EP0300846B1 - Process for modifying the surface of a substrate by the formation of an alloy, use of the process, paticularly in the preparation of ferrous alloys, and catalysts and alloys obtained by the process - Google Patents

Process for modifying the surface of a substrate by the formation of an alloy, use of the process, paticularly in the preparation of ferrous alloys, and catalysts and alloys obtained by the process Download PDF

Info

Publication number
EP0300846B1
EP0300846B1 EP88401550A EP88401550A EP0300846B1 EP 0300846 B1 EP0300846 B1 EP 0300846B1 EP 88401550 A EP88401550 A EP 88401550A EP 88401550 A EP88401550 A EP 88401550A EP 0300846 B1 EP0300846 B1 EP 0300846B1
Authority
EP
European Patent Office
Prior art keywords
salt
substrate
film
alloy
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88401550A
Other languages
German (de)
French (fr)
Other versions
EP0300846A1 (en
Inventor
André Sugier
Alain Galerie
Annie Hugon
François Ropital
Paul Bourgmayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR8709267A external-priority patent/FR2617507B1/en
Priority claimed from FR8709266A external-priority patent/FR2617506B1/en
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0300846A1 publication Critical patent/EP0300846A1/en
Application granted granted Critical
Publication of EP0300846B1 publication Critical patent/EP0300846B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis

Definitions

  • the present invention relates to a method of surface modification of the surface of a substrate by the formation of an alloy and the application of the method to the manufacture in particular of ferrous alloys and catalysts.
  • the present invention applies to the formation of surface layers on metal parts based on iron and therefore to ferrous alloys, that is to say alloys whose iron content expressed in weight percent is greater than that of any other element of the alloy.
  • metal parts we mean both parts made of elemental metal and those made of alloy
  • resistance to wear, scuffing, deformation, corrosion, heating and / or erosion are very numerous methods, which have been implemented for a long time, making it possible to improve the characteristics of the shaped or semi-shaped metal parts (by metal parts, we mean both parts made of elemental metal and those made of alloy) and in particular resistance to wear, scuffing, deformation, corrosion, heating and / or erosion.
  • These methods include coating the metal surface, or modifying the composition and / or microstructure of the metal surface by techniques such as carbon carburizing, nitriding, welding a highly alloyed layer onto the surface layer of a metal part, torch quenching, induction quenching and physical modification (e.g. hammering).
  • These methods of coating the surface layer also include chromium-plating or nickel-plating, spraying refractories with a plasma jet or a blowtorch onto the surface of a metal part, plating by rolling (in the case of rolling products occurring in the form of sheets or wires), the laser fusion of a cement and a predetermined thickness of immediately underlying metal for the manufacture of a cement alloy improved quality, or the laser fusion of a metal part and a solid powder covering it to obtain a coating.
  • patent DE-A-2,362,026 which describes the deposition by plating of a thin layer of transition metals V, Cr, Mn, Fe, Co and Ni on aluminum substrate or aluminum alloy. The deposited metal is then melted by an electron beam or a concentrated energy beam and mixed with the substrate. In this document, the use of chemical compounds from one or more of these metals is suggested.
  • An object of the present invention is to provide a new method of forming an alloy surface layer with a substrate, such as a metal part.
  • the invention also makes it possible to obtain these surface layers of non-oxidized metal alloys in an atmosphere which is not necessarily controlled, such as air.
  • the surface layer of alloy formed makes it possible to impart particular properties to the metal part without deeply affecting the nature and characteristics of the substrate. These properties can be, for example, resistance to corrosion, wear, deformation, heating, erosion, modification of friction, catalytic activity and hardness.
  • the metal substrate may contain a proportion of iron greater than 60% by weight, for example from 60 to 100%, and advantageously from 90 to 99.9% by weight.
  • the film having reducing capacities in the presence of a beam of concentrated energy necessary for the decomposition of the salt comprising the addition element it is meant that the film contains, in sufficient quantity, compounds capable of reducing the degree of oxidation d '' at least one other body, or to collect electrons from this other body, so that overall the degree of oxidation of the bodies constituting the alloy is reduced between the moment when the film is applied to the substrate and the moment where the alloy is formed.
  • the reducing capacities of the film are substantially influenced by the atomic distribution of the compounds present in the film.
  • the proportions of oxygen, carbon and hydrogen atoms present in the film may be such that the amount of oxygen atoms is less than the sum of twice the amount of carbon atoms and half the amount of hydrogen atoms.
  • these reducing capacities of the film are more particularly conferred by one or more compound (s), this or these compounds will be qualified as reducing compounds.
  • These compounds can be a film thickening agent, a salt comprising the addition element, a complexing agent, such as a carboxylic acid, ammonia, pyridine and / or the compounds derived therefrom.
  • the parameters linked to irradiation which are a function of the type of laser, will essentially be the power of the beam and the scanning time (or laser-matter interaction time, defined as the ratio of the diameter of the beam to the scanning speed. of this beam.
  • salts make it very practical to obtain a substantially homogeneous surface layer integrated into the surface of the substrate and consisting of intimate combinations between the element produced by the decomposition of the salt and the previously coated substrate.
  • the present invention also allows the production of a surface layer covering the substrate and comprising materials in an amorphous state.
  • the alloy comprises at least two addition elements
  • these two elements may be present in at least one carboxylic acid salt according to the invention.
  • the salt may be a complex salt.
  • the film may include a complexing agent.
  • Salt complexation offers in particular the advantage of linking together the elements considered in a substantially homogeneous composition, without there being segregation of the metallic species present.
  • At least part of the salt may be in liquid solution, for example, in water or alcohol and / or at least part of the salt may be in powder form. , possibly dispersed in a liquid phase.
  • the film may be given a very viscous consistency, or even that of a gel.
  • This consistency can be obtained by incorporation into the gelling or thickening solution, such as gums, such as gum tragacanth, Senegal gum, shellac, Dammar gum, Carob gum, or such as the substances industrial: alginic acid and alginate, polyvinyl alcohol, urea-formaldehyde resins, carboxyvinyl polymers, polyethylene oxide, carboxymethyl cellulose, methyl cellulose, polyglycols, polymethacrylates, polyethanolamines, oxide waxes, or an adhesive.
  • These gelling agents can be considered as reducing compounds in the presence of a beam of concentrated energy, such as a laser beam.
  • a nonionic surfactant can be added thereto so as to have better spreading over the surface of the substrate.
  • gelling substance depends on its stability in the presence of the ions present in the film; the preceding list should in no way be considered as limiting.
  • the dynamic viscosity of the solution used for depositing the salt (s) on the substrate is generally greater than 10 mm2 / s and preferably between 10 and 1000 mm2 / s at room temperature.
  • This solution can be deposited by any known method, for example by depositing with a brush, brush, roller, spray gun or by immersing the part to be covered in the solution.
  • the deposition of the solution containing said carboxylic acid salts on the substrate can be followed by a dehydration operation leading to a deposition having a viscosity generally greater than 400 mm2 / s and preferably between 8 ⁇ 102 and 106 mm2 / s.
  • the thickness of the film before dehydration is generally between 0.2 and 2 mm and preferably between 0.3 and 1 mm. After dehydration, it generally varies between 0.05 mm and 1 mm and preferably between 0.1 and 5 mm.
  • the salt may advantageously be a salt of at least one carboxylic acid such as formic, acetic, propionic, oxalic, citric, lactic, malic, salicylic and tartaric acids.
  • the salts can also be alcoholates, such as methylate, ethylate, isopropylates (these alcoholates being moreover reducing compounds in the presence of the laser beam).
  • surface alloys can be produced with at least one so-called addition element introduced at least in part in the form of at least one carboxylic acid salt.
  • the addition element may be at least one of the addition elements well known to those skilled in the art in the field of metallurgy or more particularly of the steel industry.
  • the addition element may be at least one element chosen from the group formed by the following elements: Si, Mg, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Sn, La, W, Re, Os, Ir, Pt, Au, Bi, Ce and preferably Ni, Cr, Co and Mo.
  • two treatments can advantageously be carried out. Under these conditions, a richer alloy is obtained or the possibility of adding another additional metal at high concentration to the substrate, which makes it possible in particular to increase its resistance to corrosion.
  • a coating of the metallic substrate can be formed by forming an alloy with said addition element and with at least one infusible solid compound.
  • This infusible compound makes it possible to obtain a substantially homogeneous surface layer integrated or not on the surface of the substrate and consisting of intimate combinations between the element produced by thermal decomposition of the carboxylic acid salt mentioned above. above and the infusible solid compound and the substrate. Corrosion resistance, in particular at high temperature under H2S or under SO2, is increased.
  • the solid infusible compound may be a carbide, such as B4C, Cr3C2, NbC, HfC, MoC, SiC, TaC, TiC, WC, ZrC, or a silicide, such as MoSi2, NbSi2, TaSi2, or a simple or mixed refractory oxide , such as Al2O3, BeO, Cr2O3, MgO, SiO2, TiO2, ZrO2, ZrO2, Y2O3, Al2O3 TiO2, CaZrO2, MgO SiO2, mullite (3Al2O3, SiO2), spinel (MgO Al2O3, ZrO2 Si such as those of aluminum or titanium or a mixture of these materials.
  • a carbide such as B4C, Cr3C2, NbC, HfC, MoC, SiC, TaC, TiC, WC, ZrC, or a silicide, such as MoSi2, NbSi2, TaSi2, or a simple or mixed
  • any generator capable of supplying sufficient power for a time sufficient to produce the thermal decomposition of the salt (s), the melting of the surface of the substrate and production of the alloy.
  • the power per unit area required is substantially between 102 W / cm2 and 107 W / cm2 (Watt per square centimeter) and may preferably be between 104 and 105 W / cm2 depending on the interaction time of the spot with the material .
  • the process according to the invention can be applied to the manufacture of austenitic and / or ferritic and / or austenoferritic alloys. It is also possible to apply the process according to the invention to the manufacture of catalysts.
  • the treatment is carried out by a laser beam which produces a treatment bead of width 1 on the sample and a scanning of the entire sample is carried out by juxtaposition at least in part of two successive cords, with a preferably equal covering mode. to a half bead, that is to say that between two passes the laser beam is offset by 1/2.
  • a gel of nickel formate is used.
  • the gel is prepared as follows: 40 ml of a 30% by weight solution of formic acid are added to 100 ml of distilled water, then 60 g of nickel formate Ni are dissolved at 40 ° C. (CHO2) 2, 2H2O, and finally 4 g of a polysaccharide hydrocolloid called guar so as to produce a very viscous solution.
  • the viscosity at 20 ° C of the solution is equal to 500 mm2 / s.
  • the gel obtained is then spread with a brush into a thin film of approximately 0.8 mm thick on a mild steel plate, then dehydrated, until the viscosity of the film is equal to 2000 mm2 / s. .
  • the sample is then subjected to irradiation with a YAG laser beam of 43 watts and having a laser-matter interaction time of 0.05 seconds, the interaction time being defined as being the ratio of the beam diameter at beam scanning speed.
  • the diameter of the laser spot being 400 micrometers
  • the irradiation power is 3.4.104 W / cm2.
  • This treatment is carried out by this laser beam which produces a treatment bead 400 mm wide on the sample and the scanning of the sample is carried out with a covering mode equal to half a bead. Between two passes, the laser beam is therefore offset by 200 mm.
  • a solution of nickel cyanide is prepared by dissolving an amount of freshly precipitated nickel cyanide containing 5 g of nickel in 80 ml of 3N ammonia. 4 g of a polysaccharide hydrocolloid called guar are added to this solution so as to produce a solution with a viscosity of 550 mm2 / s.
  • the gel thus obtained is spread with a brush into a thin film of approximately 0.8 mm thick on a sheet of mild steel and then dehydrated until the viscosity of the film is equal to 2000 mm2 / s.
  • the sample In air, the sample is then subjected to irradiation by a YAG laser beam of 43 watts and having a laser material interaction time of 0.05 seconds.
  • the irradiation power is 3.4 ⁇ 104 W / cm2.
  • Example 1 A mild steel plate from Example 1 having undergone the treatment of Example 1 is taken up and a second deposition is repeated under the same conditions of Example 1. Then, the substrate thus coated being in air, it is irradiated with a 43 watt laser having a spot diameter of 400 micrometers for an interaction time of 0.045 seconds.
  • This layer comprises two zones: the first of these zones or the most external to the part with an average thickness of 20 micrometers consists of a homogeneous alloy of iron in gamma phase and of nickel having a nickel content substantially equal to 90 % by weight, the second of these zones, underlying the first, with a thickness of about 16 micrometers is made of a homogeneous alloy of iron in gamma phase and nickel having a nickel content close to 70% in weight.
  • a solution of chromium nitrate containing 8 g of chromium in 50 ml of water is prepared.
  • 2.5 g of a polysaccharide hydrocolloid called Guar are added to this solution so as to produce a very viscous solution with a viscosity of 500 mm2 / s.
  • the gel thus obtained is spread with a brush into a thin film about 0.8 mm thick on a mild steel plate and then dehydrated until the viscosity of the film is equal to 1600 mm2 / s.
  • the sample is then subjected to irradiation by a 50-watt YAG laser beam with a laser-matter interaction time of 0.07 seconds with a spot of 400 micrometers in diameter.
  • a saline solution of chromium tartrate is prepared from a hydrated chromium oxide, freshly precipitated and containing 8 g of chromium dissolved in 50 ml of a 5 M solution of tartaric acid.
  • the solution obtained is concentrated by evaporation until its viscosity measured with the Hoppler viscometer with falling ball (Standard DIN 53 015) is 700 mm2 / s.
  • the gel thus produced is spread in a film 0.6 mm thick on a sheet of mild steel. After partial dehydration, the viscosity is 1600 mm2 / s.
  • the substrate thus coated being in nitrogen, is subjected by scanning to irradiation, for 0.07 seconds, of a spot 400 micrometers in diameter generated by a laser of power of 50 watts.
  • the specific power is therefore approximately 4 ⁇ 104 W / cm2.
  • a surface layer of thickness substantially between 30 and 32 micrometers consisting of an alloy of iron and chromium, each comprising metals in the metallic state, and whose chromium content is equal to 40% by weight.
  • a solution of chromium salt is prepared by adding 5 g of tartaric acid (acting as complexing agent) to 100 ml of a solution of chromium acetate containing 5 g of chromium, then the volume is reduced to 8 ml. of this salt solution so that it is viscous.
  • the dynamic viscosity of the deposited solution is 100 mm2 / s at 20 ° C.
  • a mild steel plate from Example 1 is coated with a film 0.8 mm thick. After partial dehydration, a dynamic viscosity of 1100 mm2 / s is reached, then the air is subjected to the substrate thus covered on irradiation with a spot 400 micrometers in diameter with a 50 watt laser beam scanning the surface at a speed such that the interaction time is 0.04 seconds.
  • a solution of chromium acetate and nickel acetate is prepared by dissolving, in acetic acid, a coprecipitate of chromium and nickel hydroxide containing by weight twice as much chromium as nickel.
  • the coprecipitate containing 10 g of chromium and 5 g of nickel is dissolved in 100 ml of an aqueous solution containing 30 ml of pure acetic acid. To the acetate solution thus obtained, 5 g of tartaric acid are added and then 8 ml of ammonia at 28% by weight. Acetic acid and ammonia complex the acetate salts.
  • the volume of the solution is reduced to 10 ml so as to make it viscous, ie a viscosity at 20 ° C of 120 mm2 / s.
  • 900 mm2 / s is reached.
  • a sheet of mild steel from Example 1 is covered with a film 0.4 mm thick with the thickened solution, then the film is irradiated in the air by scanning for 0.05 seconds with a spot 400 micrometers in diameter and 50 watts produced by a laser.
  • a solution of chromium acetate and of nickel acetate is prepared, containing respectively 10 g of chromium and 3.2 g of nickel, by dissolving in 100 ml of aqueous solution containing 30 ml of pure acetic acid, a coprecipitate of chromium hydroxide and nickel. To this acetate solution are added: 10 ml of a solution of ammonium paramolybdate (NH4) 6 Mo7O24, 4H2O (containing 1.2 g of molybdenum), then 7 g of tartaric acid.
  • NH4 ammonium paramolybdate
  • 4H2O containing 1.2 g of molybdenum
  • the saline solution produced is brought back by evaporation to a volume of 15 ml so as to increase its viscosity up to a value of 100 mm2 / s. After partial dehydration, a viscosity at 20 ° C of 900 mm2 / s is reached.
  • a sheet of mild steel from Example 1 is covered with a 0.4 mm film of this solution. It is irradiated under nitrogen by scanning for 0.05 seconds with a spot 400 micrometers in diameter and 50 watts produced by a laser.
  • a nickel acetate solution is prepared by dissolving, in 20 ml of water and 10 ml of glacial acetic acid at 96% by weight brought to the boil, 8 g of basic nickel carbonate which contains 4 g of nickel.
  • the solution obtained is spread with a brush on a mild steel plate of Example 1 in a thin film of about 0.8 mm, then is dehydrated.
  • the dynamic viscosity at 20 ° C of the mixture thus deposited is equal to 1100 mm2 / s.
  • the sample is then subjected to irradiation by a 43-watt YAG laser beam for a laser-matter interaction time of 0.03 seconds, the interaction time being defined as the ratio of the diameter. of the beam at the scanning speed.
  • the diameter of the laser spot being 400 micrometers, the irradiation power is 4.3.104 W / cm2.
  • a solution of chromium tartrate is prepared by dissolving hydrated chromium oxide freshly precipitated in tartaric acid. This solution is then concentrated so as to obtain a chromium concentration of 400 g per liter. To 10 ml of this solution, 1 g of zirconium oxide (ZrO2) in powder with a particle size less than 3 micrometers is added, while kneading.
  • ZrO2 zirconium oxide
  • the viscous solution thus obtained is then spread in a film 0.6 mm thick on a mild steel plate, then is partially dehydrated.
  • the sample In air, the sample is then subjected to irradiation, for an interaction time of 0.05 seconds, of a spot 400 micrometers in diameter produced by a YAG laser beam of 43 watts.
  • a layer has been formed, the thickness of which varies from 30 to 35 micrometers, consisting of a homogeneous alloy of iron and chromium of chromium content substantially equal to 50% and in which the ZrO2 particles are dispersed homogeneously and represent approximately 10% by weight of coating thus prepared.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemically Coating (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

La présente invention concerne un procédé de modification superficielle de la surface d'un substrat par formation d'un alliage et l'application du procédé à la fabrication notamment d'alliages ferreux et de catalyseurs.The present invention relates to a method of surface modification of the surface of a substrate by the formation of an alloy and the application of the method to the manufacture in particular of ferrous alloys and catalysts.

Plus particulièrement, la présente invention s'applique à la formation de couches superficielles sur des pièces métalliques à base de fer et donc aux alliages ferreux, c'est-à-dire aux alliages dont la teneur en fer exprimée en pourcent poids est supérieure à celle de tout autre élément de l'alliage.More particularly, the present invention applies to the formation of surface layers on metal parts based on iron and therefore to ferrous alloys, that is to say alloys whose iron content expressed in weight percent is greater than that of any other element of the alloy.

