EP0281572B1 - Multi-cylinder diesel internal combustion engine with low compression ratio in the cylinders - Google Patents

Multi-cylinder diesel internal combustion engine with low compression ratio in the cylinders Download PDF

Info

Publication number
EP0281572B1
EP0281572B1 EP87904236A EP87904236A EP0281572B1 EP 0281572 B1 EP0281572 B1 EP 0281572B1 EP 87904236 A EP87904236 A EP 87904236A EP 87904236 A EP87904236 A EP 87904236A EP 0281572 B1 EP0281572 B1 EP 0281572B1
Authority
EP
European Patent Office
Prior art keywords
cylinder
cylinders
combustion engine
diesel internal
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP87904236A
Other languages
German (de)
French (fr)
Other versions
EP0281572A1 (en
Inventor
Herbert Deutschmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
MTU Motoren und Turbinen Union Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH, MTU Motoren und Turbinen Union Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Priority to AT87904236T priority Critical patent/ATE45783T1/en
Publication of EP0281572A1 publication Critical patent/EP0281572A1/en
Application granted granted Critical
Publication of EP0281572B1 publication Critical patent/EP0281572B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/02Engines with reciprocating-piston pumps; Engines with crankcase pumps
    • F02B33/06Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B65/00Adaptations of engines for special uses not provided for in groups F02B61/00 or F02B63/00; Combinations of engines with other devices, e.g. with non-driven apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/02Cutting-out
    • F02D17/023Cutting-out the inactive cylinders acting as compressor other than for pumping air into the exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1848Number of cylinders twelve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Definitions

  • the invention relates to a multi-cylinder diesel internal combustion engine with a low compression ratio in the cylinders according to the preamble of claim 1.
  • a generic diesel internal combustion engine is known from DE-PS-2 648 411.
  • the valve can also be an arbitrarily actuated valve as a block.
  • the cylinders operating as compressors remain cold in relation to the temperature of an engine cylinder. This effect arises from the delivery of the air compressed in the compressor cylinder, which is heated in the process, to an engine cylinder and the subsequent intake of air which has a lower temperature than the discharged compressed air. It has been shown that the cooling of the compressor cylinders resulting from the loss of air mass is not compensated for by the supply of heat from the cooling system.
  • the arrangement causes exhaust gas recirculation from the engine cylinders to the compressor cylinders.
  • a temperature increase in the compressor cylinders is achieved when the diesel internal combustion engine is split.
  • the same lines are used that are already available for pushing the compressed air out of the compression cylinders on the diesel engine.
  • the advantages achieved by the invention are, in particular, that when the diesel internal combustion engine is in divided operation, air with a higher temperature is available from the compressor cylinders for recharging the engine cylinders than without exhaust gas recirculation, that when switching to full-engine operation, the diesel internal combustion engine immediately loads up to Permits full load limit and that the diesel internal combustion engines already designed for the split mode of operation can be easily equipped with the arrangement according to the invention.
  • FIG. 2 A diesel internal combustion engine with twelve cylinders 1 to 12 arranged in a V-shape in two rows is shown schematically in FIG. 2.
  • the firing order is 1-8-5-10-3-7-6 -11 -2-9 - 4 - 12.
  • cylinders 1 to 6 of the first row are engine cylinders
  • cylinders 7 to 12 the second row used as a compressor cylinder in start and partial load operation.
  • the cylinders 8 and 5, 10 and 3, 7 and 6, 11 and 2, 9 and 4 and 12 and 1 are each connected by a line.
  • Fig. 2 only the line between cylinder 8 and cylinder 5 is shown with reference numeral 13.
  • the two cylinders belonging together can be arranged in the same row.
  • FIG. 1 shows a compressor cylinder 14 with the cylinder 8 and a piston 17, an engine cylinder 15 with the cylinder 5 and a piston 16 and the associated line 13 with the control elements.
  • the position of the two crank pins 18, 19 of a crankshaft indicated by 20 is the same for both pistons 16, 17. Due to the V-angle 21 of the cylinder arrangement shown at 90 degrees, the piston 17 of the compressor cylinder 14 also leads 90 degrees ahead of the crankshaft angle relative to the piston 16 of the engine cylinder 15. The piston 17 of the compressor cylinder is shortly before its top dead center and has that of the amount of air sucked in before it is compressed. The piston 16 of the engine cylinder is located shortly after its bottom dead center and thus at the beginning of its compression stroke.
  • Each of the lines 13, which is arranged between a pair of cylinders, is controlled by two valves.
  • the control system is supplied with compressed air from a compressed air reservoir 30, which is connected via a line 31 and 32 to the reversing slide 26 and to the compressed air distributor 29, respectively.
  • the lines 31, 32 are controlled by solenoid valves 33, 34.
  • the solenoid valves 33, 34 in lines 31 and 32 are open.
  • the compressed air from line 31 reaches a reversing slide 26 and shifts its slide 35 into the open position (as drawn). Compressed air thus passes from line 31 via line 24 to the dispenser valve 22, which is thereby shifted into the position shown.
  • the line 13 is thus open. Since the solenoid valve 34 in line 32 is also open at the same time, compressed air also reaches the compressed air distributor 29, the distributor rotor 37 of which rotates at half the crankshaft speed. The position of the distributor rotor 37 is assigned to the position of the associated piston 16 of cylinder 5.
  • the air sucked in via the regular inlet valve mixes with the hot exhaust gas arriving via line 13 in cylinder 8. This results in a heating of the compressor cylinder 14 and its filling quantity.
  • the duration and time of use of this exhaust gas recirculation is determined by the position and length of the control groove 41 on the compressed air distributor 29. As soon as the distributor rotor 37 has reached the end of the control groove 41, the compressed air to the receiver valve 23 is blocked and the lines 27 are vented. The receiver valve 23 returns to the position shown in FIG. 1, in which the valve 38 is effective.
  • the dispenser valve 22 is continuously open, while the receiver valve 23 oscillates back and forth between its two positions in the rhythm of the extension strokes of the engine cylinder 15.
  • the solenoid valve 33 is closed. Shutting off the compressed air supply causes the dispenser valve 22 to switch to its closed position and releases the fuel supply to the cylinders 7 to 12.
  • the solenoid valve 34 remains open. As a result, the lines 25, 27, 28 of the compressed air distributor 29 are periodically supplied with compressed air as described above.
  • Compressed air also passes via line 28 to the reversing slide 26 below the differential piston 36. Since the space under slide 35 is now depressurized after solenoid valve 33 has been closed, the piston area of differential piston 36 is sufficient to slide the slide 35 into the position shown in FIG. 1 move.
  • the compressed air in line 28 now opens the check valve 42, closes the check valve 43 and reaches the dispenser valve 22 via slide 35. With the pulses coming from the compressed air distributor 29, the dispenser valve 22 is now in its open position for approximately the duration of the extension stroke of cylinder 5 moved so that exhaust gas from the cylinder 5 can flow via line 13 into the cylinder 8. This exhaust gas recirculation is ended when the compressed air supply from the compressed air reservoir 30 to the compressed air distributor 29 is cut off by switching off the solenoid valve 34.
  • a line 45 leading to the compressed air reservoir 30 is connected to at least one of the lines 13 via a non-return valve 46 and serves to refill the compressed air reservoir.
  • a filter 47 is arranged in line 45.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

