EP0279873A1 - Phase-shifter - Google Patents

Phase-shifter Download PDF

Info

Publication number
EP0279873A1
EP0279873A1 EP87102471A EP87102471A EP0279873A1 EP 0279873 A1 EP0279873 A1 EP 0279873A1 EP 87102471 A EP87102471 A EP 87102471A EP 87102471 A EP87102471 A EP 87102471A EP 0279873 A1 EP0279873 A1 EP 0279873A1
Authority
EP
European Patent Office
Prior art keywords
waveguide
ferromagnetic
phase shifter
rods
shifter according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87102471A
Other languages
German (de)
French (fr)
Other versions
EP0279873B1 (en
Inventor
Günter Dr. Dipl.-Ing. Mörz
Erich Dr. Dipl.-Ing. Pivit
Sigmund Dipl.-Ing. Lenz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Telecom GmbH
Original Assignee
ANT Nachrichtentechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANT Nachrichtentechnik GmbH filed Critical ANT Nachrichtentechnik GmbH
Priority to DE8787102471T priority Critical patent/DE3782332D1/en
Priority to EP87102471A priority patent/EP0279873B1/en
Priority to US07/156,798 priority patent/US4837528A/en
Priority to CA000559298A priority patent/CA1285326C/en
Publication of EP0279873A1 publication Critical patent/EP0279873A1/en
Application granted granted Critical
Publication of EP0279873B1 publication Critical patent/EP0279873B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/19Phase-shifters using a ferromagnetic device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/30Auxiliary devices for compensation of, or protection against, temperature or moisture effects ; for improving power handling capability

Definitions

  • the present invention relates to a phase shifter, consisting of a waveguide, in which is arranged along at least one plane, which is distributed along at least one plane extending in the direction of wave propagation and parallel to the high-frequency electric field, and which is exposed to a static magnetic field oriented parallel to the electric fields.
  • Such a ferrite phase shifter used in a phase shifter circulator is known from DE 24 14 939 C2.
  • the ferromagnetic material is arranged in the form of strips running parallel to the longitudinal axis of the waveguide on the inside of two opposing waveguide walls.
  • This ferrite phase shifter on which DE 24 14 939 C2 is based is designed with a specific material composition for the ferrite strips for the transmission of high-frequency signals with high pulse powers.
  • it is not suitable for the transmission of high-frequency fields with very high continuous power, since the heat loss generated due to the relatively high transmission loss (approx. 0.3 dB) can no longer be dissipated.
  • the invention is based on the object of specifying a phase shifter of the type mentioned at the outset, which is suitable for operation with very large high-frequency power.
  • the inventive design of the ferromagnetic material in the phase shifter has a very high dielectric strength, which means that the phase shifter can be operated with extremely high power.
  • the design of the ferromagnetic material according to the invention also enables large amounts of heat to be dissipated, which protects the ferromagnetic material from thermal destruction. This applies primarily to a finely structured configuration of the ferromagnetic material, because then a particularly good heat transfer to the heat-dissipating dielectric is guaranteed.
  • the phase shifter circulator shown in FIG. 1 consists, in a manner known per se, of a magic T 1 embodied in waveguide technology with two waveguide arms 2, 3 designed as ferrite phase shifters and a 3dB coupler 4 connected to the two waveguide arms.
  • a high-frequency field fed in at the gate 1a of the magic T is divided into the same energy parts between the two gates 2a and 3a to which the ferrite phase shifters 2 and 3 are connected.
  • the ferrite phase shifters 2 and 3 are now magnetized so that the high passing through them frequency fields at the phase shifter outputs 2b and 3b have a mutual phase shift of 90 °.
  • the subsequent 3dB coupler 4 combines the two high-frequency fields present at the phase shifter outputs 2b and 3b at its output 4a, so that the high-frequency field fed in at the gate 1a is completely available, if one disregards the losses in the arrangement.
  • a high-frequency field is applied to the gate 4a of the 3dB coupler 4, it appears to be divided into equal parts of energy at the two gates 2b and 3b, but with a mutual phase shift of 90 °. Due to the phase-shifting effect of the two phase shifters 2 and 3, the two high-frequency fields reach the gates 2a and 3a of the magic T in phase opposition of the magic T available.
  • phase shifter circulator In order to be able to operate the phase shifter circulator just described, shown in FIG. 1, with very high power (approx. 100 kW to 2000 kW), the nature of the phase shifters and in particular the design of the ferromagnetic material located in the waveguides is very important at.
  • the ferromagnetic material in the waveguide 2 or 3 is formed into a multiplicity of rods 5 which extend parallel to the narrow sides of the waveguide from one waveguide wall to the opposite. All ferromagnetic rods 5 are aligned parallel to the high-frequency electrical field propagating in the waveguide and to a static magnetic field applied from the outside.
  • the ferrite rods 5 are located at a distance from a narrow side of the waveguide, which corresponds to approximately 0.2 times the width of the waveguide. In a departure from the exemplary embodiment shown in FIG. 1, such ferromagnetic rods can be arranged at the same distance in front of each of the two narrow waveguide sides.
  • the ferromagnetic rods are operated by applying a correspondingly high static magnetic field in the area above the gyromagnetic resonance.
  • the division of the ferromagnetic material into many individual rods 5 arranged at a distance from one another creates a large cooling surface, which provides extremely favorable conditions for dissipating the heat generated in the ferromagnetic rods 5.
  • a coolant flowing around the ferromagnetic rods 5 e.g. Air or another suitable gas or a dielectric liquid can easily dissipate very large amounts of heat.
  • the ferromagnetic rods 5 are surrounded individually or in groups by dielectric hollow cylinders which, like the ferromagnetic rods 5, extend over the entire waveguide height and are sealed on the inside of the waveguide walls .
  • a gas or a liquid is let into this dielectric hollow cylinder 6 through openings 7 in a waveguide wall and discharged again through openings 8 in the opposite waveguide wall.
  • the magnet system which generates the static magnetic field for the ferromagnetic rods 5 consists of pole pieces 9 and 10 arranged on both waveguide walls above and below the rods 5, permanent magnets 11 and 12 lying thereon and a yoke 13 forming the magnetic yoke 13.
  • cooling liquid or cooling gas through the openings 7 or 8 can be introduced or discharged into the dielectric hollow cylinder 6 in the waveguide 2, the pole shoes 9 and 10 of the magnet system covering the openings 7 and 8 are provided with inflow and outflow channels 14, 15.
  • the openings 7 and 8 in the waveguide walls are dimensioned so that they are impermeable to the radio frequency field.
  • the ferromagnetic rods 5 are brought up to the pole shoes 9 and 10 through further openings 16 and 17 in the waveguide walls which are impermeable to the high-frequency field.
  • this provides a simple holder for the ferromagnetic rods 5, and on the other hand, the direct contact between the ferromagnetic rods 5 and the pole pieces 9, 10 keeps the magnetic contact resistance between the magnets 11, 12 and the ferromagnetic rods 5 low.
  • all ferromagnetic rods 5 can also be accommodated together in an elongated dielectric container 18 installed parallel to a narrow waveguide side, as is the case in the waveguide 3 (see Figure 1).
  • This can be realized, for example, in that, as stated in the waveguide 2, the number of ferromagnetic rods 5 present in a dielectric hollow cylinder 6 increases from hollow cylinder to hollow cylinder or that the distances between the ferromagnetic rods 5 to the interior of the waveguide become smaller, as is the case using the example of the waveguide 3 becomes clear.
  • the thickness of the ferromagnetic rods towards the interior of the waveguide could also be increased from rod to rod.
  • the dielectric container 18 has been tapered towards the waveguide outputs in the case of the waveguide 3.
  • the dielectric container 18 can be tapered either continuously or in steps.
  • the dielectric hollow cylinders 6 equipped with ferromagnetic rods 5 are arranged in waveguide 2 at a distance of approximately a quarter wavelength, the broad-band and low-reflection properties of the phase shifter result.
  • the ferromagnetic material of the phase shifter is shaped into rods 5.
  • an elongated ferromagnetic body 20 can be arranged in a waveguide 19 along at least one plane parallel to a waveguide narrow side, which is provided with through holes 21 running parallel to the static magnetic field. These through bores 21 continue in openings 22 and 23 in the waveguide walls in order to allow a cooling gas or a cooling liquid to pass through the ferromagnetic body 20.
  • phase shifter described above are suitable for use in a phase shifter circulator operated with extremely high high-frequency powers, as was initially explained with reference to FIG. 1.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Non-Reversible Transmitting Devices (AREA)

