EP0306437A2 - Chopper circuit for the control of coils of electromagnets or step motors, particularly for a matrix printer - Google Patents

Chopper circuit for the control of coils of electromagnets or step motors, particularly for a matrix printer Download PDF

Info

Publication number
EP0306437A2
EP0306437A2 EP88730168A EP88730168A EP0306437A2 EP 0306437 A2 EP0306437 A2 EP 0306437A2 EP 88730168 A EP88730168 A EP 88730168A EP 88730168 A EP88730168 A EP 88730168A EP 0306437 A2 EP0306437 A2 EP 0306437A2
Authority
EP
European Patent Office
Prior art keywords
current
driver circuit
digital control
control logic
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP88730168A
Other languages
German (de)
French (fr)
Other versions
EP0306437A3 (en
Inventor
Manfred Ing. Grüner (grad)
Franz Riedl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
Original Assignee
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann AG filed Critical Mannesmann AG
Publication of EP0306437A2 publication Critical patent/EP0306437A2/en
Publication of EP0306437A3 publication Critical patent/EP0306437A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/32Energising current supplied by semiconductor device
    • H01H47/325Energising current supplied by semiconductor device by switching regulator

Definitions

  • the invention relates to a chopper circuit for the control of electromagnetic and / or stepper motor coils, in particular for a matrix printer, the inductance of which, in conjunction with the applied voltage, generates a maximum current, but which is set lower by a desired factor, the current ripples being caused by chopping can be generated.
  • the control of electromagnetic coils in matrix printheads takes place via driver circuits, the task of which is to build up the magnetic field as quickly as possible and to allow it to swing out as quickly as possible when physically unavoidable counterinductions (DE-PS 31 39 502).
  • the aim here is more to be able to energize the electromagnetic coil again in order to cause the same pressure needle to be fired at shorter intervals, i.e. to achieve faster printing.
  • the object of the invention is therefore to change the current ripples generated during chopping as a function of the frequency, inductance and resistance of an electromagnetic coil or a magnetic coil winding, i.e. optimally set.
  • a driver circuit for the electromagnetic coil or a bridge circuit for the stepper motor coil is assigned a current measurement value acquisition with current cutoff, and in that digital control logic is provided which is switched in time with an upstream frequency transmitter Control signal generated, which is in interaction with the power cut as an on or off signal at the input of the driver circuit or the bridge circuit. Due to the predetermined frequency, which is adapted to the inductance and the resistance of the coil, it is possible to generate the on or off signal at the input of the driver circuit or the bridge circuit. In other words, such a digital control logic together with the current measurement value acquisition / current shutdown enables the range of action of the electromagnetic or stepper motor coils for different frequencies.
  • the digital control logic consists of an RS flip-flop (reset / set), the only output line of which is fed back to the reset input. Due to this teaching, considerable savings are made in the necessary lines or connection poles.
  • the line used for this as input and output has the advantage that only half of the lines or connection poles that are otherwise required are required.
  • the current measured value acquisition consists of a comparator, the positive input of which is connected to a reference voltage and the negative input of which is connected to a sensor resistor, and that the output of the comparator is linked to the digital control logic and to the input of the driver circuit.
  • Another improvement of the invention provides that the digital control logic is part of an ASIC and that the driver circuit, the current measurement value acquisition and the current cutoff are arranged separately. Such an embodiment allows the digital control logic to be made part of a single chip.
  • the pulse curve A (FIG. 1) triggers a logic "1" at the higher level and a logic "0" at the lower level.
  • the frequency pulse curve F shows the currently set frequency via negative control signals 2.
  • the associated frequency generator 3 is indicated in FIG. 2.
  • the frequency generator 3 generates a constant frequency.
  • the voltage pulse curve B occurs at the output 4 as an on signal, logic "1” or as an off signal, logic "0".
  • voltage pulses 6 of the same size are set. Accordingly, the chopper curve J shows a chopped current profile 7 with current ripples 7a in accordance with the voltage profile according to the voltage pulse curve B.
  • the chopper circuit for a pressure needle electromagnetic coil 8 with an inductance has a driver circuit 9 with a driver transistor Tr, furthermore a current measurement value acquisition 10 with current cutoff 11 and finally digital control logic 12.
  • the frequency generator 3 generates the negative control signal 2 at constant time intervals that can be set via the frequency generator 3.
  • the digital control logic 12 consists of an RS flip-flop 14 (reset / set) which is provided with a single output line 15 which is fed back to the reset input 16.
  • the current value detection 10 has a comparator 17, via the positive input 18 of which a reference voltage 19 is connected and the negative input 20 of which is connected to a sensor resistor 21 (Rs).
  • the Output 22 of comparator 17 is linked to digital control logic 12 and to input 13 of driver circuit 9.
  • the digital control logic 12 on the one hand and the current measured value acquisition 10 or the current cutoff 11 and the driver circuit 9 are connected bidirectionally to one another.
  • the pulse curve (signal) A is switched to logic "1".
  • the negative control signals 2 cause a gate output I logic “1” and the gate output II logic “0".
  • the signal at the input 13 of the driver circuit 9 (voltage pulse curve B) otherwise also becomes logic “0", so that the following driver circuit 9 remains inactive.
  • the signal of the pulse curve A (controlled by a data source or a character generator) is set to logic "0” and the output (Q) of a gate II is also logic "0”
  • the output "Q" of a gate III set to logic "1”
  • likewise the output Q of a gate VI if this is connected to a pull-up resistor 23 and is connected to a higher voltage + U1.
  • the output 22 of the comparator 17 has a high resistance, because at this moment no current flows in the driver circuit 9.
  • the driver circuit 9 is activated.
  • the current increases in the driver circuit 9 and causes a voltage drop across the sensor resistor 21 (Rs) which, after the reference voltage 19 has been reached, the output 22 of the comparator 17 to logic "0" and the output 4 and the gate input V also to logic "0""pulls.
  • the driver circuit 9 is now inactive again, the current in the electromagnetic coil 8 decreasing again after an e-function.
  • the RS flip-flop 14 consisting of the gates I and II is reset again via the gates IV and V.
  • This blocking state of the driver circuit 9 is maintained until a signal of the frequency pulse curve F occurs due to a short (approx. 500 nsec) set pulse for the RS flip-flop 14.
  • the RS flip-flop output signal (Q) is then logic "0" and consequently the output of gate III is logic "1".
  • the driver circuit 9 is thus reactivated. This interplay continues until the pulse of the pulse curve A becomes logic “1” again and sets the driver circuit 9 inactive via a signal of the voltage pulse curve B with the logic level "0".
  • the chopper circuit for a stepper motor solenoid 26 (FIG. 4) operates as described above.
  • the reference numerals used in FIG. 1 and the associated description also apply to FIG. 3.
  • FIG. 4 shows the chopper circuit for a stepper motor.
  • the same reference numerals as in FIG. 2 also apply to FIG. 4 and the parts of the description belonging to FIG. 2.
  • the digital control logic 12 is double for the control of a stepper motor for each stepper motor solenoid 26. Accordingly, pulse curves A1 and A2 are available. As a result, there are two voltage pulse curves B1 and B2.
  • Each stepper motor solenoid 26 forms a bridge circuit 27.
  • a bridge branch considered in FIG. 3 is formed by transistors 24 and 29 or 25 and 28.
  • Freewheeling diode pairs 30 are connected to the stepper motor solenoids 26.
  • Inverting amplifiers 31 and 32 and non-inverting amplifiers 33 and 34 are respectively connected between the output lines 15 and the transistors 24, 29 or 25 and 28.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Stepping Motors (AREA)
  • Dot-Matrix Printers And Others (AREA)

