EP0283712A1 - Process for removal of sulfur containing gases - Google Patents

Process for removal of sulfur containing gases Download PDF

Info

Publication number
EP0283712A1
EP0283712A1 EP88102313A EP88102313A EP0283712A1 EP 0283712 A1 EP0283712 A1 EP 0283712A1 EP 88102313 A EP88102313 A EP 88102313A EP 88102313 A EP88102313 A EP 88102313A EP 0283712 A1 EP0283712 A1 EP 0283712A1
Authority
EP
European Patent Office
Prior art keywords
gases
carried out
carrier materials
sulfur
removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP88102313A
Other languages
German (de)
French (fr)
Inventor
Wilhelm Dr. Bruening
Rudolf Dipl.-Ing. Uchdorf
Alfred Dr. Mitschker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer SA Brazil
Original Assignee
Bayer do Brasil SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer do Brasil SA filed Critical Bayer do Brasil SA
Publication of EP0283712A1 publication Critical patent/EP0283712A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/507Sulfur oxides by treating the gases with other liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds

Definitions

  • the present invention relates to a method for the selective removal of sulfur-containing gases from technical gases or exhaust gases by treatment with basic substances.
  • DE-A 3 004 757 describes the removal of hydrogen sulfide from industrial gases by means of aqueous solutions of alkali metal hydroxides.
  • carbon dioxide and hydrogen sulfide are removed from technical gas mixtures by means of washing with an aqueous solution of methyldiethanolamine.
  • DE-A 3 027 220 also deals with the removal of hydrogen sulfide from industrial gases with aqueous alkali solutions.
  • DE-A 3 427 133 and DE-A 3 427 134 and EP-A 173 908 processes for removing CO2 and / or H2S known, in which the removal is carried out in absorption liquids containing alkanolamine.
  • DE-A 3 429 979 the removal of the acidic and / or sulfur-containing gases in aqueous solutions containing bases takes place in the presence of a basic ion exchanger having built-in tertiary or quaternary nitrogen atoms.
  • the goal may be to remove only sulfur-containing gases from gas mixtures.
  • the object of the present invention is to provide such a method.
  • the present invention relates to a process for the selective removal of sulfur-containing gases from industrial gases or exhaust gases by treating the gases with basic substances, characterized in that the basic substances are carrier materials which are tertiary amino groups of the general formula have, where m and n each have values of 1 or 2 x and y each have values from 1 to 10, preferably 1 to 2 can accept, and R and R ⁇ are hydrogen or alkyl and R ⁇ are hydrogen or methyl.
  • carrier materials are polymerization resins. These can be copolymers of polymerizable vinyl compounds which have the tertiary amino groups according to the invention either in the molecule itself or after appropriate functionalization.
  • Polymerization resins crosslinked with polyvinyl compounds are particularly suitable.
  • Examples of polyvinyl compounds are DVB, TVB, ethylene glycol dimethacrylate, methylene bisaryl amide, divinylethylene urea, octadiene 1.7, hexadiene 1.5 and Triallyl cyanurate for use.
  • the functionalization to the claimed resins takes place according to methods known per se.
  • Ion exchangers and their precursors of the type mentioned are known. You and their manufacture will, for. B. described in F. Helfferich, ion exchanger, Volume 1, 1959, pages 10 to 106 and Ullmann's encyclopedia of techn. Chemie, 4th edition, volume 13, 1977, pages 292 to 309.
  • polyamines such as. B. triethylenetetramine or suitable hydrazine derivatives can be used.
  • Further preferred carrier materials are condensation resins which have the tertiary amino groups according to the invention.
  • Such resins are known. They are obtained, for example, by reacting aliphatic and / or aromatic amines with epichlorohydrin or formaldehyde.
  • aliphatic amines are polyalkylene polyamines, such as diethylenetriamine, triethylene tetramine, and aromatic amines, for example m-phenylenediamine.
  • the ethanolamine or propanolamine groups according to the invention can advantageously be obtained by reacting the corresponding resins with ethylene oxide or propylene oxide.
  • the method according to the invention is suitable for the removal of sulfur-containing gases.
  • sulfur-containing gases are in particular hydrogen sulfide, carbon disulfide, carbon oxysulfide and sulfur dioxide.
  • the sulfur-containing gas is SO2.
  • the sulfur-containing gases can be selectively separated from other gases. It is possible to remove sulfur-containing gases from gases with a high CO2 content.
  • Applications are in the desulfurization of domestic fire, in the removal of SO2 in the Clauss process, in the exhaust gas desulfurization of power plants, sulfuric acid plants, refineries and calcining processes.
  • the gases or exhaust gases to be treated are brought into contact with the carrier materials according to the invention. Since the gases to be cleaned generally contain sufficient moisture, the support materials according to the invention can be used as such without further pretreatment with their respective water content, ie not in an aqueous environment as in the known processes. In the case of gases which are too dry, it is sufficient to use known processes to moisten or spray the contact layer itself with water.
  • the amount of carrier materials used depends on the concentration of the sulfur-containing gases in the technical gases to be treated.
  • the amount of carrier materials is 5 to 500 l, preferably 10 to 50 l, per Nm3 / h of gas to be treated. In principle, higher or lower amounts of the carrier materials can also be used.
  • the sulfur-containing gases are preferably removed at room temperature (approx. 10 to 30 ° C.). It takes two to seven days to fully saturate the resin under the conditions described.
  • a particularly preferred embodiment of the method according to the invention consists in that the carrier materials are regenerated after their saturation.
  • the HCl used here preferably has a concentration of 3 to 10%, but even when 36% HCl is used, there is generally no damage to the carrier materials.
  • the reactivation is carried out with sodium hydroxide solution at a concentration of 3 to 50%, preferably 5 to 10%.
  • regeneration is carried out at elevated temperature using sodium hydroxide solution or water vapor. No additional chlorides are generated here.
  • the regeneration with sodium hydroxide solution is carried out at temperatures between 120 and 200 ° C., preferably 130 to 160 ° C.
  • the sodium hydroxide solution preferably has a concentration in the range from 5 to 30%.
  • temperatures between 180 and 235 ° C are preferred.
  • the pressure of the water vapor is between 9 and 30 bar.
  • the gas (5) to be cleaned is passed through one of two absorption towers (7) filled with carrier materials and leaves it as cleaned gas (6).
  • Sodium hydroxide solution (1) and water (2) are mixed in the replenisher (3).
  • the regenerant stream (4) is passed through the absorption tower (7) in which the carrier materials are already saturated.
  • the used regeneration agent (8) is removed from the system and can then be processed.
  • the purified gas removed from the system via line (6) has a greatly reduced content of sulfur-containing impurities compared to the unpurified gas. For example, it is possible to reduce the sulfur content of CO2 / SO2 gas mixtures with an SO2 concentration between 2,500 and 13,500 ppm almost quantitatively (> 98%).
  • a styrene / divinylbenzene copolymer resin which is equipped with aminobenzyl groups was reacted with 2.2 mol of ethylene oxide.
  • the reaction was carried out at 80 ° C. in an aqueous medium, without a catalyst and using a 10% excess of ethylene oxide. According to IR spectra, it was quantitative.
  • the finished resin In contrast to the preliminary product (amine smell), the finished resin was characterized by absolute odorlessness. While the preliminary product became much darker at temperatures of approx. 120 ° C, the final product retained its originally light color. Both properties are the result of the good chemical resistance of the functional N, N-bis ( ⁇ -hydroxyethyl) benzylamino group.
  • Example 1 100 ml of the moist resin prepared according to Example 1 were placed in a stainless steel tube designed as a reactor.
  • the gas mixture CO2 / SO2 was produced in a 60 l pressure bottle, a concentration of 1000 -1500 ppm being set.
  • the analytical control was carried out by iodometric titration using a Mettler memotitrator.
  • the resin from the pressure bottle was pressurized at 40 l / hour via rotameter.
  • the gas emerging from the reactor was passed through an iodine / potassium iodide solution, the content of which was checked at regular intervals by titration.
  • the result of the test is shown graphically in FIG. 2.
  • the relative SO2 adsorption of the resin was based on a volume of 1000 ml and applied against the amount of SO2 (mol) contained in the applied gas mixture.
  • the curve shows that practically quantitative SO2 adsorption takes place, and the breakthrough of SO2 begins at 1.85 mol.
  • the rapid drop from almost 100% at 1.85 mol to zero at 2.4 mol illustrates the high efficiency of the resin.
  • the resin saturated with SO2 can be regenerated excellently with 5 bed volumes of 4% sodium hydroxide solution at room temperature.
  • the resin regenerated in this way showed the same adsorption properties as the freshly produced resin when loaded again.
  • Example 2 In the test arrangement described in Example 2, the gas mixtures listed in Table 1 were passed through 500 ml of the resin prepared according to Example 1.