Il existe des méthodes très nombreuses, qui sont mises en oeuvre depuis longtemps, permettant d'améliorer les caractéristiques des pièces métalliques façonnées ou demi-façonnées (par pièces métalliques, on entend aussi bien des pièces réalisées en métal élémentaire que celles en alliage) et en particulier la résistance à l'usure, à l'éraillure, aux déformations, à la corrosion, au chauffage et/ou à l'érosion.There are very numerous methods, which have been implemented for a long time, making it possible to improve the characteristics of the shaped or semi-shaped metal parts (by metal parts, we mean both parts made of elemental metal and those made of alloy) and in particular resistance to wear, scuffing, deformation, corrosion, heating and / or erosion.

Ces méthodes comprennent le revêtement de la surface du métal, ou la modification de la composition et/ou de la microstructure de la surface métallique par des techniques telles que la cémentation au carbone, la nitruration, le soudage d'une couche fortement alliée sur la couche superficielle d'une pièce métallique, la trempe au chalumeau, la trempe par induction et une modification physique (par exemple par martelage).These methods include coating the metal surface, or modifying the composition and / or microstructure of the metal surface by techniques such as carbon carburizing, nitriding, welding a highly alloyed layer onto the surface layer of a metal part, torch quenching, induction quenching and physical modification (e.g. hammering).

Ces méthodes de revêtement de la couche superficielle comprennent également le chromage ou le nickelage, la pulvérisation de réfractaires au jet de plasma ou au chalumeau à la surface d'une pièce métallique, le placage par laminage (dans le cas de produits de laminage se présentant sous forme de feuilles ou de fils), la fusion par laser d'un cément et d'une épaisseur prédéterminée de métal immédiatement sous-jacent pour la fabrication d'un cément d'alliage de qualité améliorée, ou encore la fusion par laser d'une pièce métallique et d'une poudre solide la recouvrant pour l'obtention d'un revêtement.These methods of coating the surface layer also include chromium-plating or nickel-plating, spraying refractories with a plasma jet or a blowtorch onto the surface of a metal part, plating by rolling (in the case of rolling products occurring in the form of sheets or wires), the laser fusion of a cement and a predetermined thickness of immediately underlying metal for the manufacture of a cement alloy improved quality, or the laser fusion of a metal part and a solid powder covering it to obtain a coating.

L'art antérieur est particulièrement illustré par le brevet DE-A-2.362.026 qui décrit le dépôt par placage d'une fine couche de métaux de transition V, Cr, Mn, Fe, Co et Ni sur du substrat d'aluminium ou d'alliage d'aluminium. Le métal déposé est ensuite fondu par un faisceau d'électrons ou un faisceau concentré d'énergie et mélangé au substrat. Dans ce document, il est suggéré l'utilisation de composés chimiques d'un ou plusieurs de ces métaux.The prior art is particularly illustrated by patent DE-A-2,362,026 which describes the deposition by plating of a thin layer of transition metals V, Cr, Mn, Fe, Co and Ni on aluminum substrate or aluminum alloy. The deposited metal is then melted by an electron beam or a concentrated energy beam and mixed with the substrate. In this document, the use of chemical compounds from one or more of these metals is suggested.

L'art antérieur est aussi illustré par la publication: "Platin and surface finishing" vol 73, n° 2, février 1986 pages 57-64, Orlando, Florida US: Laser-induced deposition on semi-conductor and polymeric substrates. On décrit dans ce document un dépôt métallique induit par un laser sur des semi-conducteurs à base de gallium et des substrats polymériques (imides) baignant dans des solutions. Une solution de cyanure y est notamment citée.The prior art is also illustrated by the publication: "Platin and surface finishing" vol 73, n ° 2, February 1986 pages 57-64, Orlando, Florida US: Laser-induced deposition on semi-conductor and polymeric substrates. This document describes a metal deposit induced by a laser on gallium-based semiconductors and polymeric substrates (imides) immersed in solutions. A cyanide solution is especially cited there.

Or, la manipulation de ce type de solution pose des problèmes de sécurité.However, handling this type of solution poses security problems.

Un objet de la présente invention est de fournir une nouvelle méthode de formation d'une couche superficielle d'alliage avec un substrat, tel une pièce métallique.An object of the present invention is to provide a new method of forming an alloy surface layer with a substrate, such as a metal part.

L'invention permet en outre d'obtenir ces couches superficielles d'alliages non oxydés de métaux dans une atmosphère non nécessairement contrôlée, telle de l'air.The invention also makes it possible to obtain these surface layers of non-oxidized metal alloys in an atmosphere which is not necessarily controlled, such as air.

La couche superficielle d'alliage formée permet de conférer à la pièce métallique des propriétés particulières sans affecter en profondeur la nature et les caractéristiques du substrat. Ces propriétés peuvent être, par exemple, les résistances à la corrosion, à l'usure, aux déformations, au chauffage, à l'érosion, la modification du frottement, l'activité catalytique et la dureté.The surface layer of alloy formed makes it possible to impart particular properties to the metal part without deeply affecting the nature and characteristics of the substrate. These properties can be, for example, resistance to corrosion, wear, deformation, heating, erosion, modification of friction, catalytic activity and hardness.

La présente invention propose un procédé de modification superficielle d'un substrat métallique contenant en majeure partie du fer par formation d'un alliage avec au moins un élément chimique, dit élément d'addition, au moyen d'un faisceau concentré d'énergie, tel un faisceau laser. De manière plus précise, on effectue au moins un traitement comportant les étapes suivantes:

  • a) on recouvre la surface du substrat d'une pellicule contenant au moins un sel d'acide carboxylique choisi parmi les acides carboxyliques aliphatiques et aromatiques et les acides carboxyliques aliphatiques et aromatiques hydroxy-substitués, le sel d'acide carboxylique comportant au moins l'élément devant constituer l'alliage. Ladite pellicule a des capacités réductrices en présence du faisceau d'énergie.
  • b) on irradie la surface ainsi recouverte avec ledit faisceau en adaptant les paramètres liés à cette irradiation pour qu'une épaisseur substantielle de substrat immédiatement sous-jacent fonde et pour que ledit élément provenant de la décomposition dudit sel et ladite partie fondue du substrat se mélangent.
  • c) on resolidifie l'alliage ainsi obtenu.
The present invention provides a method of surface modification of a metal substrate containing mainly iron by forming an alloy with at least one chemical element, called an addition element, by means of a concentrated beam of energy, like a laser beam. More precisely, at least one treatment is carried out comprising the following steps:
  • a) the surface of the substrate is covered with a film containing at least one carboxylic acid salt chosen from aliphatic and aromatic carboxylic acids and hydroxy-substituted aliphatic and aromatic carboxylic acids, the carboxylic acid salt comprising at least 1 'element to constitute the alloy. Said film has reducing capacities in the presence of the energy beam.
  • b) the surface thus covered is irradiated with said beam by adapting the parameters linked to this irradiation so that a substantial thickness of immediately underlying substrate melts and so that said element originating from the decomposition of said salt and said molten part of the substrate is mix.
  • c) the alloy thus obtained is solidified.

Le substrat métallique pourra contenir une proportion de fer supérieure à 60% en poids, par exemple de 60 à 100%, et avantageusement de 90 à 99,9% en poids.The metal substrate may contain a proportion of iron greater than 60% by weight, for example from 60 to 100%, and advantageously from 90 to 99.9% by weight.

Par pellicule ayant des capacités réductrices en présence de faisceau d'énergie concentrée nécessaire à la décomposition du sel comportant l'élément d'addition, on entend que la pellicule comporte, en quantité suffisante, des composés susceptibles de réduire le degré d'oxydation d'au moins un autre corps, ou de capter des électrons de cet autre corps, de manière que globalement le degré d'oxydation des corps constituant l'alliage soit réduit entre le moment où l'on applique la pellicule sur le substrat et le moment où l'alliage est formé. Suivant le procédé selon l'invention, les capacités réductrices de la pellicule sont substantiellement influencées par la répartition atomique des composés présents dans la pellicule.By film having reducing capacities in the presence of a beam of concentrated energy necessary for the decomposition of the salt comprising the addition element, it is meant that the film contains, in sufficient quantity, compounds capable of reducing the degree of oxidation d '' at least one other body, or to collect electrons from this other body, so that overall the degree of oxidation of the bodies constituting the alloy is reduced between the moment when the film is applied to the substrate and the moment where the alloy is formed. According to the process according to the invention, the reducing capacities of the film are substantially influenced by the atomic distribution of the compounds present in the film.

Aussi, les proportions d'atomes d'oxygène, de carbone et d'hydrogène présents dans la pellicule pourront être telle que la quantité d'atomes d'oxygène soit inférieure à la somme du double de la quantité d'atomes de carbone et de la moitié de la quantité d'atomes d'hydrogène.Also, the proportions of oxygen, carbon and hydrogen atoms present in the film may be such that the amount of oxygen atoms is less than the sum of twice the amount of carbon atoms and half the amount of hydrogen atoms.

Lorsque ces capacités réductrices de la pellicule sont plus particulièrement conférées par un ou plusieurs composé(s), on qualifiera ce ou ces composés de composés réducteurs. Ces composés peuvent être un agent épaississant de la pellicule, un sel comportant l'élément d'addition, un agent complexant, tel un acide carboxylique, l'ammoniaque, la pyridine et/ou les composés en dérivant.When these reducing capacities of the film are more particularly conferred by one or more compound (s), this or these compounds will be qualified as reducing compounds. These compounds can be a film thickening agent, a salt comprising the addition element, a complexing agent, such as a carboxylic acid, ammonia, pyridine and / or the compounds derived therefrom.