Abstract

Such a chopper circuit is used for controlling electromagnetic and/or stepping motor coils (8; 26), particularly for a matrix printer, whose inductance, in conjunction with the applied voltage, generates a maximum current which is, however, adjusted to be reduced by a desired factor, it being possible to generate the current ripples (7a) by chopping. <??>These current ripples (7a) can now be varied as a function of the frequency, inductance and resistance of an electromagnetic coil (8) or of a magnetic coil winding (26), i.e. they can be optimised. <??>For this purpose, it is proposed that a current measuring device (10) with a current switch-off capability (11) be allocated in each case to a driver circuit (9) for the electromagnetic coil (8) and to a bridge circuit (27) for the stepping motor coil (26) and that digital control logic (12) be provided which generates a control signal (2), synchronised to a frequency transmitter (3) connected upstream, which control signal (2), alternately with the current switch-off device (11), acts as an on or off signal at the input (13) of the driver circuit (9) and of the bridge circuit (27). <IMAGE>

Description

Die Erfindung betrifft eine Chopperschaltung für die Ansteuerung von Elektromagnet- und/oder Schrittmotoren-Spulen, insbesondere für einen Matrixdrucker, deren Induktivität in Verbindung mit der angelegten Spannung einen Maximalstrom erzeugt, der jedoch um einen gewünschten Faktor niedriger eingestellt ist, wobei die Stromripples durch Choppen erzeugbar sind.The invention relates to a chopper circuit for the control of electromagnetic and / or stepper motor coils, in particular for a matrix printer, the inductance of which, in conjunction with the applied voltage, generates a maximum current, but which is set lower by a desired factor, the current ripples being caused by chopping can be generated.

Die Ansteuerung von Elektromagnetspulen in Matrixdruckköpfen erfolgt über Treiberschaltungen, deren Aufgabe es ist, das Magnetfeld schnellstmöglich aufzubauen und beim Abbauen physikalisch unvermeidbare Gegeninduktionen schnellstmöglich ausschwingen zu lassen (DE-PS 31 39 502). Hierbei wird mehr das Ziel verfolgt, eine erneute Bestromung der Elektromagnetspule vornehmen zu können, um das Wiederabschießen ein und derselben Drucknadel in kürzeren Zeitabständen zu bewirken, d.h. ein schnelleres Drucken zu erreichen.The control of electromagnetic coils in matrix printheads takes place via driver circuits, the task of which is to build up the magnetic field as quickly as possible and to allow it to swing out as quickly as possible when physically unavoidable counterinductions (DE-PS 31 39 502). The aim here is more to be able to energize the electromagnetic coil again in order to cause the same pressure needle to be fired at shorter intervals, i.e. to achieve faster printing.

