EP0317353B1 - Utilisation des additifs dispersants solubles dans des huiles dans des compositions huileuses - Google Patents

Utilisation des additifs dispersants solubles dans des huiles dans des compositions huileuses Download PDF

Info

Publication number
EP0317353B1
EP0317353B1 EP88310940A EP88310940A EP0317353B1 EP 0317353 B1 EP0317353 B1 EP 0317353B1 EP 88310940 A EP88310940 A EP 88310940A EP 88310940 A EP88310940 A EP 88310940A EP 0317353 B1 EP0317353 B1 EP 0317353B1
Authority
EP
European Patent Office
Prior art keywords
oil
use according
group
groups
long chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88310940A
Other languages
German (de)
English (en)
Other versions
EP0317353A2 (fr
EP0317353A3 (en
Inventor
Robert Dean Lundberg
Jacob Emert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
Exxon Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Chemical Patents Inc filed Critical Exxon Chemical Patents Inc
Publication of EP0317353A2 publication Critical patent/EP0317353A2/fr
Publication of EP0317353A3 publication Critical patent/EP0317353A3/en
Application granted granted Critical
Publication of EP0317353B1 publication Critical patent/EP0317353B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/28Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M129/38Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/86Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of 30 or more atoms
    • C10M129/95Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/52Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M149/00Lubricating compositions characterised by the additive being a macromolecular compound containing nitrogen
    • C10M149/12Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/16Reaction products obtained by Mannich reactions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/042Epoxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/123Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/16Naphthenic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/22Acids obtained from polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/24Epoxidised acids; Ester derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/086Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type polycarboxylic, e.g. maleic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/101Condensation polymers of aldehydes or ketones and phenols, e.g. Also polyoxyalkylene ether derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/24Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions having hydrocarbon substituents containing thirty or more carbon atoms, e.g. nitrogen derivatives of substituted succinic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/042Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds between the nitrogen-containing monomer and an aldehyde or ketone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/043Mannich bases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/022Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/084Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/085Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing carboxyl groups; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/088Neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/089Overbased salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/102Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon only in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/106Thiadiazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/12Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2225/00Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2225/04Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of macromolecualr compounds not containing phosphorus in the monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • C10M2227/061Esters derived from boron
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/09Complexes with metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • C10N2070/02Concentrating of additives