Ainsi, par le procédé selon l'invention, on pourra fabriquer des alliages de surface comportant l'élément d'addition réduit à l'état d'oxydation zéro. Cette fabrication (irradiation et refroidissement) pourra s'effectuer en présence d'une atmosphère non contrôlée, par exemple dans l'air ou en atmosphère contrôlée, par exemple dans l'azote ou l'argon.Thus, by the method according to the invention, it will be possible to manufacture surface alloys comprising the addition element reduced to the state of zero oxidation. This manufacturing (irradiation and cooling) can be carried out in the presence of an uncontrolled atmosphere, for example in air or in a controlled atmosphere, for example in nitrogen or argon.

Les paramètres liés à l'irradiation, qui sont fonction du type de laser, seront essentiellement la puissance du faisceau et le temps de balayage (ou temps d'interaction laser-matière, défini comme le rapport du diamètre du faisceau à la vitesse de balayage de ce faisceau.The parameters linked to irradiation, which are a function of the type of laser, will essentially be the power of the beam and the scanning time (or laser-matter interaction time, defined as the ratio of the diameter of the beam to the scanning speed. of this beam.

L'utilisation de sels permet de manière très pratique l'obtention d'une couche superficielle substantiellement homogène intégrée à la surface du substrat et consistant en des combinaisons intimes entre l'élément produit par la décomposition du sel et le substrat préalablement recouvert.The use of salts makes it very practical to obtain a substantially homogeneous surface layer integrated into the surface of the substrate and consisting of intimate combinations between the element produced by the decomposition of the salt and the previously coated substrate.

La présente invention permet en outre la réalisation d'une couche superficielle recouvrant le substrat et comportant des matériaux à l'état amorphe.The present invention also allows the production of a surface layer covering the substrate and comprising materials in an amorphous state.

Lorsque ledit alliage comporte au moins deux éléments d'addition, ces deux éléments pourront être présents dans au moins un sel d'acide carboxylique selon l'invention. Le sel pourra être un sel complexe. La pellicule pourra comporter un agent complexant.When said alloy comprises at least two addition elements, these two elements may be present in at least one carboxylic acid salt according to the invention. The salt may be a complex salt. The film may include a complexing agent.

La complexation de sel offre notamment comme avantage de lier ensemble les éléments considérés dans une composition substantiellement homogène, sans qu'il y ait ségrégation des espèces métalliques en présence.Salt complexation offers in particular the advantage of linking together the elements considered in a substantially homogeneous composition, without there being segregation of the metallic species present.

Lorsque l'on recouvre le substrat avec la pellicule, au moins une partie du sel pourra être en solution liquide, par exemple, dans de l'eau ou de l'alcool et/ou au moins une partie du sel pourra être sous forme pulvérulente, éventuellement dispersée dans une phase liquide.When the substrate is covered with the film, at least part of the salt may be in liquid solution, for example, in water or alcohol and / or at least part of the salt may be in powder form. , possibly dispersed in a liquid phase.

Par exemple, pour faciliter le maintien ou la répartition de la pellicule sur le substrat, notamment avant de décomposer le sel, on pourra donner à la pellicule une consistance très visqueuse, voire celle d'un gel. Cette consistance pourra être obtenue par incorporation à la solution de gélifiant ou d'épaississant, tels que les gommes, comme la gomme adragante, la gomme du Sénégal, la gomme laque, la gomme Dammar, la gomme de Caroube, ou tels que les substances industrielles: acide alginique et alginate, alcool polyvinylique, résines urée-formol, polymères carboxyvinyliques, oxyde de polyéthylène, carboxyméthyl cellulose, méthyl cellulose, polyglycols, polyméthacrylates, polyéthanolamines, cires d'oxydes, ou encore une colle. Ces gélifiants pourront être considérés comme des composés réducteurs en présence d'un faisceau d'énergie concentrée, tel un faisceau laser.For example, to facilitate the maintenance or distribution of the film on the substrate, in particular before decomposing the salt, the film may be given a very viscous consistency, or even that of a gel. This consistency can be obtained by incorporation into the gelling or thickening solution, such as gums, such as gum tragacanth, Senegal gum, shellac, Dammar gum, Carob gum, or such as the substances industrial: alginic acid and alginate, polyvinyl alcohol, urea-formaldehyde resins, carboxyvinyl polymers, polyethylene oxide, carboxymethyl cellulose, methyl cellulose, polyglycols, polymethacrylates, polyethanolamines, oxide waxes, or an adhesive. These gelling agents can be considered as reducing compounds in the presence of a beam of concentrated energy, such as a laser beam.

On pourra avantageusement y adjoindre un tensio-actif non ionique de façon à avoir un meilleur étalement sur la surface du substrat.Advantageously, a nonionic surfactant can be added thereto so as to have better spreading over the surface of the substrate.

Le choix de la substance gélifiante dépend de sa stabilité en présence des ions présents dans la pellicule; la liste précédente ne doit en aucune manière être considérée comme limitative.The choice of gelling substance depends on its stability in the presence of the ions present in the film; the preceding list should in no way be considered as limiting.

La viscosité dynamique de la solution servant au dépôt du ou des sels sur le substrat est en général supérieure à 10 mm²/s et de préférence comprise entre 10 et 1000 mm²/s à la température ambiante. Cette solution peut être déposée par toute méthode connue, par exemple par dépôt au pinceau, à la brosse, au rouleau, au pistolet ou en plongeant la pièce à recouvrir dans la solution.The dynamic viscosity of the solution used for depositing the salt (s) on the substrate is generally greater than 10 mm² / s and preferably between 10 and 1000 mm² / s at room temperature. This solution can be deposited by any known method, for example by depositing with a brush, brush, roller, spray gun or by immersing the part to be covered in the solution.

Selon un mode particulièrement avantageux de mise en oeuvre du procédé selon l'invention, le dépôt de la solution contenant lesdits sels d'acide carboxylique sur le substrat peut être suivie par une opération de deshydratation conduisant à un dépôt présentant une viscosité généralement supérieure à 400 mm²/s et de préférence comprise entre 8  ×  10² et 10⁶ mm²/s.According to a particularly advantageous embodiment of the method according to the invention, the deposition of the solution containing said carboxylic acid salts on the substrate can be followed by a dehydration operation leading to a deposition having a viscosity generally greater than 400 mm² / s and preferably between 8 × 10² and 10⁶ mm² / s.

L'épaisseur de la pellicule avant deshydratation est généralement comprise entre 0,2 et 2 mm et de préférence entre 0,3 et 1 mm. Après déshydratation, elle varie généralement entre 0,05 mm et 1 mm et de préférence entre 0,1 et 5 mm.The thickness of the film before dehydration is generally between 0.2 and 2 mm and preferably between 0.3 and 1 mm. After dehydration, it generally varies between 0.05 mm and 1 mm and preferably between 0.1 and 5 mm.

Notamment, le sel pourra être avantageusement un sel d'au moins un acide carboxylique tel que les acides formique, acétique, propionique, oxalique, citrique, lactique, malique, salicylique et tartrique. Les sels peuvent aussi être des alcoolates, tels que méthylate, éthylate, isopropylates (ces alcoolates étant par ailleurs des composés réducteurs en présence du faisceau laser).In particular, the salt may advantageously be a salt of at least one carboxylic acid such as formic, acetic, propionic, oxalic, citric, lactic, malic, salicylic and tartaric acids. The salts can also be alcoholates, such as methylate, ethylate, isopropylates (these alcoholates being moreover reducing compounds in the presence of the laser beam).

Par ce procédé, on pourra réaliser des alliages de surface avec au moins un élément dit d'addition introduit au moins en partie sous la forme d'au moins un sel d'acide carboxylique.By this process, surface alloys can be produced with at least one so-called addition element introduced at least in part in the form of at least one carboxylic acid salt.

L'élément d'addition pourra être au moins un des éléments d'addition bien connus par l'homme du métier dans le domaine de la métallurgie ou plus particulièrement de la sidérurgie.The addition element may be at least one of the addition elements well known to those skilled in the art in the field of metallurgy or more particularly of the steel industry.

L'élément d'addition pourra être au moins un élément choisi dans le groupe formé par les éléments suivants: Si, Mg, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Sn, La, W, Re, Os, Ir, Pt, Au, Bi, Ce et de manière préférée Ni, Cr, Co et Mo.The addition element may be at least one element chosen from the group formed by the following elements: Si, Mg, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Sn, La, W, Re, Os, Ir, Pt, Au, Bi, Ce and preferably Ni, Cr, Co and Mo.

Les substances complexantes utilisables sont par exemple:

  • ― soit des acides organiques contenant deux ou plusieurs fonctions acides, tels les acides oxalique, malonique, succinique, glutarique...,
  • ― soit des acides alcools, tels les acides glycolique, lactique,
  • ― soit des acides aminés tels l'acide aminoacétique, l'alanine, la leucine,
  • ― soit des acides plus complexes portant deux ou plusieurs fonctions acides et/ou autres fonctions alcool, ou amine ou carboxyle, tels les acides malique, tartrique, citrique, éthylène diaminotétracétique,
  • ― soit encore de l'ammoniaque, la pyridine et les composés en dérivant.
The complexing substances which can be used are for example:
  • - either organic acids containing two or more acid functions, such as oxalic, malonic, succinic, glutaric acids, etc.,
  • - or alcoholic acids, such as glycolic and lactic acids,
  • - either amino acids such as aminoacetic acid, alanine, leucine,
  • - or more complex acids carrying two or more acid functions and / or other alcohol, or amine or carboxyl functions, such as malic, tartaric, citric, ethylene diaminotetracetic acids,
  • - or again ammonia, pyridine and the compounds derived therefrom.