Andere Lösungen für Ansteuerungen von Elektromagnetspulen in Druckern streben an, eine Überbestromung zu vermeiden (DE-OS 31 51 242), um die schädliche Verlustwärme in den Spulen zu vermindern. Diese Herabsetzung der Verlustwärme fördert die Lebensdauer derartiger Matrixdruckköpfe.Other solutions for controlling electromagnetic coils in printers strive to avoid over-current supply (DE-OS 31 51 242) in order to reduce the harmful heat loss in the coils. This reduction in heat loss promotes the life of such matrix printheads.

Allen bekannten Lösungen ist es demnach gemeinsam, die Bestromungszeiten so kurz wie möglich zu halten (geringe Verlustwärme) und eine schnelle Wiederbestromung (schnelles Abschießen einer Drucknadel) zu ermöglichen.It is therefore common to all known solutions to keep the energization times as short as possible (low heat loss) and to enable rapid energization (rapid firing of a pressure needle).

Es wurden nunmehr noch andere Gesichtspunkte dahingehend gefunden, daß unterschiedliche Induktivitäten von Elektromagnetspulen und Magnetspulenwicklungen in Schrittmotoren einerseits eine Anpassung der Frequenzen erfordern, andererseits jedoch durch eine Chopperschaltung beide Spulenarten in einem System aufgrund desselben Prinzips betrieben werden könnten.Other aspects have now been found to the effect that different inductivities of electromagnetic coils and magnetic coil windings in stepper motors on the one hand adapt the Frequencies require, on the other hand, however, a chopper circuit could operate both types of coils in one system based on the same principle.

Aufgabe der Erfindung ist es daher, die beim Choppen erzeugten Stromripples in Abhängigkeit von Frequenz, Induktivität und Widerstand einer Elektromagnetspule bzw. einer Magnetspulenwicklung zu verändern, d.h. optimal einzustellen.The object of the invention is therefore to change the current ripples generated during chopping as a function of the frequency, inductance and resistance of an electromagnetic coil or a magnetic coil winding, i.e. optimally set.

Die gestellte Aufgabe wird bei der eingangs bezeichneten Chopperschaltung erfindungsgemäß dadurch gelöst, daß einer Treiberschaltung für die Elektromagnetspule bzw. einer Brückenschaltung für die Schrittmotoren-Spule jeweils eine Strommeßwerterfassung mit Stromabschaltung zugeordnet ist und daß eine digitale Steuerlogik vorgesehen ist, die im Takt eines vorgeschalteten Frequenzgebers ein Steuersignal erzeugt, das im Wechselspiel mit der Stromabschaltung als Ein- oder als Aus-Signal am Eingang der Treiberschaltung bzw. der Brückenschaltung vorliegt. Aufgrund der vorgegebenen Frequenz, die an die Induktivität und an den Widerstand der Spule angepaßt wird, ist es möglich, das Ein- oder Aus-Signal am Eingang der Treiberschaltung bzw. der Brückenschaltung zu erzeugen. Mit anderen Worten ausgedrückt ermöglicht eine solche digitale Steuerlogik zusammen mit der Strommeßwerterfassung/Stromabschaltung den Wirkungsbereich der Elektromagnet- bzw. Schrittmotoren-Spulen für unterschiedliche Frequenzen.
In Weiterbildung der Erfindung ist vorgesehen, daß die digitale Steuerlogik aus einem RS-Flip-Flop (Reset/Set) besteht, dessen einzige Ausgangsleitung auf den Reset-Eingang zurückgekoppelt ist. Aufgrund dieser Lehre wird erheblich an notwendigen Leitungen bzw. Anschlußpolen eingespart. Die hierfür als Ein- und Ausgang verwendete Leitung hat bei der Verwendung eines ASIC's (Application Specific of Integrated Circuits) den Vorteil, daß nur die Hälfte der sonst notwendigen Leitungen bzw. Anschlußpole benötigt wird.
The stated object is achieved according to the invention in the chopper circuit described at the outset in that a driver circuit for the electromagnetic coil or a bridge circuit for the stepper motor coil is assigned a current measurement value acquisition with current cutoff, and in that digital control logic is provided which is switched in time with an upstream frequency transmitter Control signal generated, which is in interaction with the power cut as an on or off signal at the input of the driver circuit or the bridge circuit. Due to the predetermined frequency, which is adapted to the inductance and the resistance of the coil, it is possible to generate the on or off signal at the input of the driver circuit or the bridge circuit. In other words, such a digital control logic together with the current measurement value acquisition / current shutdown enables the range of action of the electromagnetic or stepper motor coils for different frequencies.
In a further development of the invention it is provided that the digital control logic consists of an RS flip-flop (reset / set), the only output line of which is fed back to the reset input. Due to this teaching, considerable savings are made in the necessary lines or connection poles. When using an ASIC (Application Specific of Integrated Circuits), the line used for this as input and output has the advantage that only half of the lines or connection poles that are otherwise required are required.