Abstract

A phase-shifter, suitable for use at very high radio-frequency power, consists of a waveguide (2) in which there is arranged ferromagnetic material, distributed along at least one plane extending in the wave propagation direction, which material is subject to a static magnetic field oriented parallel to the plane, the ferromagnetic material being formed such that it forms a plurality of cavities (5) which extend in the direction of the applied static magnetic field from one waveguide wall to the opposite waveguide wall (Fig. 2). <IMAGE>

Description

Die vorliegende Erfindung betrifft einen Phasenschieber, bestehend aus einem Hohlleiter, in dem entlang mindestens einer sich in Wellenausbreitungsrichtung und parallel zum elektrischen Hochfrequenzfeld erstreckenden Ebene verteilt ferromagnetisches Material angeordnet ist, das einem parallel zu den elektri­schen Feld orientierten statischen Magnetfeld ausgesetzt ist.The present invention relates to a phase shifter, consisting of a waveguide, in which is arranged along at least one plane, which is distributed along at least one plane extending in the direction of wave propagation and parallel to the high-frequency electric field, and which is exposed to a static magnetic field oriented parallel to the electric fields.

Ein derartiger bei einem Phasenschieberzirkulator eingesetzter Ferrit-Phasen­schieber ist aus der DE 24 14 939 C2 bekannt. Das ferromagnetische Material ist bei diesem bekannten Phasenschieber in Form von parallel zur Hohlleiter­längsachse verlaufenden Streifen an den Innenseiten zweier einander gegen­überliegender Hohlleiterwände angeordnet. Dieser der DE 24 14 939 C2 zugrundeliegende Ferrit-Phasenschieber ist zwar mit einer bestimmten Mate­rialzusammensetzung der Ferritstreifen für die Übertragung von Hochfrequenz­signalen mit hohen Impulsleistungen ausgelegt. Er ist aber nicht geeignet für die Übertragung von Hochfrequenzfeldern mit sehr hoher Dauerleistung, da die wegen der relativ hohen Durchgangsdämpfung (ca. 0,3 dB) entstehende Ver­lustwärme nicht mehr abgeführt werden kann.Such a ferrite phase shifter used in a phase shifter circulator is known from DE 24 14 939 C2. In this known phase shifter, the ferromagnetic material is arranged in the form of strips running parallel to the longitudinal axis of the waveguide on the inside of two opposing waveguide walls. This ferrite phase shifter on which DE 24 14 939 C2 is based is designed with a specific material composition for the ferrite strips for the transmission of high-frequency signals with high pulse powers. However, it is not suitable for the transmission of high-frequency fields with very high continuous power, since the heat loss generated due to the relatively high transmission loss (approx. 0.3 dB) can no longer be dissipated.