Selon une caractéristique du procédé, on peut effectuer avantageusement deux traitements. On obtient dans ces conditions un alliage plus riche ou la possibilité d'ajouter à forte concentration un autre métal supplémentaire au substrat, ce qui permet d'accroître notamment sa résistance à la corrosion.According to a characteristic of the process, two treatments can advantageously be carried out. Under these conditions, a richer alloy is obtained or the possibility of adding another additional metal at high concentration to the substrate, which makes it possible in particular to increase its resistance to corrosion.

Selon un autre mode de mise en oeuvre du procédé selon l'invention, on peut constituer un revêtement du substrat métallique en formant un alliage avec ledit élément d'addition et avec au moins un composé solide infusible. La présente de ce composé infusible permet l'obtention d'une couche superficielle substantiellement homogène intégrée ou non à la surface du substrat et consistant en des combinaisons intimes entre l'élément produit par la décomposition thermique, du sel d'acide carboxylique mentionné ci-dessus et le composé solide infusible et le substrat. La résistance à la corrosion notamment à haute température sous H₂S ou sous SO₂ s'en trouve accrue.According to another embodiment of the method according to the invention, a coating of the metallic substrate can be formed by forming an alloy with said addition element and with at least one infusible solid compound. The presence of this infusible compound makes it possible to obtain a substantially homogeneous surface layer integrated or not on the surface of the substrate and consisting of intimate combinations between the element produced by thermal decomposition of the carboxylic acid salt mentioned above. above and the infusible solid compound and the substrate. Corrosion resistance, in particular at high temperature under H₂S or under SO₂, is increased.

Le composé solide infusible pourra être un carbure, tel que B₄C, Cr₃C₂, NbC, HfC, MoC, SiC, TaC, TiC, WC, ZrC, ou un siliciure, tel que MoSi₂, NbSi₂, TaSi₂, ou un oxyde simple ou mixte réfractaire, tel que Al₂O3, BeO, Cr₂O₃, MgO, SiO₂, TiO₂, ZrO₂, ZrO₂, Y₂O₃, Al₂O₃ TiO₂, CaZrO₂, MgO SiO₂, la mullite (3Al₂O₃, SiO₂), le spinelle (MgO Al₂O₃, ZrO₂ SiO₂) ou un nitrure, tel que ceux d'aluminium ou de titane ou encore un mélange de ces matériaux.The solid infusible compound may be a carbide, such as B₄C, Cr₃C₂, NbC, HfC, MoC, SiC, TaC, TiC, WC, ZrC, or a silicide, such as MoSi₂, NbSi₂, TaSi₂, or a simple or mixed refractory oxide , such as Al₂O3, BeO, Cr₂O₃, MgO, SiO₂, TiO₂, ZrO₂, ZrO₂, Y₂O₃, Al₂O₃ TiO₂, CaZrO₂, MgO SiO₂, mullite (3Al₂O₃, SiO₂), spinel (MgO Al₂O₃, ZrO₂ Si such as those of aluminum or titanium or a mixture of these materials.

On ne sortira pas du cadre de la présente invention en utilisant comme générateur de faisceau concentré d'énergie tout générateur susceptible de fournir une puissance suffisante pendant un temps suffisant pour produire la décomposition thermique du ou des sels, la fusion de la surface du substrat et la production de l'alliage. La puissance par unité de surface nécessaire est sensiblement comprise entre 10² W/cm² et 10⁷ W/cm² (Watt par centimètre carré) et pourra être de préférence comprise entre 10⁴ et 10⁵ W/cm² selon le temps d'interaction du spot avec la matière.It will not be departing from the scope of the present invention to use any generator capable of supplying sufficient power for a time sufficient to produce the thermal decomposition of the salt (s), the melting of the surface of the substrate and production of the alloy. The power per unit area required is substantially between 10² W / cm² and 10⁷ W / cm² (Watt per square centimeter) and may preferably be between 10⁴ and 10⁵ W / cm² depending on the interaction time of the spot with the material .

Outre le faisceau concentré d'énergie produit par un laser dont les paramètres d'irradiation auront été adaptés, on pourra utiliser, par exemple, un faisceau concentré d'électrons. On pourra appliquer le procédé selon l'invention à la fabrication d'alliages austénitiques et/ou ferritiques et/ou austénoferritiques. On pourra aussi appliquer le procédé selon l'invention à la fabrication de catalyseurs.In addition to the concentrated beam of energy produced by a laser, the irradiation parameters of which have been adapted, it is possible, for example, to use a concentrated beam of electrons. The process according to the invention can be applied to the manufacture of austenitic and / or ferritic and / or austenoferritic alloys. It is also possible to apply the process according to the invention to the manufacture of catalysts.

Le traitement est réalisé par un faisceau laser qui produit sur l'échantillon un cordon de traitement de largeur 1 et on réalise un balayage de tout l'échantillon par juxtaposition au moins en partie de deux cordons successifs, avec un mode de recouvrement de préférence égal à un demi cordon, c'est-à-dire qu'entre deux passages le faisceau laser est décalé de 1/2.The treatment is carried out by a laser beam which produces a treatment bead of width 1 on the sample and a scanning of the entire sample is carried out by juxtaposition at least in part of two successive cords, with a preferably equal covering mode. to a half bead, that is to say that between two passes the laser beam is offset by 1/2.

L'invention sera mieux comprise et ses avantages apparaîtront plus nettement à la lecture de quelques exemples de mise en oeuvre du procédé.The invention will be better understood and its advantages will appear more clearly on reading some examples of implementation of the method.

Exemple 1:Example 1:

Pour enrichir superficiellement en nickel une plaque d'acier doux de composition en poids: 0,17% de carbone, 0,5% de manganèse, 0,25% de silicium, 0,04% de soufre, 0,03% de phosphore, le complément à 100% étant du fer, on utilise un gel de formiate de nickel. Le gel est préparé comme suit: on ajoute 40 ml d'une solution d'acide formique à 30% en poids à 100 ml d'eau distillée, puis on dissout à 40°C, sous agitation, 60 g de formiate de nickel Ni(CHO₂)₂, 2H₂O, et enfin 4 g d'un hydrocolloïde polysaccharique dénommé guar de façon à réaliser une solution très visqueuse. La viscosité à 20°C de la solution est égale à 500 mm²/s.To enrich a surface of mild steel plate with nickel by weight composition: 0.17% carbon, 0.5% manganese, 0.25% silicon, 0.04% sulfur, 0.03% phosphorus , the complement to 100% being iron, a gel of nickel formate is used. The gel is prepared as follows: 40 ml of a 30% by weight solution of formic acid are added to 100 ml of distilled water, then 60 g of nickel formate Ni are dissolved at 40 ° C. (CHO₂) ₂, 2H₂O, and finally 4 g of a polysaccharide hydrocolloid called guar so as to produce a very viscous solution. The viscosity at 20 ° C of the solution is equal to 500 mm² / s.

Le gel obtenu est ensuite étalé au pinceau en une pellicule mince d'environ 0,8 mm d'épaisseur sur une plaque d'acier doux, puis déshydraté, jusqu'à ce que la viscosité de la pellicule soit égale à 2000 mm²/s.The gel obtained is then spread with a brush into a thin film of approximately 0.8 mm thick on a mild steel plate, then dehydrated, until the viscosity of the film is equal to 2000 mm² / s. .

Dans l'air, l'échantillon est alors soumis à une irradiation par un faisceau laser YAG de 43 watts et ayant un temps d'interaction laser-matière de 0,05 seconde, le temps d'interaction étant défini comme étant le rapport du diamètre du faisceau à la vitesse de balayage du faisceau. Le diamètre du spot laser étant de 400 micromètres, la puissance d'irradiation est de 3,4.10⁴ W/cm². Ce traitement est réalisé par ce faisceau laser qui produit sur l'échantillon un cordon de traitement de 400 mm de largeur et le balayage de l'échantillon est réalisé avec un mode de recouvrement égal à un demi cordon. Entre deux passages, le faisceau laser est donc décalé de 200 mm.In air, the sample is then subjected to irradiation with a YAG laser beam of 43 watts and having a laser-matter interaction time of 0.05 seconds, the interaction time being defined as being the ratio of the beam diameter at beam scanning speed. The diameter of the laser spot being 400 micrometers, the irradiation power is 3.4.10⁴ W / cm². This treatment is carried out by this laser beam which produces a treatment bead 400 mm wide on the sample and the scanning of the sample is carried out with a covering mode equal to half a bead. Between two passes, the laser beam is therefore offset by 200 mm.

Après ce traitement et après refroidissement, on observe par micrographie et analyse par diffraction X qu'il a été formé une couche, dont l'épaisseur varie entre 20 et 22 micromètres, constituée d'un alliage homogène de fer cristallisé en phase gamma et de nickel (γFe-Ni). Cet alliage, de teneur en nickel sensiblement égale à 70% en poids, ne comporte pas de nickel et de fer à l'état oxydé.After this treatment and after cooling, it is observed by micrography and X-ray diffraction analysis that a layer has been formed, the thickness of which varies between 20 and 22 micrometers, consisting of a homogeneous alloy of iron crystallized in gamma phase and nickel (γFe-Ni). This alloy, with a nickel content substantially equal to 70% by weight, does not contain nickel and iron in the oxidized state.