Weiter wird vorgeschlagen, daß die Strommeßwerterfassung aus einem Komparator besteht, dessen Positiv-Eingang mit einer Referenzspannung verbunden ist und dessen Negativ-Eingang mit einem Sensorwiderstand und daß der Ausgang des Komparators mit der digitalen Steuerlogik und mit dem Eingang der Treiberschaltung verknüpft ist. Eine solche Lösung gestattet einen Mindestaufwand für die Strommeßwerterfassung und die Stromabschaltung.It is further proposed that the current measured value acquisition consists of a comparator, the positive input of which is connected to a reference voltage and the negative input of which is connected to a sensor resistor, and that the output of the comparator is linked to the digital control logic and to the input of the driver circuit. Such a solution allows a minimum expenditure for the current measured value acquisition and the current shutdown.

Eine andere Verbesserung der Erfindung sieht vor, daß die digitale Steuerlogik Teil eines ASIC's ist und daß die Treiberschaltung, die Strommeßwerterfassung und die Stromabschaltung separat angeordnet sind. Eine solche Ausgestaltung erlaubt, die digitale Steuerlogik zum Bestandteil eines einzigen Chips zu machen.Another improvement of the invention provides that the digital control logic is part of an ASIC and that the driver circuit, the current measurement value acquisition and the current cutoff are arranged separately. Such an embodiment allows the digital control logic to be made part of a single chip.

Schließlich ist vorgesehen, daß die digitale Steuerlogik einerseits und die Strommeßwerterfassung bzw. die Stromabschaltung sowie die Treiberschaltung andererseits bidirektional miteinander verbunden sind.Finally, it is provided that the digital control logic on the one hand and the current measured value acquisition or the current shutdown and the driver circuit on the other hand are connected bidirectionally.

Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im folgenden näher beschrieben. Es zeigen:

  • Fig. 1 ein Zeitdiagramm für die in Betracht kommenden Spannungs- bzw. Strom-Impulse,
  • Fig. 2 eine Chopperschaltung als Anwendungsbeispiel für die Elektromagnetspule einer Drucknadel, eines Druckhammers u.dgl. und
  • Fig. 3 ein Zeitdiagramm für Spannungs- bzw. Stromimpulse eines Schrittmotors.
  • Fig. 4 eine Chopperschaltung für die Anwendung an einer Schrittmotorenspule.
Embodiments of the invention are shown in the drawing and are described in more detail below. Show it:
  • 1 is a timing diagram for the voltage or current pulses under consideration,
  • Fig. 2 is a chopper circuit as an application example for the electromagnetic coil of a printing needle, a printing hammer and the like. and
  • Fig. 3 is a timing diagram for voltage or current pulses of a stepper motor.
  • Fig. 4 shows a chopper circuit for use on a stepper motor coil.

Die Impulskurve A (Fig. 1) löst auf der höheren Ebene eine logische "1" und auf der unteren Ebene eine logische "0" aus. Die Dauer des Impulses ist mit D = 250 µsec als Beispiel für einen Matrixdruckkopf gewählt. Die Frequenzimpulskurve F zeigt die derzeit eingestellte Frequenz über negative Steuersignale 2 an. Der zugehörige Frequenzgeber 3 ist in Fig. 2 angedeutet. Der Frequenzgeber 3 erzeugt eine konstante Frequenz.The pulse curve A (FIG. 1) triggers a logic "1" at the higher level and a logic "0" at the lower level. The duration of the pulse is chosen as D = 250 µsec as an example for a matrix print head. The frequency pulse curve F shows the currently set frequency via negative control signals 2. The associated frequency generator 3 is indicated in FIG. 2. The frequency generator 3 generates a constant frequency.

Die Spannungsimpulskurve B tritt an dem Ausgang 4 als Ein-Signal, logisch "1" oder als Aus-Signal, logisch "0" auf. Nach einem Einschwingvorgang 5 stellen sich gleichgroße Spannungsimpulse 6 ein. Dementsprechend zeigt die Chopperkurve J entsprechend dem Spannungsverlauf gemäß Spannungsimpulskurve B einen gechoppten Stromverlauf 7 mit Stromripples 7a.The voltage pulse curve B occurs at the output 4 as an on signal, logic "1" or as an off signal, logic "0". After a transient process 5, voltage pulses 6 of the same size are set. Accordingly, the chopper curve J shows a chopped current profile 7 with current ripples 7a in accordance with the voltage profile according to the voltage pulse curve B.

Die Chopperschaltung für eine Drucknadel-Elektromagnetspule 8 mit einer Induktivität (Fig. 2) weist eine Treiberschaltung 9 mit einem Treiber-Transistor Tr auf, ferner eine Strommeßwerterfassung 10 mit Stromabschaltung 11 und schließlich eine digitale Steuerlogik 12. Der Frequenzgeber 3 erzeugt das negative Steuersignal 2 in konstanten Zeitabständen, die über den Frequenzgeber 3 einstellbar sind. An dem Ausgang 4, der gleichzeitig einen Eingang 13 der Treiberschaltung 9 bildet, liegt demnach jeweils ein Ein- oder Aus-Signal vor.The chopper circuit for a pressure needle electromagnetic coil 8 with an inductance (FIG. 2) has a driver circuit 9 with a driver transistor Tr, furthermore a current measurement value acquisition 10 with current cutoff 11 and finally digital control logic 12. The frequency generator 3 generates the negative control signal 2 at constant time intervals that can be set via the frequency generator 3. At the output 4, which simultaneously forms an input 13 of the driver circuit 9, there is accordingly an on or off signal.

