EP0279768A1 - Contrôle de la capacité pour four intégré - Google Patents
Contrôle de la capacité pour four intégré Download PDFInfo
- Publication number
- EP0279768A1 EP0279768A1 EP88630024A EP88630024A EP0279768A1 EP 0279768 A1 EP0279768 A1 EP 0279768A1 EP 88630024 A EP88630024 A EP 88630024A EP 88630024 A EP88630024 A EP 88630024A EP 0279768 A1 EP0279768 A1 EP 0279768A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- hot water
- loop
- heating
- burner
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 52
- 238000010438 heat treatment Methods 0.000 claims abstract description 46
- 238000000034 method Methods 0.000 claims abstract description 3
- 239000012530 fluid Substances 0.000 claims description 20
- 239000000446 fuel Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- 239000000567 combustion gas Substances 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 235000009781 Myrtillocactus geometrizans Nutrition 0.000 description 2
- 240000009125 Myrtillocactus geometrizans Species 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 239000003546 flue gas Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000411 inducer Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001473 noxious effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/002—Regulating fuel supply using electronic means
Definitions
- This invention relates generally to a control for an integrated heating system and more particularly, to a modulated control for an integrated heating system for space heating and tankless domestic hot water heating which utilizes an infrared burner module and a heat exchanger coil.
- Air for a space to be heated circulates through a closed system generally comprising sheet metal ductwork, and is heated either as it passes through a heat exchanger in contact with a burning fuel, or as it passes in contact with a secondary fluid which has been heated by a burning fuel. Since burning the fuel results in the production of noxious combustion gases having exhaust temperatures which can exceed 500°F, it is necessary to exhaust the combustion gases through a chimney or flue to the atmosphere. These systems are relatively inefficient as evidenced by the high exhaust temperatures of the flue gases, and costly due to the construction of the necessary flue or chimney.
- Indirect fired furnaces ones in which the air being heated is not contacted directly by the combustion gases generated, are generally used in both forced air systems and hydronic systems.
- a forced air system consists primarily of a heat exchanger having combustion chambers arranged in relation to the flow of air to be heated such that fuel is introduced at one end of a chamber where a flame causes heat to be generated.
- the heat passes through a series of internal baffles before exiting through the other end of the combustion chamber into the flue or chimney. Simultaneously, circulated space air passes around the outside of the heat exchangers to absorb heat through conduction and convection.
- a hydronic system consists primarily of a firebox having a heat exchanger therein.
- the heat exchanger is in a closed loop for continuously circulating water, a water glycol solution or other suitable heat exchange medium from the heat exchanger to a remote radiator in the space to be heated.
- this system is also relatively inefficient and expensive due to the combustion gas temperatures at the outlet of the firebox and the cost of the chimney.
- the inefficient home heating system is generally the largest consumer of energy with the domestic hot water system being the second largest consumer of energy.
- potable hot water systems with ordinary glass-lined, hot water storage tanks are generally used. It is common for these systems to have an enclosed water tank in which are spiraled coils of tubing through which flows the water to be heated. At the lowermost portion of the tank there is normally a burner whose heat is allowed to pass over the coils, thereby heating the water in the tank for use within the home or building.
- a drawback to conserving energy by reclaiming reject heat from a furnace for use by domestic hot water heaters is that both systems are controlled independently, and the energy saved is limited by the temperature of the water in the hot water tank for potable use and typically maintained between 120°F and 160°F, the average being at or above the flue gas condensing temperature therefore limiting the efficiency of recovery at or up to a maximum threshold of the product of 88% to 90%.
- the necessity for dual control schemes for semi-integrated furnaces and hot water heaters is due to the blue flame burners used by both systems. In semi-integrated appliances dual controls are necessary because there is not true integration of a common heating loop that provides capacity at different required temperatures for both heating and hot water.
- a further object of the present invention is to provide a control system for an integrated heating system having a radiant burner which more efficiently controls the capacity of the heating system.
- the heating system having a liquid-backed heating module with a quick response and a tankless domestic hot water system, permits maximum radiant heat transfer capacity to be reached quickly, thus allowing pulsing of the burner to maintain heating module liquid temperatures within desired limits.
- FIG. 1 there may be seen a schematic view of residential heating system 10 using a liquid-backed heating module 12 for supplying energy to a series fluid loop including a tube-in-tube heat exchanger 50 and a fan coil 14.
- the fluid loop further includes a liquid pump 16 for circulating fluid therethrough and an expansion tank 28 to provide for the volume increase of the heated fluid and for dampening any pressure surges in the fluid loop.
- the fluid loop arrangement consists of discharge pipe 52 which extracts hot fluid from heating module 12 on demand.
- the heated fluid flows through the tube-in-tube heat exchanger 50 of conventional construction.
- the fluid then flows through pipe 54 and through a three-way diverting valve 56.
- the three-way valve 56 In a first position the three-way valve 56 allows the fluid to flow directly to the liquid pump 16 through pipe 55 and back to the heating module 12 through pipe 57. In a second position the three-way valve 56 allows the fluid in the loop to flow through pipe 58 into fan coil 14 and through pipe 59 back to the suction of liquid pump 16.