Der Erfindung liegt nun die Aufgabe zugrunde, einen Phasenschieber der ein­gangs genannten Art anzugeben, der für einen Betrieb mit sehr großer Hoch­frequenzleistung geeignet ist.The invention is based on the object of specifying a phase shifter of the type mentioned at the outset, which is suitable for operation with very large high-frequency power.

Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst.This object is solved by the features of claim 1.

Zweckmäßige Ausführungen der Erfindung gehen aus den Unteransprüchen her­vor.Appropriate embodiments of the invention emerge from the subclaims.

Durch die erfindungsgemäße Gestaltung des ferromagnetischen Materials im Phasenschieber besitzt dieser eine sehr große Durchschlagsfestigkeit, wodurch der Phasenschieber mit äußerst hoher Leistung betrieben werden kann. Die nach der Erfindung ausgeführte Gestaltung des ferromagnetischen Materials ermöglicht außerdem die Ableitung großer Wärmemengen, was das ferro­magnetische Material vor thermischer Zerstörung schützt. Dies gilt vornehm­lich bei einer feinstrukturierten Konfiguration des ferromagnetischen Materi­als, weil dann ein besonders guter Wärmeübergang auf das wärmeabführende Dielektrikum gewährleistet ist.The inventive design of the ferromagnetic material in the phase shifter has a very high dielectric strength, which means that the phase shifter can be operated with extremely high power. The design of the ferromagnetic material according to the invention also enables large amounts of heat to be dissipated, which protects the ferromagnetic material from thermal destruction. This applies primarily to a finely structured configuration of the ferromagnetic material, because then a particularly good heat transfer to the heat-dissipating dielectric is guaranteed.

An Hand von in der Zeichnung dargestellten Ausführungsbeispielen wird nun die Erfindung näher erläutert.

  • Fig. 1 zeigt die Draufsicht auf einen Phasenschieberzirkulator,
  • Fig. 2 zeigt einen Querschnitt A-A durch einen als Phasenschieber wir­kenden Hohlleiterarm des Phasenschieberzirkulators und
  • Fig. 3 zeigt einen Querschnitt durch einen Hohlleiterarm eines Phasen­schieberzirkulators mit einer anderen als in Fig. 1 dargestellten Struktur des ferromagnetischen Materials.
The invention will now be explained in more detail with reference to exemplary embodiments shown in the drawing.
  • 1 shows the top view of a phase shifter circulator,
  • FIG. 2 shows a cross section AA through a waveguide arm of the phase shifter circulator and acting as a phase shifter
  • FIG. 3 shows a cross section through a waveguide arm of a phase shifter circulator with a different structure of the ferromagnetic material than that shown in FIG. 1.

Der in Fig. 1 gezeigte Phasenschieberzirkulator besteht in an sich bekannter Art aus einem in Hohlleitertechnik ausgeführten magischen T 1 mit zwei als Ferrit- Phasenschieber ausgebildeten Hohlleiterarmen 2, 3 und einem an die beiden Hohleiterarme angeschlossenen 3dB-Koppler 4. Dieser Phasenschieber hat folgende Wirkungsweise:
Ein am Tor 1a des magischen T eingespeistes Hochfrequenzfeld wird zu gleichen Energieteilen auf die beiden Tore 2a und 3a, an die die Ferrit-­Phasenschieber 2 und 3 angeschlossen sind, aufgeteilt. Die Ferrit-Phasenschie­ber 2 und 3 sind nun so vormagnetisiert, daß die sie durchlaufenden Hoch­ frequenzfelder an den Phasenschieber-Ausgängen 2b und 3b eine gegenseitige Phasenverschiebung von 90° aufweisen. Der anschließende 3dB-Koppler 4 vereinigt die beiden an den Phasenschieber-Ausgängen 2b und 3b anliegenden Hochfrequenzfelder an seinem Ausgang 4a gleichphasig, so daß dort das am Tor 1a eingespeiste Hochfrequenzfeld vollständig zur Verfügung steht, wenn man von den Verlusten der Anordnung absieht.
The phase shifter circulator shown in FIG. 1 consists, in a manner known per se, of a magic T 1 embodied in waveguide technology with two waveguide arms 2, 3 designed as ferrite phase shifters and a 3dB coupler 4 connected to the two waveguide arms.
A high-frequency field fed in at the gate 1a of the magic T is divided into the same energy parts between the two gates 2a and 3a to which the ferrite phase shifters 2 and 3 are connected. The ferrite phase shifters 2 and 3 are now magnetized so that the high passing through them frequency fields at the phase shifter outputs 2b and 3b have a mutual phase shift of 90 °. The subsequent 3dB coupler 4 combines the two high-frequency fields present at the phase shifter outputs 2b and 3b at its output 4a, so that the high-frequency field fed in at the gate 1a is completely available, if one disregards the losses in the arrangement.

Wird andererseits ein Hochfrequenzfeld am Tor 4a des 3dB-Kopplers 4 ange­legt, so erscheint es zu gleichen Energieteilen aufgeteilt an den beiden Toren 2b und 3b, jedoch mit einer gegenseitigen Phasenverschiebung von 90°. Auf Grund der phasendrehenden Wirkung der beiden Phasenschieber 2 und 3 erreichen die beiden Hochfrequenzfelder gegenphasig die Tore 2a und 3a des magischen T. Im magischen T 1 werden beide Hochfrequenzfelder überlagert, und das ursprünglich in den 3dB-Koppler 4 eingespeiste Hochfrequenzfeld ist schließlich am Tor 1b des magischen T verfügbar.If, on the other hand, a high-frequency field is applied to the gate 4a of the 3dB coupler 4, it appears to be divided into equal parts of energy at the two gates 2b and 3b, but with a mutual phase shift of 90 °. Due to the phase-shifting effect of the two phase shifters 2 and 3, the two high-frequency fields reach the gates 2a and 3a of the magic T in phase opposition of the magic T available.