Die digitale Steuerlogik 12 besteht aus einem RS-Flip-Flop 14 (Reset/Set), das mit einer einzigen Ausgangsleitung 15 versehen ist, die auf den Reset-­Eingang 16 zurückgekoppelt ist.The digital control logic 12 consists of an RS flip-flop 14 (reset / set) which is provided with a single output line 15 which is fed back to the reset input 16.

Die Stromwerterfassung 10 weist einen Komparator 17 auf, über dessen Positiv-Eingang 18 eine Referenzspannung 19 zugeschaltet ist und dessen Negativ-Eingang 20 mit einem Sensorwiderstand 21 (Rs) verbunden ist. Der Ausgang 22 des Komparators 17 ist mit der digitalen Steuerlogik 12 und mit dem Eingang 13 der Treiberschaltung 9 verknüpft. Die digitale Steuerlogik 12 ist Teil eines ASIC's (= Application Specific for Integrated Circuits), und die Treiberschaltung 9, die Strommeßwerterfassung 10 und die Stromabschaltung 11 sind dagegen getrennt auf einer Leiterplatte eines Matrixdruckers angeordnet. Die digitale Steuerlogik 12 einerseits und die Strommeßwerterfassung 10 bzw. die Stromabschaltung 11 und die Treiberschaltung 9 sind bidirektional miteinander verbunden.The current value detection 10 has a comparator 17, via the positive input 18 of which a reference voltage 19 is connected and the negative input 20 of which is connected to a sensor resistor 21 (Rs). The Output 22 of comparator 17 is linked to digital control logic 12 and to input 13 of driver circuit 9. The digital control logic 12 is part of an ASIC (= Application Specific for Integrated Circuits), and the driver circuit 9, the current measurement value acquisition 10 and the current cut-off 11, on the other hand, are arranged separately on a printed circuit board of a matrix printer. The digital control logic 12 on the one hand and the current measured value acquisition 10 or the current cutoff 11 and the driver circuit 9 are connected bidirectionally to one another.

Im Grundzustand der Chopperschaltung (Fig. 2) ist die Impulskurve (Signal) A auf logisch "1" geschaltet. Die negativen Steuersignale 2 bewirken, daß ein Gatterausgang I logisch "1" und der Gatterausgang II logisch "0" ist. Das Signal am Eingang 13 der Treiberschaltung 9 (Spannungsimpulskurve B) wird sonst ebenfalls zu logisch "0", so daß die folgende Treiberschaltung 9 inaktiv bleibt. Für den Fall, daß das Signal der Impulskurve A (von einer Datenquelle oder einem Zeichengenerator gesteuert) auf logisch "0" gesetzt wird, und auch der Ausgang (Q) eines Gatters II auf logisch "0" steht, wird der Ausgang "Q" eines Gatters III auf logisch "1" gesetzt, ebenfalls der Ausgang Q eines Gatters VI, wenn dieser mit einem Pull-up- Widerstand 23 beschaltet ist und an einer höheren Spannung + U1 liegt.In the basic state of the chopper circuit (FIG. 2), the pulse curve (signal) A is switched to logic "1". The negative control signals 2 cause a gate output I logic "1" and the gate output II logic "0". The signal at the input 13 of the driver circuit 9 (voltage pulse curve B) otherwise also becomes logic "0", so that the following driver circuit 9 remains inactive. In the event that the signal of the pulse curve A (controlled by a data source or a character generator) is set to logic "0" and the output (Q) of a gate II is also logic "0", the output "Q" of a gate III set to logic "1", likewise the output Q of a gate VI, if this is connected to a pull-up resistor 23 and is connected to a higher voltage + U1.

Der Ausgang 22 des Komparators 17 ist in einem solchen Fall hochohmig, weil in diesem Moment in der Treiberschaltung 9 kein Strom fließt. Demzufolge wird die Treiberschaltung 9 aktiviert. Der Strom steigt in der Treiberschaltung 9 an und bewirkt an dem Sensorwiderstand 21 (Rs) einen Spannungsabfall, der nach Erreichen der Referenzspannung 19 den Ausgang 22 des Komparators 17 auf logisch "0" und den Ausgang 4 sowie den Gattereingang V ebenfalls auf logisch "0" zieht. Die Treiberschaltung 9 ist jetzt wieder inaktiv, wobei der Strom in der Elektromagnetspule 8 wieder nach einer e-Funktion abnimmt. Gleichzeitig wird über die Gatter IV und V das aus den Gattern I und II bestehende RS-Flip-Flop 14 wieder zurückgesetzt. d.h. das Signal (Q) wird logisch "1" und schaltet den Ausgang des Gatters VI auf logisch "0". Der jetzt in der Treiberschaltung 9 bzw. im Sensorwiderstand 21 unterbrochene Strom schaltet den Komparatorausgang 22 wieder hochohmig, wobei aber der Ausgang des Gatters VI den Signalpegel auf logisch "0" hält.In such a case, the output 22 of the comparator 17 has a high resistance, because at this moment no current flows in the driver circuit 9. As a result, the driver circuit 9 is activated. The current increases in the driver circuit 9 and causes a voltage drop across the sensor resistor 21 (Rs) which, after the reference voltage 19 has been reached, the output 22 of the comparator 17 to logic "0" and the output 4 and the gate input V also to logic "0""pulls. The driver circuit 9 is now inactive again, the current in the electromagnetic coil 8 decreasing again after an e-function. At the same time, the RS flip-flop 14 consisting of the gates I and II is reset again via the gates IV and V. ie the signal (Q) becomes logic "1" and switches the Output of gate VI at logic "0". The current which is now interrupted in the driver circuit 9 or in the sensor resistor 21 switches the comparator output 22 again with high impedance, but the output of the gate VI keeps the signal level at logic "0".