Exemple comparatif 2:Comparative example 2:

On prépare une solution de cyanure de nickel par mise en solution d'une quantité de cyanure de nickel fraîchement précipité contenant 5 g de nickel dans 80 ml d'ammoniaque 3N. On ajoute à cette solution 4 g d'un hydrocolloïde polysaccharide dénommé guar de façon à réaliser une solution de viscosité 550 mm²/s.A solution of nickel cyanide is prepared by dissolving an amount of freshly precipitated nickel cyanide containing 5 g of nickel in 80 ml of 3N ammonia. 4 g of a polysaccharide hydrocolloid called guar are added to this solution so as to produce a solution with a viscosity of 550 mm² / s.

Le gel ainsi obtenu est étalé au pinceau en une pellicule mince d'environ 0,8 mm d'épaisseur sur une plaque d'acier doux puis déshydraté jusqu'à ce que la viscosité de la pellicule soit égale à 2000 mm²/s.The gel thus obtained is spread with a brush into a thin film of approximately 0.8 mm thick on a sheet of mild steel and then dehydrated until the viscosity of the film is equal to 2000 mm² / s.

Dans l'air, l'échantillon est alors soumis à une irradiation par un faisceau laser YAG de 43 watts et ayant un temps d'interaction Laser matière de 0,05 seconde. La puissance d'irradiation est de 3,4  ×  10⁴ W/cm².In air, the sample is then subjected to irradiation by a YAG laser beam of 43 watts and having a laser material interaction time of 0.05 seconds. The irradiation power is 3.4 × 10⁴ W / cm².

Après ce traitement on observe par micrographie et diffraction X qu'il a été formé une couche, dont l'épaisseur varie entre 12 et 14 micromètres, constituée d'un alliage homogène de fer et de nickel (à 60% de nickel et 40% de fer) correspondant seulement à 25% du nickel théoriquement dépose, la plus grande partie de nickel est à l'état oxydé.After this treatment, it is observed by micrography and X-ray diffraction that a layer has been formed, the thickness of which varies between 12 and 14 micrometers, consisting of a homogeneous alloy of iron and nickel (60% nickel and 40% of iron) corresponding to only 25% of the nickel theoretically deposited, most of the nickel is in the oxidized state.

Exemple 3:Example 3:

On reprend une plaque d'acier doux de l'exemple 1 ayant subi le traitement de l'exemple 1 et on refait un second dépôt dans les mêmes conditions de l'exemple 1. Puis, le substrat ainsi revêtu étant dans l'air, on l'irradie avec un laser de 43 watts ayant un spot de diamètre 400 micromètres pendant un temps d'interaction de 0,045 seconde.A mild steel plate from Example 1 having undergone the treatment of Example 1 is taken up and a second deposition is repeated under the same conditions of Example 1. Then, the substrate thus coated being in air, it is irradiated with a 43 watt laser having a spot diameter of 400 micrometers for an interaction time of 0.045 seconds.

Après refroidissement naturel, on constate qu'il s'est formé une couche de 35 à 38 micromètres d'épaisseur. Cette couche comporte deux zones: la première de ces zones ou la plus extérieure à la pièce d'une épaisseur moyenne de 20 micromètres est constituée d'un alliage homogène de fer en phase gamma et de nickel ayant une teneur en nickel sensiblement égale à 90% en poids, la deuxième de ces zones, sous-jacente à la première, d'une épaisseur d'environ 16 micromètres est constituée d'un alliage homogène de fer en phase gamma et de nickel ayant une teneur en nickel voisine de 70% en poids.After natural cooling, it is found that a layer 35 to 38 micrometers thick has formed. This layer comprises two zones: the first of these zones or the most external to the part with an average thickness of 20 micrometers consists of a homogeneous alloy of iron in gamma phase and of nickel having a nickel content substantially equal to 90 % by weight, the second of these zones, underlying the first, with a thickness of about 16 micrometers is made of a homogeneous alloy of iron in gamma phase and nickel having a nickel content close to 70% in weight.

Exemple comparatif 4:Comparative example 4:

On prépare une solution de nitrate de chrome contenant 8 g de chrome dans 50 ml d'eau. On ajoute à cette solution 2,5 g d'un hydrocolloïde polysaccharide dénommé Guar de façon à réaliser une solution très visqueuse de viscosité 500 mm²/s.A solution of chromium nitrate containing 8 g of chromium in 50 ml of water is prepared. 2.5 g of a polysaccharide hydrocolloid called Guar are added to this solution so as to produce a very viscous solution with a viscosity of 500 mm² / s.

Le gel ainsi obtenu est étalé au pinceau en une pellicule mince d'environ 0,8 mm d'épaisseur sur une plaque d'acier doux puis déshydraté jusqu'à ce que la viscosité de la pellicule soit égale à 1600 mm²/s. Dans l'azote, l'échantillon est alors soumis à une irradiation par un faisceau laser YAG de 50 watts avec un temps d'interaction Laser-matière de 0,07 seconde avec un spot de 400 micromètres de diamètre.The gel thus obtained is spread with a brush into a thin film about 0.8 mm thick on a mild steel plate and then dehydrated until the viscosity of the film is equal to 1600 mm² / s. In nitrogen, the sample is then subjected to irradiation by a 50-watt YAG laser beam with a laser-matter interaction time of 0.07 seconds with a spot of 400 micrometers in diameter.

Après refroidissement on constate la formation d'une couche superficielle d'épaisseur sensiblement comprise entre 32 et 35 micromètres, constituée de fer, de chrome, la proportion de chrome allié au fer sous forme d'alliage par rapport au chrome total n'est que de 10%, la très grande majorité du chrome est à l'état d'oxyde.After cooling, the formation of a surface layer of thickness substantially between 32 and 35 micrometers, consisting of iron and chromium, is observed. The proportion of chromium alloyed with iron in the form of an alloy relative to total chromium is only by 10%, the vast majority of chromium is in the oxide state.

Exemple 5:Example 5:

On prépare une solution saline de tartrate de chrome à partir d'un oxyde de chrome hydraté, fraîchement précipité et contenant 8 g de chrome solubilisé dans 50 ml d'une solution 5 M d'acide tartrique. La solution obtenue est concentrée par évaporation jusqu'à ce que sa viscosité mesurée au viscosimètre Hoppler à chute de bille (Norme DIN 53 015) soit de 700 mm²/s. Le gel ainsi produit est étalé en une pellicule de 0,6 millimètre d'épaisseur sur une plaque d'acier doux. Après déshydratation partielle, la viscosité est de 1600 mm²/s.A saline solution of chromium tartrate is prepared from a hydrated chromium oxide, freshly precipitated and containing 8 g of chromium dissolved in 50 ml of a 5 M solution of tartaric acid. The solution obtained is concentrated by evaporation until its viscosity measured with the Hoppler viscometer with falling ball (Standard DIN 53 015) is 700 mm² / s. The gel thus produced is spread in a film 0.6 mm thick on a sheet of mild steel. After partial dehydration, the viscosity is 1600 mm² / s.

Le substrat ainsi revêtu, étant dans l'azote, est soumis par balayage à une irradiation, pendant 0,07 seconde, d'un spot de 400 micromètres de diamètre généré par un laser de puissance de 50 watts. La puissance spécifique est par suite d'environ 4  ×  10⁴ W/cm².The substrate thus coated, being in nitrogen, is subjected by scanning to irradiation, for 0.07 seconds, of a spot 400 micrometers in diameter generated by a laser of power of 50 watts. The specific power is therefore approximately 4 × 10⁴ W / cm².

Après refroidissement, on constate la formation d'une couche superficielle d'épaisseur sensiblement comprise entre 30 et 32 micromètres constituée d'un alliage de fer et de chrome, comportant chacun des métaux à l'état métallique, et dont la teneur en chrome est égale à 40% en poids.After cooling, there is the formation of a surface layer of thickness substantially between 30 and 32 micrometers consisting of an alloy of iron and chromium, each comprising metals in the metallic state, and whose chromium content is equal to 40% by weight.

Exemple 6:Example 6:

On prépare une solution de sel de chrome en ajoutant 5 g d'acide tartrique (agissant comme agent complexant) à 100 ml d'une solution d'acétate de chrome contenant 5 g de chrome, puis on ramène à 8 ml par évaporation le volume de cette solution de sel de manière qu'elle soit visqueuse. La viscosité dynamique de la solution déposée est de 100 mm²/s à 20°C.A solution of chromium salt is prepared by adding 5 g of tartaric acid (acting as complexing agent) to 100 ml of a solution of chromium acetate containing 5 g of chromium, then the volume is reduced to 8 ml. of this salt solution so that it is viscous. The dynamic viscosity of the deposited solution is 100 mm² / s at 20 ° C.

On revêt une plaque d'acier doux de l'exemple 1 d'une pellicule de 0,8 millimètre d'épaisseur. Après déshydratation partielle, on atteint une viscosité dynamique de 1100 mm²/s, puis on soumet, dans l'air, le substrat ainsi recouvert à l'irradiation d'un spot de 400 micromètres de diamètre d'un faisceau laser de 50 watts balayant la surface à une vitesse telle que le temps d'interaction soit de 0,04 seconde.A mild steel plate from Example 1 is coated with a film 0.8 mm thick. After partial dehydration, a dynamic viscosity of 1100 mm² / s is reached, then the air is subjected to the substrate thus covered on irradiation with a spot 400 micrometers in diameter with a 50 watt laser beam scanning the surface at a speed such that the interaction time is 0.04 seconds.

Après refroidissement, on observe qu'il s'est formé une zone superficielle d'épaisseur 30 micromètres constituée d'un alliage de fer et de chrome contenant 90% en poids de chrome, le fer et le chrome étant tous deux sous forme de métal.After cooling, it is observed that a surface zone 30 micrometers thick has formed, consisting of an alloy of iron and chromium containing 90% by weight of chromium, the iron and the chromium being both in the form of metal. .