Um den soeben beschriebenen, in Fig. 1 dargestellten Phasenschieberzirkulator mit sehr hoher Leistung (ca. 100 kW bis 2000 kW) betreiben zu können, kommt es ganz wesentlich auf die Beschaffenheit der Phasenschieber und dabei insbesondere auf die Ausgestaltung des in den Hohlleitern befindlichen ferromagnetischen Materials an.In order to be able to operate the phase shifter circulator just described, shown in FIG. 1, with very high power (approx. 100 kW to 2000 kW), the nature of the phase shifters and in particular the design of the ferromagnetic material located in the waveguides is very important at.

Das ferromagnetische Matrial im Hohlleiter 2 bzw. 3 ist zu einer Vielzahl von Stäben 5 geformt, die sich parallel zu den Hohlleiterschmalseiten von einer Hohlleiterwand zur gegenüberliegenden erstrecken. Alle ferromagnetischen Stäbe 5 sind parallel zu dem sich im Hohlleiter ausbreitenden elektrischen Hochfrequenzfeld und zu einem von außen angelegten statischen Magnetfeld ausgerichtet. Die Ferrit-Stäbe 5 befinden sich in einem Abstand von einer Hohlleiterschmalseite, der etwa dem 0,2-fachen der Hohlleiterbreite ent­spricht. Abweichend von dem in Fig. 1 gezeigten Ausführungsbeispiel können in dem gleichen Abstand vor jeder der beiden Hohlleiterschmalseiten solche ferromagnetische Stäbe angeordnet sein.The ferromagnetic material in the waveguide 2 or 3 is formed into a multiplicity of rods 5 which extend parallel to the narrow sides of the waveguide from one waveguide wall to the opposite. All ferromagnetic rods 5 are aligned parallel to the high-frequency electrical field propagating in the waveguide and to a static magnetic field applied from the outside. The ferrite rods 5 are located at a distance from a narrow side of the waveguide, which corresponds to approximately 0.2 times the width of the waveguide. In a departure from the exemplary embodiment shown in FIG. 1, such ferromagnetic rods can be arranged at the same distance in front of each of the two narrow waveguide sides.

Um bei dem einer sehr großen Hochfrequenzleistung ausgesetzten Phasen­schieber die Durchgangsdämpfung auf Grund von Spinwellenverlusten möglichst gering zu halten, werden die ferromagnetischen Stäbe durch Anlegen eines entsprechend hohen statischen Magnetfeldes im Bereich oberhalb der gyro­magnetischen Resonanz betrieben.In order to keep the transmission loss due to spin wave losses as low as possible with the phase shifter exposed to a very high high-frequency power, the ferromagnetic rods are operated by applying a correspondingly high static magnetic field in the area above the gyromagnetic resonance.

Da sich die ferromagnetischen Stäbe ohne Unterbrechung durch ein anders geartetes Dielektrikum über die gesamte Hohlleiterhöhe erstrecken, werden unerwünschte Feldstärkeüberhöhungen ausgeschlossen. Dies hat eine hohe Durchschlagsfestigkeit des Phasenschiebers zur Folge, weshalb dieser für die Übertragung sehr großer Leistungen geeignet ist.Since the ferromagnetic rods extend without interruption through a different type of dielectric over the entire waveguide height, undesirable increases in field strength are excluded. This results in a high dielectric strength of the phase shifter, which is why it is suitable for the transmission of very large powers.

Durch die Aufteilung des ferromagnetischen Materials in viele einzelne im Abstand zueinander angeordnete Stäbe 5 entsteht eine große Kühlfläche, womit äußerst günstige Voraussetzungen gegeben sind für die Ableitung der in den ferromagnetischen Stäben 5 entstehenden Wärme. Mit Hilfe eines die ferromagnetischen Stäbe 5 umströmenden Kühlmittels, z.B. Luft oder eines anderen geeigneten Gases oder einer dielektrischen Flüssigkeit, können auf einfache Weise sehr große Wärmemengen abgeführt werden.The division of the ferromagnetic material into many individual rods 5 arranged at a distance from one another creates a large cooling surface, which provides extremely favorable conditions for dissipating the heat generated in the ferromagnetic rods 5. With the aid of a coolant flowing around the ferromagnetic rods 5, e.g. Air or another suitable gas or a dielectric liquid can easily dissipate very large amounts of heat.

Die Fig. 1 zeigt zwei Ausführungsbeispiele dafür, mit welchen Mitteln die ferromagnetischen Stäbe 5 einem kühlenden Gas oder eine Kühlflüssigkeit ausgesetzt werden können. Beim Phasenschieber 2, von dem ein Querschnitt A-A in Fig. 2 dargestellt ist, sind die ferromagnetischen Stäbe 5 einzeln oder in Gruppen von dielektrischen Hohlzylindern umgeben, die sich wie die ferro­magnetischen Stäbe 5 über die ganze Hohlleiterhöhe erstrecken und an den Innenseiten der Hohlleiterwände abgedichtet sind. In diese dielektrischen Hohlzylinder 6 wird durch Öffnungen 7 in einer Hohlleiterwand ein Gas oder eine Flüssigkeit eingelassen und durch Öffnungen 8 in der gegenüberliegenden Hohlleiterwand wieder abgeführt.1 shows two exemplary embodiments of the means by which the ferromagnetic rods 5 can be exposed to a cooling gas or a cooling liquid. In the phase shifter 2, of which a cross section AA is shown in FIG. 2, the ferromagnetic rods 5 are surrounded individually or in groups by dielectric hollow cylinders which, like the ferromagnetic rods 5, extend over the entire waveguide height and are sealed on the inside of the waveguide walls . A gas or a liquid is let into this dielectric hollow cylinder 6 through openings 7 in a waveguide wall and discharged again through openings 8 in the opposite waveguide wall.