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur selektiven Entfernung schwefelhaltiger Gase asu technischen Gasen oder Abgasen durch Behandlung mit basischen Substanzen.The present invention relates to a method for the selective removal of sulfur-containing gases and industrial gases or exhaust gases by treatment with basic substances.

Description



Die vorliegende Erfindung betrifft ein Verfahren zur selektiven Entfernung schwefelhaltiger Gase aus tech­nschen Gasen oder Abgasen durch Behandlung mit basi­schen Substanzen.The present invention relates to a method for the selective removal of sulfur-containing gases from technical gases or exhaust gases by treatment with basic substances.

Verfahren zur Entfernung von schwefelhaltigen Gasen aus technischen Gasen oder Abgasen sind bereits bekannt. So beschreibt die DE-A 3 004 757 die Entfernung von Schwe­felwasserstoff aus technischen Gasen mittels wäßriger Lösungen von Alkalimetallhydroxiden. Gemäß den DE-A 3 236 600 und De-A 3 236 601 erfolgt die Entfernung von Kohlendioxid und Schwefelwasserstoff aus technischen Gasmischungen mittels einer Wäsche mit einer wäßrigen Lösung von Methyldiethanolamin. Auch die DE-A 3 027 220 befaßt sich mit der Entfernung von Schwefelwasserstoff aus technischen Gasen mit wäßrigen Alkalilösungen.Methods for removing sulfur-containing gases from industrial gases or exhaust gases are already known. DE-A 3 004 757 describes the removal of hydrogen sulfide from industrial gases by means of aqueous solutions of alkali metal hydroxides. According to DE-A 3 236 600 and De-A 3 236 601, carbon dioxide and hydrogen sulfide are removed from technical gas mixtures by means of washing with an aqueous solution of methyldiethanolamine. DE-A 3 027 220 also deals with the removal of hydrogen sulfide from industrial gases with aqueous alkali solutions.