During starting and, possibly during partial loading, the diesel internal combustion engine operates in a so-called partial mode, meaning that several cylinders (7 to 12) act in compression without a fuel feed and feed compressed air to the drive cylinders (1 to 6). For example, the compression cylinder (8) is connected to the drive cylinder (5) by a pipe (13) independent of the usual admission and exhaust pipes, which comprises, at one of its ends close to the compression cylinder (8), a distribution valve (2) which can open in the partial mode, and at its other extremity near the driving cylinder (5), a receiving valve (23). Each of the receiving valves (23) is combined with a device enabling arbitrary opening of the respective pipe (13) in the direction of the compression cylinder (14), in other words these devices control the opening of the pipes (13) during the thrust travel of the corresponding drive cylinder (16). This enables recycling into the compression cylinders (7 to 12) of the exhaust gases from the drive cylinders (1 to 6), as well as a temperature rise in the compression cylinders in the partial mode of the diesel internal combustion engine.

Description

Die Erfindung bezieht sich auf eine mehrzylindrige Dieselbrennkraftmaschine mit niedrigem Verdichtungsverhältnis in den Zylindern gemäß dem Oberbegriff von Patentanspruch 1.The invention relates to a multi-cylinder diesel internal combustion engine with a low compression ratio in the cylinders according to the preamble of claim 1.

Mit einer derartigen Anordnung wird eine verbesserte Versorgung der als Motor arbeitenden Zylinder mit vorverdichteter Verbrennungsluft bewirkt, so daß im geteilten Betrieb der Dieselbrennkraftmaschine in den als Motor arbeitenden Zylindern trotz eines niedrigen Verdichtungsverhältnisses die erforderliche Verdichtungsendtemperatur zum Zünden des eingespritzten Brennstoffes erreicht wird.With such an arrangement, an improved supply of the cylinders working as the engine with precompressed combustion air is brought about, so that in split operation of the diesel internal combustion engine in the cylinders working as the engine, the compression end temperature required to ignite the injected fuel is achieved in spite of a low compression ratio.

Aus der DE-PS-2 648 411 ist eine gattungsbildende Dieselbrennkraftmaschine bekannnt. Bei dieser kann anstelle eines Rückschlagventils als Sper der Ventil auch ein willkürlich betätiges Ventil vorgesehen sein. Bei geteiltem betrieb der Dieselbrennkraftmaschine bleiben die als Verdichter arbeitenden Zylinder im Verhältnis zur Temperatur eines Motorzylinders kalt. Dieser Effekt entsteht durch die Abgabe der im Verdichterzylinder verdichteten und dabei erwärmten Luft an einen Motorzylinder und dem nachfolgenden Ansaugen von Luft, die eine niedrigere Temperatur als die abgegebene verdichtete Luft besitzt. Dabei hat sich gezeigt, daß die aus dem Luftmassenverlust resultierende Abkühlung der Verdichterzylinder nicht durch die Wärmezufuhr aus dem Kühlsystem ausgeglichen wird.A generic diesel internal combustion engine is known from DE-PS-2 648 411. In this case, instead of a check valve, the valve can also be an arbitrarily actuated valve as a block. When the diesel internal combustion engine is split, the cylinders operating as compressors remain cold in relation to the temperature of an engine cylinder. This effect arises from the delivery of the air compressed in the compressor cylinder, which is heated in the process, to an engine cylinder and the subsequent intake of air which has a lower temperature than the discharged compressed air. It has been shown that the cooling of the compressor cylinders resulting from the loss of air mass is not compensated for by the supply of heat from the cooling system.

Gemäß DE-A-2 838 682 wird in abgeschaltete Zylinder ein Gemisch aus Abgas Frischluft eingeführt. Dies verhindert Auskülen der Zylinder.According to DE-A-2 838 682, a mixture of exhaust gas fresh air is introduced into switched-off cylinders. This prevents the cylinders from cooling down.