Das Magnetsystem, welches das statische Magnetfeld für die ferromagneti­schen Stäbe 5 erzeugt, besteht aus auf beiden Hohlleiterwänden oberhalb und unterhalb der Stäbe 5 angeordneten Polschuhen 9 und 10, darauf liegenden Permanentmagneten 11 und 12 und einem den magnetischen Rückschluß bil­denden Joch 13. Damit Kühlflüssigkeit oder Kühlgas durch die Öffnungen 7 bzw. 8 in die dielektrischen Hohlzylinder 6 im Hohlleiter 2 eingeleitet bzw. abgeleitet werden kann, sind die die Öffnungen 7 und 8 überdeckenden Pol­schuhe 9 und 10 des Magnetsystems mit Zufluß- bzw. Abflußkanälen 14, 15 versehen. Die Öffnungen 7 und 8 in den Hohlleiterwänden sind so dimensio­niert, daß sie für das Hochfrequenzfeld undurchlässig sind.The magnet system which generates the static magnetic field for the ferromagnetic rods 5 consists of pole pieces 9 and 10 arranged on both waveguide walls above and below the rods 5, permanent magnets 11 and 12 lying thereon and a yoke 13 forming the magnetic yoke 13. Thus, cooling liquid or cooling gas through the openings 7 or 8 can be introduced or discharged into the dielectric hollow cylinder 6 in the waveguide 2, the pole shoes 9 and 10 of the magnet system covering the openings 7 and 8 are provided with inflow and outflow channels 14, 15. The openings 7 and 8 in the waveguide walls are dimensioned so that they are impermeable to the radio frequency field.

Durch weitere für das Hochfrequenzfeld undurchlässige Öffnungen 16 und 17 in den einander gegenüberliegenden Hohlleiterwänden sind die ferromagneti­schen Stäbe 5 bis an die Polschuhe 9 und 10 herangeführt. Zum einen ist dadurch eine einfache Halterung für die ferromagnetischen Stäbe 5 gegeben, und zum anderen ist durch den direkten Kontakt zwischen den ferromagneti­schen Stäben 5 und den Polschuhen 9, 10 der magnetische Übergangswider­stand zwischen den Magneten 11, 12 und den ferromagnetischen Stäben 5 gering gehalten.The ferromagnetic rods 5 are brought up to the pole shoes 9 and 10 through further openings 16 and 17 in the waveguide walls which are impermeable to the high-frequency field. On the one hand, this provides a simple holder for the ferromagnetic rods 5, and on the other hand, the direct contact between the ferromagnetic rods 5 and the pole pieces 9, 10 keeps the magnetic contact resistance between the magnets 11, 12 and the ferromagnetic rods 5 low.

Anstatt die ferromagnetischen Stäbe 5 einzeln oder gruppenweise in mehreren dielektrischen Hohlzylindern 6 wie im Hohlleiter 2 anzuordnen, können auch alle ferromagnetischen Stäbe 5 gemeinsam in einem parallel zu einer Hohl­leiterschmalseite installierten, langgestreckten dielektrischen Behälter 18 untergebracht werden wie das im Hohlleiter 3 der Fall ist (s. Figur 1).Instead of arranging the ferromagnetic rods 5 individually or in groups in a plurality of dielectric hollow cylinders 6 as in the waveguide 2, all ferromagnetic rods 5 can also be accommodated together in an elongated dielectric container 18 installed parallel to a narrow waveguide side, as is the case in the waveguide 3 (see Figure 1).

Es ist zweckmäßig, die Menge des ferromagnetischen Materials von den Hohlleitereingängen aus in Richtung zum Hohlleiterinneren allmählich zuneh­men zu lassen. Dies läßt sich beispielsweise dadurch realisieren, daß, wie im Hohlleiter 2 ausgeführt, die Zahl der jeweils in einem dielektrischen Hohl­zylinder 6 vorhandenen ferromagnetischen Stäbe 5 von Hohlzylinder zu Hohl­zylinder zunimmt oder daß die Abstände zwischen den ferromagnetischen Stäben 5 zum Hohlleiterinneren hin geringer werden, wie es am Beispiel des Hohlleiters 3 deutlich wird. Auch könnte man die Dicke der ferromagneti­schen Stäbe zum Hohlleiterinneren hin von Stab zu Stab zunehmen lassen.It is expedient to gradually increase the amount of ferromagnetic material from the waveguide inputs towards the interior of the waveguide. This can be realized, for example, in that, as stated in the waveguide 2, the number of ferromagnetic rods 5 present in a dielectric hollow cylinder 6 increases from hollow cylinder to hollow cylinder or that the distances between the ferromagnetic rods 5 to the interior of the waveguide become smaller, as is the case using the example of the waveguide 3 becomes clear. The thickness of the ferromagnetic rods towards the interior of the waveguide could also be increased from rod to rod.

Um einen möglichst reflexionsfreien Eintritt eines Hochfrequenzfeldes in den Phasenschieber zu gewährleisten, ist beim Hohlleiter 3 neben der Abstufung der Dichte des ferromagnetischen Materials eine Verjüngung des dielektri­schen Behälters 18 zu den Hohlleiterausgängen hin vorgenommen worden. Die Verjüngung des dielektrischen Behälters 18 kann entweder kontinuierlich oder gestuft erfolgen.In order to ensure that a high-frequency field enters the phase shifter with as little reflection as possible, in addition to the gradation of the density of the ferromagnetic material, the dielectric container 18 has been tapered towards the waveguide outputs in the case of the waveguide 3. The The dielectric container 18 can be tapered either continuously or in steps.

