EP0296073A1 - Large lattice parameter metal alloy - Google Patents

Large lattice parameter metal alloy Download PDF

Info

Publication number
EP0296073A1
EP0296073A1 EP88420181A EP88420181A EP0296073A1 EP 0296073 A1 EP0296073 A1 EP 0296073A1 EP 88420181 A EP88420181 A EP 88420181A EP 88420181 A EP88420181 A EP 88420181A EP 0296073 A1 EP0296073 A1 EP 0296073A1
Authority
EP
European Patent Office
Prior art keywords
group
total
weight
alloy
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88420181A
Other languages
German (de)
French (fr)
Other versions
EP0296073B1 (en
Inventor
Bruno Dubost
Marc Audier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pechiney SA
Original Assignee
Pechiney SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pechiney SA filed Critical Pechiney SA
Publication of EP0296073A1 publication Critical patent/EP0296073A1/en
Application granted granted Critical
Publication of EP0296073B1 publication Critical patent/EP0296073B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent

Definitions

  • the invention relates to metal alloys characterized by a large lattice parameter (> 1 nm).
  • pseudo-crystals are not very stable over time (aging) and it was therefore advantageous to obtain crystallized metal alloys having large reticular distances; it is indeed known that monochromators made of organic crystals (or pseudocrystals) have a low reflecting power and a poor resolution.
  • the metallic crystals whose composition is represented by the weight formula (Al, Zn, Cu) x Li 1-x with 0.88 ⁇ x ⁇ 0.92, the group Al, Zn, Cu may be partially substituted up to 50% by weight in total with Ag, Ga and / or and the Li may be partially substituted by one or more elements from the group Mg, Na, K, Ca up to at 10% by weight in total, the other elements (impurities) being kept ⁇ 1% each and ⁇ 5% in total, respond to this problem.
  • the group Al, Zn, Cu may be partially substituted up to 50% by weight in total with Ag, Ga and / or and the Li may be partially substituted by one or more elements from the group Mg, Na, K, Ca up to at 10% by weight in total, the other elements (impurities) being kept ⁇ 1% each and ⁇ 5% in total, respond to this problem.
  • compositions are preferably the following (% by weight): 60 ⁇ Al ⁇ 65 20 ⁇ Zn ⁇ 32 0 ⁇ Cu ⁇ 6 9 ⁇ Li ⁇ 11
  • the above elements can be replaced by one or more of their isotopes to improve their neutron scattering factor.
  • Monocrystals of such alloys can be obtained by a known method of preparing monocrystals, such as those of Bridgeman or Czochralski with the use (or not) of seeds and controlled temperature gradients. They are preferably produced by the method described in French patent application No. 86-15774. They are preferably annealed between 300 and 500 ° C for a period of a few hours to a few tens of hours to obtain a homogeneous structure and greater fineness of the diffraction lines.
  • FIG. 1 representing an X-ray diffraction diagram corresponding to Example 1 at small diffraction angles.
  • Ingot bars 18 mm in diameter were cast in alloys according to the invention (by weight%): 10.2 Li - 30 Zn - remainder Al 41 Cu - 10.5 Li - 24 Zn - Al residue 9.5 Li - 1.5 Mg - 28 Zn - rest Al 3.7 Cu - 22 Zn - 9 Li - 1.5 Mg - Al residue 3.6 Cu - 22 Zn - 2% Ag - 9.8 Li - 0.5 Mg, Al residue, who have been annealed for 72 h at 400 ° C + 72 h at 500 ° C. Under these conditions, it was found that alloys belonging to the field according to the invention exhibited a very high volume fraction grade (> 80%) of large quadratic phase crystals coated with eutectic. Annealing has the effect of completely absorbing most of the primary phases such as ⁇ -Al Li or constituents of the Al2LiMg eutectic.
  • the above ground alloys can constitute an internal standard for radiocrystallography.
  • the alloys according to the invention can therefore be used as internal standards in radiocrystallography (powder diagrams) or as monochromators with high reflecting power and good resolution in the methods of analysis by spectral dispersion of soft X-rays or slow neutrons.