Beim Übergang von geteiltem auf Vollmotor- Betrieb ergeben sich daher bei den Verdichterzylindern Zündprobleme, da die Verdichtungsendtemperatur erst nach einer Warmlaufphase der betroffenen Zylinder erreicht wird. Eine rasche Lastannahme der Dieselbrennkraftmaschine wird dadurch verhindert. Es ist deshalb Aufgabe der Erfindung, bei einer gattungsgemäßen Dieselbrennkraftmaschine die Abkühlung der Zylinderinnenräume bei den als Verdichter betriebenen Zylindern zu vermeiden.When switching from split to full-engine operation, there are ignition problems with the compression cylinders, since the compression end temperature is only reached after the affected cylinders have warmed up. This prevents the diesel engine from being loaded quickly. It is therefore an object of the invention to avoid cooling of the cylinder interior in the case of a generic diesel internal combustion engine in the cylinders operated as compressors.

Diese Aufgabe wird erfindungsgemäß mit den kennzeichnenden Merkmalen von Anspruch 1 gelöst. Die Anordnung bewirkt eine Abgasrückführung aus den Motorzylindern in die Verdichterzylinder. Dadurch wird bei geteiltem Betrieb der Dieselbrennkraftmaschine eine Temperaturanhebung in den Verdichterzylindern erreicht. Für die Abgasrückführung werden die gleichen Leitungen benutzt, die schon für das Überschieben der verdichteten Luft aus den Verdichterzylindern an der Dieselbrennkraftmaschine vorhanden sind.This object is achieved with the characterizing features of claim 1. The arrangement causes exhaust gas recirculation from the engine cylinders to the compressor cylinders. As a result, a temperature increase in the compressor cylinders is achieved when the diesel internal combustion engine is split. For the exhaust gas recirculation, the same lines are used that are already available for pushing the compressed air out of the compression cylinders on the diesel engine.

Die weitere Ausgestaltung der Erfindung ergibt sich mit den Merkmalen der Ansprüche 2 bis 4.The further embodiment of the invention results from the features of claims 2 to 4.

Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß bei geteiltem Betrieb der Dieselbrennkraftmaschine aus den Verdichterzylindern für das Nachladen der Motorzylinder Luft mit höherer Temperatur zur Verfügung steht als ohne Abgasrückführung, daß bei Übergang auf Vollmotor-Betrieb die Dieselbrennkraftmaschine eine unverzüglich einsetzende Lastaufschaltung bis zur Vollastgrenze zuläßt und daß sich die bereits für die geteilte Betriebsweise ausgebildeten Dieselbrennkraftmaschinen problemlos mit der erfindungsgemäßen Anordnung ausrüsten lassen.The advantages achieved by the invention are, in particular, that when the diesel internal combustion engine is in divided operation, air with a higher temperature is available from the compressor cylinders for recharging the engine cylinders than without exhaust gas recirculation, that when switching to full-engine operation, the diesel internal combustion engine immediately loads up to Permits full load limit and that the diesel internal combustion engines already designed for the split mode of operation can be easily equipped with the arrangement according to the invention.

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird nachstehend näher beschrieben. Es zeigt:

  • Fig. 1 schematische Anordnung zweier Zylinder einer Dieselbrennkraftmaschine mit Nachladeeinrichtung;
  • Fig. 2 schematische Anordnung der Zylinder von Fig. 1 in den Zylinderreihen der Dieselbrennkraftmaschine.
An embodiment of the invention is shown in the drawing and will be described in more detail below. It shows:
  • Figure 1 shows a schematic arrangement of two cylinders of a diesel engine with reloading device.
  • Fig. 2 shows a schematic arrangement of the cylinders of Fig. 1 in the cylinder rows of the diesel engine.

Eine Dieselbrennkraftmaschine mit V-förmig in zwei Reihen angeordneten zwölf Zylindern 1 bis 12 ist schematisch in Fig. 2 dargestellt. Die Zündfolge betrage 1-8-5-10-3-7-6 -11 -2-9 - 4 - 12. Im Beispiel sind bei sogenanntem geteilten Betrieb die Zylinder 1 bis 6 der ersten Reihe als Motorzylinder, die Zylinder 7 bis 12 der zweiten Reihe als Verdichterzylinder im Start-und Teillastbetrieb eingesetzt. Die Zylinder 8 und 5, 10 und 3, 7 und 6, 11 und 2, 9 und 4 und 12 und 1 sind jeweils durch eine Leitung verbunden. In Fig. 2 ist nur die Leitung zwischen Zylinder 8 und Zylinder 5 mit Bezugszeichen 13 dargestellt. Natürlich ist es auch möglich, nur einen Teil der vorhandenen Zylinder in Motor und Verdichterzylinder aufzuteilen. Ebenso können bei entsprechender Zündfolge die beiden zusammengehörenden Zylinder in derselben Reihe angeordnet sein.A diesel internal combustion engine with twelve cylinders 1 to 12 arranged in a V-shape in two rows is shown schematically in FIG. 2. The firing order is 1-8-5-10-3-7-6 -11 -2-9 - 4 - 12. In the example in so-called split operation, cylinders 1 to 6 of the first row are engine cylinders, cylinders 7 to 12 the second row used as a compressor cylinder in start and partial load operation. The cylinders 8 and 5, 10 and 3, 7 and 6, 11 and 2, 9 and 4 and 12 and 1 are each connected by a line. In Fig. 2 only the line between cylinder 8 and cylinder 5 is shown with reference numeral 13. Of course it is also possible to divide only a part of the existing cylinders into the engine and the compressor cylinder. Likewise, with an appropriate firing order, the two cylinders belonging together can be arranged in the same row.