Ferner sind aus den DE-A 3 427 133 und DE-A 3 427 134 sowie der EP-A 173 908 Verfahren zum Entfernen von CO₂ und/oder H₂S bekannt, in denen die Entfernung in Alka­nolamin enthaltenden Absorptionsflüssigkeiten durchge­führt wird. Gemäß der DE-A 3 429 979 geschieht die Ent­fernung der sauren und/oder schwefelhaltigen Gase in Basen enthaltenden wäßrigen Lösungen in Gegenwart eines, eingebaute tertiäre oder quarternäre Stickstoffatome aufweisenden basischen Ionenaustauschers.Furthermore, from DE-A 3 427 133 and DE-A 3 427 134 and EP-A 173 908 processes for removing CO₂ and / or H₂S known, in which the removal is carried out in absorption liquids containing alkanolamine. According to DE-A 3 429 979, the removal of the acidic and / or sulfur-containing gases in aqueous solutions containing bases takes place in the presence of a basic ion exchanger having built-in tertiary or quaternary nitrogen atoms.

Unter besonderen Gegebenheiten kann es das Ziel sein, ausschließlich schwefelhaltige Gase aus Gasgemischen zu entfernen. Die Aufgabe des vorliegenden Erfindung ist die Bereitstellung eines solchen Verfahrens.Under certain circumstances, the goal may be to remove only sulfur-containing gases from gas mixtures. The object of the present invention is to provide such a method.

Es wurde nunmehr ein Verfahren zur selektiven Entfernung von schwefelhaltigen Gasen gefunden, welches in überra­schend einfacher Weise durchführbar ist und darüber hinaus sehr gute Resultate bringt. Bei diesem Verfahren werden als basische Substanzen Tertiäre Amingruppen ent­haltende Trägermaterialien eingesetzt.A method has now been found for the selective removal of sulfur-containing gases, which can be carried out in a surprisingly simple manner and, moreover, brings very good results. In this process, carrier materials containing tertiary amine groups are used as basic substances.

Gegenstand der vorliegenden Erfindung ist ein Verfahren zur selektiven Entfernung schwefelhaltiger Gase aus technischen Gasen oder Abgasen durch Behandlung der Gase mit basischen Substanzen, dadurch gekennzeichnet, daß die basischen Substanzen Trägermaterialien sind, die tertiäre Aminogruppen der allgemeinen Formel

Figure imgb0001
aufweisen, wobei
m und n jeweils Werte von 1 oder 2
x und y jeweils Werte von 1 bis 10, bevorzugt 1 bis 2
annehmen können, und
R und Rʹ Wasserstoff oder Alkyl und
Rʺ Wasserstoff oder Methyl sind.The present invention relates to a process for the selective removal of sulfur-containing gases from industrial gases or exhaust gases by treating the gases with basic substances, characterized in that the basic substances are carrier materials which are tertiary amino groups of the general formula
Figure imgb0001
have, where
m and n each have values of 1 or 2
x and y each have values from 1 to 10, preferably 1 to 2
can accept, and
R and Rʹ are hydrogen or alkyl and
Rʺ are hydrogen or methyl.

Als Trägermaterialien im Sinne dieser Erfindung sind sowohl anorganische als auch organische Substanzen geeignet. Eine bevorzugte Verfahrensvariante des er­findungsgemäßen Verfahrens besteht darin, daß die Trägermaterialien Polymerisationsharze sind. Dies können Copolymere aus polymerisierbaren Vinylverbindungen sein, die entweder im Molekül selbst oder nach entsprechender Funktionalisierung die erfindungsgemäßen tertiären Ami­nogruppen aufweisen.Both inorganic and organic substances are suitable as carrier materials in the sense of this invention. A preferred process variant of the process according to the invention is that the carrier materials are polymerization resins. These can be copolymers of polymerizable vinyl compounds which have the tertiary amino groups according to the invention either in the molecule itself or after appropriate functionalization.

Mit Polyvinylverbindungen vernetzte Polymerisationsharze sind besonders geeignet. Als Monovinylverbindungen sol­len stellvertretend Styrol, Chlorstyrole, Alkylstyrole, Chlormethylstyrole, (Meth)acrylate (C₁ - C₆), (Meth)­acrylamide bzw. (Meth)acrylamide auf Basis Polyamin, Glycidylmethacrylat und Vinylglycidylether genannt sein. Als Polyvinylverbindungen kommen beispielsweise DVB, TVB, Ethylenglykoldimethacrylat, Methylenbiscarylamid, Divinylethylenharnstoff, Octadien 1,7, Hexadien 1,5 und Triallylcyanurat zum Einsatz. Die Funktionalisierung zu den beanspruchten Harzen erfolgt nach an sich bekannten Verfahren.Polymerization resins crosslinked with polyvinyl compounds are particularly suitable. Representative styrene, chlorostyrenes, alkylstyrenes, chloromethylstyrenes, (meth) acrylates (C₁ - C₆), (meth) acrylamides or (meth) acrylamides based on polyamine, glycidyl methacrylate and vinyl glycidyl ether should be mentioned as monovinyl compounds. Examples of polyvinyl compounds are DVB, TVB, ethylene glycol dimethacrylate, methylene bisaryl amide, divinylethylene urea, octadiene 1.7, hexadiene 1.5 and Triallyl cyanurate for use. The functionalization to the claimed resins takes place according to methods known per se.

Ionenaustauscher bzw. deren Vorprodukte der genannten Art sind bekannt. Sie und ihre Herstellung werden z. B. beschrieben in F. Helfferich, Ionenaustauscher, Band 1, 1959, Seiten 10 bis 106 und Ullmanns Enzyklopädie der techn. Chemie, 4. Aufl., Band 13, 1977, Seiten 292 bis 309. Zur Funktionalisierung können auch Polyamine wie z. B. Triethylentetramin oder geeignete Hydrazin-Ab­kömmlinge eingesetzt werden.Ion exchangers and their precursors of the type mentioned are known. You and their manufacture will, for. B. described in F. Helfferich, ion exchanger, Volume 1, 1959, pages 10 to 106 and Ullmann's encyclopedia of techn. Chemie, 4th edition, volume 13, 1977, pages 292 to 309. For functionalization, polyamines such as. B. triethylenetetramine or suitable hydrazine derivatives can be used.