Dieser Sperrzustand der Treiberschaltung 9 bleibt solange aufrechterhalten, bis ein Signal der Frequenzimpulskurve F durch einen kurzen (ca. 500 nsec) Setzimpuls für das RS-Flip-Flop 14 auftritt. Das RS-Flip-Flop-­Ausgangssignal (Q) ist dann wieder logisch "0" und folglich der Ausgang des Gatters III logisch "1". Damit ist die Treiberschaltung 9 wieder aktiviert. Dieses Wechselspiel hält solange an, bis der Impuls der Impulskurve A wieder logisch "1" wird und über ein Signal der Spannungsimpulskurve B mit dem logischen Pegel "0" die Treiberschaltung 9 inaktiv setzt.This blocking state of the driver circuit 9 is maintained until a signal of the frequency pulse curve F occurs due to a short (approx. 500 nsec) set pulse for the RS flip-flop 14. The RS flip-flop output signal (Q) is then logic "0" and consequently the output of gate III is logic "1". The driver circuit 9 is thus reactivated. This interplay continues until the pulse of the pulse curve A becomes logic "1" again and sets the driver circuit 9 inactive via a signal of the voltage pulse curve B with the logic level "0".

Die Chopperschaltung für eine Schrittmotor-Magnetspule 26 (Fig. 4) arbeitet wie vorstehend beschrieben. Die in Fig. 1 verwendeten Bezugsziffern und die zugehörige Beschreibung gilt auch für Fig. 3.The chopper circuit for a stepper motor solenoid 26 (FIG. 4) operates as described above. The reference numerals used in FIG. 1 and the associated description also apply to FIG. 3.

In Fig. 4 ist die Chopperschaltung für einen Schrittmotor dargestellt. Gleiche Bezugsziffern wie in Fig. 2 gelten auch für Fig. 4 sowie die zu Fig. 2 gehörenden Beschreibungsteile. Die digitale Steuerlogik 12 ist für die Ansteuerung eines Schrittmotors für jede Schrittmotor-Magnetspule 26 doppelt vorhanden. Dementsprechend liegen Impulskurven A1 und A2 vor. Demzufolge liegen auch zwei Spannungsimpulskurven B1 und B2 vor. Jede Schrittmotor-Magnetspule 26 bildet eine Brückenschaltung 27. Ein in Fig. 3 berücksichtigter Brückenzweig wird durch die Transistoren 24 und 29 bzw. 25 und 28 gebildet. An die Schrittmotor-Magnetspulen 26 sind jeweils Freilauf-Dioden-Paare 30 angeschlossen. Zwischen den Ausgangsleitungen 15 und den Transistoren 24, 29 bzw. 25 und 28 sind jeweils invertierende Verstärker 31 und 32 bzw. nicht invertierende Verstärker 33 und 34 geschaltet.4 shows the chopper circuit for a stepper motor. The same reference numerals as in FIG. 2 also apply to FIG. 4 and the parts of the description belonging to FIG. 2. The digital control logic 12 is double for the control of a stepper motor for each stepper motor solenoid 26. Accordingly, pulse curves A1 and A2 are available. As a result, there are two voltage pulse curves B1 and B2. Each stepper motor solenoid 26 forms a bridge circuit 27. A bridge branch considered in FIG. 3 is formed by transistors 24 and 29 or 25 and 28. Freewheeling diode pairs 30 are connected to the stepper motor solenoids 26. Inverting amplifiers 31 and 32 and non-inverting amplifiers 33 and 34 are respectively connected between the output lines 15 and the transistors 24, 29 or 25 and 28.

Claims (5)