In Fig. 1 sind ein Verdichterzylinder 14 mit dem Zylinder 8 und einem Kolben 17, ein Motorzylinder 15 mit dem Zylinder 5 und einem Kolben 16 sowie die zugehörige Leitung 13 mit den Steuerungselementen dargestellt.1 shows a compressor cylinder 14 with the cylinder 8 and a piston 17, an engine cylinder 15 with the cylinder 5 and a piston 16 and the associated line 13 with the control elements.

Die Lage der zwei Kurbeizapfen 18, 19 einer mit 20 angedeuteten Kurbelwelle stimmt für beide Kolben 16, 17 überein. Durch den mit 90 Grad dargestellten V-Winkel 21 der Zylinderanordnung ergibt sich ein Vorauseilen des Kolbens 17 des Verdichterzylinders 14 von ebenfalls 90 Grad Kurbelwellenwinkel gegenüber dem Kolben 16 des Motorzylinders 15. Der Kolben 17 des Verdichterzylinders steht kurz vor seinem oberen Totpunkt und hat die von ihm vorher angesaugte Luftmenge verdichtet. Der Kolben 16 des Motorzylinders befindet sich kurz nach seinem unteren Totpunkt und damit am Anfang seines Verdichtungshubes.The position of the two crank pins 18, 19 of a crankshaft indicated by 20 is the same for both pistons 16, 17. Due to the V-angle 21 of the cylinder arrangement shown at 90 degrees, the piston 17 of the compressor cylinder 14 also leads 90 degrees ahead of the crankshaft angle relative to the piston 16 of the engine cylinder 15. The piston 17 of the compressor cylinder is shortly before its top dead center and has that of the amount of air sucked in before it is compressed. The piston 16 of the engine cylinder is located shortly after its bottom dead center and thus at the beginning of its compression stroke.

Jede der Leitungen 13, die zwischen einem Zylinderpaar angeordnet ist, wird von zwei Ventilen beherrscht. Das eine, sogenannte Spenderventil 22, das sich in der Nähe des Verdichterzylinders 8 befindet, wird gemeinsam mit einem Brennstoffabsperrventil 44 für die Verdichterzylinder 7 bis 12 über eine Steuerleitung 31 betätigt.Each of the lines 13, which is arranged between a pair of cylinders, is controlled by two valves. The one, so-called dispenser valve 22, which is located in the vicinity of the compressor cylinder 8, is actuated together with a fuel shut-off valve 44 for the compressor cylinders 7 to 12 via a control line 31.

Das andere, sogenannte Empfängerventil 23, das sich in der Nähe des Motorzylinders 5 befindet, ist gemeinsam mit dem Umsteuerschieber 26 über Steuerleitungen 25, 27, 28 mit einem Druckluftverteiler 29 verbunden. Die Versorgung der Steuerung mit Druckluft erfolgt aus einem Druckluftspeicher 30, der über je eine Leitung 31 und 32 mit dem Umsteuerschieber 26 bzw. mit dem Druckluftverteiler 29 verbunden ist. Die Leitungen 31, 32 werden dabei durch Magnetventile 33, 34 beherrscht.The other, so-called receiver valve 23, which is located in the vicinity of the engine cylinder 5, is connected together with the reversing slide 26 via control lines 25, 27, 28 to a compressed air distributor 29. The control system is supplied with compressed air from a compressed air reservoir 30, which is connected via a line 31 and 32 to the reversing slide 26 and to the compressed air distributor 29, respectively. The lines 31, 32 are controlled by solenoid valves 33, 34.

Bei geteiltem Betrieb der Dieselbrennkraftmaschine sind die Magnetventile 33, 34 in Leitung 31 und 32 geöffnet. Die Druckluft aus Leitung 31 erreicht einen Umsteuerschieber 26 und verschiebt dessen Schieber 35 in Durchlaßstellung (wie gezeichnet). Damit gelangt Druckluft aus Leitung 31 über Leitung 24 zum Spenderventil 22, das dadurch in die dargestellte Stellung verschoben wird. Die Leitung 13 ist damit geöffnet. Da gleichzeitig auch das Magnetventil 34 in Leitung 32 geöffnet ist, gelangt Druckluft auch zum Druckluftverteiler 29, dessen Verteilerläufer 37 mit der halben Kurbelwellendrehzahl umläuft. Die Stellung des Verteilerläufers 37 ist der Stellung des zugehörigen Kolbens 16 von Zylinder 5 zugeordnet. In der gezeichneten Stellung von Kolben 16 am Beginn des Verdichtungshubes ist der Durchgang zwischen Leitung 32 und 27 am Druckluftverteiler 29 gesperrt. Das Empfängerventil 23 befindet sich daher in der in Fig. 1 dargestellten Stellung. Dabei ist ein im Empfängerventil 23 angeordnetes Ventil 38 wirksam, das gegen die Kraft einer Feder 39 vom Druck der im Zylinder 8 verdichteten Luft geöffnet wird. Mit der Auslegung des Ventils 38 wird der Zeitpunkt der Luftübergabe von Zylinder 8 an Zylinder 5 und die Druckhöhe beim Verdichtungsbeginn in Zylinder 5 bestimmt.When the diesel internal combustion engine is in split operation, the solenoid valves 33, 34 in lines 31 and 32 are open. The compressed air from line 31 reaches a reversing slide 26 and shifts its slide 35 into the open position (as drawn). Compressed air thus passes from line 31 via line 24 to the dispenser valve 22, which is thereby shifted into the position shown. The line 13 is thus open. Since the solenoid valve 34 in line 32 is also open at the same time, compressed air also reaches the compressed air distributor 29, the distributor rotor 37 of which rotates at half the crankshaft speed. The position of the distributor rotor 37 is assigned to the position of the associated piston 16 of cylinder 5. In the drawn position of piston 16 at the beginning of the compression stroke, the passage between lines 32 and 27 on the compressed air distributor 29 is blocked. The receiver valve 23 is therefore in the position shown in FIG. 1. A valve 38 arranged in the receiver valve 23 is effective, which is opened against the force of a spring 39 by the pressure of the air compressed in the cylinder 8. With the design of the valve 38, the time of the air transfer from cylinder 8 to cylinder 5 and the pressure level at the start of compression in cylinder 5 is determined.