Weitere bevorzugte Trägermaterialien stellen Kondensa­tionsharze dar, die die erfindungsgemäßen tertiären Aminogruppen aufweisen.Further preferred carrier materials are condensation resins which have the tertiary amino groups according to the invention.

Die Herstellung derartiger Harze ist bekannt. Man erhält sie beispielsweise durch Umsetzung von aliphatischen und/oder aromatischen Aminen mit Epichlorhydrin bzw. Formaldehyd. Als aliphatische Amine seien beispielsweise Polyalkylenpolyamine genannt, wie Diethylentriamin, Tri­ethylentetramin, als aromatisches Amin beispielsweise m-Phenylendiamin.The production of such resins is known. They are obtained, for example, by reacting aliphatic and / or aromatic amines with epichlorohydrin or formaldehyde. Examples of aliphatic amines are polyalkylene polyamines, such as diethylenetriamine, triethylene tetramine, and aromatic amines, for example m-phenylenediamine.

Die erfindungsgemäßen Ethanolamin- bzw. Propanolamin­gruppen können vorteilhaft durch Umsetzung der entspre­chenden Harze mit Ethylenoxid bzw. Propylenoxid erhalten werden.The ethanolamine or propanolamine groups according to the invention can advantageously be obtained by reacting the corresponding resins with ethylene oxide or propylene oxide.

Das erfindungsgemäße Verfahren eignet sich für die Ent­fernung von schwefelhaltigen Gasen. Dies sind im Rahmen dieser Erfindung insbesondere Schwefelwasserstoff, Schwefelkohlenstoff, Kohlenoxisulfid und Schwefeldioxid.The method according to the invention is suitable for the removal of sulfur-containing gases. In the context of this invention, these are in particular hydrogen sulfide, carbon disulfide, carbon oxysulfide and sulfur dioxide.

Gemäß einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist das schwefelhaltige Gas SO₂. Durch die Anwendung des erfindungsgemäßen Verfah­rens können die schwefelhaltigen Gase selektiv von an­deren Gasen getrennt werden. So ist es möglich, schwe­felhaltige Gase aus Gasen mit hohem CO₂-Gehalt zu ent­fernen.According to a particularly preferred embodiment of the process according to the invention, the sulfur-containing gas is SO₂. By using the method according to the invention, the sulfur-containing gases can be selectively separated from other gases. It is possible to remove sulfur-containing gases from gases with a high CO₂ content.

Anwendungsfälle liegen bei der Entschwefelung von Haus­brand, bei der Entfernung von SO₂ bei dem Clauß-Prozeß, bei der Abgasentschwefelung von Kraftwerken, Schwefel­säureanlagen, Raffinerien und Kalzinierprozessen.Applications are in the desulfurization of domestic fire, in the removal of SO₂ in the Clauss process, in the exhaust gas desulfurization of power plants, sulfuric acid plants, refineries and calcining processes.

Beim erfindungsgemäßen Verfahren werden die zu behan­delnden Gase bzw. Abgase mit den erfindungsgemäßen Trä­germaterialien in Kontakt gebracht. Da die zu reinigen­den Gase im allgemeinen genügend Feuchte enthalten, kön­nen die erfindungsgemäßen Trägermaterialien als solche ohne weitere Vorbehandlung mit ihrem jeweiligen Wasser­gehalt eingesetzt werden, d. h. nicht in einer wäßrigen Umgebung wie bei den bekannten Verfahren Im Falle zu trockener Gase genügt es, diese nach bekannten Verfahren zu befeuchten oder auch die Kontaktschicht selbst mit Wasser zu besprühen.In the method according to the invention, the gases or exhaust gases to be treated are brought into contact with the carrier materials according to the invention. Since the gases to be cleaned generally contain sufficient moisture, the support materials according to the invention can be used as such without further pretreatment with their respective water content, ie not in an aqueous environment as in the known processes. In the case of gases which are too dry, it is sufficient to use known processes to moisten or spray the contact layer itself with water.

Die Menge der zum Einsatz Trägermaterialien richtet sich nach der Konzentration der schwefelhaltigen Gase in den zu behandelnden technischen Gasen. Die Menge der Trägermaterialien beträgt 5 bis 500 ℓ, bevorzugt 10 bis 50 ℓ, pro Nm³/h zu behandelndes Gas. Auch höhere oder niedrigere Mengen der Trägermaterialien können im Prinzip eingesetzt werden.The amount of carrier materials used depends on the concentration of the sulfur-containing gases in the technical gases to be treated. The amount of carrier materials is 5 to 500 ℓ, preferably 10 to 50 ℓ, per Nm³ / h of gas to be treated. In principle, higher or lower amounts of the carrier materials can also be used.

Die Entfernung der schwefelhaltigen Gase wird bevorzugt bei Raumtemperatur (ca. 10 bis 30°C) vorgenommen. Bis zur vollständigen Sättigung des Harzes dauert es unter den beschriebenen Bedingungen zwei bis sieben Tage. Eine besonders bevorzugte Ausführungsform des erfindungsge­mäßen Verfahrens besteht darin, daß die Trägermateriali­en nach ihrer Sättigung regeneriert werden.The sulfur-containing gases are preferably removed at room temperature (approx. 10 to 30 ° C.). It takes two to seven days to fully saturate the resin under the conditions described. A particularly preferred embodiment of the method according to the invention consists in that the carrier materials are regenerated after their saturation.