Exemple 7:Example 7:

On prépare une solution d'acétate de chrome et d'acétate de nickel en mettant en solution, dans l'acide acétique, un coprécipité d'hydroxyde de chrome et de nickel contenant en poids deux fois plus de chrome que de nickel.A solution of chromium acetate and nickel acetate is prepared by dissolving, in acetic acid, a coprecipitate of chromium and nickel hydroxide containing by weight twice as much chromium as nickel.

Le coprécipité contenant 10 g chrome et 5 g de nickel est dissous dans 100 ml d'une solution aqueuse contenant 30 ml d'acide acétique pur. A la solution d'acétates ainsi obtenue, on ajoute 5 g d'acide tartrique puis 8 ml d'ammoniaque à 28% en poids. L'acide acétique et l'ammoniaque réalisent une complexation des sels d'acétate.The coprecipitate containing 10 g of chromium and 5 g of nickel is dissolved in 100 ml of an aqueous solution containing 30 ml of pure acetic acid. To the acetate solution thus obtained, 5 g of tartaric acid are added and then 8 ml of ammonia at 28% by weight. Acetic acid and ammonia complex the acetate salts.

Par évaporation, on ramène le volume de la solution à 10 ml de manière à la rendre visqueuse, soit une viscosité à 20°C de 120 mm²/s. Après déshydratation partielle, on atteint 900 mm²/s.By evaporation, the volume of the solution is reduced to 10 ml so as to make it viscous, ie a viscosity at 20 ° C of 120 mm² / s. After partial dehydration, 900 mm² / s is reached.

On recouvre une tôle d'acier doux de l'exemple 1, d'une pellicule de 0,4 millimètre d'épaisseur avec la solution épaissie, puis on irradie dans l'air la pellicule, par un balayage pendant 0,05 seconde avec un spot de 400 micromètres de diamètre et de 50 watts produit par un laser.A sheet of mild steel from Example 1 is covered with a film 0.4 mm thick with the thickened solution, then the film is irradiated in the air by scanning for 0.05 seconds with a spot 400 micrometers in diameter and 50 watts produced by a laser.

Après refroidissement, on constate la formation d'une zone superficielle de 50 à 55 micromètres d'épaisseur et constituée d'un alliage austénitique Fe-Cr-Ni, de teneur en poids en nickel égale à 10% et en chrome égale à 20%.After cooling, we observe the formation of a surface zone 50 to 55 micrometers thick and consisting of an austenitic Fe-Cr-Ni alloy, with a nickel content by weight equal to 10% and chromium content equal to 20% .

Exemple 8:Example 8:

On prépare une solution d'acétate de chrome et d'acétate de nickel, contenant respectivement 10 g de chrome et 3,2 g de nickel, en mettant en solution, dans 100 ml de solution aqueuse contenant 30 ml d'acide acétique pur, un coprécipité d'hydroxyde chrome et de nickel. A cette solution d'acétates on ajoute: 10 ml d'une solution de paramolybdate d'ammonium (NH₄)₆ Mo₇O₂₄, 4H₂O (contenant 1,2 g de molybdène), puis 7 g d'acide tartrique. La solution saline produite est ramenée par évaporation à un volume de 15 ml de manière à en accroître sa viscosité jusqu'à une valeur de 100 mm²/s. Après déshydratation partielle, on atteint une viscosité à 20°C de 900 mm²/s.A solution of chromium acetate and of nickel acetate is prepared, containing respectively 10 g of chromium and 3.2 g of nickel, by dissolving in 100 ml of aqueous solution containing 30 ml of pure acetic acid, a coprecipitate of chromium hydroxide and nickel. To this acetate solution are added: 10 ml of a solution of ammonium paramolybdate (NH₄) ₆ Mo₇O₂₄, 4H₂O (containing 1.2 g of molybdenum), then 7 g of tartaric acid. The saline solution produced is brought back by evaporation to a volume of 15 ml so as to increase its viscosity up to a value of 100 mm² / s. After partial dehydration, a viscosity at 20 ° C of 900 mm² / s is reached.

On recouvre une tôle d'acier doux de l'exemple 1 d'une pellicule de 0,4 millimètre de cette solution. On l'irradie sous azote par un balayage pendant 0,05 seconde avec un spot de 400 micromètres de diamètre et de 50 watts produit par un laser.A sheet of mild steel from Example 1 is covered with a 0.4 mm film of this solution. It is irradiated under nitrogen by scanning for 0.05 seconds with a spot 400 micrometers in diameter and 50 watts produced by a laser.

Après refroidissement, on constate la formation d'une zone superficielle d'une épaisseur comprise entre 45 et 50 micromètres, constituée d'un alliage austénoferritique de teneurs en poids de chrome égale à 25%, de nickel égale à 8%, de molybdène égale à 3%.After cooling, there is the formation of a surface zone with a thickness between 45 and 50 micrometers, consisting of an austenoferritic alloy with contents by weight of chromium equal to 25%, of nickel equal to 8%, of molybdenum equal at 3%.

Exemple 9:Example 9:

On prépare une solution d'acétate de nickel en mettant en solution, dans 20 ml d'eau et 10 ml d'acide acétique glacial à 96% poids portés à ébullition 8 g de carbonate basique de nickel qui contient 4 g de nickel.A nickel acetate solution is prepared by dissolving, in 20 ml of water and 10 ml of glacial acetic acid at 96% by weight brought to the boil, 8 g of basic nickel carbonate which contains 4 g of nickel.

A cette solution, on ajoute 4,5 g d'acide acétique. On ramène le volume de cette solution à 5 ml par évaporation, puis on ajoute à cette solution devenue très visqueuse 1 g de carbure de silicium en poudre de dimension inférieure à 4 micromètres. Le carbure de silicium est ensuite dispersé au sein du liquide par malaxage.To this solution is added 4.5 g of acetic acid. The volume of this solution is reduced to 5 ml by evaporation, then to this solution which has become very viscous is added 1 g of powdered silicon carbide of dimension less than 4 micrometers. The silicon carbide is then dispersed within the liquid by mixing.

La solution obtenue est étalée au pinceau sur une plaque d'acier doux de l'exemple 1 en une pellicule mince d'environ 0,8 mm, puis est déshydratée. La viscosité dynamique à 20°C du mélange ainsi déposé est égale à 1100 mm²/s.The solution obtained is spread with a brush on a mild steel plate of Example 1 in a thin film of about 0.8 mm, then is dehydrated. The dynamic viscosity at 20 ° C of the mixture thus deposited is equal to 1100 mm² / s.

Dans l'air, l'échantillon est alors soumis à une irradiation par un faisceau laser YAG de 43 watts pendant un temps d'interaction laser-matière de 0,03 seconde, le temps d'interaction étant défini comme étant le rapport du diamètre du faisceau à la vitesse de balayage. Le diamètre du spot laser étant de 400 micromètres, la puissance d'irradiation est de 4,3.10⁴ W/cm².In air, the sample is then subjected to irradiation by a 43-watt YAG laser beam for a laser-matter interaction time of 0.03 seconds, the interaction time being defined as the ratio of the diameter. of the beam at the scanning speed. The diameter of the laser spot being 400 micrometers, the irradiation power is 4.3.10⁴ W / cm².

Après ce traitement et refroidissement à l'air, on observe par micrographie, qu'il a été formé une couche de 25 à 30 micromètres d'épaisseur constituée de nickel à l'état métallique dans lequel sont dispersées les particules de carbure de silicium qui représentent environ 25% poids du revêtement ainsi formé.After this treatment and air cooling, it is observed by micrography that a layer 25 to 30 micrometers thick has been formed consisting of nickel in the metallic state in which the particles of silicon carbide are dispersed. represent approximately 25% by weight of the coating thus formed.

Exemple 10:Example 10:

On prépare une solution de tartrate de chrome par mise en solution d'oxyde de chrome hydraté fraîchement précipité dans de l'acide tartrique. Cette solution est ensuite concentrée de façon à obtenir une concentration en chrome de 400 g par litre. A 10 ml de cette solution, on ajoute, en malaxant, 1 g d'oxyde de zirconium (ZrO₂) en poudre de granulométrie inférieure à 3 micromètres.A solution of chromium tartrate is prepared by dissolving hydrated chromium oxide freshly precipitated in tartaric acid. This solution is then concentrated so as to obtain a chromium concentration of 400 g per liter. To 10 ml of this solution, 1 g of zirconium oxide (ZrO₂) in powder with a particle size less than 3 micrometers is added, while kneading.

La solution visqueuse ainsi obtenue est ensuite étendue en une pellicule de 0,6 mm d'épaisseur sur une plaque d'acier doux, puis est déshydratée partiellement.The viscous solution thus obtained is then spread in a film 0.6 mm thick on a mild steel plate, then is partially dehydrated.

Dans l'air, l'échantillon est alors soumis à une irradiation, pendant un temps d'interaction de 0,05 seconde, d'un spot de 400 micromètres de diamètre produit par un faisceau laser YAG de 43 watts.In air, the sample is then subjected to irradiation, for an interaction time of 0.05 seconds, of a spot 400 micrometers in diameter produced by a YAG laser beam of 43 watts.

Après ce traitement et après refroidissement à l'air, on observe par micrographie et diffraction X, qu'il a été formé une couche, dont l'épaisseur varie de 30 à 35 micromètres, constituée d'une alliage homogène de fer et de chrome de teneur en chrome sensiblement égale à 50% et dans lequel les particules de ZrO₂ sont dispersées de manière homogène et représentent environ 10% poids de revêtement ainsi préparé.After this treatment and after cooling in air, it is observed by micrography and X-ray diffraction, that a layer has been formed, the thickness of which varies from 30 to 35 micrometers, consisting of a homogeneous alloy of iron and chromium of chromium content substantially equal to 50% and in which the ZrO₂ particles are dispersed homogeneously and represent approximately 10% by weight of coating thus prepared.