Nach einer Kurbelwellenumdrehung steht der Kolben 16 des Motorzylinders 5 am Beginn des Ausschiebehubes wieder im unteren Totpunkt und der Kolben 17 des Verdichterzylinders 8 am Beginn des Ansaughubes im oberen Totpunkt. Diese Stellung der Kolben 16, 17 entspricht etwa auch der Darstellung in Fig. 1. Nur mit dem Unterschied, daß der Verteilerläufer 37 des Druckluftverteilers 29 eine um 180 Grad versetzte Stellung eingenommen hat. Dadurch ist der Durchgang zwischen Leitung 32 und 27 nun geöffnet. Die Druckluft gelangt damit in Steuerleitung 25 und verschiebt das Empfängerventil 23 in seine andere Stellung, wodurch der Durchgang 40 wirksam wird. Heißes Abgas strömt nun während des Ausschiebehubes von Zylinder 5 zum Zylinder 8, der gleichzeitig einen Ansaughub ausführt. Dabei mischen sich in Zylinder 8 die über das reguläre Einlaßventil angesaugte Luft mit dem über Leitung 13 ankommenden heißen Abgas. Dadurch ergibt sich eine Erwärmung des Verdichterzylinders 14 und seiner Füllmenge. Dauer und Einsatzzeitpunkt dieser Abgasrückführung wird durch die Lage und Länge der Steuernut 41 am Druckluftverteiler 29 bestimmt. Sobald der Verteilerläufer 37 das Ende der Steuernut 41 erreicht hat, wird die Druckluft zum Empfängerventil 23 gesperrt und die Leitungen 27 entlüftet. Das Empfängerventil 23 kehrt wieder in die in Fig. 1 dargestellte Stellung zurück, bei der das Ventil 38 wirksam ist.After a crankshaft revolution, the piston 16 of the engine cylinder 5 is again at the bottom dead center at the beginning of the extension stroke and the piston 17 of the compressor cylinder 8 is at the top dead center at the beginning of the intake stroke. This position of the pistons 16, 17 corresponds approximately to the illustration in FIG. 1. Only with the difference that the distributor rotor 37 of the compressed air distributor 29 has assumed a position offset by 180 degrees. As a result, the passage between lines 32 and 27 is now open. The compressed air thus arrives in control line 25 and shifts the receiver valve 23 into its other position, as a result of which the passage 40 becomes effective. Hot exhaust gas now flows from cylinder 5 to cylinder 8 during the extension stroke, which simultaneously performs an intake stroke. The air sucked in via the regular inlet valve mixes with the hot exhaust gas arriving via line 13 in cylinder 8. This results in a heating of the compressor cylinder 14 and its filling quantity. The duration and time of use of this exhaust gas recirculation is determined by the position and length of the control groove 41 on the compressed air distributor 29. As soon as the distributor rotor 37 has reached the end of the control groove 41, the compressed air to the receiver valve 23 is blocked and the lines 27 are vented. The receiver valve 23 returns to the position shown in FIG. 1, in which the valve 38 is effective.

Während der geteilten Betriebsweise der Dieselbrennkraftmaschine ist das Spenderventil 22 dauernd geöffnet, während das Empfängerventil 23 im Rhythmus der Ausschiebehübe des Motorzylinders 15 zwischen seinen beiden Stellungen hin- und herpendelt. Beim Übergang vom geteilten Betrieb in den Vollmotorbetrieb ist es zur Verbesserung der Lastannahme der vorher als Verdichter betriebenen Zylinder wünschenswert, die Abgasrückführung über Leitung 13 noch eine Zeitlang fortzuführen. Zu diesem Zweck wird nur das Magnetventil 33 geschlossen. Die Absperrung der Druckluftzufuhr bewirkt das Umschalten des Spenderventils 22 in seine Schließstellung und die Freigabe der Brennstoffzufuhr zu den Zylindern 7 bis 12. Das Magnetventil 34 bleibt noch geöffnet. Dadurch werden die Leitungen 25, 27, 28 von Druckluftverteiler 29 wie vorstehend beschrieben periodisch mit Druckluft versorgt. Über Leitung 28 gelangt Druckluft auch zum Umsteuerschieber 26 unter den Differenzkolben 36. Da der Raum unter Schieber 35 jetzt nach Schließen von Magnetventil 33 drucklos ist, reicht die Kolbenfläche von Differenzkolben 36 aus, um den Schieber 35 in die in Fig. 1 dargestellte Stellung zu verschieben. Die in Leitung 28 anstehende Druckluft öffnet nun das Rückschlagventil 42, schließt das Rückschlagventil 43 und erreicht über Schieber 35 das Spenderventil 22. Mit den vom Druckluftverteiler 29 kommenden Impulsen wird nun jeweils das Spenderventil 22 während etwa der Dauer des Ausschiebehubes von Zylinder 5 in seine Durchlaßstellung verschoben, so daß jeweils Abgas aus dem Zylinder 5 über Leitung 13 in den Zylinder 8 strömen kann. Diese Abgasrückführung wird beendet, wenn durch Abschalten des Magnetventiles 34 die Druckluftzufuhr aus dem Druckluftspeicher 30 zum Druckluftverteiler 29 unterbunden ist.During the split mode of operation of the diesel engine, the dispenser valve 22 is continuously open, while the receiver valve 23 oscillates back and forth between its two positions in the rhythm of the extension strokes of the engine cylinder 15. When transitioning from split operation to full-engine operation, in order to improve the load acceptance of the cylinders previously operated as compressors, it is desirable to continue the exhaust gas recirculation via line 13 for a while. For this purpose, only the solenoid valve 33 is closed. Shutting off the compressed air supply causes the dispenser valve 22 to switch to its closed position and releases the fuel supply to the cylinders 7 to 12. The solenoid valve 34 remains open. As a result, the lines 25, 27, 28 of the compressed air distributor 29 are periodically supplied with compressed air as described above. Compressed air also passes via line 28 to the reversing slide 26 below the differential piston 36. Since the space under slide 35 is now depressurized after solenoid valve 33 has been closed, the piston area of differential piston 36 is sufficient to slide the slide 35 into the position shown in FIG. 1 move. The compressed air in line 28 now opens the check valve 42, closes the check valve 43 and reaches the dispenser valve 22 via slide 35. With the pulses coming from the compressed air distributor 29, the dispenser valve 22 is now in its open position for approximately the duration of the extension stroke of cylinder 5 moved so that exhaust gas from the cylinder 5 can flow via line 13 into the cylinder 8. This exhaust gas recirculation is ended when the compressed air supply from the compressed air reservoir 30 to the compressed air distributor 29 is cut off by switching off the solenoid valve 34.