- the domestic hot water loop includes cold water inlet pipe 62 connected to the inlet of tube-in-tube heat exchanger 50 and outlet pipe 64 which discharges hot domestic water to tap 43 after passing through flow switch 66.
- a mixing valve 60 connects pipe 64 to bypass pipe 65.
- Mixing valve 60 is preferably a temperature responsive valve which mixes the hot water flowing through the heat exchanger 50 and the cold water flowing through the bypass pipe 65 to ensure that the hot water flowing from the tap 43 is at a desired set temperature.
- the heating module 12 includes a gas line 30 having a regulator 32 for supplying fuel to the module. Further, air is supplied to the module through line 34. The air/fuel mixture is ignited and burned on the infrared burner 18 located centrally within housing 20. The air/fuel is 100% premixed, thus, no secondary combustion occurs.
- the heat exchange means 19 is located in spaced relation to the infrared burner 18 to receive heat from the infrared burner.
- the heat exchange means is generally in the form of a helical coil and has the fluid flowing therethrough which absorbs heat from the infrared burner, which in turn transfers this heat to the domestic hot water and the space to be heated.
- Figure 1 illustrates the integrated domestic hot water/space heating system having a control system in accordance with the principles of the present invention.
- This control system comprises a microcomputer system 80, a system interface board 82, and a power supply 83.
- the microcomputer system 80 may be any device, or combination of devices, suitable for receiving input signals, for processing the received input signals according to preprogrammed procedures, and for generating control signals in response to the processed input signals.
- the control signals generated by the microcomputer system 80 are supplied to control devices which control operation of the integrated heating system in response to control signals provided to the control devices from the microcomputer system 80.
- the system interface board 82 is connected by ribbon cable 89 to the microcomputer system 80.
- the system interface board 82 includes switching devices for controlling electrical power flow from the main power supply 83 to three-way valve 56, liquid pump 16, inducer blower 38, gas valve 32, and ignition device 40.
- the switching devices are electronic components, such as relays, which are controlled in response to control signals from the microcomputer system 80 which are supplied through the ribbon cable 89 to the electronic components on the system interface board 82.
- the control system determines when to operate the integrated heating system to satisfy the need for space heat and/or domestic hot water.
- pulse shall mean turning the infrared burner on and off repeatedly while the inducer fan runs continuously during the pulse period.
- pulse period shall mean the sum of one "on” and one "off” pulse.
- the infrared burner 18 of the module 12 has the unique feature that it has a quick response time which allows the maximum radiant heat transfer capacity to be reached quickly, e.g. in about one second, thus transferring its entire output energy to the liqud loop in a short period.
- the temperature of the space to be heated is sensed by a thermostat 85 and a signal indicative of this temperature is provided by way of electrical line 91 to the microcomputer system 80.
- the flow rate of domestic hot water flowing through tap 43 is sensed by flow sensor 66 and a signal indicative of this flow is provided by way of electrical line 29 to the microcomputer system 80.
- Figures 2 and 3 there is exemplified the quick response time which allows continuous use of domestic hot water and the output capacity of the infrared burner as a percentage of "on" time.
- curve 70 indicates the water temperature with respect to the time for a one GPM flow through tap 43 while curve 70 ⁇ indicates the temperature per time for a 2 GPM flow.
- Figures 4 A-E there is shown the output capacity of a burner from a first time (T1) at which demand was initiated and a second time (T2) at which time demand was terminated.
- Figure 4A shows a burner at 100% capacity, Q, from initiation time to termination time, without modulation.
- Figure 4C there is shown a burner at capacity and 25% capacity, respectively, using pulse width capacity modulation of the present invention. Accordingly, the pulse period is maintained constant while the "on" pulse of the burner is modulated to vary the capacity.
- the microcomputer system 80 each time it is desired to energize the heating module, for example, when the flow sensor 66 detects flow through tap 43, the microcomputer system 80 provides another control signal by way of the ribbon cable 89 to the appropriate switching device on the system interface board 82 to supply power from the power supply 83 through the system interface board 82 to the ignition device 40.
- the microcomputer system determines the domestic hot water demand as a function of the temperature of the closed loop liquid leaving the module 12 and adjusts the pulse period of the infrared burner so that the domestic hot water is maintained at a desired temperature. Moreover, if the demand at the tap 43 is decreased then the on-pulse may decrease from that shown in Figure 4B to that shown in Figure 4C.