Claims (15)

1. Method for surface modification of the surface of a metal substrate containing largely iron by forming an alloy with at least one chemical element known as the addition element, by means of a concentrated energy beam such as a laser beam, characterized by at least one treatment comprising the following stages being carried out:
a) said surface of the substrate is coated with a film containing at least one salt of a carboxylic acid chosen from the aliphatic and aromatic carboxylic acids and the hydroxy-substituted aliphatic and aromatic carboxylic acids, said carboxylic acid salt having at least the element which will form said alloy, said film having reducing capacities in the presence of said energy beam;
b) said surface so coated is irradiated with said beam, with the parameters of this irradiation being adjusted such that a substantial thickness of the immediately underlying substrate melts and such that said element coming from the decomposition of said salt and said molten part of the substrate mix with each other.
c) The alloy thus obtained is resolidified.
2. Method according to claim 1, characterized by said addition element being at least one metal chosen from the group formed of the following elements: Si, Mg, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Sn, La, W, Re, Os, Ir, Pt, Au, Bi, Ce.
3. Method according to claims 1 or 2 characterized by said film containing at last two addition elements in the form of at least one salt in order to form an alloy having at least the two addition elements.
4. Method according to one of claims 1 to 3 characterized by said film having at least one complexing agent.
5. Method according to one of claims 1 to 4 characterized by the proportions of oxygen, carbon, and hydrogen atoms present in the film being such that the quantity of oxygen atoms is less than the sum of half the quantity of the hydrogen atoms and double the quantity of carbon atoms.
6. Method according to one of claims 1 to 5 characterized by the salt being a carboxylic acid salt chosen from the group formed by formic, acetic, propionic, lactic, salicylic, malic, oxalic, citric, and tartaric acids.
7. Method according to one of claims 1 to 6 characterized in that, when said substrate is coated with said film, at least part of said salt is in liquid solution.
8. Method according to one of claims 1 to 7 characterized in that, when said substrate is coated with said film, at least part of said salt is in the powder form.
9. Method according to one of claims 1 to 8 characterized in that, after said surface of said substrate has been coated with said film containing said salt having at least said addition element, and before said salt has been decomposed, the film containing said salt is concentrated by evaporation.
10. Method according to one of claims 1 to 9 characterized by said film having a viscosity higher than 400 mm²/s and preferably between 800 and 10⁶ mm²/s before being irradiated.
11. Method according to one of claims 1 to 10, characterized in that the substrate is a mild steel and in that the addition element is at least one metal chosen form the group formed by nickel, chromium and molybdenum.
12. Method according to one of claims 1 to 11 characterized in that the surface of the substrate is coated with said film containing at least said salt and at least one non-melting solid compound.
13. Use of the process according at one of claims 1 to 12 to manufacturing surface alloy which contains the addition element reduced to oxidation state zero.
14. Use of the process according to one of claims 1 to 13 to manufacturing austenitic and/or ferritic and/or austenoferritic alloys.
15. Use of the process according to one of claims 1 to 14 to manufacturing catalysts.
EP88401550A 1987-06-30 1988-06-21 Process for modifying the surface of a substrate by the formation of an alloy, use of the process, paticularly in the preparation of ferrous alloys, and catalysts and alloys obtained by the process Expired - Lifetime EP0300846B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR8709267A FR2617507B1 (en) 1987-06-30 1987-06-30 METHOD FOR SURFACE MODIFICATION OF THE SURFACE OF A SUBSTRATE AND APPLICATION TO THE MANUFACTURE OF COATINGS AND CATALYSTS
FR8709266 1987-06-30
FR8709267 1987-06-30
FR8709266A FR2617506B1 (en) 1987-06-30 1987-06-30 PROCESS FOR THE SURFACE MODIFICATION OF THE SURFACE OF A SUBSTRATE BY FORMING AN ALLOY, APPLICATION OF THE PROCESS TO MANUFACTURING PARTICULARLY FERROUS ALLOYS AND CATALYSTS, ALLOYS OBTAINED BY THE PROCESS

Publications (2)

Publication Number Publication Date
EP0300846A1 EP0300846A1 (en) 1989-01-25
EP0300846B1 true EP0300846B1 (en) 1991-12-18

Family

ID=26226067

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88401550A Expired - Lifetime EP0300846B1 (en) 1987-06-30 1988-06-21 Process for modifying the surface of a substrate by the formation of an alloy, use of the process, paticularly in the preparation of ferrous alloys, and catalysts and alloys obtained by the process

Country Status (4)

Country Link
EP (1) EP0300846B1 (en)
DE (1) DE3866986D1 (en)
DK (1) DK171736B1 (en)
NO (1) NO173066C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057335A (en) * 1988-10-12 1991-10-15 Dipsol Chemical Co., Ltd. Method for forming a ceramic coating by laser beam irradiation
DE3922233A1 (en) * 1989-07-06 1991-01-17 Guenter Link Precipitating. metal layers from metal organic cpds. - by irradiating with light energy photon beam
JP2724041B2 (en) * 1990-11-30 1998-03-09 株式会社日立製作所 Surface modification method of metal member and method of manufacturing various products
CA2147522A1 (en) * 1994-05-11 1995-11-12 Ronald Sinclair Nohr Method of coating a substrate with copper

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0162601A2 (en) * 1984-05-12 1985-11-27 Daiki Engineering Co., Ltd. Formation of alloy layer on a metal substrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2362026A1 (en) * 1973-12-13 1975-06-26 Aluminium Werke Ag Surface hardening of aluminium (alloys) - by applying a metal coating followed by a fusion treatment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0162601A2 (en) * 1984-05-12 1985-11-27 Daiki Engineering Co., Ltd. Formation of alloy layer on a metal substrate

Also Published As

Publication number Publication date
DK356688D0 (en) 1988-06-28
EP0300846A1 (en) 1989-01-25
DK356688A (en) 1988-12-31
DE3866986D1 (en) 1992-01-30
NO173066C (en) 1993-10-20
NO173066B (en) 1993-07-12
NO882867L (en) 1989-01-02
DK171736B1 (en) 1997-04-21
NO882867D0 (en) 1988-06-28

Similar Documents

Publication Publication Date Title
US5035957A (en) Coated metal product and precursor for forming same
US4935073A (en) Process for applying coatings of zirconium and/or titantuim and a less noble metal to metal substrates and for converting the zirconium and/or titanium to an oxide, nitride, carbide, boride or silicide
US4943485A (en) Process for applying hard coatings and the like to metals and resulting product
WO2005049490A1 (en) Dual-phase hard material, method for the production thereof and its use
EP0300846B1 (en) Process for modifying the surface of a substrate by the formation of an alloy, use of the process, paticularly in the preparation of ferrous alloys, and catalysts and alloys obtained by the process
FR2470061A1 (en) STEEL SHEETS FOR THE MANUFACTURE OF SOLDERED CONTAINER BOXES AND LAYERS
FR2617507A1 (en) Process for surface modification of the surface of a substrate and application to the manufacture of coatings and catalysts
WO2000036181A1 (en) METHOD FOR PRODUCING A METAL ALLOY POWDER SUCH AS MCrALY AND COATINGS OBTAINED WITH SAME
JPS60258481A (en) Manufacture of surface coated member containing dispersed particles
FR2547598A1 (en) METHOD FOR MANUFACTURING ELECTRODE FOR ELECTROCHEMICAL METHODS AND CATHODE FOR THE ELECTROLYTIC PRODUCTION OF HYDROGEN
FR2558751A1 (en) MATERIAL FOR THERMAL SPRAY
JP2991977B2 (en) Conductor roll for electroplating and method of manufacturing the same
Zhou et al. A study of the cavitation erosion behaviour of a Ti-Ni alloy coating
FR2491800A1 (en) COATED ELECTRODE CONTAINING ZIRCONIUM FOR ARC WELDING WITH COATED ELECTRODE
JPH10110253A (en) Conductor roll for electroplating and its production
FR2617506A1 (en) Process for surface modification of the surface of a substrate by forming an alloy, application of the process to the manufacture of, in particular, ferrous alloys and catalysts, alloys obtained by the process
CN109913851A (en) A kind of cosputtering handled using after annealing prepares the method and MWCNT@XY of MWCNT@XY
JP3069696B1 (en) Corrosion-resistant sprayed coating and its manufacturing method
DE3590538T1 (en) Process for applying coatings to metals and the product obtained in the process
JPH0874025A (en) Member coated with chromium carbide by thermal spraying
CA2492128A1 (en) Alloys of ti, ru and al and their use in the synthesis of sodium chlorate
JP3582259B2 (en) Preparation method of anticorrosion titanium oxide film
JP3389036B2 (en) Anticorrosion coating method using mixed metal powder
US6416871B1 (en) Surface modification of high temperature alloys
EP0112206A1 (en) Method of coating metallic surfaces with carbides

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB NL SE

17P Request for examination filed

Effective date: 19890221

17Q First examination report despatched

Effective date: 19900731

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL SE

REF Corresponds to:

Ref document number: 3866986

Country of ref document: DE

Date of ref document: 19920130

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88401550.4

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030328

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030602

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030620

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030623

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030627

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030704

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

BERE Be: lapsed

Owner name: *INSTITUT FRANCAIS DU PETROLE

Effective date: 20040630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050101

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050101

EUG Se: european patent has lapsed
EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST