EP0307442B1 - Verfahren und vorrichtung zur regelung von widerstands- oder lichtbogen-schweissvorgängen - Google Patents

Verfahren und vorrichtung zur regelung von widerstands- oder lichtbogen-schweissvorgängen Download PDF

Info

Publication number
EP0307442B1
EP0307442B1 EP88902852A EP88902852A EP0307442B1 EP 0307442 B1 EP0307442 B1 EP 0307442B1 EP 88902852 A EP88902852 A EP 88902852A EP 88902852 A EP88902852 A EP 88902852A EP 0307442 B1 EP0307442 B1 EP 0307442B1
Authority
EP
European Patent Office
Prior art keywords
welding
resistance
measurement
determined
adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88902852A
Other languages
English (en)
French (fr)
Other versions
EP0307442A1 (de
Inventor
Ulrich Matuschek
Martin Zimmermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0307442A1 publication Critical patent/EP0307442A1/de
Application granted granted Critical
Publication of EP0307442B1 publication Critical patent/EP0307442B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • B23K11/252Monitoring devices using digital means
    • B23K11/256Monitoring devices using digital means the measured parameter being the inter-electrode electrical resistance

Definitions

  • the invention is based on a method for controlling resistance welding processes in which the dynamic resistance of the workpiece to be welded during the welding process is determined by measuring the current strength of the welding current and the voltage at the welding electrodes. or command variable is evaluated.
  • the resistance of the workpiece is repeatedly determined during the welding process and related to the expected quality of the connection. Due to the low technical expenditure - only physical quantities (voltage and current) are measured, which also drop during spot welding - this method is preferably used for spot welding control. In all previously known control methods of this type, particularly excellent quantities are determined from half or a whole welding period, such as the resistance at the time of the current maximum or a resistance-like quantity that results from the quotient of integrated voltage to integrated current (MIACHY method) . The course of these excellent quantities over the entire welding time is determined, and the welding is ended when a switch-off criterion is reached. The switch-off criteria are determined empirically.
  • EP-A1-129 963 discloses a method for detecting the start of melting during resistance spot welding. Although the course of the resistance is to be determined by continuously measuring the welding current and voltage, this is a recording of mean values in which e.g. the gaps in the pauses between the welding half-waves and high-frequency resistance curves are not recorded. It is stated that this method can also be used to intervene in a regulatory manner. However, the regulation is limited to switching off the welding depending on the ratio of energy introduced after the start of melting to total welding energy or on the ratio of final welding resistance to maximum welding resistance. Both control coefficients are quantities that are only available at the end of the weld.
  • the method according to the invention is characterized in that the measured values are recorded and saved with high temporal resolution, for example with 50,000 or 100,000 measuring points per second, the impact from these measured values of current strength and voltage on-line the sweat influencing power or / and energy or / and amount of charge or / and electrode voltage or / and amperage or / and time on the dynamic resistance is determined quantitatively (numerically) and is compared individually or in combination with the corresponding stored actuating or command variables, wherein the quantified effects of the welding influencing variables of a welding half period are used to regulate this welding half period or one of the following welding half periods of the same weld.
  • the quality of the welding spots is assessed immediately, that is to say “on-line”, during a welding half-period. Because the quantitative recorded effects of the welding influencing variables as control or command variables in high density or resolution and examined for their characteristics, each welding process can be regulated so that an impending malfunction is avoided.
  • the occurrence of faults, such as splashes, is announced in good time by characteristic parameters of the evaluated measured variables, which are compared with the stored manipulated variables or reference variables, so that by changing the current or voltage or by changing the phase angle and thus changing the The disturbance is avoided and the welding process can be optimally ended.
  • the device required to carry out this method consists of a transducer, an evaluation unit and an actuating unit.
  • the sensor detects by means of a current sensor, e.g. a Rogowski belt, and a voltage sensor, the welding current and the voltage drop across the workpiece, measured at the welding electrodes, digitize the measured values and save them.
  • the transducer must be so fast that it can record the time course of the measured variables during a welding half-period with sufficient accuracy.
  • the stored measured values of a welding half cycle are evaluated "on-line" in the evaluation unit by means of a fast signal processor.
  • the exact time course of welding current and electrode voltage is evaluated for its information content during a welding half-cycle.
  • the evaluation rule is based on the following mathematical-physical model.
