EP0309755A1 - Method and apparatus for controlling the current in an inductive load, particularly in a fuel injector - Google Patents

Method and apparatus for controlling the current in an inductive load, particularly in a fuel injector Download PDF

Info

Publication number
EP0309755A1
EP0309755A1 EP88114223A EP88114223A EP0309755A1 EP 0309755 A1 EP0309755 A1 EP 0309755A1 EP 88114223 A EP88114223 A EP 88114223A EP 88114223 A EP88114223 A EP 88114223A EP 0309755 A1 EP0309755 A1 EP 0309755A1
Authority
EP
European Patent Office
Prior art keywords
signal
switch
clock
load
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP88114223A
Other languages
German (de)
French (fr)
Inventor
Manfred Dipl.-Ing. Glehr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0309755A1 publication Critical patent/EP0309755A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/32Energising current supplied by semiconductor device
    • H01H47/325Energising current supplied by semiconductor device by switching regulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2051Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using voltage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • F02D2041/2062Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value the current value is determined by simulation or estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2075Type of transistors or particular use thereof

Definitions

  • the invention relates to a method for controlling the load current according to the preamble of claim 1 and an associated arrangement.
  • the invention has for its object to avoid the disadvantages associated with such a resistor, such as power losses and lower peak current.
  • this is achieved by means of a model which has approximately the same time behavior and the same dependence on the level of the voltage of the voltage source feeding the load circuit as the load circuit and which is started at the start of the switch-on signal and which determines the end of the switch-on signal.
  • the invention is based on the fact that the parameters determining the time behavior of the load circuit - resistances, inductance - are essentially constant and thus the time behavior is only dependent on the operating voltage.
  • a charging circuit with an electrical store and a charging source is preferably used as a model and the charge size (voltage or current) in the store is compared with a limit value.
  • Either the source quantity (voltage or current) supplied by the charging source with a constant limit value or this limit value with a constant source quantity may depend on the operating voltage of the voltage source.
  • the source variable is preferably a voltage which is dependent on the operating voltage and with which a capacitor serving as a memory is charged. In principle, however, a current can also serve as the source variable, with which a coil is charged as a memory.
  • the time behavior of the load circuit can of course also be simulated with the help of a digital computer.
  • the invention also makes it possible to set the current differently during the duration of a closing signal: for example, at the beginning of the closing signal one can generate a start signal with a specific start duration and then intermittently clock signals with a cycle duration that is shorter than the start duration.
  • the amount of the maximum inrush current and a lower holding current can be determined by setting the start duration and the cycle duration.
  • several inductive loads e.g. Injectors that are to be actuated with a timed closing signal can, according to a further development of the invention, use a single model for determining the starting time and a further model for determining the cycle time.
  • the switch-on signals for each load which are composed of a start signal and a plurality of clock signals, are formed with the aid of logic logic elements.
  • the load current i should rise as quickly as possible to a predetermined setpoint iS1; after the valve has been energized, the current should oscillate through a switching operation around an average holding current iH and increase intermittently to a lower setpoint iS2.
  • the switch-on signal SE required for this for a switch in the load circuit of the injection valve is shown in line 2; it is composed of a start signal SES with the start duration TES and then intermittently subsequent clock signals SET with the clock duration TEn.
  • the clock signals are separated by clock pauses TP.
  • the holding current iH depends on the duty cycle, that is to say the ratio of the clock duration TEn to the clock period duration T.
  • FIG. 2 shows two identical load circuits, each with an inductive load 1, 1 'in the form of an injection valve and a switch 2, 2' and connected to a voltage source 4.
  • Each switch 2, 2 ' consists essentially of a MOSFET 21 which is controlled by means of the voltage drop across a resistor 23. This voltage drop occurs every time a transistor 22 is turned on by the switch-on signal SE1,2: Then, via this transistor 22, a current flows from a voltage source (not shown) with the stabilized voltage UBS via the resistor 23.
  • a series circuit 24 comprising a diode and a zener diode protects the MOSFET 21 against switch-off overvoltage.
  • Each load 1, 1 ' is a freewheeling branch 3, 3' connected in parallel, which consists essentially of a freewheeling diode 32 and a transistor 31.
  • the latter is controlled via a transistor 33 by the closing signal SS during the duration of this closing signal: Therefore, if the switch 2, 2 'is open in the clock breaks TP, the load current can continue to flow through the freewheeling branch.
  • the start signal SES for both load circuits is generated by the start signal generator 6, which is shown in more detail in FIG. 3. It contains a monostable flip-flop 60, which essentially consists of an integrated flip-flop 600 (e.g. type LM555 from National Semiconductor) and a charging circuit acting as a start model with an adjustable resistor 101, a decoupling diode 602 and a capacitor 603.
  • the - variable - operating voltage UB is connected to the charging circuit.
  • the capacitor 603 is connected to the threshold input THR and the discharge input DIS of the trigger circuit 600, the inputs NSN, RES on the one hand and GRO on the other hand are connected to a voltage source (not shown) with the stabilized voltage UBS.
  • the capacitor 603 is additionally charged via a resistor 604 and a decoupling diode 605 depending on the stabilized voltage UBS.
  • the flip-flop 60 can be triggered by a pulse at the trigger input TRI: This causes the start signal SES at the output OUT set and the capacitor 603 quickly discharged via the DIS input.
  • the start signal SES is omitted again as soon as the voltage across the capacitor 603 reaches a fixed limit G set in the flip-flop 600; this is the case earlier, the higher the operating voltage UB (see FIG. 5).
  • a bistable flip-flop 631, 632 is assigned to each load circuit, which can be controlled via a differentiating element 61, 62 (RC element) depending on the associated closing signal SS1,2 and can be reset with the descending end edge of the start signal SES.
  • the resistors of the differentiators 61, 62 are also connected to two inputs of a NOR gate 64, the output of which is connected to the trigger input TRI: Therefore, the flip-flop 631 and thus the start signal SES1 and the flip-flop 60 are set with the rising edge of the closing signal SS1 . After a time dependent on UB, the flip-flop 60 tilts back and thus also sets the flip-flop 631 back via the signal SES. In the same way, the closing signal SS2 triggers a start signal SES2 which is dependent on the operating voltage UB.
  • the start signal generator can also have the structure shown in FIG. 4 and labeled 6 '.
  • a flip-flop 60 is provided here for each load circuit, which has the same structure and the same function as the flip-flop 60 in FIG. 3.
  • Each flip-flop delivers the start signal SES directly at its output OUT and is switched by means of the closing signal SS via an inverter 641. 642 controlled.
  • the clock generator 7 in FIG. 2 essentially consists of an astable flip-flop 71, which supplies a generator signal SG with a specific clock frequency.
  • the generator signal SG is used to control the trigger input of a monostable multivibrator 72, the structure of which is again the same as that of multivibrator 60 in FIG. 3. It differs only by a different dimensioning of the charging circuit, so that multivibrator 72 is on at its output Delivers clock signal SET with a clock duration TEn that is shorter than the start duration TES, but which also depends on the operating voltage UB (falls with increasing voltage).
  • the dependency of the clock ratio (TEn divided by T) on the operating voltage UB is shown in FIG.
  • This simplest embodiment results in an increase in the holding current iH as the operating voltage UB decreases. This can be avoided by using a constant clock pause TP that is matched to the time constant of the load circuit, i.e. works with a variable frequency of the astable flip-flop 71: The frequency of this flip-flop must then fall as the operating voltage decreases.
  • SE1 initially consists of the start signal SES1, which the start signal generator 6, triggered by the closing signal SS1, supplies via the OR gate 51.
  • the clock generator 7 supplies clock signals SET1 via the AND gate 52 and the OR gate 51 until the closing signal SS1 on the AND gate 52 is omitted and the switch 2 and the freewheeling circuit 3 are thus opened again.
  • the right half of FIG. 7 shows the influence of a lower operating voltage UB on the switch-on signals SE, the duration of which is greater than that of the switch-on signals in the left half of FIG. 7 (at a higher UB).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