Werden die mit ferromagnetischen Stäben 5 bestückten dielektrischen Hohl­zylinder 6 in Hohlleiter 2 im Abstand von etwa einer Viertelwellenlänge angeordnet, so ergeben sich besonders breitbandige und reflexionsarme Eigen­schaften des Phasenschiebers.If the dielectric hollow cylinders 6 equipped with ferromagnetic rods 5 are arranged in waveguide 2 at a distance of approximately a quarter wavelength, the broad-band and low-reflection properties of the phase shifter result.

Gemäß dem in Fig. 1 und 2 dargestellten Ausführungsbeispiel ist das ferro­magnetische Material des Phasenschiebers zu Stäben 5 geformt. Invers dazu kann auch gemäß Fig. 3 in einem Hohlleiter 19 entlang mindestens einer parallel zu einer Hohlleiterschmalseite liegenden Ebene ein langgestreckter ferromagnetischer Körper 20 angeordnet werden, der mit parallel zum stati­schen Magnetfeld verlaufenden Durchgangsbohrungen 21 versehen ist. Diese Durchgangsbohrungen 21 setzen sich fort in Öffnungen 22 und 23 in den Hohlleiterwänden, um ein Durchleiten eines Kühlgases oder einer Kühlflüssig­keit durch den ferromagnetischen Körper 20 zu ermöglichen.According to the exemplary embodiment shown in FIGS. 1 and 2, the ferromagnetic material of the phase shifter is shaped into rods 5. 3, an elongated ferromagnetic body 20 can be arranged in a waveguide 19 along at least one plane parallel to a waveguide narrow side, which is provided with through holes 21 running parallel to the static magnetic field. These through bores 21 continue in openings 22 and 23 in the waveguide walls in order to allow a cooling gas or a cooling liquid to pass through the ferromagnetic body 20.

Die vorgehend beschriebenen Ausführungen eines Phasenschiebers sind geeignet für die Anwendung in einem mit extrem großen Hochfrequenzleistungen be­triebenen Phasenschieberzirkulator, so wie er eingangs an Hand von Fig. 1 dargelegt worden ist.The embodiments of a phase shifter described above are suitable for use in a phase shifter circulator operated with extremely high high-frequency powers, as was initially explained with reference to FIG. 1.

Claims (11)

1. Phasenschieber, bestehend aus einem Hohlleiter, in dem entlang min­destens einer sich in Wellenausbreitungsrichtung und parallel zum elektri­schen Hochfrequenzfeld erstreckenden Ebene verteilt ferromagnetisches Material angeordnet ist, das einem parallel zu dem elektrischen Hoch­frequenzfeld orientierten statischen Magnetfeld ausgesetzt ist, dadurch gekennzeichnet, daß das ferromagnetische Material (5, 20) so geformt ist, daß es mehrere Raumkörper (5, 21) bildet, die sich in Richtung des angelegten statischen Magnetfeldes von einer Hohlleiterwand bis zur gegenüberliegenden Hohlleiterwand erstrecken.1. phase shifter, consisting of a waveguide in which is arranged along at least one plane extending in the wave propagation direction and parallel to the electrical high-frequency field extending ferromagnetic material, which is exposed to a static magnetic field oriented parallel to the high-frequency electrical field, characterized in that the ferromagnetic material (5, 20) is shaped so that it forms several spatial bodies (5, 21) which extend in the direction of the applied static magnetic field from a waveguide wall to the opposite waveguide wall. 2. Phasenschieber nach Anspruch 1, dadurch gekennzeichnet, daß das ferro­magnetische Material (5, 20) von einem als Kühlmittel dienenden flüssi­gen oder gasförmigen Dielektrikum umgeben ist.2. Phase shifter according to claim 1, characterized in that the ferromagnetic material (5, 20) is surrounded by a liquid or gaseous dielectric serving as a coolant. 3. Phasenschieber nach Anspruch 1, dadurch gekennzeichnet, daß das ferro­magnetische Material zu Stäben (5) geformt ist und daß diese ferro­magnetischen Stäbe (5) sich von einer Hohlleiterwand zur gegenüber­liegenden Hohlleiterwand erstrecken und parallel zum statischen Magnet­feld und aum elektrischen Hochfrequenzfeld im Hohlleiter (2, 3) orien­tiert sind.3. phase shifter according to claim 1, characterized in that the ferromagnetic material is shaped into rods (5) and that these ferromagnetic rods (5) extend from a waveguide wall to the opposite waveguide wall and parallel to the static magnetic field and aum high-frequency electrical field in the waveguide (2nd , 3) are oriented. 4. Phasenschieber nach Anspruch 3, dadurch gekennzeichnet, daß jeder ein­zelne ferromagnetische Stab (5) in einem dielektrischen Hohlzylinder (6) steckt, durch den zur Kühlung des ferromagnetischen Stabes (5) eine Flüssigkeit oder ein Gas strömt, und daß entlang mindestens einer pa­rallel zu einer Hohlleiterschmalseite liegenden Ebene verteilt mehrere dielektrische Hohlzylinder (6) mit jeweils einem darin steckenden ferro­magnetischen Stab (5) angeordnet sind.4. phase shifter according to claim 3, characterized in that each individual ferromagnetic rod (5) in a dielectric hollow cylinder (6) through which a liquid or a gas flows for cooling the ferromagnetic rod (5), and that along at least one parallel A plurality of dielectric hollow cylinders (6), each with a ferromagnetic rod (5) inserted therein, are distributed to a plane lying on the narrow waveguide side. 5. Phasenschieber nach Anspruch 3, dadurch gekennzeichnet, daß jeweils mehrere der ferromagnetischen Stäbe (5) in einem dielektrischen Hohl­zylinder (6) angeordnet sind, durch den zur Kühlung der ferromagneti­schen Stäbe (5) eine Flüssigkeit oder ein Gas strömt, und daß entlang mindestens einer parallel zu einer Hohlleiterschmalseite liegenden Ebene verteilt verteilt mehrere dielektrische Hohlzylinder (6) mit darin stecken­den ferromagnetischen Stäben (5) angeordnet sind.5. phase shifter according to claim 3, characterized in that in each case several of the ferromagnetic rods (5) are arranged in a dielectric hollow cylinder (6) through which a liquid or a gas flows for cooling the ferromagnetic rods (5), and that along A plurality of dielectric hollow cylinders (6) with ferromagnetic rods (5) inserted therein are distributed distributed over at least one plane parallel to a waveguide narrow side. 6. Phasenschieber nach Anspruch 3, dadurch gekennzeichnet, daß entlang mindestens einer parallel zu einer Hohlleiterschmalseite liegenden Ebene ein langgestreckter dielektrischer Behälter (18) angeordnet ist, der die ferromagnetischen Stäbe (5) aufnimmt und durch den zur Kühlung der ferromagnetischen Stäbe eine Flüssigkeit oder ein Gas strömt.6. Phase shifter according to claim 3, characterized in that an elongated dielectric container (18) is arranged along at least one plane parallel to a waveguide narrow side, which receives the ferromagnetic rods (5) and through which a liquid or a for cooling the ferromagnetic rods Gas flows. 7. Phasenschieber nach Anspruch 3, dadurch gekennzeichnet, daß die ferro­magnetischen Stäbe (5) durch Öffnungen (16, 17) in den gegenüberlie­genden Hohlleiterwänden geführt sind und daß diese Öffnungen (16, 17) so dimensioniert sind, daß sie für das Hochfrequenzfeld im Hohlleiter (2) undurchlässig sind.7. phase shifter according to claim 3, characterized in that the ferromagnetic rods (5) through openings (16, 17) in the opposite waveguide walls and that these openings (16, 17) are dimensioned so that they for the high frequency field in the waveguide (2) are impermeable. 8. Phasenschieber nach Anspruch 1, dadurch gekennzeichnet, daß entlang mindestens einer parallel zu einer Hohlleiterschmalseite liegenden Ebene ein langgestreckter ferromagnetischer Körper (20) angeordnet ist, der mit parallel zum statischen Magentfeld verlaufenden Durchgangsbohrungen (21) versehen ist, und daß durch die Durchgangsbohrungen (21) zur Kühlung des ferromagnetischen Körpers (20) eine Flüssigkeit oder ein Gas strömt.8. phase shifter according to claim 1, characterized in that an elongated ferromagnetic body (20) is arranged along at least one plane lying parallel to a waveguide narrow side, which is provided with through holes (21) running parallel to the static magnetic field, and that through the through holes ( 21) for cooling the ferromagnetic body (20), a liquid or a gas flows. 9. Phasenschieber nach Anspruch 1, dadurch gekennzeichnet, daß die Menge des ferromagnetischen Materials (5, 20) von den Hohlleitereingängen in Richtung zum Hohlleiterinneren hin allmählich zunimmt.9. phase shifter according to claim 1, characterized in that the amount of ferromagnetic material (5, 20) gradually increases from the waveguide inputs towards the interior of the waveguide. 10. Phasenschieber nach Anspruch 3, 4, 5, 6 oder 9, dadurch gekennzeichnet, daß die Dicke der ferromagnetischen Stäbe (5) von den Hohlleiterein­gängen in Richtung zum Hohlleiterinneren hin von Stab zu Stab zunimmt.10. phase shifter according to claim 3, 4, 5, 6 or 9, characterized in that the thickness of the ferromagnetic rods (5) increases from the waveguide inputs towards the interior of the waveguide from rod to rod. 11. Phasenschieber nach Anspruch 3, 4, 5, 6 oder 9, dadurch gekennzeichnet, daß die Abstände zwischen benachbarten ferromagnetischen Stäben (5) von den Hohlleitereingängen in Richtung zum Hohlleiterinneren hin ab­nehmen.11. Phase shifter according to claim 3, 4, 5, 6 or 9, characterized in that the distances between adjacent ferromagnetic rods (5) decrease from the waveguide inputs towards the interior of the waveguide.
EP87102471A 1987-02-21 1987-02-21 Phase-shifter Expired - Lifetime EP0279873B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE8787102471T DE3782332D1 (en) 1987-02-21 1987-02-21 PHASE SHIFT.
EP87102471A EP0279873B1 (en) 1987-02-21 1987-02-21 Phase-shifter
US07/156,798 US4837528A (en) 1987-02-21 1988-02-17 Microwave phase shifter
CA000559298A CA1285326C (en) 1987-02-21 1988-02-19 Microwave phase shifter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP87102471A EP0279873B1 (en) 1987-02-21 1987-02-21 Phase-shifter

Publications (2)

Publication Number Publication Date
EP0279873A1 true EP0279873A1 (en) 1988-08-31
EP0279873B1 EP0279873B1 (en) 1992-10-21

Family

ID=8196775

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87102471A Expired - Lifetime EP0279873B1 (en) 1987-02-21 1987-02-21 Phase-shifter

Country Status (4)

Country Link
US (1) US4837528A (en)
EP (1) EP0279873B1 (en)
CA (1) CA1285326C (en)
DE (1) DE3782332D1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0465059A1 (en) * 1990-06-22 1992-01-08 NGK Spark Plug Co. Ltd. Dielectric resonator device
EP0618640A1 (en) * 1993-04-01 1994-10-05 Hughes Aircraft Company Enhanced tunability for low-dielectric-constant ferroelectric materials