An wenigstens eine der Leitungen 13 ist über ein Rückschlagventil 46 eine zum Druckluftspeicher 30 führende Leitung 45 angeschlossen, die zum Nachfüllen des Druckluftspeichers dient. Zu Reinigen der Druckluft ist in der Leitung 45 ein Fiter 47 angeordnet.A line 45 leading to the compressed air reservoir 30 is connected to at least one of the lines 13 via a non-return valve 46 and serves to refill the compressed air reservoir. To clean the compressed air, a filter 47 is arranged in line 45.

Claims (4)

  1. A multi-cylinder diesel internal-combustion engine with low compression ratio in the cylinders, wherein in normal operation all the cylinders are supplied with fuel and generate power, and during starting and, optionally, under partial load in a so-called split operation some of the cylinders without fuel supply have a compressor function and feed compressed air to the cylinders having an engine function, wherein a respective compressor cylinder is connected to a respective engine cylinder via a duct which is independent of the usual induction and exhaust ducts and which at one end in the vicinity of the compressor cylinder has a distributor valve which can be actuated under split operation and at its other end in the vicinity of the engine cylinder has a receiving valve shutting off in the compressor cylinder direction, and wherein the piston of each compressor cylinder precedes the piston of the associated engine cylinder by 30° to 150° of crankshaft angle, characterised in that each of the receiving valves (23) is combined with a device for the arbitrary opening of the respective associated duct (13) in the direction of the compressor cylinder (14), in that the actuation of the ducts (13) by the devices takes place during the exhaust stroke of the associated engine cylinder (16), and in that the impulse for actuating the device is derived from an energy store by a distributor (29) dependent on the crankshaft speed of rotation.
  2. 2. A multi-cylinder diesel internal-combustion engine according to Claim 1, characterised in that a reversing slide (26) is disposed in the control duct (31) of the distributor valve (32) [sic] and is so designed that it can be acted upon by two different actuating impulses.
  3. 3. A multi-cylinder diesel internal-combustion engine according to Claim 1, characterised in that the energy store is a compressed-air accumulator (30) which is supplied via a non-return valve (46) from at least one of the independent ducts (13).
  4. 4. A multi-cylinder diesel internal-combustion engine according to Claim 1, characterised in that the ducts (13) are covered with thermal insulation material.
EP87904236A 1986-09-13 1987-07-03 Multi-cylinder diesel internal combustion engine with low compression ratio in the cylinders Expired EP0281572B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87904236T ATE45783T1 (en) 1986-09-13 1987-07-03 MULTI-CYLINDER DIESEL ENGINE WITH LOW COMPRESSION RATIO IN THE CYLINDERS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3631284A DE3631284C1 (en) 1986-09-13 1986-09-13 Multi-cylinder diesel internal combustion engine with a low compression ratio in the cylinders
DE3631284 1986-09-13

Publications (2)

Publication Number Publication Date
EP0281572A1 EP0281572A1 (en) 1988-09-14
EP0281572B1 true EP0281572B1 (en) 1989-08-23

Family

ID=6309580

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87904236A Expired EP0281572B1 (en) 1986-09-13 1987-07-03 Multi-cylinder diesel internal combustion engine with low compression ratio in the cylinders

Country Status (8)