Definitions

  • This invention relates to the use in oleaginous compositions such as fuel and lubricating oil compositions of an oil soluble dispersant additive and to such compositions including concentrates containing said additives, and methods for their manufacture and use.
  • the dispersant additives of the instant invention are comprised of the reaction products of (1) nitrogen or ester containing adduct and (2) polyepoxide.
  • Multigrade lubricating oils typically are identified by two numbers such as 10W30, 5W30 etc.
  • the first number in the multigrade designation is associated with a maximum low temperature (e.g.-20°C.) viscosity requirement for that multigrade oil as measured typically by a cold cranking simulator (CCS) under high shear, while the second number in the multigrade designation is associated with a minimum high temperature (e.g. 100°C) viscosity requirement.
  • CCS cold cranking simulator
  • a minimum high temperature e.g. 100°C viscosity requirement.
  • each particular multigrade oil must simultaneously meet both strict low and high temperature viscosity requirements in order to quality for a given multigrade designation.
  • Such requirements are set e.g., by ASTM specifications.
  • low temperature as used herein is meant temperatures of typically from about -30° to about -5°C.
  • high temperature as used herein is meant temperatures of typically at least about 100°C.
  • the minimum high temperature viscosity requirement e.g., at 100°C, is intended to prevent the oil from thinning out too much during engine operation which can lead to excessive wear and increased oil consumption.
  • the maximum low temperature viscosity requirement is intended to facilitate engine starting in cold weather and to ensure pumpability, i.e., the cold oil should readily flow or slump into the well for the oil pump, otherwise the engine can be damaged due to insufficient lubrication.
  • the formulator may use a single oil of desired viscosity or a blend of two lubricating oils of different viscosities, in conjunction with manipulating the identity and amount of additives that must be present to achieve the overall target properties of a particular multigrade oil including its viscosity requirements.
  • the natural viscosity characteristic of a lubricating oil is typically expressed by the neutral number of the oil (e.g. S15ON) with a higher neutral number being associated with a higher natural viscosity at a given temperature.
  • the formulator will find it desirable to blend oils of two different neutral numbers, and hence viscositites, to achieve an oil having a viscosity intermediate between the viscosity of the components of the oil blend.
  • the neutral number designation provides the formulator with a simple way to achieve a desired based oil of predictable viscosity.
  • merely blending oils of different viscosity characteristics does not enable the formulator to meet the low and high temperature viscosity requirements of multigrade oils.
  • the formulator s primary tool for achieving this goal is an additive conventionally referred to as a viscosity index improver (i.e., V.I. improver).
  • the V. I . improver is conventionally an oil-soluble long chain polymer.
  • the large size of these polymers enables them to significantly increase kinematic viscosities of base oils even at low concentrations.
  • solutions of high polymers are non-Newtonian they tend to give lower viscosities than expected in a high shear environment due to the alignment of the polymer. Consequently, V.I. improvers impact (i.e., increase) the low temperature (high shear) viscosities (i.e. CCS viscosity) of the base oil to a lesser extent than they do the high temperature (low shear) viscosities.
  • the aforesaid viscosity requirements for a multigrade oil can therefore be viewed as being increasingly antagonistic at increasingly higher levels of V.I. improver.
  • V.I. improver if a large quantity of V.I. improver is used in order to obtain high viscosity at high temperatures, the oil may now exceed the low temperature requirement.
  • the formulator may be able to readily meet the requirement for a lOW30 oil but not a 5W30 oil, with a particular ad-pack (additive package) and base oil. Under these circumstances the formulator may attempt to lower the viscosity of the base oil, such as by increasing the proportion of low viscosity oil in a blend, to compensate for the low temperature viscosity increase induced by the V.I.
  • dispersant additives can have on the viscosity characteristics of multigrade oils.
  • Dispersants are frequently present in quality oils such as multigrade oils, together with the V.I. improver.
  • the primary function of a dispersant is to maintain oil insolubles, resulting from oxidation during use, in suspension in the oil thus preventing sludge flocculation and precipitation. Consequently, the amount of dispersant employed is dictated and controlled by the effectiveness of the material for achieving its dispersant function.
  • a high quality 10W30 commercial oil might contain from two to four times as much dispersant as V.I. improver (as measured by the respective dispersant and V.I. improver active ingredients).
  • conventional dispersants can also increase the low and high temperature viscosity characteristics of a base oil simply by virtue of their polymeric nature.
  • the dispersant molecule is much smaller. Consequently, the dispersant is much less shear sensitive, thereby contributing more to the low temperature CCS viscosity (relative to its contribution to the high temperature viscosity of the base oil) than a V.I. improver.
  • the smaller dispersant molecule contributes much less to the high temperature viscosity of the base oil than the V.I. improver.
  • the magnitude of the low temperature viscosity increase induced by the dispersant can exceed the low temperature viscosity increase induced by the V.I.
  • dispersants are provided which have been found to possess inherent characteristics such that they contribute considerably less to low temperature viscosity increases than dispersants of the prior art while achieving similar high temperature viscosity increases. Moreover, as the concentration of dispersant in the base oil is increased, this beneficial low temperature viscosity effect becomes increasingly more pronounced relative to conventional dispersants. This advantage is especially significant for high quality heavy duty diesel oils which typically require high concentrations of dispersant additive. Furthermore, these improved viscosity properties facilitate the use of V.I.
  • the use of the materials according to this invention is thus an improvement over the use of conventional dispersants because of their effectiveness as dispersants coupled with enhanced low temperature viscometric properties. These materials are particularly useful with V.I. improvers in formulating multigrade oils.
  • US-A-4,234,435 describes carboxylic acylating agents derived from polyalkenes such as polybutenes and e.g. maleic or fumaric anhydride. These can be further reacted with e.g. polyethylene polyamines to form dispersant additives for lubricating oils and can be post-treated with various reagents including epoxides such as ethylene oxide or propylene oxide.
  • US-A-4,189,450 describes surface coating binders for cathodic electrocoating formed by reaction of Mannich bases with epoxy resins.
  • the Mannich bases are formed by reaction of polyhydroxy phenols with polybutadiene or polyisoprene or copolymers thereof and polyhydroxyamines. These highly reactive materials crosslink on heating to hard, solvent resistant coatings.
  • the present invention provides the use in an oleaginous composition of an oil soluble dispersant additive comprising the reaction products of:
  • the invention also provides oleaginous compositions including fully formulated fuel and lubricating oil compositions and concentrates comprising a major amount of the base oil and a minor amount of an oil soluble dispersant additive as defined above.
  • the dispersants used in accordance with the invention exhibit a high temperature to low temperature viscosity balance or ratio which is more favorable than that of conventional dispersant materials. That is to say the instant dispersant materials possess inherent characteristics such that they contribute less to low temperature viscosity increase than dispersants of the prior art while increasing the contribution to the high temperature viscosity increase. They also exhibit enhanced or improved dispersancy characteristics. This is believed to be due, inter alia, to the presence of hydroxyl groups formed as a result of the ring opening of the oxirane rings in their reaction with the reactive amino groups or hydroxyl groups of the nitrogen or ester containing adducts as described hereinafter.
  • the molecular weight of the product is increased by the coupling or linking of two or more molecules of the adduct by or through the polyepoxide moieties.
  • the long chain hydrocarbyl substituted dicarboxylic acid producing material e.g., acid, anhydride, or ester, used in the invention or produce the nitrogen or ester containing adducts classified as (i) above includes a long chain hydrocarbon substituted typically with an average of at least about 0.7, usefully from about 0.7-2.0 (e.g. 0.9-1.6), preferably about 1.0 to 1.3 (e.g.
  • hydrocarbyl substituted dicarboxylic acid materials are well known in the art and are amply described in the patent literature. They may be obtained, for example, by the Ene reaction between a polyolefin and an alpha-beta unsaturated C4 to C10 dicarboxylic acid, anhydride or ester thereof, such as fumaric acid, itaconic acid, maleic acid, maleic anhydride, chloromaleic acid, dimethyl fumarate, etc.
  • the hydrocarbyl substituted dicarboxylic acid materials function as acylating agents for the adducts such as those comprised of a nitrogen containing moiety, e.g., polyamine, to form the acylated nitrogen derivatives of hydrocarbyl substituted dicarboxylic acids, anhydrides, or esters which are subsequently reacted with the polyepoxides to form the dispersants of the present invention.
  • acylating agents for the adducts such as those comprised of a nitrogen containing moiety, e.g., polyamine, to form the acylated nitrogen derivatives of hydrocarbyl substituted dicarboxylic acids, anhydrides, or esters which are subsequently reacted with the polyepoxides to form the dispersants of the present invention.
  • the olefin polymers for reaction with the unsaturated dicarboxylic acid, anhydride, or ester are polymers comprising at least a major molar amount of C2 to C18, e.g. C2 to C5, monoolefin.
  • Such olefins include ethylene, propylene, butylene, isobutylene, pentene, octene-l, styrene, etc.
  • the polymers can be homopolymers such as polyisobutylene and isobutylene; propylene and isobutylene; etc.
  • copolymers include those in which a minor molar amount of the copolymer monomers, e.g., 1 to 10 mole %, is a C4 to C18 non-conjugated diolefin, e.g., a copolymer of isobutylene and butadiene; or a copolymer of ethylene, propylene and 1,4-hexadiene; etc.
  • a minor molar amount of the copolymer monomers e.g., 1 to 10 mole %
  • a C4 to C18 non-conjugated diolefin e.g., a copolymer of isobutylene and butadiene; or a copolymer of ethylene, propylene and 1,4-hexadiene; etc.
  • the olefin polymer may be completely saturated, for example an ethylene-propylene copolymer made by a Ziegler-Natta synthesis using hydrogen as a moderator to control molecular weight.
  • the olefin polymers have number average molecular weights (M n ) within the range of 500 and 6000, e.g. 700 to 3000, preferably between 800 and 2500.
  • M n number average molecular weights
  • An especially useful starting material for a highly potent dispersant additive made in accordance with this invention is polyisobutylene.
  • olefin polymer Processes for reacting the olefin polymer with the C4-C10 unsaturated dicarboxylic acid, anhydride or ester are known in the art.
  • the olefin polymer and the dicarboxylic acid material may be simply heated together as disclosed in U.S. Pat. Nos. 3,361,673 and 3,401,118 to cause a thermal "ene" reaction to take place.
  • the olefin polymer can be first halogenated, for example, chlorinated or brominated to about 1 to 8 wt. %, preferably 3 to 7 wt.
  • % chlorine or bromine based on the weight of polymer, by passing the chlorine or bromine through the polyolefin at a temperature of 25 to 160°C, e.g., 120°C, for about 0.5 to 10, preferably 1 to 7 hours.
  • the halogenated polymer may then be reacted with sufficient unsaturated acid or anhydride at 100 to 250°C, usually about 180 to 220°C, for about 0.5 to 10 hours, e.g. 3 to 8 hours, so the product obtained will contain an average of about 0.7 to 2.0 moles, preferably 1.0 to 1.3 moles, e.g., 1.2 moles, of the unsaturated acid per mole of the halogenated polymer.
  • Processes of this general type are taught in U.S. Patents 3,087,436; 3,172,892; 3,272,746 and others.
  • the olefin polymer and the unsaturated acid material are mixed and heated while adding chlorine to the hot material.
  • Processes of this type are disclosed in U.S. Patents 3,215,707; 3,231,587; 3,912,764; 4,110,349; 4,234,435; and in U.K. 1,440,219.
  • halogen about 65 to 95 wt. % of the polyolefin, e.g. polyisobutylene, will normally react with the dicarboxylic acid material. Upon carrying out a thermal reaction without the use of halogen or a catalyst, then usually only about 50 to 85 wt. % of the polyisobutylene will react. Chlorination helps increase the reactivity.
  • all of the aforesaid functionality ratios of dicarboxylic acid producing units to polyolefin, e.g. 1.0 to 2.0, etc. are based upon the total amount of polyolefin, that is, the total of both the reacted and unreacted polyolefin, present in the resulting product formed in the aforesaid reactions.
  • Amine compounds useful as reactants with the hydrocarbyl substituted dicarboxylic acid material are those containing at least two reactive amino groups, i.e., primary and secondary amino groups. They include polyalkylene polyamines, of about 2 to 60 (e.g. 2 to 30) , preferably 2 to 40, (e.g. 3 to 20) total carbon atoms and about 1 to 12 (e.g., 2 to 9) , preferably 3 to 12, and most preferably 3 to 9 nitrogen atoms in the molecule.
  • amines may be hydrocarbyl amines or may be hydrocarbyl amines including other groups, e.g, hydroxy groups, alkoxy groups, amide groups, nitriles, imidazoline groups, and the like. Hydroxy amines with 1 to 6 hydroxy groups, preferable 1 to 3 hydroxy groups are particularly useful. Such amines should be capable of reacting with the acid or anhydride groups of the hydrocarbyl substituted dicarboxylic acid moiety and with the oxirane rings of the polyepoxide moiety through the amino functionality or a substituent group reactive functionality.
  • tertiary amines are generally unreactive with anhydrides and oxirane rings, it is desirable to have at least two primary and/or secondary amino groups on the amine. It is preferred that the amine contain at least one primary amino group, for reaction with the acylating agent, and at least one secondary amino group, for reaction with the polyepoxide.
  • Preferred amines are aliphatic saturated amines, including those of the general formulae: wherein R IV , R′, R ⁇ and R′′′ are independently selected from the group consisting of hydrogen; C1 to C25 straight or branched chain alkyl radicals; C1 to C12 alkoxy C2 to C6 alkylene radicals; C2 to C12 hydroxy amino alkylene radicals; and C1 to C12 alkylamino C2 to C6 alkylene radicals; and wherein R ⁇ and R′′′ can additionally comprise a moiety of the formula wherein R′ is as defined above, and wherein each s and s′ can be the same or a different number of from 2 to 6, preferably 2 to 4; and t and t′ can be the same or different and are each numbers of typically from 0 to 10, preferably about 2 to 7, most preferably about 3 to 7, with the proviso that t + t′ is not greater than 10.
  • R IV , R′, R ⁇ , R′′′, (s), (s′), (t) and (t′) be selected in a manner sufficient to provide the compounds of formula I with typically at least two primary and/or secondary amino groups.
  • This can be achieved by selecting at least one of said R IV , R′, R ⁇ , or R′′′ groups to be hydrogen or by letting (t) in formula Ia be at least one when R′′′ is H or when the (Ib) moiety possesses a secondary amino group.
  • the most preferred amines of the above formulas are represented by formula Ia and contain at least two primary amino groups and at least one, and preferably at least three, secondary amino groups.
  • Non-limiting examples of suitable amine compounds include: 1,2-diaminoethane; 1,3-diaminopropane; 1,4-diaminobutane; 1,6-diaminohexane; polyethylene amines such as diethylene triamine; triethylene tetramine; tetraethylene pentamine; polypropylene amines such as 1,2-propylene diamine; di-(1,2-propylene) triamine; di-(1,3-propylene) triamine; N,N′-dimethyl-1, 3-diaminopropane; N,N′-di-(2-aminoethyl) ethylene diamine; N,N′-di(2-hydroxyethyl)-1,3-propylene diamine; N-dodecyl-1,3propane diamine; tris hydroxymethylaminomethane (THAM); diisopropanol amine; diethanol amine; triethanol amine; mono-, di-
  • amine compounds include: alicyclic diamines such as 1,4-di(aminoethyl) cyclohexane, and N-aminoalkyl piperazines of the general formula: wherein p1 and p2 are the same or different and are each integers of from 1 to 4, and n1, n2 and n3 are the same or different and are each integers of from 1 to 3.
  • one process for preparing alkylene amines involves the reaction of an alkylene dihalide (such as ethylene dichloride or propylene dichloride) with ammonia, which results in a complex mixture of alkylene amines wherein pairs of nitrogens are joined by alkylene groups, forming such compounds as diethylene triamine, triethylenetetramine, tetraethylene pentamine and corresponding piperazines.
  • alkylene dihalide such as ethylene dichloride or propylene dichloride
  • ammonia such as ethylene triamine, triethylenetetramine, tetraethylene pentamine and corresponding piperazines.