  • the starting point is the assumption of a functional dependency of the welding piece resistance during a welding half cycle on other variables that can also be derived from current and voltage, such as power and energy. This assumption implicitly allows a possible feedback from resistance to influencing variables.
  • the electrical power P introduced into the welding process takes on the function of representing the instantaneous dependencies of the resistance on the electrical quantities.
  • the electrical energy E introduced into the welding process has the task of preferably summarizing time-delayed dependencies and taking into account the electrical and thermal history of the welding process or the welding point. External influences, such as the electrode movement caused by poor fits or by the electrodes sinking into the workpiece, are described by the explicit time dependency.
  • R (t) R (P (t), E (t), t, ..) (1) This equation contains a description of the resistance dependence based on heuristic considerations and not a self-contained, analytically describable model.
  • Rp, Re, Rt are Designated energy and time coefficients.
  • This data set is determined at least once for each welding half-wave. If it is determined several times, the evaluation of each data record relates to a correspondingly small time interval within the welding half-period. These data records are used to control the basic parameters of the control coefficients to be determined by changing the phase gating angle of the primary voltage.
  • the courses of resistance and influencing variables can be represented by polynomials, the coefficients of which can be determined from the measured value fields using a suitable method.
  • the resistance is represented as a function of time by a 3rd degree polynomial, because of the linear dependency, its influencing variables must also be represented as a function of time by a 3rd degree polynomial.
  • the procedure explained here directly relates the degree of complexity of the resistance curve (e.g. 3rd degree polynomial) to the number of influencing variables (e.g. 3).
  • the resistance curve is reduced to that part which can be explained as a reaction of influencing variables which can be derived from electrical variables.
  • FIG. 4 shows the curve of the power P (t), which is determined from the measured values of the corrected electrode voltage U (t) and the values of the welding current I (t) according to FIG. 3 by product formation U (t) * I (t) .
  • FIG. 5 shows the course of the resistance R (t), which is determined from the corrected measured values of the electrode voltage U (t) and the values of the welding current by forming the quotient U (t) / I (t).
  • the gaps result from the pauses in the current during the leading edge phase of the primary voltage on the welding transformer.
  • FIG. 6 shows the smoothed profile of the resistance R (t) which is calculated according to equation (4) from the coefficients which were calculated from the resistance profile according to FIG. 5 by means of the least-square method.
  • the mathematical processing of the measurement data enables the complex physical processes during welding to be easily identified by the evaluation unit, e.g. Change of sign, to map.
  • spot welded connections can be produced which are optimally adapted point by point to the external boundary conditions by regulating the electrical power. This can reduce the number of welding points per workpiece. In addition, burrs causing injuries and visual impairments of the welding spots can be avoided.
  • This control unit can also provide and document objective statements about the quality of the spot weld connection, it works "on-line” and automatically and can easily be adapted to existing systems and equipment. The performance of the control device depends on the relevance of the goods and the precision of the data records derived from the measured values as well as the ability of the device to determine these data records in real time in order to be able to intervene accordingly.
  • the quantitative recording of the effect of welding influencing variables on the dynamic resistance as a control or command variable, the continuous recording of the measurement data and the simultaneous elimination of the disturbance factors enables real-time regulation within a welding half-cycle. Because of the high density of the information and the analyzable characteristics, using the described mathematical-physical model as measurement data is sufficient the time only the easily tapped, error-compensated electrode voltage and the current intensity of the welding current, which can be determined, for example, using a Rogowski belt.
  • the control device advantageously has one of electronic components in digital technology, e.g. Semiconductor memory, composite device that displays or prints out a non-compliance with the bandwidths of one or more of the quantitative effects of influencing variables on the dynamic resistance of the workpiece via display, printer, signal lamp or the like.
  • digital technology e.g. Semiconductor memory, composite device that displays or prints out a non-compliance with the bandwidths of one or more of the quantitative effects of influencing variables on the dynamic resistance of the workpiece via display, printer, signal lamp or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Arc Welding Control (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Description