Country Link
US (1) US4860716A (en)
EP (1) EP0281572B1 (en)
JP (1) JPS63502685A (en)
CN (1) CN1004719B (en)
DE (2) DE3631284C1 (en)
ES (1) ES2004778A6 (en)
RU (1) RU1806281C (en)
WO (1) WO1988002065A1 (en)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3633405A1 (en) * 1986-10-01 1988-04-14 Man Nutzfahrzeuge Gmbh METHOD FOR OPERATING AN EXHAUST TRUBO-CHARGED, LOW-COMPRESSING MULTI-CYLINDER DIESEL INTERNAL COMBUSTION ENGINE
DE3824406C1 (en) * 1988-07-19 1989-05-24 Mtu Friedrichshafen Gmbh
US6318310B1 (en) 1999-08-05 2001-11-20 Caterpillar Inc. Internal combustion engine
US6382193B1 (en) 2000-11-20 2002-05-07 Ford Global Technologies, Inc. Method of supercharging an engine
DE10204482A1 (en) * 2002-02-05 2003-08-14 Daimler Chrysler Ag Internal combustion engine
US6736121B2 (en) 2002-06-04 2004-05-18 Ford Global Technologies, Llc Method for air-fuel ratio sensor diagnosis
US6725830B2 (en) * 2002-06-04 2004-04-27 Ford Global Technologies, Llc Method for split ignition timing for idle speed control of an engine
US6736120B2 (en) * 2002-06-04 2004-05-18 Ford Global Technologies, Llc Method and system of adaptive learning for engine exhaust gas sensors
US6735938B2 (en) 2002-06-04 2004-05-18 Ford Global Technologies, Llc Method to control transitions between modes of operation of an engine
US7168239B2 (en) * 2002-06-04 2007-01-30 Ford Global Technologies, Llc Method and system for rapid heating of an emission control device
US20050193988A1 (en) * 2004-03-05 2005-09-08 David Bidner System for controlling valve timing of an engine with cylinder deactivation
US7111450B2 (en) * 2002-06-04 2006-09-26 Ford Global Technologies, Llc Method for controlling the temperature of an emission control device
US6758185B2 (en) * 2002-06-04 2004-07-06 Ford Global Technologies, Llc Method to improve fuel economy in lean burn engines with variable-displacement-like characteristics
US6868827B2 (en) 2002-06-04 2005-03-22 Ford Global Technologies, Llc Method for controlling transitions between operating modes of an engine for rapid heating of an emission control device
US6568177B1 (en) * 2002-06-04 2003-05-27 Ford Global Technologies, Llc Method for rapid catalyst heating
US7032572B2 (en) * 2002-06-04 2006-04-25 Ford Global Technologies, Llc Method for controlling an engine to obtain rapid catalyst heating
US6925982B2 (en) * 2002-06-04 2005-08-09 Ford Global Technologies, Llc Overall scheduling of a lean burn engine system
US6931839B2 (en) * 2002-11-25 2005-08-23 Delphi Technologies, Inc. Apparatus and method for reduced cold start emissions
US7021046B2 (en) 2004-03-05 2006-04-04 Ford Global Technologies, Llc Engine system and method for efficient emission control device purging
US7000602B2 (en) * 2004-03-05 2006-02-21 Ford Global Technologies, Llc Engine system and fuel vapor purging system with cylinder deactivation
US7367180B2 (en) * 2004-03-05 2008-05-06 Ford Global Technologies Llc System and method for controlling valve timing of an engine with cylinder deactivation
US7044885B2 (en) * 2004-03-05 2006-05-16 Ford Global Technologies, Llc Engine system and method for enabling cylinder deactivation
US7073494B2 (en) * 2004-03-05 2006-07-11 Ford Global Technologies, Llc System and method for estimating fuel vapor with cylinder deactivation
US7028670B2 (en) * 2004-03-05 2006-04-18 Ford Global Technologies, Llc Torque control for engine during cylinder activation or deactivation
US7086386B2 (en) * 2004-03-05 2006-08-08 Ford Global Technologies, Llc Engine system and method accounting for engine misfire
US7159387B2 (en) 2004-03-05 2007-01-09 Ford Global Technologies, Llc Emission control device
US7073322B2 (en) * 2004-03-05 2006-07-11 Ford Global Technologies, Llc System for emission device control with cylinder deactivation
US7025039B2 (en) * 2004-03-05 2006-04-11 Ford Global Technologies, Llc System and method for controlling valve timing of an engine with cylinder deactivation
DE102007061420B4 (en) * 2007-12-20 2009-11-26 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH A device for generating compressed air for a vehicle and method for operating a device for compressed air generation
US20090229545A1 (en) * 2008-03-13 2009-09-17 Compressco, Inc. Crankshaft for integral gas compressor and internal combustion engine
JP4829994B2 (en) * 2009-04-06 2011-12-07 住友ゴム工業株式会社 Pneumatic tire
US8763571B2 (en) * 2009-05-07 2014-07-01 Scuderi Group, Inc. Air supply for components of a split-cycle engine
WO2011159756A1 (en) 2010-06-18 2011-12-22 Scuderi Group, Llc Split-cycle engine with crossover passage combustion
DE102010032055B4 (en) * 2010-07-23 2015-01-08 Hong Kong Meta Co. Ltd. Method for operating an internal combustion engine and internal combustion engine
FR2964700B1 (en) * 2010-09-15 2012-10-19 Univ Orleans METHOD FOR OPERATING A THERMAL-PNEUMATIC HYBRID ENGINE AND ADAPTED MOTOR
US8833315B2 (en) 2010-09-29 2014-09-16 Scuderi Group, Inc. Crossover passage sizing for split-cycle engine
KR20130111560A (en) 2010-10-01 2013-10-10 스쿠데리 그룹, 인크. Split-cycle air hybrid v-engine
CN103443408A (en) 2011-01-27 2013-12-11 史古德利集团公司 Lost-motion variable valve actuation system with valve deactivation
CA2825804A1 (en) 2011-01-27 2012-08-02 Scuderi Group, Inc. Lost-motion variable valve actuation system with cam phaser
JP5870640B2 (en) * 2011-11-15 2016-03-01 いすゞ自動車株式会社 Auxiliary brake device
US9109468B2 (en) 2012-01-06 2015-08-18 Scuderi Group, Llc Lost-motion variable valve actuation system
EP2657487B1 (en) * 2012-04-24 2019-04-03 Ford Global Technologies, LLC Self-ignited combustion engine with partial shut-down and method for operating such a combustion engine with optimised emissions
EP2657485B1 (en) * 2012-04-24 2015-08-05 Ford Global Technologies, LLC Method for operating an externally ignited combustion engine with partial shut-down
EP2657486A1 (en) * 2012-04-24 2013-10-30 Ford Global Technologies, LLC Self-ignited combustion engine with partial shut-down and method for operating such a combustion engine with optimised consumption
US8857156B2 (en) 2012-04-27 2014-10-14 General Electric Company Engine utilizing a plurality of control valves, and a related method thereof
US10012153B2 (en) 2012-08-15 2018-07-03 General Electric Company System and method for engine control
DE102012214967B3 (en) * 2012-08-23 2014-04-03 Ford Global Technologies, Llc Four-cylinder inline engine with partial shutdown and method of operating such a four-cylinder in-line engine
US9109507B2 (en) * 2012-10-18 2015-08-18 GM Global Technology Operations LLC Engine assembly with variable valve displacement on one cylinder bank and method of controlling same
EP2971636A1 (en) 2013-03-15 2016-01-20 Scuderi Group, Inc. Split-cycle engines with direct injection
US10221798B2 (en) 2015-12-01 2019-03-05 Ge Global Sourcing Llc Method and systems for airflow control
CN115898666B (en) * 2022-11-18 2024-04-19 中车戚墅堰机车有限公司 Control method for improving cold start performance of EGR diesel engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2648411C2 (en) * 1976-10-26 1984-05-17 Mtu Motoren- Und Turbinen-Union Friedrichshafen Gmbh, 7990 Friedrichshafen Multi-cylinder diesel internal combustion engine
DE2838683A1 (en) * 1977-09-06 1980-03-13 Bayerische Motoren Werke Ag Partial load control for combustion engine - has some cylinders with pre-exhaust connected via changeover valves to other cylinders for post-expansion operation
DE2753584A1 (en) * 1977-12-01 1979-06-07 Motoren Turbinen Union MULTI-CYLINDER DIESEL ENGINE
DE2838682A1 (en) * 1978-09-05 1980-03-13 Bayerische Motoren Werke Ag Load control for multicylinder otto engine - interrupts fuel supply to some cylinders and connects them to exhaust of other cylinders
JPS6121537Y2 (en) * 1980-02-01 1986-06-27
GB2093909A (en) * 1981-02-19 1982-09-08 Ford Motor Co I.C. engines operable on less than all cylinders