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013997A (en) * 1990-01-02 1991-05-07 General Electric Company Liquid cooled, high power, ferrite phase shifter for phased array antennas
AU2001255481A1 (en) 2000-04-20 2001-11-07 Paratek Microwave, Inc. Waveguide-finline tunable phase shifter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB781024A (en) * 1955-06-01 1957-08-14 Hughes Aircraft Co Microwave unidirectional coupling device
GB836440A (en) * 1955-12-08 1960-06-01 Sperry Rand Corp Improvements in or relating to the use of ferrite members in microwave conductors
US2956245A (en) * 1956-04-16 1960-10-11 Sperry Rand Corp Microwave isolator
DE1117183B (en) * 1960-09-30 1961-11-16 Siemens Ag Directional line for very short electromagnetic waves
FR1548492A (en) * 1967-10-20 1968-12-06
US3434076A (en) * 1963-10-17 1969-03-18 Varian Associates Waveguide window having circulating fluid of critical loss tangent for dampening unwanted mode

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3036278A (en) * 1955-04-29 1962-05-22 Herman N Chait Rectangular waveguide circulator
US3408597A (en) * 1966-05-11 1968-10-29 Bell Telephone Labor Inc Nonreciprocal gyromagnetic waveguide device with heat transfer means forming a unitary structure
US3629735A (en) * 1969-10-01 1971-12-21 Us Army Waveguide power limiter comprising a longitudinal arrangement of alternate ferrite rods and dielectric spacers
DE2414939C2 (en) * 1974-03-28 1985-04-11 ANT Nachrichtentechnik GmbH, 7150 Backnang Phase shift circulator for extremely high pulse power
US4122418A (en) * 1975-05-10 1978-10-24 Tsukasa Nagao Composite resonator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB781024A (en) * 1955-06-01 1957-08-14 Hughes Aircraft Co Microwave unidirectional coupling device
GB836440A (en) * 1955-12-08 1960-06-01 Sperry Rand Corp Improvements in or relating to the use of ferrite members in microwave conductors
US2956245A (en) * 1956-04-16 1960-10-11 Sperry Rand Corp Microwave isolator
DE1117183B (en) * 1960-09-30 1961-11-16 Siemens Ag Directional line for very short electromagnetic waves
US3434076A (en) * 1963-10-17 1969-03-18 Varian Associates Waveguide window having circulating fluid of critical loss tangent for dampening unwanted mode
FR1548492A (en) * 1967-10-20 1968-12-06

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE TRANSACTIONS ON MAGNETICS, Band MAG-2, Nr. 3, September 1966, Seiten 251-255, New York, US; W.H. VON AULOCK: "Selection of ferrite materials for microwave device applications" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0465059A1 (en) * 1990-06-22 1992-01-08 NGK Spark Plug Co. Ltd. Dielectric resonator device
EP0618640A1 (en) * 1993-04-01 1994-10-05 Hughes Aircraft Company Enhanced tunability for low-dielectric-constant ferroelectric materials

Also Published As

Publication number Publication date
DE3782332D1 (en) 1992-11-26
CA1285326C (en) 1991-06-25
EP0279873B1 (en) 1992-10-21
US4837528A (en) 1989-06-06

Similar Documents

Publication Publication Date Title
DE1964670B2 (en) WAVE CONDUCTOR WITH A DIELECTRIC CARRIER AND DIRECTIONAL COUPLER, DIRECTIONAL CONDUCTOR AND RESONANCE BANDPASS FILTER USING SUCH A WAVE CONDUCTOR
DE69833662T2 (en) Multimodal Dielectric Resonance Device, Dielectric Filter, Synthesizer, Distributor and Communication Device
WO1994015384A1 (en) Slab or strip conductor laser
DE1591427B1 (en) CIRCULATOR AND METHOD OF MANUFACTURING A CIRCULATOR
DE1030904B (en) Microwave transmission line in the manner of a printed circuit with a first strip-shaped conductor, which is arranged at a very small distance with respect to the wavelength and parallel to a second strip-shaped conductor separated by a dielectric layer and of equal or greater width
DE4208058C2 (en) Waveguide / microstrip transition
EP0279873B1 (en) Phase-shifter
DE10065510A1 (en) Resonator, resonator element, resonator device, filter, duplexer and communication device
DE10214895A1 (en) Resonator component with filter, duplexer and communication device e.g. for cellular communication system, has conductive core and rod positioned in conductive cavity
EP0263242B1 (en) Microwave junction-circulator
EP0263241B1 (en) High-power high frequency junction circulator
DE3044774A1 (en) FERRITE DIFFERENTIAL PHASE SHIFT
EP0932217B1 (en) E-plane waveguide circulator
DE4223139C2 (en) Connection between a rectangular waveguide and a round waveguide for microwaves or millimeter waves
DE60315421T2 (en) TRANSITION FROM HOLLOWER TO MICROSTRUCTURE LINE
DE2736758C2 (en) Horn antenna with directional characteristic for circularly polarized waves
DE2123577C3 (en) Magnetron
DE2522918A1 (en) DIRECTIONAL GUIDANCE WITH FIELD SHIFT EFFECT
DE69919786T2 (en) High frequency filter
DE3527189C2 (en)
DE2907161C2 (en) Magnetron
DE4433064C1 (en) Impedance-matching arrangement for non-reciprocal ferrite coupler
DE1285029B (en) Y circulator
DE3939409C1 (en)
DE3901750C1 (en) Microwave filter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19880923

17Q First examination report despatched

Effective date: 19910218

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILA

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3782332

Country of ref document: DE

Date of ref document: 19921126

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 19930628

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: DL

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: AFT ADVANCED FERRITE TECHNOLOGY GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970129

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970221

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970311

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970421

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980221

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991029

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980228