1. Chopperschaltung für die Ansteuerung von Elektromagnet- und/oder Schrittmotoren-Spulen, insbesondere für einen Matrixdrucker, deren Induktivität in Verbindung mit der angelegten Spannung einen Maximalstrom erzeugt, der jedoch um einen gewünschten Faktor niedriger eingestellt ist, wobei die Stromripples durch Choppen erzeugbar sind,
dadurch gekennzeichnet,
daß einer Treiberschaltung (9) für die Elektromagnetspule (8) bzw. einer Brückenschaltung (27) für die Schrittmotoren-Spule (26) jeweils eine Strommeßwerterfassung (10) mit Stromabschaltung (11) zugeordnet ist und daß eine digitale Steuerlogik (12) vorgesehen ist, die im Takt eines vorgeschalteten Frequenzgebers (3) ein Steuersignal (2) erzeugt, das im Wechselspiel mit der Stromabschaltung (11) als Ein- oder als Aus-Signal am Eingang (13) der Treiberschaltung (9) bzw. der Brückenschaltung (27) vorliegt.
1. Chopper circuit for the control of solenoid and / or stepper motor coils, in particular for a matrix printer, the inductance of which generates a maximum current in connection with the applied voltage, but which is set lower by a desired factor, the current ripples being generated by chopping ,
characterized,
that a driver circuit (9) for the electromagnetic coil (8) or a bridge circuit (27) for the stepper motor coil (26) is assigned a current measurement value acquisition (10) with current cutoff (11) and that digital control logic (12) is provided , which generates a control signal (2) in time with an upstream frequency transmitter (3), which in interaction with the power cut-off (11) as an on or off signal at the input (13) of the driver circuit (9) or the bridge circuit (27 ) is present.
2. Chopperschaltung nach Anspruch 1,
dadurch gekennzeichnet,
daß die digitale Steuerlogik (12) aus einem RS-Flip-Flop (14) besteht, dessen einzige Ausgangsleitung (15) auf den Reset-Eingang (16) zurückgekoppelt ist.
2. chopper circuit according to claim 1,
characterized,
that the digital control logic (12) consists of an RS flip-flop (14), the only output line (15) of which is fed back to the reset input (16).
3. Chopperschaltung nach den Ansprüchen 1 und 2,
dadurch gekennzeichnet,
daß die Strommeßwerterfassung (10) aus einem Komparator (17) besteht, dessen Positiv-Eingang (18) mit einer Referenz-Spannung (19) verbunden ist und dessen Negativ-Eingang (20) mit einem Sensorwiderstand (21) und daß der Ausgang (22) des Komparators (17) mit der digitalen Steuerlogik (12) und mit dem Eingang (13) der Treiberschaltung (9) verknüpft ist.
3. chopper circuit according to claims 1 and 2,
characterized,
that the current measured value acquisition (10) consists of a comparator (17), the positive input (18) of which is connected to a reference voltage (19) and the negative input (20) of which is connected to a sensor resistor (21) and that the output ( 22) of the comparator (17) with the digital control logic (12) and with the input (13) of the driver circuit (9).
4. Chopperschaltung nach einem oder mehreren der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
daß die digitale Steuerlogik (12) Teil eines ASIC's ist und daß die Treiberschaltung (9), die Strommeßwerterfassung (10) und die Stromabschaltung (11) separat angeordnet sind.
4. chopper circuit according to one or more of claims 1 to 3,
characterized,
that the digital control logic (12) is part of an ASIC and that the driver circuit (9), the current measurement value acquisition (10) and the current cut-off (11) are arranged separately.
5. Chopperschaltung nach Anspruch 4,
dadurch gekennzeichnet,
daß die digitale Steuerlogik (12) einerseits und die Strommeßwerterfassung (10) bzw. die Stromabschaltung (11) sowie die Treiberschaltung (9) andererseits bidirektional miteinander verbunden sind.
5. chopper circuit according to claim 4,
characterized,
that the digital control logic (12) on the one hand and the current measured value acquisition (10) or the current cutoff (11) and the driver circuit (9) on the other hand are connected bidirectionally.
EP19880730168 1987-08-12 1988-07-28 Chopper circuit for the control of coils of electromagnets or step motors, particularly for a matrix printer Withdrawn EP0306437A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3727283 1987-08-12
DE19873727283 DE3727283A1 (en) 1987-08-12 1987-08-12 CHOPPER CIRCUIT FOR CONTROLLING ELECTROMAGNETIC AND / OR STEPPING MOTOR COILS, ESPECIALLY FOR A MATRIX PRINTER

Publications (2)

Publication Number Publication Date
EP0306437A2 true EP0306437A2 (en) 1989-03-08
EP0306437A3 EP0306437A3 (en) 1990-10-17

Family

ID=6333856

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19880730168 Withdrawn EP0306437A3 (en) 1987-08-12 1988-07-28 Chopper circuit for the control of coils of electromagnets or step motors, particularly for a matrix printer

Country Status (4)

Country Link
US (1) US4989116A (en)
EP (1) EP0306437A3 (en)
JP (1) JPS6464598A (en)
DE (1) DE3727283A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2663174A1 (en) * 1990-06-08 1991-12-13 Syrelec Multi-voltage timer with an extended range of power supply voltages
EP0472407A1 (en) * 1990-08-21 1992-02-26 Seiko Epson Corporation Printing wire driving apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3904441A1 (en) * 1987-08-12 1990-08-23 Mannesmann Ag Chopper circuit for driving the coils of electromagnets and/or stepper motors, especially for a matrix printer
KR930011184B1 (en) * 1990-08-03 1993-11-25 삼성전자 주식회사 Hammer solenoid bi-level driving circuit
DE4106597C2 (en) * 1991-03-01 2000-02-17 Siemens Ag Control circuit for solenoid
JPH0538847A (en) * 1991-08-07 1993-02-19 Tokyo Electric Co Ltd Output control device for dot printer head
US5237262A (en) * 1991-10-24 1993-08-17 International Business Machines Corporation Temperature compensated circuit for controlling load current
US5245261A (en) * 1991-10-24 1993-09-14 International Business Machines Corporation Temperature compensated overcurrent and undercurrent detector
US5543632A (en) * 1991-10-24 1996-08-06 International Business Machines Corporation Temperature monitoring pilot transistor
FR2689306B1 (en) * 1992-03-24 1997-04-30 Valeo Electronique SUPPLY CIRCUIT FOR ELECTROMAGNETIC RELAYS.
DE4434179A1 (en) * 1994-09-24 1996-03-28 Teves Gmbh Alfred Circuit arrangement for monitoring a control circuit
US5898288A (en) * 1997-01-29 1999-04-27 Hewlett-Packard Company Inexpensive motion control using DC motors
DE10250359A1 (en) * 2002-10-29 2004-05-19 Infineon Technologies Ag DC circuit controller uses hysteresis voltage mode regulator with stable circuit frequency
EP3297766B1 (en) * 2015-05-22 2020-05-06 Dürr Systems AG Coating unit and its working process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2081942A (en) * 1980-07-17 1982-02-24 Exploration Logging Inc Controlling direct current in inductive loads
EP0087583A1 (en) * 1982-03-01 1983-09-07 International Business Machines Corporation Integrated power circuit with current sensing means
EP0212462A2 (en) * 1985-08-30 1987-03-04 Bso Steuerungstechnik Gmbh Amplifier circuit for electromagnets of proportional valves or servo valves