  • Die Erfindung geht aus von einem Verfahren zur Regelung von Widerstands-Schweißvorgängen, bei dem durch Messen der Stromstärke des Schweißstromes und der Spannung an den Schweißelektroden der dynamische Widerstand des zu verschweißenden Werkstücks während des Schweißvorganges bestimmt, abgespeichert und im Vergleich mit einer empirisch ermittelten Stell- oder Führungsgröße ausgewertet wird.
  • Bei Verfahren und Geräten mit Messung des dynamischen Widerstandes wird während des Schweißvorganges der Widerstand des Werkstückes wiederholt ermittelt und mit der zu erwartenden Güte der Verbindung in Beziehung gesetzt. Aufgrund des geringen meßtechnischen Aufwandes - es werden nur physikalische Größen (Spannung und Strom) gemessen, die beim Punktschweißen mit abfallen - wird dieses Verfahren zur Punktschweißregelung bevorzugt benutzt. Bei allen bisher bekannten Regelverfahren dieser Art werden aus jeweils einer halben oder ganzen Schweißperiode besonders ausgezeichnete Größen bestimmt, wie zum Beispiel der Widerstand zum Zeitpunkt des Strommaximums oder eine widerstandsähnliche Größe, die sich aus dem Quotienten von integrierter Spannung zu integriertem Strom (Methode MIACHY) ergibt. Der Verlauf dieser ausgezeichneten Größen über die gesamte Schweißzeit wird bestimmt, und bei Erreichen eines Abschaltkriteriums wird die Schweißung beendet. Die Abschaltkriterien werden empirisch ermittelt.
  • Diese bekannten Verfahren benutzen für die Regelung die Schweißzeit beziehungsweise die Anzahl der Schweißperioden je Schweißpunkt als Stellgröße. Auch die in den Schweißpunkt eingebrachte Energie, die sich durch den Phasenanschnitt der Primärspannung variieren läßt, kann als zusätzliche Stellgröße verwendet werden.
  • Aus der DE-A1-33 01 039 ist ein Verfahren bekannt, bei dem das der Schweißstelle zugeflossene Arbeitsintegral bestimmt wird, wobei innerhalb jeder Netzhalbperiode die Energiezufuhr zur Schweißstelle nach Erreichen eines einem Sollwert für die betreffende Netzhalbperiode entsprechenden Arbeitsintegrales abgeschaltet wird. Zum Steuern der elektrischen Arbeit werden vorzugsweise abschaltbare Thyristoren verwendet.
  • Aus der EP-A1-129 963 ist eine Methode zum Erfassen des Schmelzbeginns beim Widerstandspunktschweißen bekannt. Obwohl dabei durch kontinuierliches Messen von Schweißstrom und -spannung der Widerstandsverlauf ermittelt werden soll, handelt es sich um eine Aufnahme von Mittelwerten, bei denen z.B. die Meßlücken in den Strompausen zwischen den Schweißhalbwellen und hochfrequente Widerstandsverläufe nicht erfaßt werden. Es ist angegeben, daß mit dieser Methode auch regelnd eingegriffen werden kann. Die Regelung beschränkt sich jedoch auf ein Abschalten der Schweißung in Abhängigkeit von dem Verhältnis von nach Schmelzbeginn eingebrachter Energie zu Gesamtschweißenergie bzw. von dem Verhältnis von End-Schweißwiderstand zu maximalem Schweißwiderstand. Beide Regelkoeffizienten sind Größen, die erst am Ende der Schweißung zur Verfügung stehen.
  • Bei den bekannten Verfahren ist aufgrund unzureichender Informationsdichte und Informationsauswertung ein vorausschauendes Erkennen einer Störung im Schweißvorgang nicht möglich.
  • Um ein vorausschauendes Erkennen einer Störung zu ermöglichen, ist das erfindungsgemäße Verfahren dadurch gekennzeichnet, daß
       die Meßwerte mit hoher zeitlicher Auflösung, z.B. mit 50.000 oder 100.000 Meßpunkten pro Sekunde, aufgenommen und abgespeichert werden,
       aus diesen Meßwerten von Stromstärke und Spannung on-line die Auswirkung
    der Schweißeinflußgröße Leistung
    oder/und Energie
    oder/und Ladungsmenge
    oder/und Elektrodenspannung
    oder/und Stromstärke
    oder/und Zeit
    auf den dynamischen Widerstand quantitativ (zahlenmäßig) bestimmt wird
       und mit den entsprechenden, abgespeicherten Stell- oder Führungsgrößen einzeln oder in Kombination miteinander verglichen wird,
       wobei die quantitativ erfaßten Auswirkungen der Schweißeinflußgrößen einer Schweißhalbperiode zur Regelung dieser Schweißhalbperiode oder einer der folgenden Schweißhalbperioden der gleichen Schweißung benutzt werden.
  • Bei dem Verfahren nach der Erfindung wird die Beurteilung der Güte der Schweißpunkte während einer Schweiß-Halbperiode sofort, das heißt "on-line", vorgenommen. Weil die quantitativ erfaßten Auswirkungen der Schweißeinflußgrößen als Stell- oder Führungsgrößen in hoher Dichte oder Auflösung erfaßt und auf ihre Charakteristika untersucht werden, läßt sich jeder Schweißvorgang so regeln, daß eine sich anbahnende Störung vermieden wird.
  • Das Auftreten von Störungen, wie Spritzer, kündigt sich durch charakteristische Eckwerte der ausgewerteten Meßgrößen, die mit den abgespeicherten Stell- oder Führungsgrößen verglichen werden, so rechtzeitig an, daß durch Veränderung von Stromstärke oder Spannung bzw. durch Veränderung von Phasenanschnittswinkeln und damit bedingter Veränderung der Leistungszufuhr die Störung vermieden und der Schweißvorgang optimal beendet werden kann.
  • Das zur Durchführung dieses Verfahrens notwendige Gerät besteht aus einem Meßwertaufnehmer, einer Auswerteinheit und einer Stelleinheit. Der Meßwertaufnehmer detektiert mittels eines Stromsensors, z.B. ein Rogowski-Gürtel, und eines Spannungssensors den Schweißstrom und den über das Werkstück auftretenden Spannungsabfall, gemessen an den Schweißelektroden, digitalisiert die Meßwerte und speichert sie ab. Der Meßwertaufnehmer muß so schnell sein, daß er den zeitlichen Verlauf der Meßgrößen während einer Schweiß-Halbperiode mit genügender Genauigkeit aufzeichnen kann.
  • In der Auswerteinheit werden die abgespeicherten Meßwerte einer Schweißhalbperiode mittels eines schnellen Signalprozessors "on-line" ausgewertet. Dabei wird der genaue zeitliche Verlauf von Schweißstrom und Elektrodenspannung während einer Schweißhalbperiode auf seinen Informationsgehalt hin ausgewertet.
  • Der Auswertevorschrift liegt das folgende mathematisch-physikalische Modell zugrunde. Ausgangspunkt ist die Annahme einer funktionalen Abhängigkeit des Schweißstückwiderstandes während einer Schweißhalbperiode von anderen, ebenfalls aus Strom und Spannung ableitbaren Größen, wie zum Beispiel Leistung und Energie. Diese Annahme läßt eine mögliche Rückkopplung von Widerstand auf Einflußgrößen implizit zu. Die in den Schweißprozeß eingebrachte elektrische Leistung P übernimmt dabei die Funktion, die instantanten Abhängigkeiten des Widerstandes von den elektrischen Größen darzustellen. Die in den Schweißprozeß eingebrachte elektrische Energie E hat die Aufgabe, bevorzugt zeitverzögerte Abhängigkeiten zusammenzufassen und die elektrische und thermische Vorgeschichte des Schweißprozesses bzw. des Schweißpunktes zu berücksichtigen. Äußere Einflüsse, wie zum Beispiel die Elektrodenbewegung, verursacht durch schlechte Passungen oder durch Einsinken der Elektroden in das Werkstück, werden durch die explizite Zeitabhängigkeit beschrieben.