Je nach den entsprechenden Gegebenheiten ist die Durch­führung der Regenerierung vorteilhaft nach den drei im folgenden erläuterten Verfahren durchführbar. Eine be­vorzugtes Verfahren ist dadurch gekennzeichnet, daß die Regenerierung bei Raumtemperatur durch

  • a) Behandlung der Trägermaterialien mit HCl und an­schließende Entfernung der nicht verbrauchten HCl durch Waschen mit Wasser
  • b) sowie die Aktivierung mit Natronlauge vorgenommen wird, wobei die überschüssige Natronlauge anschlie­ßend mit Wasser entfernt wird.
Depending on the relevant circumstances, the regeneration can advantageously be carried out using the three methods explained below. A preferred method is characterized in that the regeneration is carried out at room temperature
  • a) Treatment of the carrier materials with HCl and subsequent removal of the unused HCl by washing with water
  • b) and the activation is carried out with sodium hydroxide solution, the excess sodium hydroxide solution then being removed with water.

Die dabei eingesetzte HCl hat bevorzugt eine Konzentra­tion von 3 bis 10 %, aber auch beim Einsatz von 36 %iger HCl treten im allgemeinen keine Schädigungen an den Trä­germaterialien auf. Die Reaktivierung wird mit Natron­lauge einer Konzentration von 3 bis 50 %, bevorzugt 5 bis 10 %, vorgenommen.The HCl used here preferably has a concentration of 3 to 10%, but even when 36% HCl is used, there is generally no damage to the carrier materials. The reactivation is carried out with sodium hydroxide solution at a concentration of 3 to 50%, preferably 5 to 10%.

In den beiden alternativen, im folgenden beschriebenen Verfahren geschieht die Regenerierung bei erhöhter Tem­peratur mit Natronlauge oder Wasserdampf. Es werden hierbei also keine zusätzlichen Chloride erzeugt. Die Regenerierung mit Natronlauge wird dabei bei Tempera­turen zwischen 120 und 200°C, bevorzugt 130 bis 160°C, vorgenommen. Die Natronlauge weist bevorzugt eine Kon­zentration im Bereich von 5 bis 30 % auf.In the two alternative processes described below, regeneration is carried out at elevated temperature using sodium hydroxide solution or water vapor. No additional chlorides are generated here. The regeneration with sodium hydroxide solution is carried out at temperatures between 120 and 200 ° C., preferably 130 to 160 ° C. The sodium hydroxide solution preferably has a concentration in the range from 5 to 30%.

Wird die Regenerierung mit Wasserdampf vorgenommen, sind Temperaturen zwischen 180 und 235°C bevorzugt. Der Druck des Wasserdampfes liegt zwischen 9 und 30 bar.If the regeneration is carried out with steam, temperatures between 180 and 235 ° C are preferred. The pressure of the water vapor is between 9 and 30 bar.

In Fig. 1 ist eine Möglichkeit zur Durchführung des er­findungsgemäßen Verfahrens dargestellt. In dieser Zeich­nung bedeuten:

  • (1) NaOH
  • (2) H₂O
  • (3) Regeneriermittelvorlage
  • (4) Regeneriermittelstrom
  • (5) zu reinigendes Gas
  • (6) gereinigtes Gas
  • (7) Absorptionstürme
  • (8) verbrauchtes Regeneriermittel
1 shows one possibility for carrying out the method according to the invention. In this drawing:
  • (1) NaOH
  • (2) H₂O
  • (3) Regenerant template
  • (4) regenerant flow
  • (5) gas to be cleaned
  • (6) purified gas
  • (7) absorption towers
  • (8) used regenerant

Das zu reinigende Gas (5) wird durch jeweils einen von zwei mit Trägermaterialien gefüllten Absorptionstürmen (7) geleitet und verläßt diesen als gereinigtes Gas (6). Natronlauge (1) und Wasser (2) werden in der Regenerier­mittelvorlage (3) gemischt. Der Regeneriermittelstrom (4) wird jeweils durch den Absorptionsturm (7) geleitet, in dem die Trägermaterialien bereits gesättigt sind. Das verbrauchte Regeneriermittel (8) wird dem System ent­nommen und kann dann aufbereitet werden.The gas (5) to be cleaned is passed through one of two absorption towers (7) filled with carrier materials and leaves it as cleaned gas (6). Sodium hydroxide solution (1) and water (2) are mixed in the replenisher (3). The regenerant stream (4) is passed through the absorption tower (7) in which the carrier materials are already saturated. The used regeneration agent (8) is removed from the system and can then be processed.

Das über die Leitung (6) dem System entnommene gereinig­te Gas weist einen im Vergleich zum ungereinigten Gas stark verminderten Gehalt an schwefelhaltigen Verunrei­nigungen auf. So ist es beispielsweise möglich, den Schwefelgehalt von CO₂/SO₂-Gasgemischen mit einer SO₂-­Konzentration zwischen 2.500 und 13.500 ppm fast quanti­tativ (> 98 %) zu senken.The purified gas removed from the system via line (6) has a greatly reduced content of sulfur-containing impurities compared to the unpurified gas. For example, it is possible to reduce the sulfur content of CO₂ / SO₂ gas mixtures with an SO₂ concentration between 2,500 and 13,500 ppm almost quantitatively (> 98%).

Die Durchführung des erfindungsgemäßen Verfahrens ist selbstverständlich nicht auf die zwingende Verwendung der lediglich beispielhaften Vorrichtung gemäß Zeichnung angewiesen.The implementation of the method according to the invention is of course not dependent on the mandatory use of the merely exemplary device according to the drawing.