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2828678A1 (en) * 1978-06-30 1980-04-17 Bosch Gmbh Robert METHOD AND DEVICE FOR OPERATING AN ELECTROMAGNETIC CONSUMER, IN PARTICULAR AN INJECTION VALVE IN INTERNAL COMBUSTION ENGINES
DE3129610A1 (en) * 1981-07-28 1983-02-17 Bosch und Pierburg System oHG, 4040 Neuss Control circuit for actuators
DE3438034A1 (en) * 1984-10-17 1986-04-24 Siemens Ag Switched-mode power supply for supplying an inductor
DE3529742C2 (en) * 1985-08-20 1995-04-27 Bosch Gmbh Robert Device for setting the current through an inductive consumer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2081942A (en) * 1980-07-17 1982-02-24 Exploration Logging Inc Controlling direct current in inductive loads
EP0087583A1 (en) * 1982-03-01 1983-09-07 International Business Machines Corporation Integrated power circuit with current sensing means
EP0212462A2 (en) * 1985-08-30 1987-03-04 Bso Steuerungstechnik Gmbh Amplifier circuit for electromagnets of proportional valves or servo valves

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IBM TECHNICAL DISCLOSURE BULLETIN. vol. 27, no. 2, Juli 1984, NEW YORK US Seiten 1057 - 1058; W. Renz and H. Virag: "CLOCKED MAGNET DRIVER" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2663174A1 (en) * 1990-06-08 1991-12-13 Syrelec Multi-voltage timer with an extended range of power supply voltages
EP0472407A1 (en) * 1990-08-21 1992-02-26 Seiko Epson Corporation Printing wire driving apparatus

Also Published As

Publication number Publication date
JPS6464598A (en) 1989-03-10
DE3727283C2 (en) 1993-06-17
US4989116A (en) 1991-01-29
DE3727283A1 (en) 1989-02-23
EP0306437A3 (en) 1990-10-17

Similar Documents

Publication Publication Date Title
DE2418177C3 (en) Electronic ignition system for an internal combustion engine
EP0306437A2 (en) Chopper circuit for the control of coils of electromagnets or step motors, particularly for a matrix printer
DE2360323A1 (en) CIRCUIT ARRANGEMENT FOR CONTROL OF THE STROKE FORCE IN PRINTERS
DE2534245C3 (en) Control circuit for piezoelectric transducers
DE3223274C2 (en) Impact printer
DE2439937C3 (en) Circuit arrangement for generating an output pulse that is delayed compared to an input pulse
DE3633310C2 (en)
DE1065461B (en) Electrical pulse delay circuit
EP0082799B1 (en) Driver circuit for printers, in particular for matrix printers of the needle or hammer type
DE2648828C3 (en) Device for operating electromagnets
EP0977406B1 (en) Circuit for transmission of galvanically isolated digital signals
DE2405315C2 (en) Circuit arrangement for controlling the stroke force of print hammers
DE1099233B (en) Switching device for magnetic core memory
DE1186502B (en) Circuit for blocking input pulses which have a shorter duration than a predetermined minimum duration
DE1900823A1 (en) Drive device with pulse-fed direct current motor
DE19824768B4 (en) Power amplifier and method for driving a power amplifier
EP2110950A1 (en) Switch and method for transferring signal voltage within a driver of a voltage semiconductor
DE2363616C2 (en) Delay circuit
DE2710270B2 (en) Circuit arrangement for generating clock pulses synchronized with incoming data pulses
DE2040793C3 (en) Control circuitry for a switching transistor
DE2907682C2 (en) Circuit arrangement for storing the phase position of an alternating voltage
DE3904441A1 (en) Chopper circuit for driving the coils of electromagnets and/or stepper motors, especially for a matrix printer
DE2448885A1 (en) SYSTEM FOR TRANSMISSION OF BINARY SIGNALS
DE2650519C3 (en) Safety circuit for a machine with a plurality of safety switches
DE1512538C (en) Method and arrangement for the reception-side determination of the transmission speed of a sequence of telex characters in start-stop operation and adaptation of the receiving device to the determined transmission clock

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19901227

17Q First examination report despatched

Effective date: 19930812

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19931223