    R(t) = R(P(t), E(t),t,..)   (1)
    Figure imgb0001


    Diese Gleichung beinhaltet eine Beschreibung der Widerstandsabhängigkeit aus heuristischen Überlegungen heraus und nicht eine in sich geschlossene, analytisch beschreibbare Modellvorstellung.
  • Aus diesem Ansatz werden Leistungs-, Energie- und Zeitparameter wie folgt bestimmt:
    Da die funktionale Abhängigkeit des Widerstandes unbekannt ist, wird die Funktion in einer Reihe um die Nullpunkte der Zeit entwickelt.
    Figure imgb0002

    wobei Rp, Re, Rt partielle Ableitungen nach P, E, t an der Stelle P(0), E(0), t=0 bedeuten.
  • Die Reihenentwicklung wird bis zu Termen erster Ordnung ausgeführt und die partiellen Ableitungen Rp, Re, Rt stellen in dieser Näherung das Maß für die Einflüsse von Leistung, Energie und Zeit auf den Widerstand dar. Im folgenden werden Rp, Re, Rt als Leistungs-, Energie- und Zeitkoeffizienten bezeichnet. Dieser Datensatz wird für jede Schweißhalbwelle mindestens einmal bestimmt. Bei mehrmaliger Bestimmung bezieht sich die Auswertung jedes Datensatzes auf ein entsprechend kleines Zeitintervall innerhalb der Schweißhalbperiode. Mittels dieser Datensätze wird die Regelung nach noch zu bestimmenden Eckwerten der Regelkoeffizienten durch Veränderung des Phasenanschnittwinkels der Primärspannung vorgenommen.
  • Es wurde festgestellt, daß beim Überschreiten bestimmter Eckwerte bei den Koeffizienten in der jeweils folgenden Schweißhalbwelle Spritzer auftraten. Diese Sensibilität der Koeffizienten wird dazu genutzt, die Schweißvorgänge, insbesondere das Punktschweißen, zu regeln.
  • Im folgenden sind die mathematischen Manipulationen der Meßwerte, die zur Bestimmung der Leistungs-, Energie- und Zeitkoeffizienten notwendig sind, dargestellt.
  • Innerhalb eines Auswertezeitraumes lassen sich die Verläufe von Widerstand und Einflußgrößen durch Polynome darstellen, deren Koeffizienten aus den Meßwertefeldern mittels eines geeigneten Verfahrens zu ermitteln sind.
  • Möge der Widerstand als Funktion der Zeit durch ein Polynom 3. Grades dargestellt werden, so sind wegen der als linear betrachteten Abhängigkeit, dessen Einflußgrößen ebenfalls als Funktion der Zeit durch Polynome maximal 3. Grades darzustellen.
  • Seien
    E0,E1,E2,E3 die Koeffizienten des Energiepolynoms
    P0,P1,P2,(P3) die Koeffizienten des Leistungspolynoms
    R0,R1,R2,R3 die Koeffizienten des Widerstandspolynoms