For controlling the make times of the load current in a load circuit with an inductive load (1), particularly in a fuel injector, a model is used which has roughly the same time characteristics and the same variation as a function of the level of the operating voltage as the load circuit: As a result a measuring resistor in the load circuit for determining the actual current can be dispensed with. The make times are generated by means of one-shot multivibrators and voltage-dependent load circuits. The make signals (SE) for a plurality of load circuits may be derived from those same multivibrators - start signal transmitters (6), clock generators (7) - by means of logic elements (5, 5'). <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zum Steuern des Laststro­mes gemäß Oberbegriff von Anspruch 1 und eine zugehörige Anord­nung.The invention relates to a method for controlling the load current according to the preamble of claim 1 and an associated arrangement.

Bei einer aus der US-PS 4 180 026 bekannten Anordnung dieser Art liegt im Lastkreis ein Meßwiderstand, an dem ein dem Last­strom proportionaler Spannungsabfall entsteht, der als Istwert für eine Steuereinrichtung zum Steuern oder Regeln des Last­stromes dient.In an arrangement of this type known from US Pat. No. 4,180,026, there is a measuring resistor in the load circuit, at which a voltage drop proportional to the load current arises, which serves as an actual value for a control device for controlling or regulating the load current.

Der Erfindung liegt die Aufgabe zugrunde, die mit einem solchen Widerstand verbundenen Nachteile, wie Leistungsverluste und niedrigeren Spitzenstrom, zu vermeiden.The invention has for its object to avoid the disadvantages associated with such a resistor, such as power losses and lower peak current.

Erfindungsgemäß gelingt dies mittels eines Modells, das etwa dasselbe Zeitverhalten und dieselbe Abhängigkeit von der Höhe der Spannung der den Lastkreis speisenden Spannungsquelle hat wie der Lastkreis und das zu Beginn des Einschaltsignals ge­startet wird und das das Ende des Einschaltsignals bestimmt. Die Erfindung geht davon aus, daß die das Zeitverhalten des Lastkreises bestimmenden Parameter - Widerstände, Induktivität - ­im wesentlichen konstant sind und somit das Zeitverhalten nur von der Betriebsspannung abhängig ist. Durch Nachbildung des Zeitverhaltens des Lastkreises mit Hilfe des Modelles erhält man so ohne Meßwiderstand im Lastkreis ein dem Laststrom pro­portionales Signal, das als Istwert zum Regeln, Steuern oder Begrenzen des Laststromes verwendet werden kann.According to the invention, this is achieved by means of a model which has approximately the same time behavior and the same dependence on the level of the voltage of the voltage source feeding the load circuit as the load circuit and which is started at the start of the switch-on signal and which determines the end of the switch-on signal. The invention is based on the fact that the parameters determining the time behavior of the load circuit - resistances, inductance - are essentially constant and thus the time behavior is only dependent on the operating voltage. By simulating the time behavior of the load circuit using the model, a signal proportional to the load current is obtained without measuring resistance in the load circuit, which signal can be used as an actual value for regulating, controlling or limiting the load current.

Vorzugsweise wird man als Modell einen Ladekreis mit einem elektrischen Speicher und einer Ladequelle (Spannungs- oder Stromquelle) verwenden und die Ladegröße (Spannung oder Strom) an dem Speicher mit einem Grenzwert vergleichen. Dabei kann entweder die von der Ladequelle gelieferte Quellgröße (Spannung oder Strom) bei konstantem Grenzwert oder dieser Grenzwert bei konstanter Quellgröße von der Betriebsspannung der Spannungs­quelle abhängig sein. Vorzugsweise ist die Quellgröße eine von der Betriebsspannung abhängige Spannung, mit der ein als Spei­cher dienender Kondensator aufgeladen wird. Grundsätzlich kann aber als Quellgröße auch ein Strom dienen, mit dem eine Spule als Speicher aufgeladen wird.A charging circuit with an electrical store and a charging source (voltage or current source) is preferably used as a model and the charge size (voltage or current) in the store is compared with a limit value. Either the source quantity (voltage or current) supplied by the charging source with a constant limit value or this limit value with a constant source quantity may depend on the operating voltage of the voltage source. The source variable is preferably a voltage which is dependent on the operating voltage and with which a capacitor serving as a memory is charged. In principle, however, a current can also serve as the source variable, with which a coil is charged as a memory.

