulated by a temperature sensor 62 in the compensation chimney 15. This regulation works analogously to that with the two temperature sensors 55 in FIG. 2: the setpoint value of the temperature of the sensor 62 is set, for example, about 10 ° C. above the outside temperature. This ensures that a small amount of fresh air constantly enters through the chimney 15 and no stenter exhaust air escapes. The signal from the sensor 62 is applied to the two servomotors 60, 61 via two controllers 63, 64. The first controller 63 has a variable lower limit of the output signal. This lower limit is set depending on the signal of an O₂ sensor 65 in the exhaust pipe 28. This ensures that the boiler does not fall below a certain minimum excess air of eg λ = 1.2 when the boiler is fully loaded and the exhaust air volume is low becomes. This lower limit only acts on the flap 42 for primary and secondary air. For the flap 53 for tertiary air, a variable upper limit of the opening cross section is provided in the controller 64. The upper limit is given to the controller 64 by a temperature sensor 66 at the end of the flame tube of the boiler 21. At this point, the temperature should not fall below 800 ° so that the safe combustion of all pollutants is guaranteed and the emission of CO is avoided. This lower limit temperature corresponds to an air excess of approximately λ = 3.5.

Durch diese Ausbildung wird ein optimaler Wirkungsgrad über den gesamten Lastbereich des Kessels 21 erreicht mit minimaler Frischluftansaugung.This configuration achieves an optimal efficiency over the entire load range of the boiler 21 with minimal fresh air intake.

Claims (10)

1. Verfahren zur Reinigung der Abluft eines Spann­rahmes (1) und/oder einer Senge durch thermische Verbrennung, wobei die Abluft als Verbrennungsluft einer Wärmeversorungs­einrichtung (21) zugeführt wird, dadurch gekennzeichnet, dass die Wärmeversorgungseinrichtung (21) in ihrem Teillastbetrieb mit einem grossen Luftüberschuss von λ= 1,5 bis λ = 3,5 be­trieben wird.1. A method for cleaning the exhaust air of a clamping frame (1) and / or a scab by thermal combustion, the exhaust air being supplied as combustion air to a heat supply device (21), characterized in that the heat supply device (21) in its part-load operation with a large excess of air is operated from λ = 1.5 to λ = 3.5. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Luftüberschuss in Funktion der Last der Wärmever­sorungseinrichtung (21) variiert wird, wobei mit zunehmender Last der Luftüberschuss vermindert wird.2. The method according to claim 1, characterized in that the excess air is varied as a function of the load of the heat supply device (21), the excess air being reduced with increasing load. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekenn­zeichnet, dass der Luftüberschuss in Funktion der anfallenden Abluftmenge variiert wird, wobei mit zunehmender Abluftmenge der Luftüberschuss erhöht wird.3. The method according to claim 1 or 2, characterized in that the excess air is varied as a function of the amount of exhaust air, the excess air being increased with increasing amount of exhaust air. 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Luftüberschuss geregelt und nach unten und oben be­grenzt wird.4. The method according to claim 3, characterized in that the excess air is regulated and limited at the top and bottom. 5. Verfahren nach einem der Ansprüche 1 bis 4, da­durch gekennzeichnet, dass als Brennstoff Erdgas verwendet wird, und dass das Abgas der Wärmeversorgungseinrichtung (21) auf eine Temperatur unterhalb seines Taupunktes abgekühlt wird.5. The method according to any one of claims 1 to 4, characterized in that natural gas is used as fuel, and that the exhaust gas of the heat supply device (21) is cooled to a temperature below its dew point. 6. Anlage zur Durchführung des Verfahrens nach An­spruch 1, umfassend einen Spannrahmen (1) und/oder eine Senge mit einem Abluftgebläse (7) sowie eine Wärmeversorgunseinrichtung (21) mit einem Brenner (13), wobei das Abluftgebläse (7) über eine thermisch isolierte Leitung (10) mit dem Brenner (13) verbunden ist, dadurch gekennzeichnet, dass der Brenner (13) für einen Betrieb mit grossen Luftüberschuss vonλ = 1,5 bis λ = 3,5 ausgelegt ist.6. System for carrying out the method according to claim 1, comprising a stenter (1) and / or a scab with an exhaust fan (7) and a heat supply device (21) with a burner (13), the exhaust fan (7) via a thermal Insulated line (10) is connected to the burner (13), characterized in that the burner (13) is designed for operation with a large excess of air from λ = 1.5 to λ = 3.5. 7. Anlage nach Anspruch 6, wobei die Brennstoffzu­fuhr und die Luftzufuhr zum Brenner (13) der Wärmeversorgungs­einrichtung (21) durch einen Regler (40) geregelt sind, dadurch gekennzeichnet, dass der Regler (40) so eingestellt ist, dass der Luftüberschuss mit zunehmender Last der Wärmeversorgungs­einrichtung sinkt.7. Installation according to claim 6, wherein the fuel supply and the air supply to the burner (13) of the heat supply device (21) are regulated by a controller (40), characterized in that the controller (40) is set so that the air excess with increasing The load of the heat supply device drops. 8. Anlage nach Anspruch 6 oder 7, wobei die Brenn­stoffzufuhr und die Luftzufuhr zum Brenner (13) durch je einen Regler (40,54;40,63,64) geregelt sind, dadurch gekennzeichnet, dass in der Verbindungsleitung (10,11) ein Fühler (55,62) zum Messen der anfallenden Abluftmenge angeordnet ist, und dass der Fühler (55,62) mit dem Regler (54;63,64) für die Luftzu­fuhr zum Brenner (13′,13˝) derart verbunden ist, dass der Luft­überschuss mit steigender Abluftmenge steigt.8. Plant according to claim 6 or 7, wherein the fuel supply and the air supply to the burner (13) by one Controllers (40, 54; 40, 63, 64) are regulated, characterized in that a sensor (55, 62) for measuring the amount of exhaust air is arranged in the connecting line (10, 11), and that the sensor (55, 62 ) is connected to the controller (54; 63, 64) for the air supply to the burner (13 ′, 13˝) in such a way that the excess air increases with increasing exhaust air volume. 9. Anlage nach Anspruch 8, dadurch gekennzeichnet, dass in der Abgasleitung (28) der Wärmeversorgungseinrichtung (21) ein zweiter Fühler (65) zur Bestimmung des unteren Grenz­wertes des Luftüberschusses und an der Wärmeversorungsein­richtung ein dritter Fühler (66) zur Bestimmung des oberen Grenzwertes des Luftüberschusses angeordnet ist, und dass der zweite und dritte Fühler mit dem Regler (63,64) zur Regelung der Verbrennungsluftzufuhr zum Brenner (13˝) verbunden sind.9. Plant according to claim 8, characterized in that in the exhaust line (28) of the heat supply device (21), a second sensor (65) for determining the lower limit value of the excess air and on the heat supply device, a third sensor (66) for determining the upper limit value of the excess air, and that the second and third sensors are connected to the controller (63, 64) for regulating the supply of combustion air to the burner (13˝). 10. Anlage nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass im Abgaskanal (28) der Wärmeversorgungs­einrichtung (21) Wärmetauscher (29,30,31) angeordnet sind.10. Plant according to one of claims 6 to 9, characterized in that in the exhaust gas duct (28) of the heat supply device (21), heat exchangers (29, 30, 31) are arranged.
EP88810777A 1987-12-01 1988-11-11 Method and installation for the purification of exhaust air from a tenter or a singing machine Expired - Lifetime EP0319468B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88810777T ATE101254T1 (en) 1987-12-01 1988-11-11 METHOD AND PLANT FOR CLEANING THE EXHAUST AIR FROM A TENSIONING FRAME OR A SEAM.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4689/87A CH675904A5 (en) 1987-12-01 1987-12-01
CH4689/87 1987-12-01

Publications (3)

Publication Number Publication Date
EP0319468A2 true EP0319468A2 (en) 1989-06-07
EP0319468A3 EP0319468A3 (en) 1991-01-09
EP0319468B1 EP0319468B1 (en) 1994-02-02

Family

ID=4280791

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88810777A Expired - Lifetime EP0319468B1 (en) 1987-12-01 1988-11-11 Method and installation for the purification of exhaust air from a tenter or a singing machine

Country Status (8)

Country Link
US (1) US4890581A (en)
EP (1) EP0319468B1 (en)
JP (1) JPH01201571A (en)
AT (1) ATE101254T1 (en)
CA (1) CA1305656C (en)
CH (1) CH675904A5 (en)
DE (1) DE3887661D1 (en)
DK (1) DK666588A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0413091A1 (en) * 1989-06-16 1991-02-20 A. Monforts GmbH & Co Thermal afterburning installation and method for operating the installation
EP0463839A2 (en) * 1990-06-26 1992-01-02 White Horse Technologies Inc Pollution control apparatus and method for pollution control
EP0484280A2 (en) * 1990-10-31 1992-05-06 Koenig Ag A plant for the purification of pollutant containing air
US5215018A (en) * 1990-06-26 1993-06-01 White Horse Technologies, Inc. Pollution control apparatus and method for pollution control

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5033414A (en) * 1988-03-15 1991-07-23 American Hydrotherm Corporation Heat recovery system
JP5920106B2 (en) * 2012-08-21 2016-05-18 三浦工業株式会社 Boiler system
CN109248522A (en) * 2018-11-23 2019-01-22 四川意龙科纺集团有限公司 Applied to the dust suction exhaust apparatus on gassing frame
KR102168656B1 (en) * 2020-05-22 2020-10-21 케이씨코트렐 주식회사 The tenter apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2538413A1 (en) * 1975-08-29 1977-03-10 Duerr O Fa Airborne pollutant combustion installation - uses combustion chamber of hot air furnace utilizing produced additional heat to preheat air for dryer operation
FR2497560A1 (en) * 1981-01-07 1982-07-09 Vaneecke Solaronics Neutralisation plant for toxic or waste gases - which are mixed with air of combustion and then with fuel gas and fed to burner producing very hot micro:flames
DE3145028A1 (en) * 1981-11-12 1983-05-19 Wärmetechnik Dr. Pauli GmbH & Co Betriebs-KG, 8035 Gauting Method and device for the injection and recombustion of oxygenous exhaust gases, especially of exhaust gases from internal combustion engines
JPS60159516A (en) * 1984-01-30 1985-08-21 Toshiba Corp Device for controlling multi-fuel combustion

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH145527A (en) * 1930-03-04 1931-02-28 Sulzer Ag Method and device for regulating a steam generator.
US3909953A (en) * 1974-02-28 1975-10-07 Midland Ross Corp Paint drying method and apparatus
JPS5377340A (en) * 1976-12-21 1978-07-08 Hitachi Zosen Corp Heating method for exhaust gas involving non-burning gas and remaining oxyg en
US4176162A (en) * 1977-07-11 1979-11-27 Bobst-Champlain, Inc. Method and apparatus for conservation of energy in a thermal oxidation system for use with a printing press
US4431167A (en) * 1982-07-16 1984-02-14 The Boc Group Plc Adaptor
US4489679A (en) * 1983-12-12 1984-12-25 Combustion Engineering, Inc. Control system for economic operation of a steam generator
DE3605415A1 (en) * 1986-02-20 1987-08-27 Katec Betz Gmbh & Co METHOD AND DEVICE FOR BURNING OXIDISABLE COMPONENTS IN A CARRIER GAS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2538413A1 (en) * 1975-08-29 1977-03-10 Duerr O Fa Airborne pollutant combustion installation - uses combustion chamber of hot air furnace utilizing produced additional heat to preheat air for dryer operation
FR2497560A1 (en) * 1981-01-07 1982-07-09 Vaneecke Solaronics Neutralisation plant for toxic or waste gases - which are mixed with air of combustion and then with fuel gas and fed to burner producing very hot micro:flames
DE3145028A1 (en) * 1981-11-12 1983-05-19 Wärmetechnik Dr. Pauli GmbH & Co Betriebs-KG, 8035 Gauting Method and device for the injection and recombustion of oxygenous exhaust gases, especially of exhaust gases from internal combustion engines
JPS60159516A (en) * 1984-01-30 1985-08-21 Toshiba Corp Device for controlling multi-fuel combustion

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Die Industriefeuerung", 1980, Seite 49, Vulkan-Verlag *
MELLIAND TEXTILBERICHTE, Nr. 8, 1985, Seiten 603-604; P. TER DUIS: "Wirtschaftliche Nutzung von heisser Abluft als Verbrennungsluft" *
PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 326 (M-441)[2049], 21. Dezember 1985; & JP-A-60 159 516 (TOSHIBA) 21-08-1985 *
R. Dolezal, "Dampferzeugung", 1985, Seiten 44 - 46, Springer-Verlag *
Recknagel-Sprenger, "Taschenbuch für Heizung und Klimatechnik", 60. Auflage, 1979, Seiten 629 und 630, Oldenbourg Verlag *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0413091A1 (en) * 1989-06-16 1991-02-20 A. Monforts GmbH & Co Thermal afterburning installation and method for operating the installation
EP0463839A2 (en) * 1990-06-26 1992-01-02 White Horse Technologies Inc Pollution control apparatus and method for pollution control
EP0463839A3 (en) * 1990-06-26 1992-08-05 White Horse Technologies Inc Pollution control apparatus and method for pollution control
US5215018A (en) * 1990-06-26 1993-06-01 White Horse Technologies, Inc. Pollution control apparatus and method for pollution control
EP0484280A2 (en) * 1990-10-31 1992-05-06 Koenig Ag A plant for the purification of pollutant containing air
EP0484280A3 (en) * 1990-10-31 1992-12-16 Koenig Ag A plant for the purification of pollutant containing air
TR25561A (en) * 1990-10-31 1993-07-01 Koenig Ag SYSTEM TO CLEAN DIRTY AIR

Also Published As

Publication number Publication date
EP0319468A3 (en) 1991-01-09
US4890581A (en) 1990-01-02
DK666588D0 (en) 1988-11-29
DK666588A (en) 1989-06-02
DE3887661D1 (en) 1994-03-17
ATE101254T1 (en) 1994-02-15
EP0319468B1 (en) 1994-02-02
CH675904A5 (en) 1990-11-15
JPH01201571A (en) 1989-08-14
CA1305656C (en) 1992-07-28

Similar Documents

Publication Publication Date Title
WO1995005432A1 (en) Thermal waste disposal plant and process for operating the same
EP0062854B1 (en) Gas-fired water or air heater
EP0484280B1 (en) A plant for the purification of pollutant containing air
EP0319468B1 (en) Method and installation for the purification of exhaust air from a tenter or a singing machine
DE69110732T2 (en) Regulation in combination with a thermostat.
DE3248623C1 (en) Method and device for preheating the combustion media, in particular for heating wind heaters for blast furnaces
DE2815882A1 (en) PLANT FOR RECOVERING WASTE HEAT
CH653409A5 (en) COMBINED HOT AIR TURBINE STEAM POWER PLANT.
DE4025527C1 (en) Steam boiler with economiser - incorporates combustion chamber with recirculation circuit
EP0049328B1 (en) Device for the heat recovery of waste gases of some plants
DE3244373C2 (en) Air heating system
EP0643816B1 (en) Process and device for regulating the flue gas temperature at the outlet of a steam generator
EP0160884A2 (en) Air to fuel-ratio controller for a heating source
CH675017A5 (en) Contaminated air cleaning plant - regulates combustion chamber of afterburner by thermometer connected to heat exchanger in which exhaust air from tentering frame is heated
DE4305569A1 (en) Cleaning installation for polluted waste air - has steam boiler with convection heating faces surrounded by water, and combustion chamber communicating with convection faces.
DE19729716A1 (en) Heating boiler unit with atmospheric burner
DE3839540C2 (en)
DE2822559C2 (en) Control to prevent the formation of condensate for a heat exchanger with a downstream exhaust gas heat exchanger
EP1078207A1 (en) Calorific burner
DE19912580C2 (en) Heater with a burner powered by a fuel-air mixture
DE3513580C2 (en)
DE69105831T2 (en) Method and device for optimizing the efficiency and minimizing NOx formation in incineration plants.
DE3302407A1 (en) Regulating device
EP0158842A1 (en) Fuel/air ratio regulation device for a fuel-fired heat source
DE3220697A1 (en) Bivalently operated heating plant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19910222

17Q First examination report despatched

Effective date: 19910712

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940202

Ref country code: NL

Effective date: 19940202

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940202

Ref country code: BE

Effective date: 19940202

REF Corresponds to:

Ref document number: 101254

Country of ref document: AT

Date of ref document: 19940215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3887661

Country of ref document: DE

Date of ref document: 19940317

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940407

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19941111

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19951005

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19951009

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: PETER KOENIG TRANSFER- KOENIG AG

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961022

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19961130

Ref country code: CH

Effective date: 19961130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971111

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981027

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051111