Die nachfolgenden Beispiele dienen der weiteren Erläu­terung des erfindungsgemäßen Verfahrens, ohne dieses zu beschränken.The following examples serve to further explain the process according to the invention without restricting it.

Beispiel 1example 1 Herstellung des IonenaustauschersManufacture of the ion exchanger

Ein Styrol/Divinylbenzol-Copolymerharz, welches mit Aminobenzylgruppen ausgerüstet ist, (Typ MP 64 ZII) wurde mit 2,2 Mol Ethylenoxid umgesetzt.

Figure imgb0002
A styrene / divinylbenzene copolymer resin which is equipped with aminobenzyl groups (type MP 64 ZII) was reacted with 2.2 mol of ethylene oxide.
Figure imgb0002

Die Umsetzung erfolgte bei 80°C im wäßrigen Medium, ohne Katalysator und unter Einsatz eines 10%igen Ethylenoxid-Überschusses. Sie verlief - laut IR-­Spektren - quantitativ.The reaction was carried out at 80 ° C. in an aqueous medium, without a catalyst and using a 10% excess of ethylene oxide. According to IR spectra, it was quantitative.

Das fertige Harz zeichnete sich, im Gegensatz zum Vor­produkt (Amingeruch) durch absolute Geruchlosigkeit aus. Während das Vorprodukt bei Temperaturen von ca. 120°C deutlich dunkler wurde, bewahrte das Endprodukt seine ursprünglich helle Farbe. Beide Eigenschaften sind das Resultat der guten chemischen Beständigkeit der funktio­nellen N,N-bis-(β-hydroxyethyl)-benzylamino-Gruppe.In contrast to the preliminary product (amine smell), the finished resin was characterized by absolute odorlessness. While the preliminary product became much darker at temperatures of approx. 120 ° C, the final product retained its originally light color. Both properties are the result of the good chemical resistance of the functional N, N-bis (β-hydroxyethyl) benzylamino group.

Beispiel 2Example 2 Adsorption von SO₂ aus CO₂Adsorption of SO₂ from CO₂



Es wurden 100 ml des nach Beispiel 1 hergestellten feuchten Harzes in ein als Reaktor ausgelegtes Edel­stahlrohr gefüllt. Die Gasmischung CO₂/SO₂ wurde in einer 60 l Druckflasche hergestellt, wobei eine Kon­zentration von 1000 -1500 ppm eingestellt wurde. Die analytische Kontrolle erfolgte durch iodometrische Titration mittels Mettler-Memotitrator. Die Beauf­schlagung des Harzes aus der Druckflasche mit 40 l/Stunde erfolgte über Rotameter.100 ml of the moist resin prepared according to Example 1 were placed in a stainless steel tube designed as a reactor. The gas mixture CO₂ / SO₂ was produced in a 60 l pressure bottle, a concentration of 1000 -1500 ppm being set. The analytical control was carried out by iodometric titration using a Mettler memotitrator. The resin from the pressure bottle was pressurized at 40 l / hour via rotameter.

Zwecks Kontrolle der Wirksamkeit des Harzes wurde das aus dem Reaktor austretende Gas durch eine Jod/Kalium­jodid-Lösung geleitet, die in gewissen Zeitabständen durch Titration auf ihren Gehalt überprüft wurde.In order to check the effectiveness of the resin, the gas emerging from the reactor was passed through an iodine / potassium iodide solution, the content of which was checked at regular intervals by titration.

Das Resultat des Versuches ist in der Figur 2 graphisch dargestellt. Dabei wurde die relative SO₂-Adsorption des Harzes auf ein Volumen von 1000 ml bezogen und gegen die in der beaufschlagten Gasmischung enthaltenen SO₂-Menge (Mol) aufgetragen.The result of the test is shown graphically in FIG. 2. The relative SO₂ adsorption of the resin was based on a volume of 1000 ml and applied against the amount of SO₂ (mol) contained in the applied gas mixture.

Die Kurve zeigt, daß zunächst praktisch eine quanti­tative SO₂-Adsorption erfolgt, und bei 1,85 Mol der Durchschlag des SO₂ beginnt. Der rasche Abfall von nahe­zu 100% bei 1,85 Mol auf Null bei 2,4 Mol verdeutlicht den hohen Wirkungsgrad des Harzes.The curve shows that practically quantitative SO₂ adsorption takes place, and the breakthrough of SO₂ begins at 1.85 mol. The rapid drop from almost 100% at 1.85 mol to zero at 2.4 mol illustrates the high efficiency of the resin.

Damit absorbierte das Harz bis zum Durchburch, 118,4 g SO₂, entsprechend ca. 17% seines Eigengewichtes (1 Liter = 0,7 kg).The resin absorbed until breakthrough, 118.4 g SO₂, corresponding to approx. 17% of its own weight (1 liter = 0.7 kg).

Das mit SO₂ gesättigte Harz läßt sich hervorragend mit 5 Bettvolumen 4 %iger Natronlauge bei Raumtemperatur regenerieren.The resin saturated with SO₂ can be regenerated excellently with 5 bed volumes of 4% sodium hydroxide solution at room temperature.

Das auf diesem Wege regenerierte Harz zeigte bei erneuter Beladung die gleichen Adsorptionseigenschaften wie das frisch hergestellte Harz.The resin regenerated in this way showed the same adsorption properties as the freshly produced resin when loaded again.