Abstract

The invention concerns a metal alloy with large lattice spacings (>than 1 nm), and consisting essentially of, by weight: at least one element selected from a group A consisting of Al, Zn and Cu, total group A elements being 44-92%; at least one element selected from a group B consisting of Ag, Ga and Au, total group B elements being 0-46%, with % group A+group B=88-92%, and <IMAGE> a group C element which is Li in an amount of 7.2-12%; at least one element selected from a group D consisting of Mg, K, Na, and Ca, total group D elements being 0-12%, with % group C+% group D=8-12%, <IMAGE> and % group A+% group B+% group C+% group D=100%; said alloy additionally comprising elemental impurities in an amount of less than 1% each and less than 5% total, based on the total weight of the alloy.

Description

L'invention concerne des alliages métalliques caractérisés par un paramètre de maille important (> 1 nm).The invention relates to metal alloys characterized by a large lattice parameter (> 1 nm).

La diffraction ou la réflexion des rayonnements de longueur d'onde voisine de 1 mm (10 A), c'est-à-dire les rayons X mous ou les neutrons très lents, exige des substances cristallines dont le paramètre de maille est élevé, en général supérieur à 1 nm. Ces tailles de maille ne sont généralement atteintes que dans des cristaux ou pseudocristaux organiques. Le Tableau I donne les compositions de quelques-unes de ces substances ainsi que les distances réticulaires (d) et les éléments analysables en fluorescence X ou microanalyse à dispersion spectrale (sur les rayonnements K) correspondants. Or ces pseudo-cristaux ne sont pas très stables dans le temps (vieillissement) et il était donc intéressant d'obtenir des alliages métalliques cristallisés ayant de grandes distances réticulaires; il est en effet connu que les monochromateurs en cristaux (ou pseudocristaux) organiques ont un faible pouvoir réflecteur et une médiocre résolution. Lors de ses travaux sur les quasi-cristaux, la demanderesse a découvert que les cristaux métalliques dont la composition est représentée par la formule pondérale
    (Al, Zn, Cu)x Li1-x avec 0,88 ≦ x ≦ 0,92,
le groupe Al, Zn, Cu pouvant être partiellement substitué jusqu'à 50 % en poids au total par Ag, Ga et/ou et le Li pouvant être partiellement substitué par un ou plusieurs éléments du groupe Mg, Na, K, Ca jusqu'à 10 % en poids au total, les autres éléments (impuretés) étant tenus < 1% chacun et < 5 % au total, répondent à ce problème.
The diffraction or the reflection of radiations with a wavelength close to 1 mm (10 A), i.e. soft X-rays or very slow neutrons, requires crystalline substances with a high mesh parameter, generally greater than 1 nm. These mesh sizes are generally only achieved in organic crystals or pseudocrystals. Table I gives the compositions of some of these substances as well as the reticular distances (d) and the elements that can be analyzed by X-ray fluorescence or spectral dispersion microanalysis (on K radiation). However, these pseudo-crystals are not very stable over time (aging) and it was therefore advantageous to obtain crystallized metal alloys having large reticular distances; it is indeed known that monochromators made of organic crystals (or pseudocrystals) have a low reflecting power and a poor resolution. During its work on quasicrystals, the applicant discovered that the metallic crystals whose composition is represented by the weight formula
(Al, Zn, Cu) x Li 1-x with 0.88 ≦ x ≦ 0.92,
the group Al, Zn, Cu may be partially substituted up to 50% by weight in total with Ag, Ga and / or and the Li may be partially substituted by one or more elements from the group Mg, Na, K, Ca up to at 10% by weight in total, the other elements (impurities) being kept <1% each and <5% in total, respond to this problem.