Das Zeitverhalten des Lastkreises läßt sich natürlich auch mit Hilfe eines Digitalrechners nachbilden.The time behavior of the load circuit can of course also be simulated with the help of a digital computer.

Die Erfindung ermöglicht es auch, den Strom während der Dauer eines Schließsignales unterschiedlich einzustellen: Zum Bei­spiel kann man zu Beginn des Schließsignales ein Startsignal mit einer bestimmten Startdauer und anschließend intermittie­rend Taktsignale mit einer Taktdauer erzeugen, die kürzer als die Startdauer ist. Über die Einstellung der Startdauer und der Taktdauer läßt sich die Höhe des maximalen Einschaltstromes und eines niedrigeren Haltestromes bestimmen. Wenn mehrere indukti­ve Lasten, z.B. Einspritzventile, mit zeitlich versetztem Schließsignal angesteuert werden sollen, kann man gemäß einer Weiterbildung der Erfindung ein einziges Modell zur Bestimmung der Startdauer und ein weiteres Modell zur Bestimmung der Takt­dauer verwenden. Die aus jeweils einem Startsignal und mehreren Taktsignalen zusammengesetzten Einschaltsignale für jede Last werden mit Hilfe logischer Verknüpfungsglieder gebildet.The invention also makes it possible to set the current differently during the duration of a closing signal: for example, at the beginning of the closing signal one can generate a start signal with a specific start duration and then intermittently clock signals with a cycle duration that is shorter than the start duration. The amount of the maximum inrush current and a lower holding current can be determined by setting the start duration and the cycle duration. If several inductive loads, e.g. Injectors that are to be actuated with a timed closing signal can, according to a further development of the invention, use a single model for determining the starting time and a further model for determining the cycle time. The switch-on signals for each load, which are composed of a start signal and a plurality of clock signals, are formed with the aid of logic logic elements.

Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.Further advantageous embodiments of the invention are characterized in the subclaims.

Die Erfindung wird anhand der Figuren näher erläutert; es zei­gen:

  • FIG 1 ein Diagramm mit Signal- und Stromverläufen,
  • FIG 2 ein Ausführungsbeispiel der Erfindung zur Steuerung von zwei Lastkreisen,
  • FIG 3 den Aufbau des in FIG 2 mit 6 bezeichneten Startsignal­gebers,
  • FIG 4 eine alternative Ausführungsform für den Startsignalge­ber,
  • FIG 5 den Zusammenhang zwischen der Startdauer TES und der Be­triebsspannung UB,
  • FIG 6 den Zusammenhang zwischen dem Tastverhältnis (Taktdauer TEn zu Taktperiodendauer T) und der Betriebsspannung UB, und
  • FIG 7 ein Signaldiagramm für die in FIG 2 angegebenen Signale bei zwei unterschiedlichen Betriebsspannungen UB.
The invention is illustrated by the figures; show it:
  • 1 shows a diagram with signal and current profiles,
  • 2 shows an exemplary embodiment of the invention for controlling two load circuits,
  • 3 shows the structure of the start signal generator designated by 6 in FIG. 2,
  • 4 shows an alternative embodiment for the start signal generator,
  • 5 shows the relationship between the starting time TES and the operating voltage UB,
  • 6 shows the relationship between the duty cycle (clock duration TEn to clock period T) and the operating voltage UB, and
  • 7 shows a signal diagram for the signals indicated in FIG. 2 at two different operating voltages UB.

FIG 1 zeigt in der ersten Zeile ein Schließsignal SS, dessen Dauer die Öffnungszeit eines Einspritzventiles bestimmt und dementsprechend aus Betriebsparametern einer Brennkraftmaschine berechnet ist. Um eine möglichst kleine Anzugzeit des Ventils zu erreichen, soll der Laststrom i so schnell wie möglich auf einen vorgegebenen Sollwert iS1 ansteigen; nach Anzug des Ven­tils soll der Strom durch einen Schaltbetrieb um einen mittle­ren Haltestrom iH pendeln und dabei intermittierend auf einen niedrigeren Sollwert iS2 ansteigen.1 shows a closing signal SS in the first line, the duration of which determines the opening time of an injection valve and is accordingly calculated from operating parameters of an internal combustion engine. In order to achieve the smallest possible pull-in time of the valve, the load current i should rise as quickly as possible to a predetermined setpoint iS1; after the valve has been energized, the current should oscillate through a switching operation around an average holding current iH and increase intermittently to a lower setpoint iS2.

Das hierfür erforderliche Einschaltsignal SE für einen Schalter im Laststromkreis des Einspritzventils ist in Zeile 2 darge­stelle; es setzt sich zusammen aus einem Startsignal SES mit der Startdauer TES und dann intermittierend anschließenden Taktsignalen SET mit der Taktdauer TEn. Die Taktsignale sind durch Taktpausen TP getrennt. Der Haltestrom iH hängt dabei vom Tastverhältnis, also dem Verhältnis der Taktdauer TEn zur Takt­periodendauer T ab.The switch-on signal SE required for this for a switch in the load circuit of the injection valve is shown in line 2; it is composed of a start signal SES with the start duration TES and then intermittently subsequent clock signals SET with the clock duration TEn. The clock signals are separated by clock pauses TP. The holding current iH depends on the duty cycle, that is to say the ratio of the clock duration TEn to the clock period duration T.

In FIG 2 sind zwei identische Lastkreise mit je einer indukti­ven Last 1, 1′ in Form eines Einspritzventils und einem Schal­ter 2, 2′ dargestellt und an eine Spannungsquelle 4 angeschlos­sen.2 shows two identical load circuits, each with an inductive load 1, 1 'in the form of an injection valve and a switch 2, 2' and connected to a voltage source 4.

Jeder Schalter 2, 2′ besteht im wesentlichen aus einem MOSFET 21, der mit Hilfe des Spannungsabfalles an einem Widerstand 23 durchgesteuert wird. Dieser Spannungsabfall entsteht jedesmal, wenn ein Transistor 22 durch das Einschaltsignal SE1,2 durchge­steuert wird: Dann fließt über diesen Transistor 22 ein Strom von einer nicht dargestellten Spannungsquelle mit der stabili­sierten Spannung UBS über den Widerstand 23. Eine Serienschal­tung 24 aus einer Diode und einer Zenerdiode schützt den MOSFET 21 gegen Abschaltüberspannung.Each switch 2, 2 'consists essentially of a MOSFET 21 which is controlled by means of the voltage drop across a resistor 23. This voltage drop occurs every time a transistor 22 is turned on by the switch-on signal SE1,2: Then, via this transistor 22, a current flows from a voltage source (not shown) with the stabilized voltage UBS via the resistor 23. A series circuit 24 comprising a diode and a zener diode protects the MOSFET 21 against switch-off overvoltage.

Jeder Last 1, 1′ ist ein Freilaufzweig 3, 3′ parallelgeschaltet, der im wesentlichen aus einer Freilaufdiode 32 und einem Tran­sistor 31 besteht. Letzterer wird über einen Transistor 33 je­weils durch das Schließsignal SS während der Dauer dieses Schließsignals durchgesteuert: Wenn daher der Schalter 2, 2′ in den Taktpausen TP offen ist, kann der Laststrom über den Frei­laufzweig weiterfließen.Each load 1, 1 'is a freewheeling branch 3, 3' connected in parallel, which consists essentially of a freewheeling diode 32 and a transistor 31. The latter is controlled via a transistor 33 by the closing signal SS during the duration of this closing signal: Therefore, if the switch 2, 2 'is open in the clock breaks TP, the load current can continue to flow through the freewheeling branch.

Das Startsignal SES für beide Laststromkreise wird von dem Startsignalgeber 6 erzeugt, der in FIG 3 detaillierter darge­stellt ist. Er enthält ein monostabiles Kippglied 60, das im wesentlichen aus einem integrierten Kippkreis 600 (z.B. Type LM555 der Firma National Semiconductor) und einem als Startmo­dell wirkenden Ladekreis mit einem einstellbaren Widerstand 101 einer Entkopplungsdiode 602 und einem Kondensator 603 besteht. An dem Ladekreis liegt die - variable - Betriebsspannung UB. Der Kondensator 603 ist an den Schwelleneingang THR und den Entladeeingang DIS des Kippkreises 600 angeschlossen, dessen Eingänge NSN, RES einerseits und GRO andererseits an eine nicht dargestellte Spannungsquelle mit der stabilisierten Spannung UBS angeschlossen sind. Um den in FIG 5 dargestellten Kurvenver­lauf zu erhalten wird der Kondensator 603 zusätzlich über einen Widerstand 604 und eine Entkopplungsdiode 605 abhängig von der stabilisierten Spannung UBS aufgeladen.The start signal SES for both load circuits is generated by the start signal generator 6, which is shown in more detail in FIG. 3. It contains a monostable flip-flop 60, which essentially consists of an integrated flip-flop 600 (e.g. type LM555 from National Semiconductor) and a charging circuit acting as a start model with an adjustable resistor 101, a decoupling diode 602 and a capacitor 603. The - variable - operating voltage UB is connected to the charging circuit. The capacitor 603 is connected to the threshold input THR and the discharge input DIS of the trigger circuit 600, the inputs NSN, RES on the one hand and GRO on the other hand are connected to a voltage source (not shown) with the stabilized voltage UBS. In order to obtain the curve profile shown in FIG. 5, the capacitor 603 is additionally charged via a resistor 604 and a decoupling diode 605 depending on the stabilized voltage UBS.

Das Kippglied 60 ist triggerbar über einen Impuls am Trigger­eingang TRI: Dadurch wird am Ausgang OUT das Startsignal SES gesetzt und der Kondensator 603 über den Eingang DIS schnell entladen. Das Startsignal SES entfällt wieder, sobald die Span­nung an dem Kondensator 603 einen in dem Kippkreis 600 einge­stellten festen Grenzwert G erreicht; dies ist umso früher der Fall, je höher die Betriebsspannung UB ist (vgl. FIG 5).The flip-flop 60 can be triggered by a pulse at the trigger input TRI: This causes the start signal SES at the output OUT set and the capacitor 603 quickly discharged via the DIS input. The start signal SES is omitted again as soon as the voltage across the capacitor 603 reaches a fixed limit G set in the flip-flop 600; this is the case earlier, the higher the operating voltage UB (see FIG. 5).

Jedem Lastkreis ist ein bistabiles Kippglied 631, 632 zugeord­net, das über je ein Differenzierglied 61, 62 (RC-Glied) abhän­gig von dem zugehörigen Schließsignal SS1,2 ansteuerbar und mit der absteigenden Endflanke des Startsignals SES rücksetzbar ist.A bistable flip-flop 631, 632 is assigned to each load circuit, which can be controlled via a differentiating element 61, 62 (RC element) depending on the associated closing signal SS1,2 and can be reset with the descending end edge of the start signal SES.

Die Widerstände der Differenzierglieder 61, 62 liegen auch an zwei Eingängen eines NOR-Gliedes 64, dessen Ausgang mit dem Triggereingang TRI verbunden ist: Daher wird mit der Anstiegs­flanke des Schließsignals SS1 sowohl das Kippglied 631 und da­mit das Startsignal SES1 wie auch das Kippglied 60 gesetzt. Nach einer von UB abhängigen Zeit kippt das Kippglied 60 zurück und setzt damit auch über das Signal SES das Kippglied 631 zu­rück. In derselben Weise löst das Schließsignal SS2 ein von der Betriebsspannung UB abhängiges Startsignal SES2 aus.The resistors of the differentiators 61, 62 are also connected to two inputs of a NOR gate 64, the output of which is connected to the trigger input TRI: Therefore, the flip-flop 631 and thus the start signal SES1 and the flip-flop 60 are set with the rising edge of the closing signal SS1 . After a time dependent on UB, the flip-flop 60 tilts back and thus also sets the flip-flop 631 back via the signal SES. In the same way, the closing signal SS2 triggers a start signal SES2 which is dependent on the operating voltage UB.

Der Startsignalgeber kann auch die in FIG 4 dargestellte und mit 6′ bezeichnete Struktur haben. Es ist hier für jeden Last­kreis ein Kippglied 60 vorgesehen, das den gleichen Aufbau und dieselbe Funktion hat wie das Kippglied 60 in FIG 3. Jedes Kippglied liefert unmittelbar an seinem Ausgang OUT das Start­signal SES und wird mit Hilfe des Schließsignals SS über einen Inverter 641, 642 angesteuert.The start signal generator can also have the structure shown in FIG. 4 and labeled 6 '. A flip-flop 60 is provided here for each load circuit, which has the same structure and the same function as the flip-flop 60 in FIG. 3. Each flip-flop delivers the start signal SES directly at its output OUT and is switched by means of the closing signal SS via an inverter 641. 642 controlled.

Der Taktgeber 7 in FIG 2 besteht im wesentlichen aus einem asta­bilen Kippglied 71, das ein Generatorsignal SG mit bestimmter Taktfrequenz liefert. Mit dem Generatorsignal SG wird der Trig­gereingang eines monostabilen Kippgliedes 72 angesteuert, des­sen Aufbau wieder gleich ist dem des Kippgliedes 60 in FIG 3. Es unterscheidet sich lediglich durch eine andere Bemessung des Ladekreises, so daß das Kippglied 72 an seinem Ausgang ein Taktsignal SET mit einer Taktdauer TEn liefert, die kleiner als die Startdauer TES ist, die aber ebenfalls von der Betriebs­spannung UB abhängt (bei steigender Spannung fällt). Die Abhän­gigkeit des Taktverhältnisses (TEn dividiert durch T) von der Betriebsspannung UB ist in FIG 6 gezeigt.The clock generator 7 in FIG. 2 essentially consists of an astable flip-flop 71, which supplies a generator signal SG with a specific clock frequency. The generator signal SG is used to control the trigger input of a monostable multivibrator 72, the structure of which is again the same as that of multivibrator 60 in FIG. 3. It differs only by a different dimensioning of the charging circuit, so that multivibrator 72 is on at its output Delivers clock signal SET with a clock duration TEn that is shorter than the start duration TES, but which also depends on the operating voltage UB (falls with increasing voltage). The dependency of the clock ratio (TEn divided by T) on the operating voltage UB is shown in FIG.

Diese einfachste Ausführungsform hat eine Zunahme des Halte­stromes iH mit abnehmender Betriebsspannung UB zur Folge. Dies läßt sich vermeiden, wenn man mit einer konstanten, auf die Zeitkonstante des Laststromkreises abgestimmten Taktpause TP, d.h. mit variabler Frequenz des astabilen Kippgliedes 71 arbei­tet: Die Frequenz dieses Kippgliedes muß dann mit abnehmender Betriebsspannung fallen.This simplest embodiment results in an increase in the holding current iH as the operating voltage UB decreases. This can be avoided by using a constant clock pause TP that is matched to the time constant of the load circuit, i.e. works with a variable frequency of the astable flip-flop 71: The frequency of this flip-flop must then fall as the operating voltage decreases.

Aus dem Impulsdiagramm nach FIG 7 in Verbindung mit FIG 2 ist zu ersehen, daß mit Beginn des Schließsignals SS1 der Freilauf­zweig 3 unmittelbar und der Schalter 2 über das Einschaltsignal SE1 durchgeschaltet wird. SE1 besteht dabei zunächst aus dem Startsignal SES1, das der Startsignalgeber 6, angestoßen durch das Schließsignal SS1 über das ODER-Glied 51 liefert.It can be seen from the pulse diagram according to FIG. 7 in conjunction with FIG. 2 that when the closing signal SS1 begins, the freewheeling branch 3 is switched through immediately and the switch 2 is switched on via the switch-on signal SE1. SE1 initially consists of the start signal SES1, which the start signal generator 6, triggered by the closing signal SS1, supplies via the OR gate 51.

Nach dem Ende des Startsignals SES1 liefert der Taktgeber 7 Taktsignale SET1 über UND-Glied 52 und ODER-Glied 51, bis das Schließsignal SS1 am UND-Glied 52 entfällt und damit der Schal­ter 2 und der Freilaufkreis 3 wieder geöffnet werden.After the end of the start signal SES1, the clock generator 7 supplies clock signals SET1 via the AND gate 52 and the OR gate 51 until the closing signal SS1 on the AND gate 52 is omitted and the switch 2 and the freewheeling circuit 3 are thus opened again.

Der zugehörige Verlauf des Laststromes i1 ist in der vorletzten Zeile der FIG 7 dargestellt.The associated course of the load current i1 is shown in the penultimate line of FIG. 7.

An der rechten Hälfte der FIG 7 ist der Einfluß einer niedri­geren Betriebsspannung UB auf die Einschaltsignale SE ersicht­lich, deren Dauer größer ist als die der Einschaltsignale in der linken Hälfte der FIG 7 (bei höherer UB).The right half of FIG. 7 shows the influence of a lower operating voltage UB on the switch-on signals SE, the duration of which is greater than that of the switch-on signals in the left half of FIG. 7 (at a higher UB).

Claims (9)

1. Verfahren zum Steuern des Laststromes (i) in einem Last­kreis mit einer Spannungsquelle (4), einem Schalter (2, 2′) und einer induktiven Last (1, 1′), insbesondere einem Kraftstoff­einspritzventil, wobei die Einschaltdauer (TE) des Laststromes (i) jeweils durch die Länge eines Einschaltsignals (SE) be­stimmt ist, das endet, wenn der Laststrom einen Sollwert (iS) erreicht,
dadurch gekennzeichnet,
daß das Ende des Einschaltsignals (SE) durch ein Modell be­stimmt ist, das mit Beginn jedes Einschaltsignals (SE) gestar­tet wird und das etwa dasselbe Zeitverhalten und dieselbe Ab­hängigkeit von der Höhe der Betriebsspannung (UB) der Span­nungsquelle (4) hat wie der Lastkreis.
1. A method for controlling the load current (i) in a load circuit with a voltage source (4), a switch (2, 2 ') and an inductive load (1, 1'), in particular a fuel injector, the duty cycle (TE) of Load current (i) is determined in each case by the length of a switch-on signal (SE) which ends when the load current reaches a desired value (iS),
characterized,
that the end of the switch-on signal (SE) is determined by a model that is started at the start of each switch-on signal (SE) and that has approximately the same timing and dependency on the level of the operating voltage (UB) of the voltage source (4) as the load circuit.
2. Verfahren nach Anspruch 1, bei dem das Einschaltsignal (SE) aus einem Startsignal (SES) und intermittierenden Taktsignalen (SET) besteht, die innerhalb eines Schließsignales (SS) liegen, wobei Einschaltdauer der Taktsignale (SET), nämlich die Takt­dauer (TEn), kleiner als die Einschaltdauer des Startsignales (SES), nämlich die Startdauer (TES), ist,
dadurch gekennzeichnet,
daß den unterschiedlich langen Einschaltsignalen (SES, SET) je ein entsprechend eingestelltes Modell, nämlich ein Startmodell bzw. Taktmodell zugeordnet ist.
2. The method according to claim 1, wherein the switch-on signal (SE) consists of a start signal (SES) and intermittent clock signals (SET), which are within a closing signal (SS), the duty cycle of the clock signals (SET), namely the clock duration (TEn ), is shorter than the on-time of the start signal (SES), namely the start time (TES),
characterized,
that the switch-on signals of different lengths (SES, SET) are each assigned a correspondingly set model, namely a start model or clock model.
3. Verfahren nach Anspruch 2 zur Steuerung von n Schaltern (1, 1′) in n Lastkreisen abhängig von diesen Schaltern zugeordneten Schließsignalen (SSn),
dadurch gekennzeichnet,
daß dasselbe Startmodell von jedem Schließsignal (SSn) angesto­ßen wird und die Länge aller Startsignale (SESn) bestimmt und daß dasselbe Taktmodell die Länge aller Taktsignale (SETn) be­stimmt.
3. The method according to claim 2 for controlling n switches (1, 1 ') in n load circuits depending on these switches associated with closing signals (SSn),
characterized,
that the same start model is triggered by each closing signal (SSn) and determines the length of all start signals (SESn) and that the same clock model determines the length of all clock signals (SETn).
4. Verfahren nach Anspruch 3,
dadurch gekennzeichnet,
daß die Taktsignale (SET) von einem Taktgeber (7) mit einem astabilen (71) und einem monostabilen (72) Kippglied geliefert werden, wobei das astabile Kippglied (71) die Taktfrequenz und das monostabile Kippglied (72) die Taktdauer (TEn) der Taktsi­gnale (SET) abhängig von der Betriebsspannung (UB) bestimmt.
4. The method according to claim 3,
characterized,
that the clock signals (SET) are supplied by a clock generator (7) with an astable (71) and a monostable (72) flip-flop, the astable flip-flop (71) the clock frequency and the monostable flip-flop (72) the clock duration (TEn) Clock signals (SET) determined depending on the operating voltage (UB).
5. Verfahren nach Anspruch 4,
dadurch gekennzeichnet,
daß die Taktpause (TP) zwischen aufeinanderfolgenden Taktsigna­len (SET) konstant ist und die Taktfrequenz von der Betriebs­spannung (UB) abhängt.
5. The method according to claim 4,
characterized,
that the clock pause (TP) between successive clock signals (SET) is constant and the clock frequency depends on the operating voltage (UB).
6. Anordnung zur Ausführung des Verfahrens nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
daß als Modell ein Ladekreis (601, 602, 603) mit einem elektri­schen Speicher (603) und einer Ladequelle (4) dient und die Auf­ladung des Speichers (603) mit Beginn jedes Einschaltsignales (SE) startet, daß das Einschaltsignal (SE) endet, wenn die La­degröße an dem Speicher gleich einem Grenzwert ist, wobei ent­weder die von der Ladequelle gelieferte Quellgröße bei konstan­tem Grenzwert oder der Grenzwert bei konstanter Quellgröße von der Betriebsspannung (UB) der Spannungsquelle (4) abhängt.
6. Arrangement for performing the method according to one of claims 1 to 5,
characterized,
that a charging circuit (601, 602, 603) with an electrical memory (603) and a charging source (4) serves as a model and the charging of the memory (603) starts at the start of each switch-on signal (SE), that the switch-on signal (SE) ends , if the charge size at the memory is equal to a limit value, whereby either the source size supplied by the charge source with a constant limit value or the limit value with constant source size depends on the operating voltage (UB) of the voltage source (4).
7. Anordnung nach Anspruch 6,
dadurch gekennzeichnet,
daß der Ladekreis einen Widerstand (601) und einen Kondensator (603) enthält und an die Spannungsquelle (4) angeschlossen ist, daß der Kondensator an den Entladeeingang (DIS) und den Schwel­leneingang (THR) eines Schaltkreises (600) angeschlossen ist, der mit dem Ladekreis ein monostabiles Kippglied (60) bildet, das durch ein Triggersignal setzbar ist, den Kondensator (603) entlädt und ein Einschaltsignal (SE) liefert, das endet, wenn die Spannung an dem Kondensator (603) einen festeingestellten Grenzwert erreicht.
7. Arrangement according to claim 6,
characterized,
that the charging circuit contains a resistor (601) and a capacitor (603) and is connected to the voltage source (4), that the capacitor is connected to the discharge input (DIS) and the threshold input (THR) of a circuit (600) which with forms a monostable flip-flop (60) in the charging circuit which can be set by a trigger signal, discharges the capacitor (603) and supplies a switch-on signal (SE) which ends when the voltage across the capacitor (603) reaches a fixed limit value.
8. Anordnung nach Anspruch 7,
dadurch gekennzeichnet,
daß zwei monostabile Kippglieder (60, 72) vorgesehen sind, und zwar in einen Startsignalgeber (6) und in einen Taktgeber (7), daß als Triggersignal für den Startsignalgeber (6) das Schließ­signal (SS) und für den Taktgeber (7) ein Generatorsignal (SG) von einem astabilen Kippglied (71) dient, daß jedem Schalter (1, 1′) in einem Lastkreis ein Verknüpfungsglied (5, 5′) vorge­schaltet ist, das während der Dauer des diesem Schalter zuge­ordneten Schließsignals (SSn) ein Einschaltsignal (SEn) zusam­mensetzt, das aus einem Startsignal (SESn) von dem einzigen Startsignalgeber (6) und nachfolgenden Taktsignalen (SETn) von dem einzigen Taktgeber (7) besteht.
8. Arrangement according to claim 7,
characterized,
that two monostable flip-flops (60, 72) are provided, namely in a start signal generator (6) and in a clock generator (7), that as a trigger signal for the start signal generator (6) the closing signal (SS) and for the clock generator (7) Generator signal (SG) from an astable flip-flop (71) is used that each switch (1, 1 ') in a load circuit is preceded by a link (5, 5'), which during the duration of the closing signal (SSn) assigned to this switch, a switch-on signal (SEn), which consists of a start signal (SESn) from the only start signal generator (6) and subsequent clock signals (SETn) from the single clock generator (7).
9. Anordnung nach Anspruch 8,
dadurch gekennzeichnet,
daß jeder Last (1, 1′) ein Freilaufzweig (3, 3′) parallelgeschal­tet ist, der während der Dauer des Schließsignales (SSn) des zugehörigen Schalters ebenfalls durchgeschaltet ist.
9. Arrangement according to claim 8,
characterized,
that each load (1, 1 '), a free-running branch (3, 3') is connected in parallel, which is also switched through for the duration of the closing signal (SSn) of the associated switch.
EP88114223A 1987-09-30 1988-08-31 Method and apparatus for controlling the current in an inductive load, particularly in a fuel injector Withdrawn EP0309755A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3733086 1987-09-30
DE3733086 1987-09-30

Publications (1)

Publication Number Publication Date
EP0309755A1 true EP0309755A1 (en) 1989-04-05

Family

ID=6337323

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88114223A Withdrawn EP0309755A1 (en) 1987-09-30 1988-08-31 Method and apparatus for controlling the current in an inductive load, particularly in a fuel injector

Country Status (1)

Country Link
EP (1) EP0309755A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2648584A1 (en) * 1989-06-16 1990-12-21 Rexroth Sigma METHOD AND SYSTEM FOR REGULATING THE MIDDLE CURRENT THROUGH A LOAD, AND ELECTRIC REMOTE CONTROL DEVICE OF THE MANIPULATOR TYPE USING THE SAME
WO1992003646A1 (en) * 1990-08-18 1992-03-05 Robert Bosch Gmbh Process and device for driving an electromagnetic consumer
EP0562908A1 (en) * 1992-03-24 1993-09-29 Valeo Electronique Supply circuit for an electromagnetic relay
EP0791943A1 (en) * 1996-02-22 1997-08-27 Max Kammerer GmbH Method and device for controlling the switching of the final stage of a driver of an electromagnetic load, particularly for warm water control units in motor vehicles
WO1998055748A2 (en) * 1997-06-06 1998-12-10 Siemens Aktiengesellschaft Device for controlling an electromechanical setting device
EP1134384A3 (en) * 2000-03-15 2004-01-21 Hitachi, Ltd. Fuel injection system for internal combustion engine
US6923161B2 (en) * 2002-03-28 2005-08-02 Siemens Vdo Automotive Corporation Fuel injection timer and current regulator
DE102022211462A1 (en) 2022-10-28 2024-05-08 Robert Bosch Gesellschaft mit beschränkter Haftung Method for adapting a capacitor model for an output capacitor of a DC-DC converter, fuel injection system, computing unit and computer program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2269186A1 (en) * 1974-04-26 1975-11-21 Baum Elektrophysik Gmbh Excitation coil cct. for DC contactors or relays - has electronic switch for pulsed voltage supply to excitation coil in holding state
US4180026A (en) * 1976-03-26 1979-12-25 Robert Bosch Gmbh Apparatus for controlling the operating current of electromagnetic devices
FR2445893A1 (en) * 1979-01-08 1980-08-01 Bosch Gmbh Robert INSTALLATION FOR CONTROLLING THE CURRENT OF AN ELECTROMAGNETIC CONSUMER, PARTICULARLY AN ELECTROMAGNETICALLY CONTROLLED INJECTION VALVE OF AN INTERNAL COMBUSTION ENGINE
EP0075303A2 (en) * 1981-09-21 1983-03-30 Hitachi, Ltd. Fuel injection valve drive circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2269186A1 (en) * 1974-04-26 1975-11-21 Baum Elektrophysik Gmbh Excitation coil cct. for DC contactors or relays - has electronic switch for pulsed voltage supply to excitation coil in holding state
US4180026A (en) * 1976-03-26 1979-12-25 Robert Bosch Gmbh Apparatus for controlling the operating current of electromagnetic devices
FR2445893A1 (en) * 1979-01-08 1980-08-01 Bosch Gmbh Robert INSTALLATION FOR CONTROLLING THE CURRENT OF AN ELECTROMAGNETIC CONSUMER, PARTICULARLY AN ELECTROMAGNETICALLY CONTROLLED INJECTION VALVE OF AN INTERNAL COMBUSTION ENGINE
EP0075303A2 (en) * 1981-09-21 1983-03-30 Hitachi, Ltd. Fuel injection valve drive circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IBM TECHNICAL DISCLOSURE BULLETIN, Band 21, Nr. 3, August 1978, Seiten 1107-1108, New York, US; T.L. WELLS: "Pulse-width modulation of magnets" *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2648584A1 (en) * 1989-06-16 1990-12-21 Rexroth Sigma METHOD AND SYSTEM FOR REGULATING THE MIDDLE CURRENT THROUGH A LOAD, AND ELECTRIC REMOTE CONTROL DEVICE OF THE MANIPULATOR TYPE USING THE SAME
WO1992003646A1 (en) * 1990-08-18 1992-03-05 Robert Bosch Gmbh Process and device for driving an electromagnetic consumer
EP0562908A1 (en) * 1992-03-24 1993-09-29 Valeo Electronique Supply circuit for an electromagnetic relay
FR2689306A1 (en) * 1992-03-24 1993-10-01 Valeo Electronique Power supply circuit for electromagnetic relay.
EP0791943A1 (en) * 1996-02-22 1997-08-27 Max Kammerer GmbH Method and device for controlling the switching of the final stage of a driver of an electromagnetic load, particularly for warm water control units in motor vehicles
WO1998055748A2 (en) * 1997-06-06 1998-12-10 Siemens Aktiengesellschaft Device for controlling an electromechanical setting device
WO1998055748A3 (en) * 1997-06-06 1999-03-11 Siemens Ag Device for controlling an electromechanical setting device
US6297941B1 (en) 1997-06-06 2001-10-02 Siemens Aktiengesellschaft Device for controlling an electromechanical actuator
EP1134384A3 (en) * 2000-03-15 2004-01-21 Hitachi, Ltd. Fuel injection system for internal combustion engine
US6923161B2 (en) * 2002-03-28 2005-08-02 Siemens Vdo Automotive Corporation Fuel injection timer and current regulator
US7299789B2 (en) 2002-03-28 2007-11-27 Siemens Vdo Automotive Corporation Fuel injection timer and current regulator
DE102022211462A1 (en) 2022-10-28 2024-05-08 Robert Bosch Gesellschaft mit beschränkter Haftung Method for adapting a capacitor model for an output capacitor of a DC-DC converter, fuel injection system, computing unit and computer program

Similar Documents

Publication Publication Date Title
DE69004693T2 (en) CONTROL DEVICE FOR PIEZOELECTRIC DRIVE.
DE2749737C2 (en) Circuit arrangement for controlling a plurality of solenoid valves, in particular injection valves, of an internal combustion engine
DE19814594A1 (en) Charging and discharging piezoelectric element to desired voltage
DE69208944T2 (en) Start-up circuit for an integrated power supply control circuit
DE2300177A1 (en) CIRCUIT ARRANGEMENT FOR THE HEATING FUEL ENRICHMENT IN AN ELECTRONIC FUEL INJECTION SYSTEM
DE2614486A1 (en) ELECTRONIC FUEL INJECTION SYSTEM FOR COMBUSTION MACHINERY, IN PARTICULAR IN MOTOR VEHICLES
DE2441734A1 (en) PULSE GENERATION CIRCUIT FOR A MACHINE FOR ELECTROEROSIVE MACHINING
DE3507130A1 (en) DRIVER CIRCUIT FOR A MAGNETIC COIL
EP0309755A1 (en) Method and apparatus for controlling the current in an inductive load, particularly in a fuel injector
EP1085190A2 (en) Method and device for charging at least a capacitive actuator
DE3248388A1 (en) ELECTRONIC IGNITION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
DE3733091A1 (en) Method and arrangement for adjusting (setting) the load current through an inductive load, especially through a fuel injection valve
DE1576328B1 (en) Thyristor control device for electromagnetic injection nozzles
DE3544564A1 (en) CIRCUIT FOR CONTROLLING AND INDICATING THE OPERATION OF FUEL INJECTORS
DE1751403A1 (en) Fuel injector
DE1788063C3 (en) Method and device for controlling the pulse duration of repetitive electrical square control pulses
DE69413206T2 (en) FUEL INJECTION CONTROL DEVICE FOR AN INTERNAL COMBUSTION ENGINE
DE1815586A1 (en) Arrangement for motor speed control with additional speed change
DE2433441A1 (en) ELECTRONIC FUEL CONTROL SYSTEM
DE3221757A1 (en) ENGINE CONTROLLED IGNITION SYSTEM
DE2123589A1 (en) Electronic circuit for fuel injection for automobiles
DE2645836C3 (en) Method and circuit arrangement for programming an electronic short-time generator, in particular an electronic run-time detonator
EP1223341A2 (en) Method for switching on of an inductive load
DE69009006T2 (en) Circuit for pulsed supply of inductive loads with a voltage limitation.
DE1935201A1 (en) Method and device for rapid charging of batteries

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19890425

17Q First examination report despatched

Effective date: 19900118

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19900529