Beispiel 3Example 3

In der in Beispiel 2 beschriebenen Versuchsanordnung wurden durch 500 ml des nach Beispiel 1 hergestellten harzes die in Tabelle 1 aufgeführten Gasmischungen geleitet.

Figure imgb0003
In the test arrangement described in Example 2, the gas mixtures listed in Table 1 were passed through 500 ml of the resin prepared according to Example 1.
Figure imgb0003

Innerhalb der letzten 2 Stunden der Beaufschlagung ging die Adsorption von über 98 % des angebotenen SO₂ auf 0 % zurück. Damit wurden bei dieser Versuchsdurchführung ca. 1,50 Mol SO₂ pro Liter Harz adsorbiert. Die Regener­ierung erfolgt mit 5 Bettvolumen 4 %iger NaOH.Within the last 2 hours of exposure, the adsorption decreased from over 98% of the SO₂ offered to 0%. In this way, approximately 1.50 moles of SO₂ per liter of resin were adsorbed in this test procedure. Regeneration is carried out with 5 bed volumes of 4% NaOH.

Claims (10)

1. Verfahren zur selektiven Entfernung schwefelhal­tiger Gase aus technischen Gasen oder Abgasen durch Behandlung der Gase mit basischen Substanzen, da­durch gekennzeichnet, daß die basischen Substanzen Trägermaterialien sind, die tertiäre Aminogruppen der allgemeinen Formel
Figure imgb0004
aufweisen, wobei
m und n jeweils Werte von 1 oder 2
x und y jeweils Werte von 0 bis 10, bevorzugt 0 bis 2
annehmen können, und
R und Rʹ Wasserstoff oder Alkyl und
Rʺ Wasserstoff oder Methyl sind.
1. A process for the selective removal of sulfur-containing gases from industrial gases or exhaust gases by treating the gases with basic substances, characterized in that the basic substances are carrier materials, the tertiary amino groups of the general formula
Figure imgb0004
have, where
m and n each have values of 1 or 2
x and y each have values from 0 to 10, preferably 0 to 2
can accept, and
R and Rʹ are hydrogen or alkyl and
Rʺ are hydrogen or methyl.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die Trägerharze Polymerisationsharze sind.2. The method according to claim 1, characterized in that the carrier resins are polymerization resins. 3. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die Trägerharze Kondensationsharze sind.3. The method according to claim 1, characterized in that the carrier resins are condensation resins. 4. Verfahren gemäß einem der Ansprüche 1 bis 3, da­durch gekennzeichnet, daß das schwefelhaltige Gas SO₂ ist.4. The method according to any one of claims 1 to 3, characterized in that the sulfur-containing gas is SO₂. 5. Verfahren gemäß einem oder mehrerer der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Menge der Trägermaterialien 5 bis 500 ℓ, bevorzugt 10 bis 50 l pro Nm³/h zu behandelndes Gas beträgt.5. The method according to one or more of claims 1 to 4, characterized in that the amount of carrier materials is 5 to 500 ℓ, preferably 10 to 50 l per Nm³ / h of gas to be treated. 6. Verfahren gemäß einem oder mehrerer der Ansprüche 1 bis , dadurch gekennzeichnet, daß die Entfernung bei Raumtemperatur vorgenommen wird.6. The method according to one or more of claims 1 to, characterized in that the removal is carried out at room temperature. 7. Verfahren gemäß einem oder mehrerer der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Trägerma­terialien nach ihrer Sättigung regeneriert werden.7. The method according to one or more of claims 1 to 6, characterized in that the carrier materials are regenerated after their saturation. 8. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, daß die Regenerierung bei Raumtemperatur durch a) Behandlung der Trägermaterialien mit HCl und anschließende Entfernung der nicht verbrauch­ten HCl durch Waschen mit Wasser b) sowie die Aktivierung mit Natronlauge vorge­nommen wird, wobei die überschüssige Natron­lauge anschließend mit Wasser entfernt wird. 8. The method according to claim 7, characterized in that the regeneration at room temperature by a) Treatment of the carrier materials with HCl and subsequent removal of the unused HCl by washing with water b) and the activation is carried out with sodium hydroxide solution, the excess sodium hydroxide solution then being removed with water. 9. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, daß die Regenerierung mit Natronlauge bei Tempera­turen zwischen 120 und 200°C, bevorzugt 130 - 160°C, vorgenommen wird.9. The method according to claim 7, characterized in that the regeneration with sodium hydroxide solution at temperatures between 120 and 200 ° C, preferably 130-160 ° C, is carried out. 10. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, daß die Regenerierung mit Wasserdampf bei Tempera­turen zwischen 180 und 240°C vorgenommen wird.10. The method according to claim 7, characterized in that the regeneration is carried out with steam at temperatures between 180 and 240 ° C.
EP88102313A 1987-03-01 1988-02-18 Process for removal of sulfur containing gases Withdrawn EP0283712A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873706619 DE3706619A1 (en) 1987-03-01 1987-03-01 METHOD FOR REMOVING SULFURIZING GASES
DE3706619 1987-03-01

Publications (1)

Publication Number Publication Date
EP0283712A1 true EP0283712A1 (en) 1988-09-28

Family

ID=6322071

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88102313A Withdrawn EP0283712A1 (en) 1987-03-01 1988-02-18 Process for removal of sulfur containing gases

Country Status (5)