    E(t) = E0 + E1 * t + E2 * t ˆ 2 + E3 * t ˆ 3
    Figure imgb0003

    P(t) = P0 + P1 * t + P2 * t ˆ 2 + P3 * t ˆ 3
    Figure imgb0004

    R(t) = R0 + R1 * t + R2 * t ˆ 2 + R3 * t ˆ 3   (3),
    Figure imgb0005


    so führt (2) durch Einsetzen von (3) auf ein Gleichungssystem zur Bestimmung von Energie-, Leistung- und Zeitkoeffizienten und Konstantterm Ro, unter Ausnutzung der linearen Unabhängigkeit der Zeitfunktionen 1,t, t ̂2, t ̂3:

    R(t) = Rp * P(t) + Re * E(t) + Rt * t + Ro
    Figure imgb0006

    R0 = Rp * P0 + Re * E0 + Ro
    Figure imgb0007

    R1 = Rp * P1 + Re * E1 + Rt
    Figure imgb0008

    R2 = Rp * P2 + Re * E2
    Figure imgb0009

    R3 = Rp * P3 + Re * E3   (4),
    Figure imgb0010


    Die Auflösung dieses Gleichungssystems von vier Gleichungen zu vier Unbekannten führt auf die Gewinnung der Regelkoeffizienten Rp, Re, Rt, Ro.
  • Auch bei einer anderen Wahl nicht linear abhängiger Einflußgrößen gelangt man zu einem Gleichungssystem, dessen Auflösung gesuchte Regelkoeffizienten liefern.
  • Das hier erläuterte Verfahren setzt den Komplexitätsgrad des Widerstandsverlaufes (z.B. Polynom 3. Grades) direkt mit der Anzahl der Einflußgrößen (z.B. 3) in Beziehung.
  • Sinnvollerweise wird der Widerstandsverlauf durch ein Polynom, dessen Grad nicht höher ist als die Anzahl der linear unabhängig angenommenen Einflußgrößen, approximiert.
  • Auf diese Weise erfolgt eine Reduktion des Widerstandsverlaufes auf jenen Anteil, der sich als eine Reaktion von aus elektrischen Größen ableitbaren Einflußgrößen erklären läßt.
  • Die Zeichnungen zeigen in
    • Fig. 1 Datei original U (t)
    • Fig. 2 Datei original dI(t)
    • Fig. 3 Datei Strom I(t)
    • Fig. 4 Datei Leistung P(t)
    • Fig. 5 Datei Widerstand R(t) und
    • Fig. 6 Datei Widerstand-fit R(t) für vier Schweißperioden bzw. acht Schweißhalbperioden.
  • Alle diese Kurven erstrecken sich über eine Zeit t von vier Schweißperioden, d.h. bei einem Wechselstrom von 50 Hertz. über 80 Millisekunden. Diese sind in viertausend Meßpunkte unterteilt.
  • Die Fig. 1 und 2 zeigen in relativen Größen den Verlauf der gemessenen Spannung U(t) und der gemessenen Stromstärke dI.
  • Fig. 3 zeigt den Verlauf des Schweißstromes I(t) = Integral von dI gemäß Fig. 2.
  • Fig. 4 zeigt den Verlauf der Leistung P(t), der aus den Meßwerten der korrigierten Elektrodenspannung U(t) und den Werten des Schweißstromes I(t) gemäß Fig. 3 durch Produktbildung U(t) * I(t) ermittelt ist.
  • Fig. 5 zeigt den Verlauf des Widerstandes R(t), der aus den korrigierten Meßwerten der Elektrodenspannung U(t) und den Werten des Schweißstromes durch Quotientenbildung U(t)/I(t) ermittelt ist. Die Lücken ergeben sich durch die Strompausen während der Phasenanschnittzeit der Primärspannung am Schweißtransformator.
  • Fig. 6 zeigt den geglätteten Verlauf des Widerstandes R(t) der nach Gleichung (4) aus den Koeffizienten berechnet ist, die mittels Least-Square-Verfahren aus dem Widerstandsverlauf gemäß Fig. 5 berechnet wurden.
  • Die mathematische Aufarbeitung der Meßdaten ermöglicht es, die komplexen physikalischen Vorgänge beim Schweißen in für die Auswerteeinheit leicht identifizierbare Signalverläufe, z.B. Vorzeichenwechsel, abzubilden.
  • Durch Einsatz der erfindungsgemäßen Regelvorrichtung können Punktschweißverbindungen hergestellt werden, die Punkt für Punkt auf die äußeren Randbedingungen durch Regelung der elektrischen Leistung optimal angepaßt sind. Dadurch kann die Anzahl der Schweißpunkte pro Werkstück verringert werden. Ferner können Verletzungen verursachende Grate sowie optische Beeinträchtigungen der Schweißpunkte vermieden werden. Dieses Regelgerät kann darüber hinaus objektive Aussagen über die Güte der Punktschweißverbindung liefern und dokumentieren, es arbeitet "on-line" und automatisch und kann leicht an bestehenden Anlagen und Ausrüstungen adaptiert werden. Die Leistungsfähigkeit des Regelgerätes hängt ab von der Güterelevanz und Präzision der aus den Meßwerten abgeleiteten Datensätze sowie der Fähigkeit des Gerätes, diese Datensätze in Echtzeit zu bestimmen, um entsprechend regelnd eingreifen zu können.
  • Das quantitative Erfassen der Auswirkung von Schweißeinflußgrößen auf den dynamischen Widerstand als Stell- oder Führungsgröße, das kontinuierliche Erfassen der Meßdaten sowie das gleichzeitige Eliminieren der Störfaktoren ermöglicht eine Echtzeitregulierung innerhalb einer Schweiß-Halbperiode. Wegen der großen Dichte der Informationen und den analysierbaren Charakteristiken genügen unter Verwendung des beschriebenen mathematisch-physikalischen Modells als Meßdaten über die Zeit lediglich die einfach abzugreifende, fehlerkompensierte Elektrodenspannung sowie die z.B. mittels Rogowski-Gürtel erfaßbare Stromstärke des Schweißstromes.
  • Beim Lichtbogenschweißverfahren kann ein Verlassen der Bandbreitenbereiche ein Verlassen der Schweißnahtsollkurve signalisieren und eine Korrektur der Schweißnahtistkurve auf die Schweißnahtsollkurve bewirken. Die Regelvorrichtung weist vorteilhafterweise eine aus elektronischen Bauteilen in Digitaltechnik, z.B. Halbleiterspeicher, zusammengesetzte Einrichtung auf, die ein Nichteinhalten der Bandbreiten einer oder mehrerer der quantitativen Auswirkungen von Einflußgrößen auf den dynamischen Widerstand des Werkstückes über Display, Drucker, Signallampe oder dergleichen anzeigt oder ausdruckt.