Also Published As

Publication number Publication date
ES2004778A6 (en) 1989-02-01
JPH0321733B2 (en) 1991-03-25
CN1004719B (en) 1989-07-05
WO1988002065A1 (en) 1988-03-24
CN87106281A (en) 1988-05-04
DE3760480D1 (en) 1989-09-28
DE3631284C1 (en) 1987-04-16
EP0281572A1 (en) 1988-09-14
US4860716A (en) 1989-08-29
RU1806281C (en) 1993-03-30
JPS63502685A (en) 1988-10-06

Similar Documents

Publication Publication Date Title
EP0281572B1 (en) Multi-cylinder diesel internal combustion engine with low compression ratio in the cylinders
DE19742969C2 (en) Method for starting a multi-cylinder internal combustion engine
DE19849914C1 (en) Internal combustion engine with auxiliary inlet valve
DE3401362C2 (en)
DE3125647C2 (en)
DE2847527C2 (en)
CH636168A5 (en) MULTI-CYLINDER CHARGED DIESEL ENGINE.
DE2648411C2 (en) Multi-cylinder diesel internal combustion engine
EP0141165A2 (en) Intake and exhaust control device for internal-combustion engines
DE3212910A1 (en) FUEL INLET SYSTEM FOR A PRE-COMPRESSION ENGINE
DE2851504C2 (en) Method for operating an internal combustion engine with internal combustion and variable compression ratio
DE102019113738A1 (en) Internal combustion engine with variable intake and exhaust valve actuation
DE3832784A1 (en) COMBUSTION ENGINE
EP0325162B1 (en) Power control process for an internal-combustion piston engine with controlled cylinder charge
DE102014218655B4 (en) Method for operating a partially switched off self-igniting internal combustion engine and internal combustion engine for carrying out such a method
DE4414849A1 (en) Fluid control system for Otto=cycle IC engine
EP3519684B1 (en) Reciprocating-piston internal combustion engine with device for increasing the torque thereof
DE3137471C2 (en)
DE3625223A1 (en) Internal combustion engine
DE102015200074B4 (en) Method for operating a partially switched-off compression-ignition internal combustion engine with at least two cylinders arranged in a row
DE349713C (en) Flushing and charging process for two-stroke internal combustion engines
DE3011974A1 (en) INTAKE SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
DE4036537C1 (en) IC engine toxics reduction system - involves mixing off-gas from previous cycle to fresh air content
DE4411434A1 (en) IC engine valve operation method with two inlet valves per cylinder
CH373220A (en) Method and device for starting diesel engines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880513

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI

GBC Gb: translation of claims filed (gb section 78(7)/1977)
EL Fr: translation of claims filed
17Q First examination report despatched

Effective date: 19890124

EM Fr: revised translation of claims filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 45783

Country of ref document: AT

Date of ref document: 19890915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3760480

Country of ref document: DE

Date of ref document: 19890928

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920507

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920615

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920616

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920619

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920622

Year of fee payment: 6

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930703

Ref country code: AT

Effective date: 19930703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930731

Ref country code: CH

Effective date: 19930731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050703