Country Link
US (1) US4853191A (en)
EP (1) EP0283712A1 (en)
JP (1) JPH01288319A (en)
BR (1) BR8800868A (en)
DE (1) DE3706619A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248321A (en) * 1992-08-06 1993-09-28 The Research Foundation Of State University Of New York At Buffalo Process of removing sulfur oxides from gaseous mixtures
US6576044B1 (en) 1999-02-25 2003-06-10 The Boc Group, Inc. Process for the purification of nitric oxide
US7302043B2 (en) * 2004-07-27 2007-11-27 Gatan, Inc. Rotating shutter for laser-produced plasma debris mitigation
JP6615813B2 (en) 2017-03-23 2019-12-04 株式会社東芝 Carbon dioxide absorbent and carbon dioxide separation and recovery system
CN109200734B (en) * 2017-06-30 2021-06-04 中国石油化工股份有限公司 Method for treating oxidized tail gas in hydrogen peroxide production process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2962344A (en) * 1959-01-13 1960-11-29 Kurmeier Hans Heinrich Deodorizing of gases
DE2453549A1 (en) * 1973-12-31 1975-07-31 Heinrich Dr Phil Riemer Removal of odorants from gases - by passing through mixts. of porous non-ionic resin and basic ion-exchange resin
DE2533103A1 (en) * 1974-07-24 1976-02-05 Union Carbide Corp METHOD OF REMOVING SO DEEP 2 FROM GAS MIXTURES

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4196175A (en) * 1977-01-03 1980-04-01 Chevron Research Company Process for removing a bisulfite salt from an aqueous solution by chemisorption
US4283373A (en) * 1980-03-17 1981-08-11 The Goodyear Tire & Rubber Company Method for removal of sulfur compounds from a gas
DE3236600A1 (en) * 1982-10-02 1984-04-05 Basf Ag, 6700 Ludwigshafen METHOD FOR REMOVING CO (DOWN ARROW) 2 (DOWN ARROW) AND, IF NECESSARY, H (DOWN ARROW) 2 (DOWN ARROW) S FROM NATURAL GAS
US4737166A (en) * 1986-12-30 1988-04-12 Bend Research, Inc. Acid gas scrubbing by composite solvent-swollen membranes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2962344A (en) * 1959-01-13 1960-11-29 Kurmeier Hans Heinrich Deodorizing of gases
DE2453549A1 (en) * 1973-12-31 1975-07-31 Heinrich Dr Phil Riemer Removal of odorants from gases - by passing through mixts. of porous non-ionic resin and basic ion-exchange resin
DE2533103A1 (en) * 1974-07-24 1976-02-05 Union Carbide Corp METHOD OF REMOVING SO DEEP 2 FROM GAS MIXTURES

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INDUSTRIAL ENGINEERING CHEMISTRY PROD. RES. DEVELOP., Band 12, Nr. 4, 1973, Seiten 288-293; A.S. VAIDYANATHAN et al.: "Sorption of sulfur dioxide, hydrogen sulfide, and nitrogen dioxide by ion-exchange resins" *

Also Published As

Publication number Publication date
DE3706619A1 (en) 1988-09-22
US4853191A (en) 1989-08-01
BR8800868A (en) 1988-10-11
JPH01288319A (en) 1989-11-20

Similar Documents

Publication Publication Date Title
DE1544130C2 (en) Process for purifying gases contaminated by mercury
DE602004013333T2 (en) LOW ENERGY WASHING PROCESS FOR SO2
DE2819933C2 (en)
DE4116890A1 (en) METHOD FOR SEPARATING MERCURY FROM A WASTE FLOW AND METHOD FOR PRODUCING AN ADSORPTION AGENT THEREFOR
CH645551A5 (en) METHOD FOR PRODUCING AN ADSORPTION AGENT HIGH SELECTIVITY FOR HEAVY METALS.
DE2812838A1 (en) PROCESS FOR SELECTIVE REMOVAL OF SULFUR DIOXIDE FROM GAS MIXTURES
DE1719562A1 (en) Process for removing hydrogen sulfide and / or ammonia from gases
DE4201921C2 (en) Process for the comprehensive removal of acid gases from gas mixtures
DE2441199A1 (en) CATALYSTS FOR THE TREATMENT OF EXHAUST GASES CONTAINING SULFUR COMPOUNDS
DE2451958C3 (en) Process for separating hydrogen sulfide and / or carbon dioxide and moisture from a hydrocarbon stream
DE69931418T2 (en) Process for removing carbon dioxide from gases
DE2708005A1 (en) PROCEDURE FOR THE REMOVAL OF METHYL IODIDE HIGH 131 GAS
DE2423828B2 (en) Process for cleaning industrial gases
EP0283712A1 (en) Process for removal of sulfur containing gases
DE2330604C2 (en) Process for removing heavy metals from solutions or gaseous mixtures
DE2041359C3 (en) Process for removing hydrogen sulfide and sulfides from gases
DE60011665T2 (en) REDUCTION OF N2O EMISSIONS
DE1253686B (en) Process for removing nitrogen oxides from industrial exhaust gases
DE3905628C2 (en) Adsorbents for acid gases
EP0197289A2 (en) Process for the purification of Claus plant tail gases and recovery of sulfur compounds contained therein
EP0258747A2 (en) Method of removing acid and/or sulfurous gases
WO2012119715A1 (en) Method for regenerating co2 loaded amine-containing scrubbing solutions in the acid gas scrubbing process
DE2800491A1 (en) PROCESS FOR THE SELECTIVE DESULFURIZATION OF A GAS MIXTURE
DE3915416A1 (en) Flue gas purificn. - using carbon catalyst with ammonium sulphate coating
DE2626368A1 (en) PROCESS FOR REMOVING ACID GASES FROM A GAS OR LIQUID MIXTURE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL

17Q First examination report despatched

Effective date: 19900919

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19910326

R18W Application withdrawn (corrected)

Effective date: 19910326