Claims (6)

  1. Verfahren zur Regelung von Widerstands- oder Lichtbogenschweißvorgängen, bei dem
    a) durch Messen der Stromstärke des Schweißstromes und der Spannung an den Schweißelektroden der Widerstand des zu verschweißenden Werkstücks während des Schweißvorganges bestimmt, abgespeichert und
    b) im Vergleich mit einer empirisch ermittelten Stell- oder Führungsgröße ausgewertet wird und
    c) aus der ermittelten Abweichung der aus der Messung abgeleiteten Größe von der empirisch vorgegebenen Stell- oder Führungsgröße durch Anderung der zuzuführenden Schweißenergie geregelt wird,
    dadurch gekennzeichnet, daß
    d) die Meßwerte mit hoher zeitlicher Auflösung, z.B. mit 50.000 oder 100.000 Meßpunkten pro Sekunde, aufgenommen und abgespeichert werden,
    e) aus diesen Meßwerten von Stromstärke und Spannung on-line die Auswirkung
    der Schweißeinflußgröße Leistung
    oder/und Energie
    oder/und Ladungsmenge
    oder/und Elektrodenspannung
    oder/und Stromstärke
    oder/und Zeit
    auf den dynamischen Widerstand quantitativ (zahlenmäßig) bestimmt wird
    f) und mit den entsprechenden, abgespeicherten Stell- oder Führungsgrößen einzeln oder in Kombination miteinander verglichen wird,
    g) wobei die quantitativ erfaßten Auswirkungen der Schweißeinflußgrößen einer Schweißhalbperiode zur Regelung dieser Schweißhalbperiode oder einer der folgenden Schweißhalbperioden der gleichen Schweißung benutzt werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Bandbreitenbereiche der quantitativ erfaßten Auswirkungen der Schweißeinflußgrößen auf den dynamischen Widerstand vorgegeben sind und regelnderweise eingehalten werden, wobei ein Verlassen der Bandbreitenbereiche aufgrund zu hoher Leistung ein Herausspritzen des Schmelzgutes und ein Verlassen der Bandbreitenbereiche aufgrund zu niedriger Leistung eine ungenügende Schweißpunktqualität zur Folge hat.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die durch den Schweißstrom in die Sensorleitung für die Elektrodenspannung hineininduzierte Störung kompensiert wird.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die notwendige Stärke der Kompensation automatisch für jede Schweißung neu ermittelt und berücksichtigt wird.
  5. Vorrichtung zur Regelung von Widerstands- oder Lichtbogen-Schweißvorgängen nach dem Verfahren nach Anspruch 1 mit einem Meßwertaufnehmer, einer Auswerteinheit mit elektronischen Bauteilen der Digital- und Analogtechnik und einer Stelleinheit,
    dadurch gekennzeichnet, daß der Meßwertaufnehmer die Meßsignale von Elektrodenspannung und Schweißstromstärke quasikontinuierlich der Auswerteinheit zur Verfügung stellt und die Auswerteinheit einen "on-line" auswertenden schnellen Signalprozessor enthält, in dem die Stell- und Führungsgrößen abgespeichert sind und durch Vergleich der aufgenommenen und mathematisch aufgearbeiteten Meßwerte mit den Stell- und Führungsgrößen auswertet und bei Abweichung um eine gewisse Bandbreite Signale an die stelleinheit gibt.
  6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß zur Kompensation einer Störung, die durch den Schweißstrom in die Elektrodenspannungssensorleitung hineininduziert wird, eine elektronische Subtraktionsschaltung in Analogtechnik (z.B. unter Verwendung von Operationsverstärkern, Widerständen etc.) vorgesehen ist.
EP88902852A 1987-03-31 1988-03-31 Verfahren und vorrichtung zur regelung von widerstands- oder lichtbogen-schweissvorgängen Expired - Lifetime EP0307442B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3710727 1987-03-31
DE19873710727 DE3710727A1 (de) 1987-03-31 1987-03-31 Verfahren und vorrichtung zur regelung von widerstands- oder lichtbogen-schweissvorgaengen

Publications (2)

Publication Number Publication Date
EP0307442A1 EP0307442A1 (de) 1989-03-22
EP0307442B1 true EP0307442B1 (de) 1993-06-02

Family

ID=6324490

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88902852A Expired - Lifetime EP0307442B1 (de) 1987-03-31 1988-03-31 Verfahren und vorrichtung zur regelung von widerstands- oder lichtbogen-schweissvorgängen

Country Status (4)

Country Link
US (1) US5015815A (de)
EP (1) EP0307442B1 (de)
DE (2) DE3710727A1 (de)
WO (1) WO1988007430A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504298A (en) * 1993-06-04 1996-04-02 Axis Usa, Inc. Methods and apparatus for detecting electrode separation
US5484976A (en) * 1993-10-01 1996-01-16 Axis Usa, Inc. Fusing methods and apparatus for use in making dynamo-electric machines
US6018729A (en) * 1997-09-17 2000-01-25 Lockheed Martin Energy Research Corporation Neural network control of spot welding
DE19923507A1 (de) * 1999-05-21 2000-11-23 Rehm Gmbh U Co Schweistechnik Verfahren und Vorrichtung zur Regelung einer elektrischen Stromquelle
TW471987B (en) * 2000-12-04 2002-01-11 Essor Internat Inc Spot welding quality monitoring device and its method
AU2006201215B2 (en) * 2002-08-28 2007-02-15 Lincoln Global, Inc. System and method for determining and employing consumable use by electric arc welders
DE10328635B4 (de) * 2003-06-26 2007-03-01 Karakas, Erdogan, Dr.-Ing. Verfahren und Vorrichtung zur Gewinnung von Informationen zur Beurteilung der Qualität einer Widerstandsschweißverbindung und/oder zur Steuerung oder Regelung eines Widerstandsschweißverfahrens
DE602004014098D1 (de) * 2004-03-16 2008-07-10 Fiat Ricerche Verfahren und System zur Qualitätüberwachung von industriellen Prozessen
DE102005019640A1 (de) * 2005-04-26 2006-11-09 PROMESS Gesellschaft für Montage- und Prüfsysteme mbH Verfahren und Vorrichtung zum Widerstandpunktschweißen
US9085044B2 (en) * 2008-04-17 2015-07-21 Soudronic Ag Method and welding apparatus for the determination of the strength of the welding current to be used in the welding of container bodies
AT507774B1 (de) * 2009-05-14 2010-08-15 Fronius Int Gmbh Verfahren und vorrichtung zum ermitteln der spannung an den elektroden einer punktschweisszange
US20120091185A1 (en) * 2010-10-18 2012-04-19 Georgia Tech Research Corporation In-process weld geometry methods & systems
CN104749446B (zh) * 2015-02-28 2018-06-05 重庆理工大学 一种电阻点焊电极损耗的在线检测方法
DE102015114957A1 (de) 2015-09-07 2017-03-09 Harms + Wende Gmbh & Co. Kg Elektrisches Schweißverfahren

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4103141A (en) * 1975-12-22 1978-07-25 Allis-Chalmers Corporation Weld monitor
US4302653A (en) * 1980-04-02 1981-11-24 Weltronic Company Method and apparatus for monitoring and controlling a resistance welding operation
US4403132A (en) * 1980-07-31 1983-09-06 Aro Machinery Company, Ltd. Induction compensating method and apparatus for weld nugget resistance sensing leads of spot welders
US4419560A (en) * 1980-12-19 1983-12-06 Midland-Ross Corporation Welding control with automatic percent heat adjustment
DD203840A1 (de) * 1982-01-18 1983-11-09 Ketten U Nagelwerke Betr D Veb Verfahren und steueranordnung zum widerstandsschweissen
US4503311A (en) * 1983-05-25 1985-03-05 General Motors Corporation Method and apparatus for detecting the onset of melting in a resistance spot weld
AT381664B (de) * 1984-02-07 1986-11-10 Steyr Daimler Puch Ag Einrichtung zur ueberwachung elektrischer, von einer gesteuerten wechselstromquelle gespeister widerstandsschweissvorgaenge, insbesondere punktschweissungen
IT1179830B (it) * 1984-11-26 1987-09-16 Fiat Auto Spa Dispositivo di controllo per apparecchiature per saldatura elettrica a resistenza particolarmente per il controllo di apparecchiature per la saldatura di parti di carrozzerie di autoveicoli

Also Published As

Publication number Publication date
DE3710727A1 (de) 1988-10-13
DE3881460D1 (de) 1993-07-08
EP0307442A1 (de) 1989-03-22
US5015815A (en) 1991-05-14
WO1988007430A1 (en) 1988-10-06

Similar Documents

Publication Publication Date Title
EP0307442B1 (de) Verfahren und vorrichtung zur regelung von widerstands- oder lichtbogen-schweissvorgängen
EP0373422B1 (de) Anordnung zum Überwachen der Güte von elektrischen Schweissungen
DE60129559T2 (de) Verfahren und vorrichtung zum steuern von lichtbogenschweissen
AT409833B (de) Verfahren zur ermittlung der schweissprozessspannung
DE102006038786A1 (de) Steuerung einer Schweißvorrichtung
CH625447A5 (de)
DE3408318C2 (de) Verfahren und Vorrichtung zur kontinuierlichen Abstandsmessung mittels Wirbelstroms
DD215957A5 (de) Verfahren zur interoperationsmaessigen gewaehrung der nahtqualitaet, zur markierung der fehlerstellen auf dem werkstueck und zur bescheinigung der qualitaet beim schweissen
EP2429751B1 (de) VERFAHREN UND VORRICHTUNG ZUM ERMITTELN DER SPANNUNG AN DEN ELEKTRODEN EINER PUNKTSCHWEIßZANGE
EP0656071B1 (de) Verfahren und vorrichtung zur regelung der heizleistung in einer durchlauf-glühanlage für metallisches stranggut
EP1641587B1 (de) Verfahren und vorrichtung zur gewinnung von informationen zur beurteilung der qualität einer widerstandsschweissverbindung und/oder zur steuerung oder regelung eines widerstandsschweissverfahrens
EP0427879B1 (de) Vorrichtung und Verfahren zum induktiven Erwärmen von Werkstücken
EP0153298B1 (de) Einrichtung zur Überwachung elektrischer Schweissvorgänge, insbesondere elektrischer Widerstands-Punktschweissungen
DE60016626T2 (de) Verfahren und vorrichtung zur überwachung der schweissqualität
EP0566844A1 (de) Verfahren zur Spannungsmessung über der Schweissnaht bei einer Rollenkopfschweissmaschine und Vorrichtung zu dessen Durchführung
DE4203190C1 (en) Regulation and quality assessing of welding esp. spot welding - has ultrasonic detecting probe attached to welding electrode to record noise emission level at weld location
DE3924913C2 (de)
EP0715556B1 (de) Verfahren und vorrichtung zur bestimmung einer temperatur an einer punktschweissverbindung sowie deren anwendung zur beurteilung der qualität der punktschweissverbindung
EP0685289A1 (de) Vorrichtung zur Schweissstromregelung beim Punktschweissen mit einem Fuzzy-Messgeber zur quantifizierten Erfassung der Stärke von Schweissspritzern
EP0238462B1 (de) Verfahren und Einrichtung für die Regelung des Schweissverlaufes beim Lichtbogenschweissen
DE2559369C3 (de) Verfahren und Vorrichtung zur Regelung der Abbrenngeschwindigkeit beim Widerstandsstumpfschweißen
DE4033697C2 (de)
WO1992013668A1 (de) Verfahren einer laserbestrahlung beschichteter werkstücke und vorrichtung zur durchführung des verfahrens
DE1966696C3 (de) Verfahren zum elektrischen Widerstand sabbrennstumpfschweißen
DE3817855C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19890328

RBV Designated contracting states (corrected)

Designated state(s): BE DE FR GB IT

17Q First examination report despatched

Effective date: 19901122

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19930602

Ref country code: BE

Effective date: 19930602

Ref country code: FR

Effective date: 19930602

Ref country code: GB

Effective date: 19930602

REF Corresponds to:

Ref document number: 3881460

Country of ref document: DE

Date of ref document: 19930708

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19930602

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19941201