Dans le domaine de compositions défini ci-dessus, les compositions sont préférentiellement les suivantes (% en poids) :
    60 ≦ Al ≦ 65
    20 ≦ Zn ≦ 32
    0 ≦ Cu ≦ 6
    9 ≦ Li ≦ 11
In the field of compositions defined above, the compositions are preferably the following (% by weight):
60 ≦ Al ≦ 65
20 ≦ Zn ≦ 32
0 ≦ Cu ≦ 6
9 ≦ Li ≦ 11

Une composition préférée est la suivante :
    Al = 62 %
    Cu = 4 %
    Li = 10 %
    Zn = 24 %
A preferred composition is as follows:
Al = 62%
Cu = 4%
Li = 10%
Zn = 24%

Les éléments ci-dessus peuvent être remplacés par un ou plusieurs de leurs isotopes pour améliorer leur facteur de diffusion des neutrons.The above elements can be replaced by one or more of their isotopes to improve their neutron scattering factor.

Des monocristaux de tels alliages peuvent être obtenus par une méthode connue de préparation de monocristaux, telles que celles de Bridgeman ou Czochralski avec utilisation (ou non) de germes et de gradients de température contrôlés. Ils sont préférentiellement élaborés par la méthode décrite dans la demande de brevet français n° 86-15774. Ils sont de préférence recuits entre 300 et 500°C pendant une durée de quelques heures à quelques dizaines d'heures pour obtenir une structure homogène et une plus grande finesse des raies de diffraction.Monocrystals of such alloys can be obtained by a known method of preparing monocrystals, such as those of Bridgeman or Czochralski with the use (or not) of seeds and controlled temperature gradients. They are preferably produced by the method described in French patent application No. 86-15774. They are preferably annealed between 300 and 500 ° C for a period of a few hours to a few tens of hours to obtain a homogeneous structure and greater fineness of the diffraction lines.

L'invention sera mieux comprise à l'aide des exemples suivants illustrés par la figure 1 représentant un diagramme de diffraction X correspondant à l'exemple 1 aux faibles angles de diffraction.The invention will be better understood with the aid of the following examples illustrated by FIG. 1 representing an X-ray diffraction diagram corresponding to Example 1 at small diffraction angles.

EXEMPLE IEXAMPLE I

Un alliage de composition A1-19 % Zn - 4,5 % Cu et 7,5 % Li a été coulé en lingots depuis 750°C sous atmosphère inerte avec une durée de solidification lente de l'ordre de 1 heure entre 620°C et 560°C.
Après refroidissement complet, on a trouvé au sein de la masse solidifiée dans la retassure des monocristaux de taille centimétrique en croissance basaltique sous forme de pyramides à base carrée dont la direction de croissance correspondait exactement à l'axe C de la structure quadratique. L'étude par diffraction des rayons X sur échantillons broyés a révélé un nombre tout à fait exceptionnel de raies de diffraction (méthode Debye et Scherrer) détectables sur diffractomètre (voir fig. 1), du fait de la structure à très grand paramètre de maille (a ≃ 1,4 nm, c ≃ 8,2 nm). La structure obtenue a été contrôlée par microdiffraction électronique sur lames minces.
L'analyse des monocristaux massifs déterminée par absorption atomique est la suivante :
    Li = 10 %
    Cu = 4,1 %
    Zn = 24 %
    reste Al
ce qui correspond à la formule atomique : Al5,5 Cu1,5 Zn8,5 Li₃₅.
Les distances interréticulaires mesurées et les indices de Miller des plans réticulaires sont reportés au Tableau II.
An alloy of composition A1-19% Zn - 4.5% Cu and 7.5% Li was poured into ingots from 750 ° C. under an inert atmosphere with a slow solidification time of the order of 1 hour between 620 ° C. and 560 ° C.
After complete cooling, one found within the solidified mass in the recession of monocrystals of centimeter size in basalt growth in the form of pyramids with square base whose growth direction corresponded exactly to the axis C of the quadratic structure. The study by X-ray diffraction on ground samples revealed a quite exceptional number of diffraction lines (Debye and Scherrer method) detectable on diffractometer (see fig. 1), due to the structure with very large mesh parameter (a ≃ 1.4 nm, c ≃ 8.2 nm). The structure obtained was checked by electronic microdiffraction on thin sections.
The analysis of massive single crystals determined by atomic absorption is as follows:
Li = 10%
Cu = 4.1%
Zn = 24%
stay Al
which corresponds to the atomic formula: Al 5.5 Cu 1.5 Zn 8.5 Li₃₅.
The measured inter-reticular distances and the Miller indices of the reticular planes are given in Table II.

EXEMPLE 2EXAMPLE 2

On a coulé des lingotins de diamètre 18 mm en alliages selon l'invention (en poids %):
    10,2 Li - 30 Zn - reste Al
    41 Cu - 10,5 Li - 24 Zn - reste Al
    9,5 Li - 1,5 Mg - 28 Zn -reste Al
    3,7 Cu - 22 Zn - 9 Li - 1,5 Mg - reste Al
    3,6 Cu - 22 Zn - 2 % Ag - 9,8 Li - 0,5 Mg, reste Al,
qui ont subi un recuit de 72 h à 400 °C + 72 h à 500°C. Dans ces conditions on a constaté que des alliages appartenant au domaine selon l'invention présentaient une très grade fraction volumique (> 80 %) de gros cristaux de phase quadratique enrobés d'eutectique.
Le recuit a pour effect de résorber complètement la plupart des phases primaires telles que δ-Al Li ou des constituants de l'eutectique Al₂LiMg. Les alliages ci-dessus broyés peuvent constituer un étalon interne de radiocristallographie.
Ingot bars 18 mm in diameter were cast in alloys according to the invention (by weight%):
10.2 Li - 30 Zn - remainder Al
41 Cu - 10.5 Li - 24 Zn - Al residue
9.5 Li - 1.5 Mg - 28 Zn - rest Al
3.7 Cu - 22 Zn - 9 Li - 1.5 Mg - Al residue
3.6 Cu - 22 Zn - 2% Ag - 9.8 Li - 0.5 Mg, Al residue,
who have been annealed for 72 h at 400 ° C + 72 h at 500 ° C. Under these conditions, it was found that alloys belonging to the field according to the invention exhibited a very high volume fraction grade (> 80%) of large quadratic phase crystals coated with eutectic.
Annealing has the effect of completely absorbing most of the primary phases such as δ-Al Li or constituents of the Al₂LiMg eutectic. The above ground alloys can constitute an internal standard for radiocrystallography.

Les alliages selon l'invention sont donc utilisables en tant qu'étalons internes en radiocristallographie (diagrammes de poudres) ou comme monochromateurs à grand pouvoir réflecteur et bonne résolution dans les méthodes d'analyses par dispersion spectrale de rayons X mous ou de neutrons lents.

Figure imgb0001
Figure imgb0002
The alloys according to the invention can therefore be used as internal standards in radiocrystallography (powder diagrams) or as monochromators with high reflecting power and good resolution in the methods of analysis by spectral dispersion of soft X-rays or slow neutrons.
Figure imgb0001
Figure imgb0002

Claims (6)

1. Alliage métallique à grand paramètre de maille (> 1 nm) caractérisé par la formule pondérale suivante : (Al,Zn,Cu)x Li1-x avec 0,88 ≦ x ≦ 0,92, le groupe Al-Zn-Cu pouvant être substitué jusqu'à 50 % en poids au total par Ag, Ga et/ou Au et le Li pouvant être substitué jusqu'à 10% en poids au total par un ou plusieurs éléments du groupe Mg, K, Na, Ca, les autres éléments (impuretés) étant tenus inférieurs à 1 % chacun et à 5 % au total.1. Metallic alloy with a large mesh parameter (> 1 nm) characterized by the following weight formula: (Al, Zn, Cu) x Li 1-x with 0.88 ≦ x ≦ 0.92, the group Al-Zn- Cu may be substituted up to 50% by weight in total with Ag, Ga and / or Au and Li may be substituted up to 10% by weight in total with one or more elements from the group Mg, K, Na, Ca , the other elements (impurities) being kept below 1% each and 5% in total. 2. Alliage suivant la revendication 1 caractérisé en ce qu'il contient (en poids %) :
      60 ≦ Al ≦ 65
      20 ≦ Zn ≦ 32
      0,5 ≦ Cu ≦ 6
      9 ≦ Li ≦ 11.
2. Alloy according to claim 1 characterized in that it contains (by weight%):
60 ≦ Al ≦ 65
20 ≦ Zn ≦ 32
0.5 ≦ Cu ≦ 6
9 ≦ Li ≦ 11.
3. Alliage selon l'une des revendications 1 ou 2 caractérisé en ce qu'il contient sensiblement :
      Zn = 24 %
      Li = 10 %
      Cu = 4 %
      reste Al.
3. Alloy according to one of claims 1 or 2 characterized in that it contains substantially:
Zn = 24%
Li = 10%
Cu = 4%
remains Al.
4. Alliage selon l'une des revendications 1 à 3 caractérisé en ce qu'il est essentiellement constitué d'une phase tétragonale dont les paramètres sont voisins de a = 1,4 nm et c = 8,2 nm.4. Alloy according to one of claims 1 to 3 characterized in that it essentially consists of a tetragonal phase whose parameters are close to a = 1.4 nm and c = 8.2 nm. 5. Utilisation d'un monocristal en alliage correspondant à l'une des revendications 1 à 4 comme monochromateur.5. Use of an alloy single crystal corresponding to one of claims 1 to 4 as a monochromator. 6. Utilisation d'une poudre en alliage correspondant à l'une des revendications 1 à 4 comme étalon interne de radiocristallographie.6. Use of an alloy powder corresponding to one of claims 1 to 4 as an internal standard for radiocrystallography.
EP88420181A 1987-06-05 1988-06-02 Large lattice parameter metal alloy Expired - Lifetime EP0296073B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8708304 1987-06-05
FR8708304A FR2616158B1 (en) 1987-06-05 1987-06-05 METALLIC ALLOY WITH LARGE MESH PARAMETER

Publications (2)

Publication Number Publication Date
EP0296073A1 true EP0296073A1 (en) 1988-12-21
EP0296073B1 EP0296073B1 (en) 1991-03-06

Family

ID=9352038

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88420181A Expired - Lifetime EP0296073B1 (en) 1987-06-05 1988-06-02 Large lattice parameter metal alloy

Country Status (12)

Country Link
US (1) US4865665A (en)
EP (1) EP0296073B1 (en)
JP (1) JPS63312944A (en)
AT (1) ATE61418T1 (en)
DE (1) DE3861921D1 (en)
DK (1) DK299488A (en)
ES (1) ES2021459B3 (en)
FI (1) FI882614A (en)
FR (1) FR2616158B1 (en)
IS (1) IS1451B6 (en)
NO (1) NO168659C (en)
PT (1) PT87650B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085830A (en) * 1989-03-24 1992-02-04 Comalco Aluminum Limited Process for making aluminum-lithium alloys of high toughness

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB769484A (en) * 1952-06-30 1957-03-06 Willi Neu Zinc-aluminium alloy bearings and other workpieces exposed in use to sliding surfacefriction
DE1083619B (en) * 1958-09-03 1960-06-15 Ver Deutsche Metallwerke Ag Use of a zinc-containing aluminum alloy as corrosion protection for steel surfaces
GB926312A (en) * 1958-06-05 1963-05-15 Charles Topley Improvements in alloys
FR2072592A5 (en) * 1969-12-03 1971-09-24 Voest Ag

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0225226B1 (en) * 1985-10-25 1990-03-14 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy with superior thermal neutron absorptivity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB769484A (en) * 1952-06-30 1957-03-06 Willi Neu Zinc-aluminium alloy bearings and other workpieces exposed in use to sliding surfacefriction
GB926312A (en) * 1958-06-05 1963-05-15 Charles Topley Improvements in alloys
DE1083619B (en) * 1958-09-03 1960-06-15 Ver Deutsche Metallwerke Ag Use of a zinc-containing aluminum alloy as corrosion protection for steel surfaces
FR2072592A5 (en) * 1969-12-03 1971-09-24 Voest Ag

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085830A (en) * 1989-03-24 1992-02-04 Comalco Aluminum Limited Process for making aluminum-lithium alloys of high toughness

Also Published As

Publication number Publication date
IS3354A7 (en) 1988-12-06
PT87650A (en) 1988-07-01
NO168659B (en) 1991-12-09
FI882614A0 (en) 1988-06-02
FI882614A (en) 1988-12-06
ATE61418T1 (en) 1991-03-15
FR2616158B1 (en) 1990-10-19
PT87650B (en) 1992-09-30
FR2616158A1 (en) 1988-12-09
IS1451B6 (en) 1991-01-16
ES2021459B3 (en) 1991-11-01
NO882433D0 (en) 1988-06-02
NO168659C (en) 1992-03-18
JPS63312944A (en) 1988-12-21
DK299488A (en) 1988-12-06
US4865665A (en) 1989-09-12
DE3861921D1 (en) 1991-04-11
EP0296073B1 (en) 1991-03-06
NO882433L (en) 1988-12-06
DK299488D0 (en) 1988-06-02

Similar Documents

Publication Publication Date Title
Okamoto et al. Dendritic structure in unidirectionally solidified aluminum, tin, and zinc base binary alloys
Chang et al. Rare earth concentration in the primary Si crystal in rare earth added Al-21wt.% Si alloy
FR3004467A1 (en) FABRICATION OF STOICHIOMETRIC ELPASOLITE
FR2538412A1 (en) ALUMINUM ALLOY FOR STRUCTURES HAVING HIGH ELECTRIC RESISTIVITY
Zhang et al. Microstructure and creep resistance of Mg–10Zn–4Al–0.15 Ca permanent moulding alloy
Chen Growth mechanisms of intermetallic phases in DC cast AA1XXX alloys
EP0296073B1 (en) Large lattice parameter metal alloy
EP0558977B1 (en) High-strength, rapidly solidified alloy
Wen et al. Intermetallic compounds in thixoformed aluminium alloy A356
Narumi et al. Quantitative analysis of solidification of equiaxed grains in Al-Cu alloy refined by inoculant TiB2 particles with using time-resolved X-ray tomography
Chattopadhyay et al. Metastable phase formation and decomposition in a rapidly solidified aluminium-platinum alloy
Król The precipitation strengthening of directionally solidified Al Si Cu alloys
Stillwell et al. Sodium—Lead Alloys. The Structure of the Compound Known as Na4Pb
Owen et al. The relation between Mean atomic volume and composition in silver-zinc alloys
Braszczyńska-Malik et al. Influence of solidification rate on microstructure of gravity cast AZ91 magnesium alloy
Kim et al. Improvement of CdMnTe detector performance by MnTe purification
Riontino et al. Precipitation sequence in an Al-Cu-Mg-Ag-Zn alloy
Jensen et al. A zinc‐copper phase in dental silver amalgam alloy
Dadson et al. Transmission pseudo-Kossel (TK) studies of recrystallized hot-deformed (dynamically recovered) polycrystalline aluminium
Zhang et al. The Mg‐Zn‐Al Alloys and the Influence of Calcium on their Creep Properties
Dubost et al. Large Lattice Parameter Metal Alloy
DE1132340B (en) Process for the production of electrode material for semiconducting devices
SU657075A1 (en) Composition for modifying aluminium alloys
Salonen et al. Measurements of the stacking-fault energy of some ternary copper base solid solutions
Karmakar et al. Effect of alloying with zinc on SFE of aluminium by study of lattice imperfections in cold worked Al-Zn alloys

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19890111

17Q First examination report despatched

Effective date: 19900727

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PECHINEY

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19910306

REF Corresponds to:

Ref document number: 61418

Country of ref document: AT

Date of ref document: 19910315

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3861921

Country of ref document: DE

Date of ref document: 19910411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910521

Year of fee payment: 4

Ref country code: CH

Payment date: 19910521

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910523

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19910602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19910630

Ref country code: BE

Effective date: 19910630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910630

Year of fee payment: 4

BERE Be: lapsed

Owner name: PECHINEY

Effective date: 19910630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920603

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19920610

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920630

Ref country code: CH

Effective date: 19920630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920602

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19930603

EUG Se: european patent has lapsed

Ref document number: 88420181.5

Effective date: 19930109

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050602