  • Low cost poly(ethyleneamine) compounds averaging about 5 to 7 nitrogen atoms per molecule are available commercially under trade names such as "Polyamine H", “Polyamine 400", “Dow Polyamine E-100", etc.
  • Useful amines also include polyoxyalkylene polyamines such as those of the formulae: where m has a value of about 3 to 70 and preferably 10 to 35; and where n has a value of about 1 to 40, with the provision that the sum of all the n's is from about 3 to about 70, and preferably from about 6 to about 35, and R V is a substituted saturated hydrocarbon radical of up to 10 carbon atoms, wherein the number of substituents on the R V group is from 3 to 6.
  • the alkylene groups in either formula (III) or (IV) may be straight or branched chains containing about 2 to 7, and preferably about 2 to 4 carbon atoms.
  • the polyoxyalkylene polyamines of formulas (III) or (IV) above may have number average molecular weights ranging from about 200 to about 4000 and preferably from about 400 to about 2000.
  • the preferred polyoxyalkylene polyamines include the polyoxyethylene and polyoxypropylene diamines and the polyoxypropylene triamines having average molecular weights ranging from about 200 to 2000.
  • the polyoxyalkylene polyamines are commercially available and may be obtained, for example, from the Jefferson Chemical Company, Inc. under the trade name "Jeffamines D-230, D-400, D-1000, D-2000, T-403", etc.
  • the amine is readily reacted with the dicarboxylic acid material, e.g. alkenyl succinic anhydride, by heating an oil solution containing 5 to 95 wt. % of dicarboxylic acid material to about 100 to 200°C., preferably 125 to 175°C., generally for 1 to 10, e.g. 2 to 6 hours until the desired amount of water is removed.
  • the heating is preferably carried out to favor formation of imides or mixtures of imides and amides, rather than amides and salts.
  • Reaction ratios of dicarboxylic acid material to equivalents of amine as well as the other nucleophilic reactants described herein can vary considerably, depending upon the reactants and type of bonds formed.
  • moles of dicarboxylic acid moiety content e.g. grafted maleic anhydride content
  • nucleophilic reactant e.g. amine
  • about 0.8 mole of a pentamine (having two primary amino groups and 5 equivalents of nitrogen per molecule) is preferably used to convert into a mixture of amides and imides, the product formed by reacting one mole of olefin with sufficient maleic anhydride to add 1.6 moles of succinic anhydride groups per mole of olefin, i.e. preferably the pentamine is used in an amount sufficient to provide about 0.4 mole (that is 1.6/[0.8x5] mole) of succinic anhydride moiety per nitrogen equivalent of the amine.
  • Tris(hydroxymethyl) amino methane can be reacted with the aforesaid acid material to form amides, imides Or ester type additives as taught by U.K. 984,409, or to form oxazoline compounds and borated oxazoline compounds as described, for example, in U.S. 4,102,798; 4,116,876 and 4,113,639.
  • the adducts may also be esters derived from the aforesaid long chain hydrocarbon substituted dicarboxylic acid material and from hydroxy compounds such as monohydric and polyhydric alcohols or aromatic compounds such as phenols and naphthols, etc.
  • hydroxy compounds such as monohydric and polyhydric alcohols or aromatic compounds such as phenols and naphthols, etc.
  • the polyhydric alcohols are the most preferred hydroxy compounds.
  • Suitable polyol compounds which can be used include aliphatic polyhydric alcohols containing up to about 100 carbon atoms and about 2 to about 10 hydroxyl groups. These alcohols can be quite diverse in structure and chemical composition, for example, they can be substituted or unsubstitued, hindered or unhindered, branched chain or straight chain, etc. as desired.
  • Typical alcohols are alkylene glycols such as ethylene glycol, propylene glycol, tremethylene glycol, butylene glycol, and polyglycol such as diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, dibutylene glycol, tributylene glycol, and other alkylene glycols and polyalkylene glycols in which the alkylene radical contains from two to about eight carbon atoms.
  • alkylene glycols such as ethylene glycol, propylene glycol, tremethylene glycol, butylene glycol, and polyglycol such as diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, dibutylene glycol, tributylene glycol, and other alkylene glycols and polyalkylene glycols in which the alkylene radical contains from two to about eight carbon atoms.
  • polyhydric alcohols include glycerol , monomethyl ether of glycerol, pentaerythritol, dipentaerythritol, tripentaerythritol, 9,10-dihydroxystearic acid, the ethyl ester of 9,10-dihydroxystearic acid, 3-chloro-1, 2-propanediol, 1,2-butanediol, 1,4-butanediol, 2,3-hexanediol, pinacol, tetrahydroxy pentane, erythritol, arabitol, sorbitol, mannitol, 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,4-(2-hydroxyethyl)-cyclohexane, 1,4-dihydroxy-2-nitrobutane, 1,4-di-(2-hydroxyethyl)-benzene, the carbohydrates such
  • alkane polyols which contain ether groups such as polyethylene oxide repeating units, as well as those polyhydric alcohols containing at least three hydroxyl groups, at least one of which has been esterified with a mono-carboxylic acid having from eight to about 30 carbon atoms such as octanoic acid, oleic acid, stearic acid, linoleic acid, dodecanoic acid, or tall oil acid.
  • Examples of such partially esterified polyhydric alcohols are the mono-oleate of sorbitol, the mono-oleate of glycerol, the mono-stearate of glycerol, the di-stearate of sorbitol, and the di-dodecanoate of erythritol.
  • a preferred class of ester containing adducts are those prepared from aliphatic alcohols containing up to 20 carbon atoms, and especially those containing three to 15 carbon atoms.
  • This class of alcohols includes glycerol, erythritol, pentaerythritol, dipentaerythritol, tripentaerythritol, gluconic acid, glyceraldehyde, glucose, arabinose, 1,7-heptanediol, 2,4-heptanediol, 1,2,3-hexanetriol, 1,2,4-hexanetriol, 1,2,5-hexanetriol, 2,3,4-hexanetriol, 1,2,3-butanetriol, 1,2,4-butanetriol, quinic acid, 2,2,6,6-tetrakis(hydroxymethyl)-cyclohexanol, 1,10-decanediol, digitalose, and the like.
  • An especially preferred class of polyhydric alcohols for preparing the ester adducts used as starting materials in the present invention are the polyhydric alkanols containing 3 to 15, especially 3 to 6 carbon atoms and having at least 3 hydroxyl groups.
  • Such alcohols are exemplified in the above specifically identified alcohols and are represented by glycerol, etythritol, pentaerythritol, mannitol, sorbitol, 1,2,4 hexanetriol, and tetrahydroxy pentane and the like.
  • the ester adducts may be di-esters of succinic acids or acidic esters, i.e., partially esterified succinic acids; as well as partially esterified polyhydric alcohols or phenols, i.e., esters having free alcohols or phenolic hydroxyl radicals. Mixtures of the above illustrated esters likewise are contemplated within the scope of this invention.
  • the ester adduct may be prepared by one of several known methods as illustrated for example in U.S. Patent 3, 381,022.
  • the ester adduct may also be borated, similar to the nitrogen containing adduct, as described herein.
  • Hydroxyamines which can be reacted with the aforesaid long chain hydrocarbon substituted dicarboxylic acid material to form adducts include 2-amino-2-methyl-1-propanol, p-(beta-hydroxyethyl)-aniline, 2-amino-1-propanol, 3-amino-1-propanol, 2-amino-2-methyl-1,3-propane-diol, 2-amino-2-ethyl-1,3-propanediol, N-(beta-hydroxypropyl)-N′-(beta-amino-ethyl)piperazine, tris(hydrocymethyl) amino-methane (also known as trismethylolaminomethane), 2-amino-1-butanol, ethanolamine, diethanolamine, triethanolamine, beta-(beta-hydroxyethoxy)-ethylamine and the like.
  • nucleophilic reactants suitable for reaction with the hydrocarbyl substituted dicarboxylic acid or anhydride includes amines, alcohols, and compounds of mixed amine and hydroxy containing reactive functional groups, i.e. amino-alcohols.
  • nitrogen containing adducts which are reacted with the polyepoxide to form the improved dispersants of this invention are the adducts of group (ii) above wherein a nitrogen containing polyamine is attached directly to the long chain aliphatic hydrocarbon as shown in U.S. Patents 3,275,554 and 3,565,804 where the halogen group on the halogenated hydrocarbon is displaced with various alkylene polyamines.
  • adducts of group (iii) above which contain Mannich base or Mannich condensation products as they are known in the art.
  • Mannich condensation products generally are prepared by condensing about 1 mole of a high molecular weight hydrocarbyl substituted hydroxy aromatic compound (e.g., having a number average molecular weight of 700 or greater) with about 1 to 2.5 moles of an aldehyde such as formaldehyde or paraformaldehyde and about 0.5 to 2 moles polyalkylene polyamine as disclosed, e.g., in U.S.
  • Mannich condensation products may include a long chain, high molecular weight hydrocarbon on the phenol group or may be reacted with a compound containing such a hydrocarbon, e.g., polyalkenyl succinic anhydride as shown in said aforementioned U.S. Patent 3,442,808.
  • the hydrocarbyl substituted hydroxy aromatic compounds used in the preparation of the Mannich base include those compounds having the formula wherein Ar represents wherein q is 1 or 2, R21 is a long chain hydrocarbon, R20 is a hydrocarbon or substituted hydrocarbon radical having from 1 to about 3 carbon atoms or a halogen radical such as the bromide or chloride radical y is an integer from 1 to 2, x is an integer from 0 to 2, and z is an integer from 1 to 2.
  • Ar groups are phenylene, biphenylene, naphthylene and the like.
  • the long chain hydrocarbon substituents are olefin polymers comprising at least a major molar amount of C2 to C8, e.g. C2 to C5 monoolefin.
  • olefins include ethylene, propylene, butylene, pentene, octene-1, styrene, etc.
  • the polymers can be homopolymers such as polyisobutylene, as well as copolymers of two or more of such olefins such as copolymers of: ethylene and propylene; butylene and isobutylene; propylene and isobutylene; etc.
  • Other copolymers include those in which a minor molar amount of the copolymer monomers, e.g.
  • 1 to 10 mole % is a C4 to C18 non conjugated diolefin, e.g., a copolymer of isobutylene and butadiene; or a copolymer of ethylene, propylene and 1,4-hexadiene.
  • the olefin polymer may be completely saturated, for example an ethylene-propylene copolymer made by a Ziegler-Natta synthesis using hydrogen as a moderator to control molecular weight.
  • the olefin polymers have a number average molecular weight (M n ) from 500 to about 6,000, more usually between 700 and 5,000. Particularly useful olefin polymers have number average molecular weight within the range of 700 to 3,000, and more preferably within the range of 900 to 2,500 with approximately one terminal double bond per polymer chain.
  • An especially useful starting material for a highly potent dispersant additive made in accordance with this invention is polyisobutylene.
  • the number average molecular weight for such polymers can be determined by several known techniques. A convenient method for such determination is by gel permeation chromatography (GPC) which additionally provides molecular weight distribution information, see W. W. Yau, J. J. Kirkland and D. D. Bly, "Modern Size Exclusion Liquid Chromatography", John Wiley and Sons, New York, 1979.
  • hydrocarbyl substituted hydroxy aromatic compounds contemplated for use in the present invention include, but are not limited to, 2-polypropylene phenol, 3-polypropylene phenol, 4-polypropylene phenol, 2-polybutylene phenol, 3-polyisobutylene phenol, 4-polyisobutylene phenol, 4-polyisobutylene-2-chlorophenol, 4-polyisobutylene-2-methylphenol, and the like.
  • Suitable hydrocarbyl-substitued polyhydroxy aromatic compounds include the polyolefin catechols, the polyolefin resorcinols, and the polyolefin hydroquinones, e.g., 4-polyisobutylene-1,2-dihydroxybenzene, 3-polypropylene-1,2-dihydroxybenzene, 5-polyisobutylene-1,3-dihydroxybenzene, 4-polyamylene-1,3-dihydroxybenzene, and the like.
  • Suitable hydrocarbyl-substituted naphthols include 1-polyisobutylene-5-hydroxynaphthalene, 1-polypropylene-3-hydroxynaphthalene and the like.
  • R22 is hydrocarbyl of from 50 to 300 carbon atoms, and preferably is a polyolefin derived from a C2 to C10 (e.g., C2 to C5) mono-alpha-olefin.
  • the aldehyde material which can be employed in the production of the Mannich case is represented by the formula: R23CHO in which R23 is a hydrogen or an aliphatic hydrocarbon radical having from 1 to 4 carbon atoms.
  • suitable aldehydes include formaldehyde, paraformaldehyde, acetaldehyde and the like.
  • the adducts which are reacted with the polyepoxide to form the dispersants of this invention are the nitrogen containing adducts of group (i) above, i.e., those derived from a hydrocarbyl substituted dicarboxylic acid forming material (acids or anhydrides) and reacted with polyamines.
  • group (i) above i.e., those derived from a hydrocarbyl substituted dicarboxylic acid forming material (acids or anhydrides) and reacted with polyamines.
  • Particularly preferred adducts of this type are those derived from polyisobutylene substituted with succinic anhydride groups and reacted with polyethylene amines, e.g. tetraethylene pentamine, pentaethylene hexamine, polyoxyethylene and polyoxypropylene amines, e.g. polyoxypropylene diamine, trismethylolaminoethane and combinations thereof.
  • polyethylene amines e.g. tetraethylene pentamine, pentaethylene hexamine
  • polyoxyethylene and polyoxypropylene amines e.g. polyoxypropylene diamine, trismethylolaminoethane and combinations thereof.
  • the polyepoxides are compounds containing at least two oxirane rings, i.e, These oxirane rings are connected or joined by hydrocarbon moieties or hydrocarbon moieties containing at least one hetero atom or group.
  • the hydrocarbon moieties generally contain from 1 to about 100 carbon atoms. They include the alkylene, cycloalkylene, alkenylene, arylene, aralkenylene and alkarylene radicals.
  • Typical alkylene radicals are those containing from 1 to about 100 carbon atoms, more typically from 1 to about 50 carbon atoms.
  • the alkylene radicals may be straight chain or branched and may contain from 1 to about 100 carbon atoms, preferably from 1 to about 50 carbon atoms.
  • Typical cycloalkylene radicals are those containing from 4 to about 16 ring carbon atoms.
  • the cycloalkylene radicals may contain alkyl substituents, e.g., C1 - C8 alkyl, on one or more ring carbon atoms.
  • Typical arylene radicals are those containing from 6 to 12 ring carbons, e.g., phenylene, naphthylene and biphenylene.
  • Typical alkarylene and aralkylene radicals are these containing from 7 to about 100 carbon atoms, preferably from 7 to about 50 carbon atoms.
  • the hydrocarbon moieites joining the oxirane rings may contain substituent groups thereon.
  • the substituent groups are those which are substantially inert or unreactive at ambient conditions with the oxirane ring.
  • substantially inert and unreactive at ambient conditions is intended to mean that the atom or group is substantially inert to chemical reactions at ambient temperatures and pressure with the oxirane ring so as not to materially interfere in an adverse manner with the preparation and/or functioning of the compositions, additives, compounds, etc. of this invention in the context of its intended use.
  • small amounts of these atoms or groups can undergo minimal reaction with the oxirane ring without preventing the making and using of the invention as described herein.
  • Suitable substituent groups include, but are not limited to, alkyl groups, hydroxyl groups, tertiary amino groups, halogens, and the like. When more than one substituent is present they may be the same or different.
  • substituent groups are substantially inert or unreactive at ambient conditions with the oxirane ring, they will react with the oxirane ring under conditions effective to allow reaction of the oxirane ring with the reactive amino groups of the acylated nitrogen derivatives of hydrocarbyl substituted dicarboxylic materials. Whether these groups are suitable substituent groups which can be present on the polyepoxide depends, in part, upon their reactivity with the oxirane ring.
  • the hydrocarbon moieties containing at least one hetero atom or group are the hydrocarbon moieties described above which contain at least one hetero atom or group in the chain.
  • the hetero atoms or groups are those that are substantially unreactive at ambient conditions with the oxirane rings. When more then one hetero atom or group is present they may be the same or different.
  • the hetero atoms or groups are separated from the carbon atom of the oxirane ring by at least one intervening carbon atom.
  • These hetero atom or group containing hydrocarbon moieties may contain at least one substituent group on at least one carbon atom. These substituent groups are the same as those described above as being suitable for the hydrocarbon moieties.
  • hetero atoms or groups include: oxygen atoms (i.e., -O- or ether linkages in the carbon chain); sulfur atoms (i.e. -S- or thioether linkages in the carbon chain); carboxy groups (i.e., sulfonyl group (i.e., ketone group (i.e., sulfinyl group (i.e., and nitro group.
  • oxygen atoms i.e., -O- or ether linkages in the carbon chain
  • sulfur atoms i.e. -S- or thioether linkages in the carbon chain
  • carboxy groups i.e., sulfonyl group (i.e., ketone group (i.e., sulfinyl group (i.e., and nitro group.
  • the polyepoxides of the present invention contain at least two oxirane rings or epoxide moieties. It is critical that the polyepoxide contain at least two oxirane rings in the same molecule. Preferably, these polyepoxides contain no more than about 10 oxirane rings, preferably no more than about 5 oxirane rings. Preferred polyepoxides are the diepoxides, i.e., those containing two oxirane rings.
  • polyepoxides useful in the instant invention are well known in the art and are generally commercially available or may readily be prepared by conventional and well known methods.
  • the polyepoxides include those represented by the general formula wherein: R30 is a s valent hydrocarbon radical, a substituted s valent hydrocarbon radical, a s valent hydrocarbon radical containing at least one hetero atom or group, and a substituted s valent hydrocarbon radical containing at least one hetero atom or group; R1 - R3 are as described herein below; and s is an integer having a value of at least 2, preferably from 2 to about 10, more preferablly from 2 to about 5.
  • R30 has the same meaning as R in Formula V below except that it is s valent rather than divalent.
  • R is a divalent hydrocarbon radical, a substituted divalent hydrocarbon radical, a divalent hydrocarbon radical containing at least one hetero atom or group, and a substituted divalent hydrocarbon radical containing at least one hetero atom or group.
  • R1 and R6 are independently selected from hydrogen, monovalent hydrocarbon radicals, substituted monovalent hydrocarbon radicals, monovalent hydrocarbon radicals containing at least one hetero atom or group, substituted monovalent hydrocarbon radicals containing at least one hetero atom or group, and oxirane containing radicals
  • R2 and R3 are independently selected from hydrogen, monovalent hydrocarbon radicals, substituted monovalent hydrocarbon radicals, monovalent hydrocarbon radicals containing at least one hetero atom or group, substituted monovalent hydrocarbon radicals containing at least one hetero atom or group, monovalent oxirane containing radicals, divalent hydrocarbon radicals, and substituted divalent hydrocarbon radicals, with the proviso
  • the monovalent hydrocarbon radicals represented by R1 - R6 generally contain from 1 to about 100 carbon atoms. These hydrocarbon radicals include alkyl, alkenyl, cycloalkyl, aryl, aralkyl, and alkaryl radicals.
  • the alkyl radicals may contain from 1 to about 100, preferably from 1 to about 50, carbon atoms and may be straight chain or branched.
  • the alkenyl radicals may contain from 2 to about 100 carbons, preferably from 2 to about 50 carbon atoms, and may be straight chain or branched.
  • Preferred cycloalkyl radicals are those containing from about 4 to about 12 ring carbon atoms, e.g., cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, etc. These cycloalkyl radicals may contain substituent groups, preferably alkyl groups, on the ring carbon atoms, e.g., methylcyclohexyl, 1,3-dimethylcyclopentyl, etc.
  • the preferred alkenyl radicals are those containing from 2 to about 30 carbon atoms, e.g., ethenyl, 1-propenyl, 2-propenyl, etc.
  • the preferred aryl radicals are those containing from 6 to about 12 ring carbon atoms, i.e., phenyl, naphthyl, and biphenyl.
  • the preferred aralkyl and alkaryl radicals are those containing from 7 to about 30 carbon atoms, e.g., p-tolyl, 2,6-xylyl, 2,4,6-trimethylphenyl, 2-isopropylphenyl, benzyl, 2-phenylethyl, 4-phenylbutyl, etc.
  • the substituted monovalent hydrocarbon radicals represented by R1 - R6 are the monovalent hydrocarbon radicals described hereinafore which contain at least one substituent group thereon.
  • the substituent groups are such that they are substantially unreactive under ambient conditions with the oxirane moieties. When more than one substituent group is present they may be the same or different.
  • the monovalent hydrocarbon radicals containing at least one hetero atom or group are the monovalent hydrocarbon radicals described hereinafore which contain at least one hetero atom or group in the carbon chain.
  • the hetero atom or group is separated from the carbon of the oxirane ring by at least one intervening carbon atom. When more than one hetero atom or group is present they may be the same or different.
  • the hetero atoms or groups are those that are substantially unreactive under ambient conditions with the oxirane ring. These hetero atoms or groups are those described hereinafore.
  • the substituted monovalent hydrocarbon radicals containing at least one hetero atom or group are the substituted monovalent hydrocarbon radicals containing at least one hetero atom or group described above which contain at least one substituent group on at least one carbon atom.
  • the substituent groups are those described hereinafore.
  • R1 - R6 may be represented by the formula wherein: R7 has the same meaning as R1, R8 - R9 have the same meaning as R2 - R3, and R10 has the same meaning as R in Formula V.
  • the divalent hydrocarbon radicals represented by R2 - R5 and R8 - R9 generally are aliphatic acyclic radicals and contain from 1 to about 5 carbon atoms.
  • Preferred divalent hydrocarbon radicals are the alkylene radicals.
  • Preferred alkylene radicals are those that, together with the two carbon atoms of the oxirane ring, form a cyclic structure containing from 4 to about 8 ring carbon atoms.
  • the resultant cyclic structure formed with the two carbon atoms of the oxirane ring is a cyclohexylene oxide i.e.,
  • the divalent substituted hydrocarbon radicals represented by R2 - R5 and R8 - R9 are the divalent hydrocarbon radicals described above which contain at least one substituent group on at least one carbon atom.
  • R3 and R4 are both hydroxy substituted ethylene radicals
  • the resultant cyclic structure formed with the two carbon atoms of the oxirane ring may be represented by the formula.
  • the divalent hydrocarbon radicals represented by R and R10 generally contain from 1 to about 100 carbon atoms, preferably from 1 to about 50 carbon atoms. They may be aliphatic, aromatic or aliphatic-aromatic. If they are aliphatic they may be saturated or unsaturated, acyclic or alicyclic. They include alkylene, cycloalkylene, alkenylene, arylene, aralkylene, and alkarylene radicals.
  • the alkylene radicals may be straight chain or branched.
  • Preferred alkylene radicals are those containing from 1 to about 50 carbon atoms.
  • Preferred alkenylene radicals are those containing from 2 to about 50 carbon atoms.
  • Preferred cycloalkylene radicals are those containing from 4 to about 12 ring carbon atoms.
  • the cycloalkylene radicals may contain substituents, preferably alkyls, on the ring carbon atoms.
  • arylene as used in the specification and the appended claims is not intended to limit the divalent aromatic moiety represented by R and R10 to benzene. Accordingly, it is to be understood that the divalent aromatic moiety can be a single aromatic nucleus such as a benzene nucleus, a pyridine nucleus, a thiophene nucleus, a 1,2,3,4-tetrahydronaphthalene nucleus, etc., or a polynuclear aromatic moiety.
  • Such polynuclear moieties can be of the fused type; that is, wherein at least one aromatic nucleus is fused at two points to another nucleus such as found in naphthalene, anthracene, the azanaphthalenes, etc.
  • polynuclear aromatic moieties can be of the linked type wherein at least two nuclei (either mono- or polynuclear) are linked through bridging linkages to each other.
  • Such bridging linkages can be chosen from the group consisting of carbon-to-carbon single bonds, ether linkages, keto linkages, sulfide linkages, polysulfide linkages of 2 to 6 sulfur atoms, sulfinyl linkages, sulfonyl linkages, methylene linkages, alkylene linkages, di-(lower alkyl)-methylene linkages, lower alkylene ether linkages, alkylene keto linkages, lower alkylene sulfur linkages, lower alkylene polysulfide linkages of 2 to 6 carbon atoms, amino linkages, polyamino linkages and mixtures of such divalent bridging linkages.
  • Ar is a linked polynuclear aromatic moiety it can be represented by the general formula - Ar(Lng-Ar) ⁇ w wherein w is an integer of 1 to about 10, preferably 1 to about 8, more preferably 1, 2 or 3; Ar is a divalent aromatic moiety as described above, and each Lng is a bridging linkage individually chosen from the group consisting of carbon-to-carbon single bonds, ether linkages (e.g.
  • keto linkages e.g., sulfide linkages (e.g., -S-), polysulfide linkages of 2 to 6 sulfur atoms (e.g., -S2-), sulfinyl linkages (e.g., -S (O) -) , sulfonyl linkages (e.g., --S (O)2 -) , lower alkylene linkages (e.g., -CH2 -,- CH2 - CH2-, etc.), di (lower alkyl) -methylene linkages (e.g., - CR*2-), lower alkylene ether linkages (e.g., - CH2 - O -, -CH2 - O - CH2 -, -CH2 - CH2 - O -, -CH2CH2OCH2CH2 -, etc.) lower alkylene sulfide linkages (e.g., wherein
  • R12 and R13 are independently selected from hydrogen and alkyl radicals, preferably alkyl radicals containing from 1 to about 2 0 carbon atoms;
  • Rll is selected from alkylene, alkylidene, cycloalkylene, and cycloalkylidene radicals; and
  • u and ul are independently selected from integers having a value of from 1 to 4.
  • the divalent substituted hydrocarbon radicals represented by R and RlO are those divalent hydrocarbon radicals described above which contain at least one substituent group of the type described hereinafore.
  • the divalent hydrocarbon radical is a C5 alkylene
  • the corresponding divalent substitute hydrocarbon radical e.g., hydroxyl substituted radical
  • the divalent hydrocarbon radicals containing at least one hetero atom or group are those divalent hydrocarbon radicals described hereinafore which contains at least one hetero atom or group. These hetero atoms or groups are those described hereinafore.
  • Some illustrative non-limiting examples of divalent hydrocarbon radicals containing at least one hetero atom or group include: - CH2 - O - CH2;- -CH2 - O - CH2 - CH2 - O - CH2 - ;
  • the divalent substituted hydrocarbon radicals containing at least one hetero atom or group are those divalent hydrocarbon radicals containing at least one hetero atom or group described above which contain at least one substituent group of the type described hereinafore.
  • divalent substituted hydrocarbon radicals containing at least one hetero atom or group include: Also included within the scope of the polyepoxides of the instant invention are these represented by the formula wherein: R and R1-R3 are as defined hereinafore; R14 and R15 independently have the same meaning as R1; X is an aromatic moiety; R16 and R17 are independently selected from divalent aliphatic acyclic hydrocarbon radicals and divalent substituted aliphatic acyclic hydrocarbon radicals which together with the two carbon atoms of the oxirane ring and the two adjacent ring carbon atoms of the aromatic moiety X form a cyclic structure; m and m1 are independently zero or one with the proviso that the sum of m plus m1 is at least one; and p is zero or one.
  • the aromatic moieties represented by X are preferably those containing from 6 to 12 ring carbon atoms, e.g., benzene, naphthalene, and biphenyl.
  • the aromatic moieties may contain one or more substituents on one or more ring carbon atoms. These substituents are those which are substantially unreactive at ambient conditions, e.g., temperature and pressure, with the oxirane ring. They include, for example, alkyl, hydroxyl, nitro, and the like.
  • R, R1-R3, R14-R15 and p are as defined hereinafore; and R18 is independently selected from divalent hydrocarbon radicals or a substituted divalent hydrocarbon radicals which together with the two carbon atoms of the oxirane ring forms a cyclic preferably cycloaliphatic, structure.
  • the divalent hydrocarbon or substituted divalent hydrocarbon radicals represented by R18 preferably contain from 2 to about 14 carbon atoms so as to form, together with the two carbon atoms of the oxirane ring, a 4 to about 16 membered ring structure, preferably a cycloaliphatic ring.
  • the preferred divalent hydrocarbon radicals are the divalent aliphatic hydrocarbon radicals, preferably the alkylene radicals.
  • the divalent aliphatic hydrocarbon radicals represented by R18 may contain one or more substituent groups on one or more ring carbon atoms.
  • the substituents are selected from those that are substantially unreactive under ambient conditions with the oxirane ring, e.g., alkyl, hydroxyl, and the like.
  • Preferred polyepoxides of the instant invention are those wherein at least two of the oxirane rings, preferably the two terminal or end oxirane rings, are unhindered.
  • unhindered is meant that the oxirane ring contains one secondary carbon atom, i.e., having two hydrogens bonded thereto, and preferably contains one secondary carbon atom and one tertiary carbon atom, i.e., having one hydrogen bonded thereto.
  • an unhindered polyepoxide of Formula I is one wherein R1, R2, R5, and R6 are hydrogen, preferably one wherein R1-R3 and R4-R6 are all hydrogen.
  • the polyepoxides useful in the instant invention also include the epoxy resins. These epoxy resins are well known in the art and are generally commercially available. They are described, for example, in Billmeyer, F. W. Jr., Textbook of Polymer Science, 2nd edition, Wiley-Interscience, New York, 1971, pp. 479-480; Lee, H and Neville, K., "Epoxy Resins", pp. 209-271 in Mark, H. F., Gaylord, N. G. and Bikales, N. M., eds., Encyclopedia of Polymer Science and Technology, Vol. 6, Interscience Div., John Wiley and Sons, New York, 1967; and in U.S. Patent Nos. 3,477,990 and 3,408,422; all of which are incorporated herein by reference.
  • the epoxy resins include those compounds possessing one or more vicinal epoxy groups. These polyepoxides are saturated or unsaturated, aliphatic, cycloaliphatic, aromatic or heterocyclic, and are substituted, if desired, with non-interfering substituents, such as halogen atoms, hydroxyl groups, ether radicals, and the like.
  • Preferred polyepoxides are the glycidyl polyethers of polyhydric phenols and polyhydric alcohols, especially the glycidyl polyethers of 2,2-bis(4-hydroxyphenyl) propane having an average molecular weight between about 300 and 3,000 and an epoxide equivalent weight (WPE) between about 140 and 2,000.
  • WPE epoxide equivalent weight
  • Especially preferred are the diglycidyl polyethers of 2,2-bis(4-hydroxyphenyl) propane having a WPE between about 140 and 500 and an average molecular weight of from about 300 to about 900.
  • suitable epoxy compounds include those compounds derived from polyhydric phenols and having at least one vicinal epoxy group wherein the carbon-to-carbon bonds within the six-membered ring are saturated.
  • Such epoxy resins may be obtained by at least two well-known techniques, i.e., by the hydrogenation of glycidyl polyethers of polyhydric phenols or (2) by the reaction of hydrogenated polyhydric phenols with epichlorohydrin in the presence of a suitable catalyst such as Lewis acids, i.e., boron trihalides and complexes thereof, and subsequent dehydrochlorination in an alkaline medium.
  • a suitable catalyst such as Lewis acids, i.e., boron trihalides and complexes thereof, and subsequent dehydrochlorination in an alkaline medium.
  • the method of preparation forms no part of the present invention and the resulting saturated epoxy resins derived by either method are suitable in the present compositions.
  • the first method comprises the hydrogenation of glycidyl polyethers of polyhydric phenols with hydrogen in the presence of a catalyst consisting of rhodium and/or ruthenium supported on an inert carrier at a temperature below about 50°C.
  • a catalyst consisting of rhodium and/or ruthenium supported on an inert carrier at a temperature below about 50°C.
  • the second method comprises the condensation of a hydrogenated polyphenol with an epihalohydrin, such as epichlorohydrin, in the presence of a suitable catalyst such as BF3, followed by dehydrohalogenation in the presence of caustic.
  • an epihalohydrin such as epichlorohydrin
  • BF3 a suitable catalyst
  • the resulting saturated epoxy compound is sometimes referred to as "diepoxidized hydrogenated Bisphenol A,” or more properly as the diglycidyl ether of 2,2-bis(4-cyclohexanol) propane.
  • saturated epoxy resin as used herein shall be deemed to mean the glycidyl ethers of polyhydric phenols wherein the aromatic ring structure of the phenols have been or are saturated.
  • Preferred saturated epoxy resins are the hydrogenated resins prepared by the process described in U.S. Pat. No. 3,336,241. More preferred are the hydrogenated glycidyl ethers of 2,2-bis(4-hydroxyphenyl) propane, sometimes called the diglycidyl ethers of 2,2-bis(4-cyclohexanol) propane.
  • One class of useful epoxy resins are those prepared by condensing epichlorohydrin with bisphenol-A. They include resins represented by the general structural formula wherein: R1-R6 are defined hereinafore, and preferably are all hydrogen; R20 is independently selected from alkyl radicals, preferably alkyl radicals containing from 1 to about 10 carbon atoms, hydroxyl, or halogen radicals; R21 is independently selected from alkyl radicals, preferably alkyl radicals containing from 1 to about 10 carbon atoms, hydroxyl, or halogen radicals; v is independently selected from integers having a value of from 0 to 4 inclusive; w is independently selected from integers having a value of from 0 to 4 inclusive; and f has a value of at least one, and varies according to the molecular weight of the resin, with the upper-limit of f preferably not exceeding about 10, more preferably not exceeding about 5.
  • Preferred compounds of Formula X are those wherein R1 - R6 are all hydrogen, and v and w are all zero.
  • those polyepoxides including the epoxy reins, wherein the two carbon atoms of the oxirane ring are bonded to three hydrogen atoms, e.g., wherein R1-R6 in Formula V are all hydrogen, are preferred.
  • Preferred polyepoxides of this type are those wherein the hydrocarbon moieties bridging the epoxide moieties, e.g., R in Formula V, contain polar groups or atoms. These polar groups or atoms include, but are not limited to, the polar hetero atoms or groups described hereinafore.
  • Particularly preferred polyepoxides are the epoxy resins, especially those devised from polyhydric phenols.
  • polyepoxides are reacted with the nitrogen or ester containing adducts selected from the group consisting of (i) oil soluble salts, amides, imides, oxazolines and esters, or mixtures thereof, of long chain hydrocarbon substituted mono and dicarboxylic acids or their anhydrides; (ii) long chain aliphatic hydrocarbon having a polyamine attached directly thereto; and (iii) Mannich condensation products formed by condensing about a molar proportion of long chain hydrocarbon substituted phenol with about 1 to 2.5 moles of formaldehyde and about 0.5 to 2 moles of polyalkylene polyamine, to form the improved dispersants of the present invention.
  • adducts selected from the group consisting of (i) oil soluble salts, amides, imides, oxazolines and esters, or mixtures thereof, of long chain hydrocarbon substituted mono and dicarboxylic acids or their anhydrides; (ii) long chain aliphatic hydrocarbon having
  • these adducts that are further reacted with the polyepoxides in accordance with the present invention contain sufficient unreacted residual reactive amino groups, i.e., primary and/or secondary amino groups, to enable the desired reaction with the polyepoxides to take place.
  • This reaction involves a ring opening of the oxirane ring whereby different molecules of the adduct are joined or coupled by the ring opened oxirane moieties on the same polyepoxide molecule.
  • the nitrogen containing adduct is of group (i).
  • an adduct as discussed hereinafore, may be characterized as an acylated nitrogen derivative of hydrocarbyl substituted dicarboxylic acid producing materials. While the following discussion is directed to this preferred embodiment, it is to be understood that, with minor modifications, it is equally applicable to the other adducts of groups (i)-(iii) which may be used in the instant invention.
  • the polyepoxides of the present invention are reacted with the acylated nitrogen derivatives of hydrocarbyl substituted dicarboxylic acid materials.
  • the acylated nitrogen derivatives that are further reacted with the polyepoxides in accordance with the present invention contain sufficient unreacted residual reactive amino nitrogens, e.g., secondary amino nitrogens, to enable the desired reaction with the polyepoxides to take place.
  • This reaction is between the remaining reactive nitrogens of the acylated nitrogen derivatives and the oxirane rings of the polyepoxide, and involves ring opening of the oxirane rings whereby different molecules of the acylated nitrogen derivatives are joined or coupled by the ring opened oxirane moieties on the same polyepoxide molecule. That is to say different oxirane rings on the same polyepoxide molecule react with amino groups on different molecules of the acylated nitrogen derivatives, thereby coupling or linking these different acylated nitrogen derivative molecules.
  • Reaction may be carried out by adding an amount of polyepoxide to the acylated nitrogen derivative which is effective to link or chain extend at least some of the molecules of the acylated nitrogen derivative, i.e., chain extending effective amount.
  • amount of polyepoxide utilized will depend upon (i) the number of reactive nitrogen atoms present in the acylated nitrogen derivative, (ii) the number of oxirane rings present in the polyepoxide, (iii) any participation from other functional groups present on the polyepoxide in the reaction and, (iv) the number of such groups which it is desired to react, i.e., the degree of coupling or cross-linking it is desired to obtain.
  • an amount of polyepoxide such that there are present from about 0.01 to about 5, preferably from about 0.05 to about 2, and more preferably from about 0.1 to about 1 equivalent of epoxide per equivalent of reactive residual amino group in the acylated nitrogen derivative.
  • the temperature at which the reaction is carried out generally ranges from about 50°C. to the decomposition temperature of the mixture, preferably from about 50°C. to about 250°C., and more preferably from about 100°C., to about 200°C. While superatmospheric pressures are not excluded, the reaction generally proceeds at atmospheric pressure.
  • the reaction may be conducted using a mineral oil, e.g., 100 neutral oil as a solvent.
  • An inert organic co-solvent e.g., xylene or toluene, may also be used.
  • the reaction time generally ranges from about 0.5 - 24 hours.
  • the products of this embodiment are formed as a result of bonding i.e. formation of a carbon to nitrogen bond, of different oxirane moieties on the same polyepoxide molecule with a reactive amino group , preferably a secondary amino group, on different molecules of the acylated nitrogen derivative.
  • the product may, for purposes of illustration and examplification only, be represented by the following formula and reaction scheme: wherein Y is independently selected from olefin polymers containing at least 30 carbon atoms. This type of product is obtained from the reaction of an acylated nitrogen derivative containing only one residual reactive amino group per molecule, e.g., secondary amino group, and a polyepoxide containing only two oxirane rings per molecule.
  • the acylated nitrogen derivative contains more than one residual reactive amino group per molecule and/or the polyepoxide contains more than two oxirane rings per molecule then the products will be more complex, e.g., a polyepoxide containing three oxirane rings per molecule may join or couple three different acylated nitrogen derivative molecules containing one residual reactive amino group per molecule.
  • the acylated nitrogen derivative contains more than one residual reactive amino group per molecule, e.g., two secondary amino groups, and the polyepoxide contains two oxirane rings
  • one acylated nitrogen derivative molecule could, depending on the stoichiometry of the reaction, be be joined to two other acylated nitrogen derivative molecules by two polyepoxide molecules.
  • the polyepoxide is, in effect, a chain extender or cross-linking agent serving to join together two or more molecules of acylated nitrogen derivative.
  • the product since it contains two or more acylated nitrogen derivative molecules bonded together, has a higher molecular weight and may be characterized as an oligomer or even a polymer.
  • the molecular weight of the product will depend, inter alia, upon the number of reactive amino groups per molecule of acylated nitrogen derivative, the number of oxirane rings per molecule of polyepoxide, and the amount of polyepoxide present in the reaction mixture of polyepoxide and acylated nitrogen derivative. For example, if an acylated nitrogen derivative containing only one residual reactive amino group, preferably a secondary amino group, per molecule is reacted with a diepoxide the product will be a dimer of the acylated nitrogen derivative. In such a situation increasing the amount of the diepoxide will generally not result in an increase in the molecular weight of the resultant dimer molecule but will yield more dimer molecules. On the other hand, if an acylated nitrogen derivative containing more than one residual reactive amino group per molecule is reacted with a diepoxide, the molecular weight of the product molecule may be increased in addition to the production of more cross-linked molecules.
  • metal complexes and other post-treatment derivatives e.g., borated derivatives
  • Suitable metal complexes may be formed in accordance with known techniques of employing a reactive metal ion species during or after the formation of the present dispersant materials.
  • Complex-forming metal reactants include the nitrates, thiocyanates, halides, carboxylates, phosphates, thio-phosphates, sulfates, and borates of transition metals such as iron, cobalt, nickel, copper, chromium, manganese, molybdenum, tungsten, ruthenium, palladium, platinum, cadmium, lead, silver, mercury, antimony and the like.
  • transition metals such as iron, cobalt, nickel, copper, chromium, manganese, molybdenum, tungsten, ruthenium, palladium, platinum, cadmium, lead, silver, mercury, antimony and the like.
  • transition metals such as iron, cobalt, nickel, copper, chromium, manganese, molybdenum, tungsten, ruthenium, palladium, platinum, cadmium, lead, silver, mercury, antimony and the like.
  • Prior art disclosures of these complexing reactions
  • Post-treatment compositions include those formed by reacting the novel additives of the present invention with one or more post-treating reagents, usually selected from the group consisting of boron oxide, boron oxide hydrate, boron halides, boron acids, sulfur, sulfur chlorides, phosphorous sulfides and oxides, carboxylic acid or anhydride acylating agents, epoxides and episulfides and acrylonitriles.
  • the reaction of such post-treating agents with the novel additives of this invention is carried out using procedures known in the art. For example, boration may be accomplished in accordance with the teachings of U.S.
  • Patent 3,254,025 by treating the additive compound of the present invention with a boron oxide, halide, ester or acid. Treatment may be carried out by adding about 1-3 wt. % of the boron compound, preferably boric acid, and heating and stirring the reaction mixture at about 135°C to 165°C for 1 to 5 hours followed by nitrogen stripping and filtration, if desired. Mineral oil or inert organic solvents facilitate the process.
  • compositions produced in accordance with the present invention have been found to be particularly useful as fuel and lubricating oil additives.
  • compositions of this invention are used in normally liquid petroleum fuels, such as middle distillates boiling from about 150° to 800°F. including kerosene, diesel fuels, home heating fuel oil, jet fuels, etc.
  • a concentration of the additive in the fuel in the range of typically from 0.001 wt. % to 0.5 wt. %, preferably 0.005 wt. % to 0.2 wt. %, based on the total weight of the composition, will usually be employed.
  • These additives can contribute fuel stability as well as dispersant activity and/or varnish control behavior to the fuel.
  • the compounds of this invention find their primary utility, however, in lubricating oil compositions, which employ a base oil in which the additives are dissolved or dispersed.
  • base oils may be natural or synthetic.
  • base oils suitable for use in preparing the lubricating compositions of the present invention include those conventionally employed as crankcase lubricating oils for spark-ignited and compression-ignited internal combustion engines, such as automobile and truck engines, marine and railroad diesel engines, and the like.
  • Advantageous results are also achieved by employing the additives of the present invention in base oils conventionally employed in and/or adapted for use as power transmitting fluids such as automatic transmission fluids, tractor fluids, universal tractor fluids and hydraulic fluids, heavy duty hydraulic fluids, power steering fluids and the like.
  • Gear lubricants, industrial oils, pump oils and other lubricating oil compositions can also benefit from the incorporation therein of the additives of the present invention.
  • the additives of the present invention may be suitably incorporated into synthetic base oils such as alkyl esters of dicarboxylic acids, polyglycols and alcohols; polyalpha-olefins, polybutenes, alkyl benzenes, organic esters of phosphoric acids, polysilicone oils, etc. selected type of lubricating oil composition can be included as desired.
  • the additives of this invention are oil-soluble, dissolvable in oil with the aid of a suitable solvent, or are stably dispersible materials.
  • Oil-soluble, dissolvable, or stably dispersible does not necessarily indicate that the materials are soluble, dissolvable, miscible, or capable of being suspended in oil in all proportions. It does mean, however, that the additives, for instance, are soluble or stably dispersible in oil to an extent sufficient to exert their intended effect in the environment in which the oil is employed.
  • the additional incorporation of other additives may also permit incorporation of higher levels of a particular polymer adduct hereof, if desired.
  • any dispersant effective amount of these additives can be incorporated into the fully formulated lubricating oil composition, it is contemplated that such effective amount be sufficient to provide said lube oil composition with an amount of the additive of typically from 0.01 to about 10, e.g., 0.1 to 6.0, and preferably from 0.25 to 3.0 wt. %, based on the weight of said composition.
  • the additives of the present invention can be incorporated into the lubricating oil in any convenient way.
  • they can be added directly to the oil by dispersing, or dissolving the same in the oil at the desired level of concentration, typically with the aid of a suitable solvent such as toluene, cyclohexane, or tetrahydrofuran.
  • a suitable solvent such as toluene, cyclohexane, or tetrahydrofuran.
  • Such blending can occur at room temperature or elevated.
  • Natural base oils include mineral lubricating oils which may vary widely as to their crude source, e.g., whether paraffinic, naphthenic, mixed, paraffinic-naphthenic, and the like; as well as to their formation, e.g., distillation range, straight run or cracked, hydrofined, solvent extracted and the like.
  • the natural lubricating oil base stocks which can be used in the compositions of this invention may be straight mineral lubricating oil or distillates derived from paraffinic, naphthenic, asphaltic, or mixed base crudes, or, if desired, various blends oils may be employed as well as residuals, particularly those from which asphaltic constituents have been removed.
  • the oils may be refined by conventional methods using acid, alkali, and/or clay or other agents such as aluminum chloride, or they may be extracted oils produced, for example, by solvent extraction with solvents of the type of phenol, sulfur dioxide, furfural, dichlorodiethyl ether, nitrobenzene, crotonaldehyde, etc.
  • the lubricating oil base stock conveniently has a viscosity of typically about 2.5 to about 12, and preferably about 2.5 to about 9 cSt. (m2/s x 106) at 100°C.
  • the additives of the present invention can be employed in a lubricating oil composition which comprises lubricating oil, typically in a major amount, and the additive, typically in a minor amount, which is effective to impart enhanced dispersancy relative to the absence of the additive.
  • Additional conventional additives selected to meet the particular requirements of a temperatures. In this form the additive per se is thus being utilized as a 100% active ingredient form which can be added to the oil or fuel formulation by the purchaser.
  • these additives may be blended with suitable oil-soluble solvent and base oil to form concentrate, which may then be blended with a lubricating oil base stock to obtain the final formulation.
  • Concentrates will typically contain from about 2 to 80 wt. %, by weight of the additive, and preferably from about 5 to 40% by weight of the additive. Concentrates may also comprise for example from 5-70 wt% of oleaginous material (A) and 20-95 wt% of (B), based on the total composition.
  • the lubricating oil base stock for the additive of the present invention typically is adapted to perform selected function by the incorporation of additives therein to form lubricating oil compositions (i.e., formulations).
  • Representative additives typically present in such formulations include viscosity modifiers, corrosion inhibitors, oxidation inhibitors, friction modifiers, other dispersants, anti-foaming agents, anti-wear agents, pour point depressants, detergents, rust inhibitors and the like.
  • Viscosity modifiers impart high and low temperature operability to the lubricating oil and permit it to remain shear stable at elevated temperatures and also exhibit acceptable viscosity or fluidity at low temperatures.
  • These viscosity modifiers are generally high molecular weight hydrocarbon polymers including polyesters.
  • the viscosity modifiers may also be derivatized to include other properties or functions, such as the addition of dispersancy properties.
  • oil soluble viscosity modifying polymers will generally have weight average molecular weights of from about 10,000 to 1,000,000, preferably 20,000 to 500,000, as determined by gel permeation chromatography or light scattering methods.
  • suitable viscosity modifiers are any of the types known to the art including polyisobutylene, copolymers of ethylene and propylene, polymethacrylates, methacrylate copolymers, copolymers of an unsaturated dicarboxylic acid and vinyl compound, interpolymers of styrene and acrylic esters, and partially hydrogenated copolymers of styrene/isoprene, styrene/butadiene, and isoprene/butadiene, as well as the partially hydrogenated homopolymers of butadiene and isoprene.
  • Corrosion inhibitors also known as anti-corrosive agents, reduce the degradation of the metallic parts contacted by the lubricating oil composition.
  • Illustrative of corrosion inhibitors are phosphosulfurized hydrocarbons and the products obtained by reaction of a phosphosulfurized hydrocarbon with an alkaline earth metal oxide or hydroxide, preferably in the presence of an alkylated phenol or of an alkylphenol thioester, and also preferably in the presence of an alkylated phenol or of an alkylphenol thioester, and also preferably in the presence of carbon dioxide.
  • Phosphosulfurized hydrocarbons are prepared by reacting a suitable hydrocarbon such as a terpene, a heavy petroleum fraction of a C2 to C6 olefin polymer such as polyisobutylene, with from 5 to 30 wt. % of a sulfide of phosphorus for 1/2 to 15 hours, at temperature in the range of about 66 to about 316°C.
  • a suitable hydrocarbon such as a terpene, a heavy petroleum fraction of a C2 to C6 olefin polymer such as polyisobutylene
  • Neutralization of the phosphosulfurized hydrocarbon may be effected in the manner taught in U.S. Patent No. 1,969,324.
  • Oxidation inhibitors reduce the tendency of mineral oils to deteriorate in service which deterioration can be evidenced by the products of oxidation such as sludge and varnish-like deposits on the metal surfaces, and by viscosity growth.
  • oxidation inhibitors include alkaline earth metal salts of alkylphenolthioesters having preferably C5 to C12 alkyl side chains, e.g., calcium nonylphenol sulfide, barium toctylphenyl sulfide, dioctylphenylamine, phenylalphanaphthylamine, phospho-sulfurized or sulfurized hydrocarbons, etc.
  • oxidation inhibitors or antioxidants useful in this invention comprise oil-soluble copper compounds.
  • the copper may be blended into the oil as any suitable oil soluble copper compound.
  • oil soluble it is meant that the compound is oil soluble under normal blending conditions in the oil or additive package.
  • the copper compound may be in the cuprous or cupric form.
  • the copper may be in the form of the copper dihydrocarbyl thio- or dithio-phosphates.
  • the copper may be added as the copper salt of a synthetic or natural carboxylic acid.
  • Examples of same thus include C10 to C18 fatty acids, such as stearic or palmitic acid, but unsaturated acids such as oleic or branched carboxylic acids such as naphthenic acids of molecular weights of from about 200 to 500, or synthetic carboxylic acids, are preferred, because of the improved handling and solubility properties of the resulting copper carboxylates.
  • oil-soluble copper dithiocarbamates of the general formula (R30R31, NCSS)zCu (where z is 1 or 2, and R30 and R31, are the same or different hydrocarbyl radicals containing from 1 to 18, and preferably 2 to 12, carbon atoms, and including radicals such as alkyl, alkenyl, aryl, aralkyl, alkaryl and cycloaliphatic radicals.
  • R30 and R31 groups are alkyl groups of from 2 to 8 carbon atoms.
  • the radicals may, for example, be ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, amyl, n-hexyl, i-hexyl, n-heptyl, n-octyl, decyl, dodecyl, octadecyl, 2-ethylhexyl, phenyl, butylphenyl, cyclohexyl, methylcyclopentyl, propenyl, butenyl, etc.
  • the total number of carbon atoms i.e., R30 and R31, will generally be about 5 or greater. Copper sulphonates, phenates, and acetylacetonates may also be used.
  • Exemplary of useful copper compounds are copper Cu I and/or Cu II salts of alkenyl succinic acids or anhydrides.
  • the salts themselves may be basic, neutral or acidic. They may be formed by reacting (a) polyalkylene succinimides (having polymer groups of Mn of 700 to 5,000) derived from polyalkylene-polyamines, which have at least one free carboxylic acid group, with (b) a reactive metal compound.
  • Suitable reactive metal compounds include those such as cupric or cuprous hydroxides, oxides, acetates, borates, and carbonates or basic copper carbonate.
  • these metal salts are Cu salts of polyisobutenyl succinic anhydride, and Cu salts of polyisobutenyl succinic acid.
  • the selected metal employed is its divalent form, e.g., Cu+2.
  • the preferred substrates are polyalkenyl succinic acids in which the alkenyl group has a molecular weight greater than about 700.
  • the alkenyl group desirably has a Mn from about 900 to 1,400, and up to 2,500, with a Mn of about 950 being most preferred.
  • polyisobutylene succinic anhydride or acid is especially preferred.
  • These materials may desirably be dissolved in a solvent, such as a mineral oil, and heated in the presence of a water solution (or slurry) of the metal bearing material. Heating may take place between 70°C and about 200°C. Temperatures of 100°C to 140°C are entirely adequate. It may be necessary, depending upon the salt produced, not to allow the reaction to remain at a temperature above about 140°C for an extended period of time, e.g., longer than 5 hours, or decomposition of the salt may occur.
  • a solvent such as a mineral oil
  • the copper antioxidants e.g., Cu-polyisobutenyl succinic anhydride, Cu-oleate, or mixtures thereof
  • Cu-polyisobutenyl succinic anhydride e.g., Cu-polyisobutenyl succinic anhydride, Cu-oleate, or mixtures thereof
  • Friction modifiers serve to impart the proper friction characteristics to lubricating oil compositions such as automatic transmission fluids.
  • Dispersants maintain oil insolubles, resulting from oxidation during use, in suspension in the fluid thus preventing sludge flocculation and precipitation or deposition on metal parts.
  • Suitable dispersants include high molecular weight alkyl succinimides, the reaction product of oil-soluble polyisobutylene succinic anhydride with ethylene amines such as tetraethylene pentamine and borated salts thereof.
  • Pour point depressants otherwise known as lube oil flow improvers, lower the temperature at which the fluid will flow or can be poured.
  • Such additives are well known.
  • those additives which usefully optimize the low temperature fluidity of the fluid are C8-C18 dialkylfumarate vinyl acetate copolymers, polymethacrylates, and wax naphthalene.
  • Foam control can be provided by an antifoamant of the polysiloxane type, e.g., silicone oil and polydimethyl siloxane.
  • Anti-wear agents reduce wear of metal parts.
  • Representatives of conventional antiwear agents are zinc dialkyldithiophosphate and zinc diaryldithiosphate.
  • Detergents and metal rust inhibitors include the metal salts of sulphonic acids, alkyl phenols, sulfurized alkyl phenols, alkyl salicylates, naphthenates and other oil soluble mono- and di-carboxylic acids.
  • Highly basic (viz. overbased) metal sales such as highly basic alkaline earth metal sulfonates (especially Ca and Mg salts) are frequently used as detergents. Representative examples of such materials, and their methods of preparation, are found in co-pending Serial No. 32,066, filed March 27, 1987, the disclosure of which is hereby incorporated by reference.
  • compositions when containing these conventional additives are typically blended into the base oil in amounts which are effective to provide their normal attendant function.
  • Representative effective amounts of such additives are illustrated as follows: Additive Wt.% a.i. (Broad) Wt. % a.i. (Preferred) Viscosity Modifier 0.01-12 0.01-4 Corrosion Inhibitor 0.01-5 0.01-1.5 Oxidation Inhibitor 0.01-5 0.01-1.5 Dispersant 0.1-20 0.1-8 Pour Point Depressant 0.01-5 0.01-1.5 Anti-Foaming Agents 0.001-3 0.001-0.15 Anti-Wear Agents 0.001-5 0.001-1.5 Friction Modifiers 0.01-5 0.01-1.5 Wt.% a.i. (Broad) Wt.% a.i. (Preferred) Detergents/Rust Inhibitors 0.01-10 0.01-3 Mineral Oil Base Balance Balance Balance
  • additive concentrates comprising concentrated solutions or dispersions of the dispersant (in concentrate amounts hereinabove described), together with one or more of said other additives (said concentrate when constituting an additive mixture being referred to herein as an additive package) whereby several additives can be added simultaneously to the base oil to form the lubricating oil composition. Dissolution of the additive concentrate into the lubricating oil may be facilitated by solvents and by mixing accompanied with mild heating, but this is not essential.
  • the concentrate or additive-package will typically be formulated to contain the dispersant additive and optional additional additives in proper amounts to provide the desired concentration in the final formulation when the additive-package is combined with a predetermined amount of base lubricant.
  • the products of the present invention can be added to small amounts of base oil or other compatible solvents along with other desirable additives to form additive-packages containing active ingredients in collective amounts of typically from about 2.5 to about 90%, and preferably from about 5 to about 75%, and most preferably from about 8 to about 50% by weight additives in the appropriate proportions with the remainder being base oil.
  • weight percents expressed herein are based on active ingredient (a.i.) content of the additive, and/or upon the total weight of any additive-package, or formulation which will be the sum of the a.i. weight of each additive plus the weight of total oil or diluent.
  • the reaction mixture is stripped by heating at 150° C with nitrogen blowing for one hour.
  • the residue is a S150N mineral oil solution of the dispersant, said oil solution having a viscosity at 100° C of 5437 centistokes (m2/s x 106).
  • Example 1 The procedure of Example 1 is repeated except that the 17.42 grams of ethylene glycol diglycidyl ether of Example 1 are replaced with 20.2 grams (0.1 mol) of 1,4-butanediol diglycidyl ether.
  • the residue is a S150N mineral oil solution of the dispersant, said oil solution having a viscosity at 100° C of 5664 centistokes (m2/s x 106).
  • Example 1 The procedure of Example 1 is repeated except that the 17.42 grams of ethylene glycol diglycidyl ether of Example 1 are replaced with 14.2 grams (0.1 mol) of 1,2,7,8-diepoxyoctane
  • the residue is a S150N mineral oil solution of the dispersant, said oil solution having a viscosity at 100° C of 3588 centistokes (m2/s x 106).
  • Example 5 The procedure of Example 5 is repeated except that 15 grams of the EPON Resin 828 are utilized.
  • the resultant S150N oil solution of the dispersant has a viscosity at 100° C of 513.0 centistokes (m2/s x 106).
  • Example 5 The procedure of Example 5 is repeated except that 20 grams of the EPON Resin 828 are utilized.
  • the resultant S150N oil solution of the dispersant has a viscosity at 100° C of 707.1 centistokes (m2/s x 106).
  • Example 5 The procedure of Example 5 is repeated except that 25 grams of the EPON Resin 828 are utilized.
  • the resultant S150N oil solution of the dispersant has a viscosity at 100° C of 1015 centistokes (m2/s x 106).
  • the SIB test has been found, after a large number of evaluations, to be an excellent test for assessing the dispersing power of lubricating oil dispersant additives.
  • the medium chosen for the SIB test was a used crankcase mineral lubricating oil composition having an original viscosity of about 325 SUS (0.07 Pas) at 38°C that had been used in a taxicab that was driven generally for short trips only, thereby causing a buildup of a high concentration of sludge precursors.
  • the oil that was used contained only a refined base mineral lubricating oil, a viscosity index improver, a pour point depressant and zinc dialkyldithiophosphate anti-wear additive.
  • the oil contained no sludge dispersant. A quantity of such used oil was acquired by draining and refilling the taxicab crankcase at 1000-2000 mile intervals.
  • the SIB test is conducted in the following manner: the aforesaid used crankcase oil, which is milky brown in color, is freed of sludge by centrifuging for one hour at about 39,000 gravities (gs.)(3.8 x 105 m/s2). The resulting clear bright red supernatant oil is then decanted from the insoluble sludge particles thereby separated out. However, the supernatant oil still contains oil-soluble sludge precursors which on heating under the conditions employed by this test will tend to form additional oil-insoluble deposits of sludge.
  • the sludge inhibiting properties of the additives being tested are determined by adding to portions of the supernatant used oil, a small amount, such as 0.5, 1 or 2 weight percent, of the particular additive being tested. Ten grams of each blend being tested are placed in a stainless steel centrifuge tube and are heated at 135°C for 16 hours in the presence of air. Following the heating, the tube containing the oil being tested is cooled and then centrifuged for about 30 minutes at room temperature at about 39,000 gs (3.8 x 105 m/s2).
  • any deposits of new sludge that form in this step are separated from the oil by decanting the supernatant oil and then carefully washing the sludge deposits with 25 ml of heptane to remove all remaining oil from the sludge and further centrifuging.
  • the weight of the new solid sludge that has been formed in the test is determined by drying the residue and weighing it. The results are reported as amount of precipitated sludge in comparison with the precipitated sludge of a blank not containing any additional additive, which blank is normalized to a rating of 10. The less new sludge precipitated in the presence of the additive, the lower the SIB value and the more effective is the additive as a sludge dispersant. In other words, if the additive gives half as much precipitated sludge as the blank, then it would be rated 5.0 since the blank will be normalized to 10.
  • each test sample consisted of 10 grams of lubricating oil containing a small amount of the additive being tested.
  • the test oil to which the additive is admixed is of the same type as used in the above-described SIB test.
  • Each ten gram sample was heat soaked overnight at about 140° C and thereafter centrifuged to remove the sludge.
  • the supernatant fluid of each sample was subjected to heat cycling from about 150° C to room temperature over a period of 3.5 hours at a frequency of about 2 cycles per minute.
  • gas which was a mixture of about 0.7 volume percent SO2, 1.4 volume percent NO and balance air was bubbled through the test samples.
  • the wall surface of the test flasks in which the samples were contained are visually evaluated as to the varnish inhibition.
  • the amount of varnish imposed on the walls is rated to values of from 1 to 11 with the higher number being the greater amount of varnish, in comparison with a blank with no additive that was rated 11.
  • SIB test oil 10.00 grams were mixed with varying amounts of the products of the Examples as described in Tables I - II below and tested in the aforedescribed SIB and VIB tests.
  • the amounts of additives listed in Tables I - II are not the neat active ingredient but are solutions of the various polyisobutenyl succinic anhydride-polyamine adducts or dispersants of the instant invention in S150N mineral oil as described in the corresponding Examples.
  • the amount of the polyisobutenyl succinic anhydride-polyamine adduct of Example 1 added to the lubricating oil refers not to the neat polyisobutenyl succinic anhydride-polyamine adduct but to the S150N neutral mineral oil solution containing about 50 wt. % of polyisobutenyl succinic anhydride-polyamine adduct on an active ingredient basis.
  • Table I Additive Wt. % (gms) of Oil Solution of additive SIB VIB PIBSA-PAM adduct of Example 4 0.5 3.37 5 Dispersant of Example 4 0.5 1.68 3
  • oil solution of the comparative "PIBSA-PAM adduct of Example 5" contains about 50 wt. % of active ingredient, i.e., polyisobutenyl succinic anhydride-polyamine adduct
  • oil solutions of the dispersants i.e., the reaction product of a polyepoxide and the polyisobutenyl succinic anhydride-polyamine adduct, of Examples 5, 6 and 8 are about 25% more dilute because of the added mineral oil.
  • Examples 9 and 10 further illustrate the dispersants of the present invention.
  • the resultant oil solution contains the dispersant product.
  • the resultant oil solution contains the dispersant product.
  • a fully formulated 10W40 crankcase motor oil is prepared containing 3.6 wt. % of the oil solution of the polyisobutenyl succinic anhydride-polyamine adduct of Example 10, together with a base oil containing an overbased sulfonate detergent, a zinc dialkyl dithiophosphate, an antioxidant, and 11.8 wt. % of an ethylene propylene copolymer viscosity index improver.
  • This motor oil composition is tested for its viscosity characteristics at 100°C in centistokes (m2/s x 106), and for cold cranking properties in a Cold Cranking Simulator (CCS) according to ASTM-D-2607-72 method at -20°C for viscosity in centipoise (Pas x 103). The results are summarized in Table III.
  • a fully formulated 10W40 crankcase motor oil is prepared substantially in accordance with the procedure of Example 11 except that the 3.6 wt.% of the oil solution of the polyisobutenyl succinic anhydride-polyamine adduct of Example 10 is replaced with 3.6 wt. % of the oil solution of the dispersant product of Example 10 and it contains 11 wt. % of the viscosity index improving ethylene-propylene copolymer.
  • the mineral lubricating oil in the base oil is 66.7 wt. % S150N oil and 11 wt. % S100N oil.
  • Example 12 despite substantial increases in kinematic viscosity of the formulation of the instant invention (Example 12) relative to that of Comparative Example 11 CCS viscosity dropped slightly.
  • Example 12 embodies a formulation within the scope of the instant invention while Comparative Example 11 embodies a formulation falling outside the scope of the instant invention. Comparative Example 11 is presented for comparative purposes only.
  • Example 13 illustrates a borated dispersant of the instant invention.
  • a fully formulated 10W40 crankcase motor oil is prepared containing 5 wt. % of the oil solution of the borated dispersant product of Example 13, together with a base oil containing an overbased sulfonate detergent, a zinc dialkyl dlthiophosphate, an antioxidant, and 7.5 wt. % of an ethylene-propylene copolymer viscosity index improver.
  • the mineral lubricating oil in the base oil is S140N oil.
  • This lubricating oil composition is tested for its viscosity characteristics as in comparative Example 11 and the results are summarized in Table IV.
  • This lubricating oil composition is also tested in a Caterpillar 1-H2 test, but for 120 hours rather than the full 480 hour test described in ASTM Document for Single Cylinder Engine Test for Crankcase Lubricants, Caterpillar 1-H2 Test Method, Part 1, STP 509A. This test evaluates the ability of diesel lubricants to curtail accumulation of deposits on the piston while operating in high severity diesel engines. The results are summarized in Table V.
  • a fully formulated 10W40 crankcase oil is prepared substantially in accordance with the procedure of Example 14 except that the 5 wt. % of the oil solution of the borated dispersant product of Example 13 is replaced with 5 wt. % of an oil solution (containing about 50 wt. % active ingredients) of a conventional borated dispersant (a borated polyisobutenyl succinic anhydride-polyamine adduct having a ratio of about 1.2 succinic anhydride moieties per polyisobutylene molecule of about 2,200 M n , the polyamine being a polyethylene polyamine having from about 5 to 7 nitrogens), and it contains 10.4 wt. % of the ethylene-propylene copolymer, viscosity index improver, and the mineral lubricating oil in the base oil is S130N oil.
  • a conventional borated dispersant a borated polyisobutenyl succinic anhydride-polyamine adduct having a ratio of about

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Lubricants (AREA)
  • Detergent Compositions (AREA)

Claims (18)

  1. Utilisation, dans une composition oléagineuse, d'un additif dispersant soluble dans les huiles, comprenant les produits de réaction :
    (1) d'au moins un produit d'addition contenant de l'azote ou un ester, choisi entre :
    (i) des amides, imides, esters ou mélanges de ces composés, solubles dans les huiles, d'acides mono- et dicarboxyliques à substituant hydroxycarbyle à longue chaîne ou de leurs anhydrides,
    (ii) un hydrocarbure à longue chaîne auquel est attachée directement une polyamine, pouvant être obtenu par déplacement du groupe halogéno d'un hydrocarbure halogéné à longue chaîne avec une polyamine, et
    (iii) un produit de condensation de Mannich formé par condensation d'un composé hydroxyaromatique à substituant hydrocarbyle à longue chaîne avec un aldéhyde et une polyalkylène-amine,
       ce produit d'addition contenant au moins un groupe réactif choisi entre des groupes amino réactifs et des groupes hydroxyle réactifs, et
       le substituant hydrocarbyle à longue chaîne présent dans (i), (ii) et (iii) étant un polymère comprenant au moins une quantité molaire dominante d'une monooléfine en C₂ à C₁₈ polymérisée, ce polymère ayant une moyenne numérique du poids moléculaire de 500 à 6000 ; et
    (2) d'au moins un polyépoxyde.
  2. Utilisation suivant la revendication 1, dans laquelle (1)(i) est un ester d'un alcanol polyhydroxylique contenant 3 à 15 atomes de carbone et au moins 3 groupes hydroxyle.
  3. Utilisation suivant la revendication 1, dans laquelle (1)(i) est un dérivé azoté acylé d'une matière acide dicarboxylique à substituant hydrocarbyle à longue chaîne contenant au moins un groupe amino réactif.
  4. Utilisation suivant la revendication 3, dans laquelle le groupe amino réactif est un groupe secondaire.
  5. Utilisation suivant la revendication 3 ou la revendication 4, dans laquelle (1)(i) est constitué des produits de réaction (a) d'au moins une polyamine contenant au moins deux groupes amino réactifs choisis entre des groupes amino primaires et des groupes amino secondaires et (b) d'au moins une matière acylante dicarboxylique à substituant hydrocarbyle à longue chaîne.
  6. Utilisation suivant la revendication 5, dans laquelle (1)(i)(b) est une matière produisant un acide dicarboxylique mono-insaturé en C₄ à C₁₀ à substituant hydrocarbyle formée par réaction d'au moins un polymère oléfinique de monooléfine en C₂ à C₈ et d'une matière produisant un acide à mono-insaturation alpha, bêta en C₄ à C₁₀.
  7. Utilisation suivant la revendication 6, dans laquelle la matière produisant un acide mono-insaturé en C₄ à C₁₀ est l'anhydride maléique.
  8. Utilisation suivant la revendication 6, dans laquelle la matière acylante dicarboxylique à substituant hydrocarbyle est un anhydride polyalcénylsuccinique.
  9. Utilisation suivant la revendication 8, dans laquelle le groupe polyalcényle est un groupe polybutényle ou polyisobutényle ou un mélange des deux.
  10. Utilisation suivant la revendication 8 ou la revendication 9, dans laquelle l'anhydride succinique à substituant polyalcényle a une fonctionnalité de 0,7 à 2,0.
  11. Utilisation suivant l'une quelconque des revendications 8, 9 ou 10, dans laquelle le groupe hydrocarbyle a une moyenne numérique du poids moléculaire de 800 à 2500.
  12. Utilisation suivant l'une quelconque des revendications 1 à 11, dans laquelle le polyépoxyde contient au moins deux noyaux d'oxirane réunis par des groupements hydrocarbonés, des groupements hydrocarbonés substitués, des groupements hydrocarbonés contenant au moins un hétéroatome ou un groupe hétéroatomique, ou des groupements hydrocarbonés substitués contenant au moins un hétéroatome ou un groupe hétéroatomique.
  13. Utilisation suivant la revendication 12, dans laquelle les groupements hydrocarbonés sont choisis entre des radicaux alkylène, cycloalkylène, alcénylène, arylène, aralcénylène et alkarylène.
  14. Utilisation suivant la revendication 12 ou la revendication 13, dans laquelle les groupes substituants présents sur les groupements hydrocarbonés et les hétéroatomes ou les groupes hétéroatomiques présents dans la chaîne hydrocarbonée sont principalement inertes ou non réactifs dans les conditions ambiantes vis-à-vis des noyaux d'oxirane du polyépoxyde.
  15. Utilisation suivant la revendication 12, dans laquelle le polyépoxyde contient au moins deux noyaux d'oxirane, où un atome de carbone de noyau d'oxirane est lié à deux atomes d'hydrogène.
  16. Utilisation suivant la revendication 15, dans laquelle le second atome de carbone du noyau d'oxirane est lié à un atome d'hydrogène.
  17. Composition oléagineuse, comprenant :
    (A) une quantité dominante d'une matière oléagineuse choisie dans le groupe comprenant des combustibles et une huile lubrifiante ; et
    (B) une quantité secondaire d'un additif dispersant soluble dans les huiles tel que défini dans l'une quelconque des revendications 1 à 16.
  18. Composition suivant la revendication 17, qui est un concentré d'additif comprenant 5 à 70 % en poids de matière oléagineuse (A) et 20 à 95 % en poids de (B) sur la base de la composition totale.
EP88310940A 1987-11-19 1988-11-18 Utilisation des additifs dispersants solubles dans des huiles dans des compositions huileuses Expired - Lifetime EP0317353B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12283287A 1987-11-19 1987-11-19
US122832 1987-11-19