- flow sensor 66 could be located in line 62 or 64.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Steam Or Hot-Water Central Heating Systems (AREA)
- Control Of Combustion (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1730287A | 1987-02-20 | 1987-02-20 | |
US17302 | 1987-02-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0279768A1 true EP0279768A1 (fr) | 1988-08-24 |
EP0279768B1 EP0279768B1 (fr) | 1993-12-08 |
Family
ID=21781849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88630024A Expired - Lifetime EP0279768B1 (fr) | 1987-02-20 | 1988-02-08 | Contrôle de la capacité pour four intégré |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0279768B1 (fr) |
JP (1) | JPS63210559A (fr) |
CA (1) | CA1286388C (fr) |
DE (1) | DE3886065T2 (fr) |
ES (1) | ES2063059T3 (fr) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1497608A (fr) * | 1966-08-31 | 1967-10-13 | Procédé de réglage de débit d'un fluide et un dispositif pour la mise en oeuvre du procédé |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56146948A (en) * | 1980-04-14 | 1981-11-14 | Kubota Ltd | Instantaneous hot water supply unit |
GB2160967B (en) * | 1984-06-28 | 1987-04-15 | Thermocatalytic Corp | Gas-fired space heating unit |
KR910000677B1 (ko) * | 1985-07-15 | 1991-01-31 | 도오도오 기기 가부시기가이샤 | 가스 순간식 급탕기(給湯機) |
-
1988
- 1988-01-25 CA CA000557264A patent/CA1286388C/fr not_active Expired - Lifetime
- 1988-02-08 ES ES88630024T patent/ES2063059T3/es not_active Expired - Lifetime
- 1988-02-08 DE DE19883886065 patent/DE3886065T2/de not_active Expired - Fee Related
- 1988-02-08 EP EP88630024A patent/EP0279768B1/fr not_active Expired - Lifetime
- 1988-02-17 JP JP3494688A patent/JPS63210559A/ja active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1497608A (fr) * | 1966-08-31 | 1967-10-13 | Procédé de réglage de débit d'un fluide et un dispositif pour la mise en oeuvre du procédé |
Non-Patent Citations (2)
Title |
---|
PATENT ABSTRACTS OF JAPAN, vol. 9, no. 226 (M-412)[1949], 12th September 1985; & JP-A-60 082 716 (TOUTOU KHKI K.K.) 10-05-1985 * |
PATENT ABSTRACTS OF JAPAN, vol. 9, no. 272 (M-425)[1995], 30th October 1985; & JP-A-60 117 046 (TOUTOU KIKI K.K.) 24-06-1985 * |
Also Published As
Publication number | Publication date |
---|---|
ES2063059T3 (es) | 1995-01-01 |
JPS63210559A (ja) | 1988-09-01 |
DE3886065T2 (de) | 1994-04-07 |
CA1286388C (fr) | 1991-07-16 |
EP0279768B1 (fr) | 1993-12-08 |
DE3886065D1 (de) | 1994-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0279767B1 (fr) | Système de chauffage des locaux et de calorifères à eau chaude chauffé par gaz muni d'enveloppe du liquide intégré | |
US5076494A (en) | Integrated hot water supply and space heating system | |
DK171187B1 (da) | Varmeapparat til rumopvarmning med gas | |
US3999709A (en) | Water heater | |
US6394042B1 (en) | Gas fired tube and shell heat exchanger | |
EP3418649A1 (fr) | Appareil d'eau chaude et système d'eau chaude l'utilisant | |
US5971284A (en) | Apparatus for regulating heater cycles to improve forced-air heating system efficiency | |
US4251028A (en) | Energy recovery system for boiler and domestic water | |
US4880157A (en) | Capacity control for integrated furnace | |
US4106692A (en) | Heating system with reserve thermal storage capacity | |
US4122999A (en) | Forced air heating system | |
EP0279768A1 (fr) | Contrôle de la capacité pour four intégré | |
US6672255B1 (en) | Flue gas energy transfer system | |
KR19990076959A (ko) | 가열 장치 및 그 작동 방법 | |
EP0635683B1 (fr) | Chaudière mixte à haut rendement | |
KR0148211B1 (ko) | 보일러의 난방수 자동분배장치 | |
KR100212512B1 (ko) | 대용량가스보일러의 난방제어방법 | |
EP0146264B1 (fr) | Régulation d'un système de chauffage central | |
EP1135653B1 (fr) | Appareil de régulation des cycles thermiques pour l'amélioration du rendement d'un système de chauffage à air pulsé | |
CN218269559U (zh) | 一种燃气壁挂炉系统 | |
KR20020073763A (ko) | 가스 보일러의 온수 재가열 장치 | |
EP0445889B1 (fr) | Chaudière pour le chauffage central et la production d'eau chaude | |
KR0126592Y1 (ko) | 가스보일러의 온수장치 | |
GB2286654A (en) | Apparatus for providing hot water and/or central heating | |
KR200262961Y1 (ko) | 기름보일러의온수가열장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB IT |
|
17P | Request for examination filed |
Effective date: 19890117 |
|
17Q | First examination report despatched |
Effective date: 19910115 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 3886065 Country of ref document: DE Date of ref document: 19940120 |
|
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2063059 Country of ref document: ES Kind code of ref document: T3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19950113 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19950119 Year of fee payment: 8 Ref country code: DE Payment date: 19950119 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19950208 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19960208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19960209 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19960208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19961031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19961101 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 19990301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050208 |