Publications (3)

Publication Number Publication Date
EP0317353A2 EP0317353A2 (fr) 1989-05-24
EP0317353A3 EP0317353A3 (en) 1990-03-28
EP0317353B1 true EP0317353B1 (fr) 1994-07-13

Family

ID=22405025

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88310940A Expired - Lifetime EP0317353B1 (fr) 1987-11-19 1988-11-18 Utilisation des additifs dispersants solubles dans des huiles dans des compositions huileuses

Country Status (4)

Country Link
EP (1) EP0317353B1 (fr)
AT (1) ATE108471T1 (fr)
CA (1) CA1335095C (fr)
DE (1) DE3850637T2 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217634A (en) * 1988-02-29 1993-06-08 Exxon Chemical Patents Inc. Polyepoxide modified adducts or reactants and oleaginous compositions containing same
US5053150A (en) * 1988-02-29 1991-10-01 Exxon Chemical Patents Inc. Polyepoxide modified adducts or reactants and oleaginous compositions containing same
CA1337228C (fr) * 1988-02-29 1995-10-03 Robert Dean Lundberg Produits d'addition ou reactifs modifies par un polyepoxyde, et compositions oleagineuses en contenant
US5017299A (en) * 1988-08-01 1991-05-21 Exxon Chemical Patents, Inc. Novel ethylene alpha-olefin copolymer substituted Mannich base lubricant dispersant additives
US5186851A (en) * 1988-08-01 1993-02-16 Exxon Chemical Patents Inc. Ethylene alpha-olefin copolymer substituted mannich base lubricant dispersant additives
US5200103A (en) * 1988-08-01 1993-04-06 Exxon Chemical Patents Inc. Ethylene alpha-olefin copolymer substituted Mannich base lubricant dispsersant additives
US5345002A (en) * 1988-08-01 1994-09-06 Exxon Chemical Patents Inc. Ethylene alpha-olefin copolymer substituted hydroxy aromatic compounds
US5057617A (en) * 1988-11-07 1991-10-15 Exxon Chemical Patents Inc. Dispersant additives prepared from monoepoxy thiols
US4954572A (en) * 1988-11-07 1990-09-04 Exxon Chemical Patents Inc. Dispersant additives prepared from monoepoxy alcohols
CA2008258C (fr) * 1989-01-30 2001-09-11 Jacob Emert Additifs dispersants liposolubles, modifies a l'aide de composes monoepoxydes et mono-insature
NO911226L (no) * 1990-03-31 1991-10-01 Bp Chemicals Additives Smoereoljeadditiver, deres fremstilling og anvendelse.

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3386953A (en) * 1963-08-26 1968-06-04 Gen Mills Inc Latent curing of epoxy resins
US3378503A (en) * 1964-10-21 1968-04-16 Jefferson Chem Co Inc Alkylene oxide adducts of n-alkylcyclohexyl-1, 3-propanediamines
US3798165A (en) 1965-10-22 1974-03-19 Standard Oil Co Lubricating oils containing high molecular weight mannich condensation products
US3442808A (en) 1966-11-01 1969-05-06 Standard Oil Co Lubricating oil additives
US3649229A (en) 1969-12-17 1972-03-14 Mobil Oil Corp Liquid hydrocarbon fuels containing high molecular weight mannich bases
DE2755906C3 (de) * 1977-12-15 1982-04-01 Basf Ag, 6700 Ludwigshafen Im wesentlichen epoxidgruppenfreie Lackbindemittel
US4234435A (en) * 1979-02-23 1980-11-18 The Lubrizol Corporation Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation
DE3026823A1 (de) * 1980-07-16 1982-02-18 Basf Ag, 6700 Ludwigshafen Stickstoffbasische gruppen tragendes polyadditions/polykondensationsprodukt, verfahren zu dessen herstellung und dessen verwendung
DE3026873A1 (de) * 1980-07-16 1982-02-25 Basf Ag, 6700 Ludwigshafen Stickstoffbasische gruppen tragendes polyadditions/polykondensationsprodukt und seine verwendung
EP0062714A1 (fr) * 1981-04-10 1982-10-20 EDWIN COOPER & COMPANY LIMITED Dispersants sans cendres pour huiles lubrifiantes, compositions d'huile lubrifiante, mélange d'additif pour huiles lubrifiantes et méthodes pour la fabrication de tels dispersants, compositions et mélanges
DE3136281A1 (de) * 1981-09-12 1983-03-24 Hoechst Ag, 6000 Frankfurt Additionsprodukte aus triaethanolaminkondensaten und bis-glycidylethern und ihre verwendung
CA1262721A (fr) * 1985-07-11 1989-11-07 Jacob Emert Additifs-dispersants solubles dans l'huile, utiles dans des compositions oleagineuses
US4720350A (en) * 1986-04-14 1988-01-19 Texaco Inc. Oxidation and corrosion inhibiting additives for railway diesel crankcase lubricants

Also Published As

Publication number Publication date
EP0317353A2 (fr) 1989-05-24
CA1335095C (fr) 1995-04-04
ATE108471T1 (de) 1994-07-15
EP0317353A3 (en) 1990-03-28
DE3850637T2 (de) 1994-10-27
DE3850637D1 (de) 1994-08-18

Similar Documents

Publication Publication Date Title
US5085788A (en) Oil soluble dispersant additives useful in oleaginous compositions
US5026495A (en) Oil soluble dispersant additives useful in oleaginous compositions
EP0330522B1 (fr) Compositions démulsionnées d'huiles lubrifiantes
US5306313A (en) Dispersant additive comprising the reaction product of a polyanhydride and a mannich condensation product
EP0319229B1 (fr) Additifs dispersants dérivés d'amino-amines
EP0439885B1 (fr) Additifs dispersants solubles dans l'huile modifiés par des composés mono-époxydés mono-insaturés
EP0368548B1 (fr) Des amides additifs dispersants, dérivés d'amido-amines
EP0263703B1 (fr) Additifs lactones modifiés, estérifiés ou aminés utilisables dans des compositions d'huile
US4866142A (en) Lactone modified polymeric amines useful as oil soluble dispersant additives
EP0317353B1 (fr) Utilisation des additifs dispersants solubles dans des huiles dans des compositions huileuses
US5053150A (en) Polyepoxide modified adducts or reactants and oleaginous compositions containing same
EP0304175B1 (fr) Additifs dispersants de base de mannich modifiés par une lactone, utilisables dans des compositions huileuses
EP0372709B1 (fr) Additifs dispersants préparés à partir d'alcools monoépoxydés
US4957645A (en) Oil soluble dispersant additives useful in oleaginous compositions
US5385687A (en) Polyanhydride modified adducts or reactants and oleaginous compositions containing same
US5230817A (en) Polyanhydride modified adducts or reactants and oleaginous compositions containing same
EP0295789B1 (fr) Produits d'additions dispersants d'alkyl-acétoacétate et de succinnimide de polyamine polyoléfinique
US5482519A (en) Polyepoxide modified adducts or reactants and oleaginous compositions containing same
US5030369A (en) Oil soluble dispersant additives useful in oleaginous compositions
EP0331397A2 (fr) Additifs dispersants solubles dans des huiles et utiles dans des compositions huileuses
CA1337228C (fr) Produits d'addition ou reactifs modifies par un polyepoxyde, et compositions oleagineuses en contenant
US5047160A (en) Polyanhydride modified adducts or reactants and oleaginous compositions containing same
EP0263704A2 (fr) Additifs dispersants lactones modifiés, aminés utilisables dans des compositions d'huile
CA1335671C (fr) Produits d'addition ou reactifs modifies par des polyanhydrides et compositions oleagineuses qui en contiennent
US4913830A (en) Lactone-modified, mannich base dispersant additives useful in oleaginous compositions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19881208

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE DE FR GB IT NL

RHK1 Main classification (correction)

Ipc: C08G 59/64

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE DE FR GB IT NL

17Q First examination report despatched

Effective date: 19920909

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 108471

Country of ref document: AT

Date of ref document: 19940715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3850637

Country of ref document: DE

Date of ref document: 19940818

ITF It: translation for a ep patent filed
ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19941108

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19941128

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19941130

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19951118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19951130

BERE Be: lapsed

Owner name: EXXON CHEMICAL PATENTS INC.

Effective date: 19951130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960601

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071130

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20071116

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071005

Year of fee payment: 20

Ref country code: FR

Payment date: 20071105

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20081117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20081117